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ABSTRACT To evaluate the impact of Health interventions promoting physical activity, researchers
typically conduct pre- and post-assessments using accelerometers. While aggregated metrics such as daily
counts, daily steps and time spent at various intensity levels are commonly used, very few studies exploit
the richness of the data often collected with a very fine granularity. We investigate the benefit of a deeper
analysis of wrist accelerometry data to understand physical activity behaviours throughout the day, as
well as how these may change overtime. To analyse physical activity behaviour changes, we propose a
methodology that extracts bouts of physical activity characterised by their activity levels and duration, and
uses these as features to cluster participants’ daily and hourly behaviours. We then compare these clusters
to assess changes following an intervention promoting physical activity in children. We demonstrate that
this approach provides a more insightful analysis of the physical activity behaviours because it highlights
the nature and the timing of behaviour changes, when present. We illustrate this methodology using data
from research-grade activity trackers (GENEActiv) and explain the insights discovered in the context of an
intervention aimed at educating school children about healthy behaviours.

INDEX TERMS Accelerometer, Activity Trackers, Behaviour Change, Clustering, Data Mining, Health
Education, Physical Activity, Exercise, Children

I. INTRODUCTION AND BACKGROUND

EVidence shows that children worldwide are not suffi-
ciently physically active. A recent global health study

[1] revealed that only 9% of boys and 2% of girls meet
the World Health Organisation daily recommendations of
60-min of moderate to vigorous physical activity (MVPA).
This is concerning because physical activity (PA) plays an
important protecting role against many metabolic diseases.
To tackle this issue, a growing number of health interventions
are deployed, especially in schools. However, only 56% of
school-based interventions have reported a significant, yet
very small change in PA behaviour [2]. This points to the
need to improve the design of interventions and gain better
understanding of their impact on PA. Having the capacity
to precisely assess the effectiveness of interventions, health

promotion or health education programs is critical both from
a public health perspective and from an economical perspec-
tive.

The use of technology in health promotion or education
interventions has shown great potential to improve health
behaviours and provides insights on how to improve their ef-
fectiveness [3], in particular where PA is concerned. With in-
creasingly available wearable technologies, researchers now
routinely use activity trackers with 3-axial accelerometers to
asses physical activity unobtrusively, objectively and contin-
uously [4] [5]. These can capture daily activity occurring
in real life, replacing or complementing self-reported data
which is often inaccurate and coarse, especially in children
where self-reported data and/or parental reports are found to
be very inaccurate [6]. Activity trackers provide a better mea-
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sure of achievement of public health recommended guide-
lines such as performing 12,000 daily steps [7] and 60 min of
daily MVPA [8]. In addition, the richness and objectiveness
of accelerometer sensor data opens the way to deeper analysis
of PA, in terms of occurrence and distribution, and in relation
to currently established health guidelines. Researchers can
investigate more effectively and accurately research ques-
tions such as whether the continuity and duration of PA bouts
(e.g. frequent, shorts bouts vs less frequent, longer bouts)
play an important role in achieving healthy guidelines, or
gaining insights into how PA is distributed during the day, for
instance in relation to a child’s typical schedule. In addition
this can help build evidence for researching the optimal way
to accumulate PA and MVPA [9] in the longer term and
informing policies and recommendations.

Whilst the most frequent use of accelerometers is to
quantify daily physical activity, particularly in response to
intervention promoting PA, much more detailed information
is captured from their data, enabling deeper analysis such as
activity recognition [10] and changes in everyday PA [11].
Extracting behaviour changes in response to learning, and
investigating the evolution of knowledge or skills from user
data is of course not new: Specialised data science fields such
as Educational Data Mining [12] and Learning Analytics [13]
have been developing techniques making use of various types
of learner data. These recently expanded to using physical
movement data captured by accelerometers. There is now
an emerging interest in using sensors to capture fine-grained
physical behaviours in education: for example, for learning
kinaesthetic skills like martial arts [14], dance [15], using
clinical equipment [16], or precise hand movements for en-
gineering activities [17]. Generally, these education domains
are focused on learning specific movements where a known
gold standard (or expert) movement pattern exists, making
supervised learning techniques appropriate to use.

However, assessing the impact of health education inter-
ventions is open-ended, thus requiring to analyse data using
unsupervised learning methods [18] in order to discover, at
a meaningful granularity level, the shape and patterns of
physical activity and to detect PA behaviour changes after
intervention, especially in relation to what has been learned.
We tackle here the problem of modelling and comparing
PA behaviours between two sets of accelerometer data, cap-
tured before and after the learning and behavioural change
intervention, in order to understand the extent and the na-
ture of its impact. For instance, an important question is
whether any additional MVPA observed after an intervention
occurs in longer bouts of activity (which would suggest
more sustained intentional activity), or scattered in minuscule
amounts throughout the day (which is more likely to be just
incidental)? And if so, when did it occur? during school time,
when the children are within their school environment or
after school when they are may be supported by family and
friends?

The contribution of this paper is a clustering-based ap-
proach for a more insightful analysis of the physical activity

behaviour of the participants, and of the nature of physical
activity behaviour changes, if present. Our two research
questions are:

• (RQ1) Can we extract daily changes of PA behaviour
from accelerometer data, at an appropriate granularity to
meaningfully assess the impact of health interventions
with regards to the daily recommended targets?

• (RQ2) What technique can be used to further the analy-
sis of PA behaviour change in relation to the part of the
day it occurred?

This paper builds on our earlier work [19] to understand
the impact of a learning intervention by analysing physical
activity behaviour changes at a daily level. We propose a
more comprehensive approach that enables a deeper analysis
of both daily and hourly behaviours, and we apply it to a
larger dataset.

The paper is structured as follows. Section 2 presents
existing work in mining sensors data for extracting health
related behaviours. Section 3 introduces the health education
program, its data and rationale. In section 4 we describe
our methodology and apply it to extract daily and hourly
behaviours. Section 5 describes the resulting clusters of
physical activity behaviours. In section 6 we analyse the
behaviour change using these behaviour clusters to answer
the research questions. Finally section 7 concludes the paper.

II. RELATED WORK
A. NON DATA MINING APPROACHES
Evaluating PA changes after health interventions is tradition-
ally done through statistical techniques, on data aggregated
over the test period. For example, [20] reports the daily
average amount of MVPA (min/day), Light PA (min/day), ac-
celerometer counts (counts/min) and step counts (steps/day).
[21] use accelerometers, questionnaires and a series of fit-
ness tests (Eurofit) to evaluate PA and fitness. The authors
compare pre- and post-intervention data by computing the
percentage of time spent at various intensities per day and
their mean values, standard deviations and main effects (F-
values). Whilst such analysis is useful to provide a big
picture of changes, these measures are highly aggregated and
do not provide information about the patterns of PA, and
whether/how these may have evolved.

B. SUPERVISED TECHNIQUES
Supervised data mining of activity tracker data has been
essentially used to assess quality of movement or to identify
activities, however this type of analysis does not provide
insight into PA patterns and characteristics. Nevertheless,
relevant accelerometer features and data mining techniques
can be found in these works. For example, [22] assesses the
quality of physical exercise movements using smartphone
accelerometer data features such as acceleration average,
standard deviation and distance between acceleration peaks
in a decision trees to classify them. For activity recognition,
[23] used tri-axial acceleration data from smartphones to

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3044295, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

generate acceleration data features such as average, standard
deviation, difference and average. These were used to build
classifiers for six pre-labelled activities (walking, jogging,
upstairs, downstairs, sitting, standing) using decision trees
(J48), logistic regression and multilayer neural networks
models with up to 90% accuracy. With 5 bi-axial accelerome-
ters, [24] used mean, energy, entropy, and correlation features
as input to recognise 20 different pre-labelled activities with
over 80% accuracy. For accelerometers combined with other
sensors, [25] used light, temperature sensor and microphone
data features to classify 6 different activities (sitting, stand-
ing, walking, ascending stairs, descending stairs and running)
using a C4.5 Decision Tree classifier with over 80% accuracy.

Free living health monitoring assistance and support make
use of such combinations of various sensor devices into
a wireless body area network (WBAN). [26] proposed a
decision support system using classification and regression
analysis with Support Vector Machine, extracting features
from accelerometers, global positioning system (GPS), heart
rate, blood pressure and weight data. [27] used a range of
data sources (electrocardiogram (ECG), electromyography
(EMG), electroencephalography (EEG), blood pressure, tilt,
breathing, movement and a "smart sock") combined with
external data such as forecast data to classify user states
and activities in the domain of computer-assisted physical
rehabilitation. Such techniques have been used for educa-
tional purposes. For instance, [28] created a decision-making
algorithm to optimize a reinforcement learning system for
a weight loss intervention program using pre-classified data
from Fitbit sensors, together with intervention responses.
[29] created a gamified intervention to motivate children to
increase every-day physical activity where Support Vector
Machine and Random Forests (RF) data mining techniques
were applied to smartphone accelerometer data in order to
(i) classify children’s PA into activities (sitting, standing,
walking, jogging, walking upstairs, walking downstairs and
intense physical activity) and (ii) calculate a score based on
the amount of time spent in these activities.

C. UNSUPERVISED TECHNIQUES
Unsupervised data mining has been used to detect changes
and analyse physical activity. For the detection of change
in PA behaviours, time window-based techniques have been
developed. For example [11] created a Physical Activ-
ity Change Detection algorithm (PACD), an adaptation of
Permutation-based Change Detection in Activity Routine
algorithm (PCAR) [30], which uses the distance between
PA time series windows to detect a significant change in
PA. They found that the PACD algorithm detected more
changes than other window-based change detection algo-
rithms (RuLSIF, texture-based, PCAR and a virtual classifier)
using synthetic and PA data (Fitbit data). While this work
aims to detect PA changes in accelerometer data, it focuses on
detecting changes in daily activity-based routines to identify
and quantify changes from those routines, rather than com-
paring two different sets of data. Furthermore, the physical

activity data is represented by a single characteristic (sum of
steps time series), leaving aside other important and relevant
characteristics, such as the PA intensity which is important to
meaningfully assess the impact of a health intervention.

For the analysis of PA, [31] used kmeans clustering al-
gorithm to group people according to their physical activity
levels from uni-axial hip accelerometer data in an observa-
tional study of family health, happiness and harmony. Once
transformed to Moderate to MVPA and Light Physical Ac-
tivities (LPA), datapoints were separated into weekday and
weekend, and averaged by hour. This generated 48 hourly
counts of MVPA and LPA, which were used as features
for clustering in order to be able to extract participants’
weekday and weekend behaviours. Two clusters were found,
one active and one much less active. Through these clusters,
the authors analysed demographic, lifestyle, PA level and
health characteristics. [32] used three accelerometers and a
heart rate monitor, and clustered the data using Hierarchical
Clustering Analysis (HCA) and k-means algorithms with
time and frequency domain as features to provide patients
and caregivers with a more accurate overview of their physi-
cal activities. Whilst [31] and [32] are the most related works
to ours, their focus was to highlight general temporal PA
patterns in their population without addressing the needs of
an intervention context, and in particular to evaluate pre- and
post- intervention behaviour changes, assessing both changes
in PA and sedentary time.

Recently, [5] analysed the data from wrist activity trackers
that children wore during a school-based health education
intervention (iEngage) by creating daily behaviour clusters.
These clusters were built using features such as the sum of
minutes spent on different levels of PA (Light, Moderate
and Vigorous), the number of daily steps, and the weekly
consistency by which children adhered to international rec-
ommendation guidelines as the program progressed. The
resulting clustering enabled deeper analysis of progress in
PA throughout the educational intervention showing us that
children improved PA behaviours along the program, and in
particular those who were the least active at the beginning of
the study.

In conclusion, while data mining techniques have been
successfully applied to identify activities, to characterise
daily patterns or to assess behavioural change during inter-
vention, there is a lack of methods to analyse the data at
fine granularity in order to 1) characterise fine patterns of
engagement in PA, 2) identify changes in behaviours that are
hidden in current analyses. This is important because it may
help detect early changes, predict trajectory and help tailor
interventions.

III. CONTEXT AND BACKGROUND
A. IENGAGE STUDY
The accelerometry data was collected before and after a
5-week school-based digital health education intervention
(iEngage) [33]. The experimental group of children (N=61)
followed the iEngage learning sessions over 5 weeks, whilst
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the control group (N=26) did not. The iEngage program aims
to develop health knowledge and skills to empower 9-11 year
old school children achieve healthy behaviours, with a focus
on reaching recommended levels of daily PA (at least 60 mins
per day of MVPA [34]) and decreasing sedentary time.

B. ACCELEROMETER DATASETS
Pre- and post-tests were carried out, measuring unobtrusively
and continuously the children’s PA with research grade ac-
tivity trackers (GENEActiv [35]) for five consecutive school
days, hence generating two five-day long datasets per child.
The GENEActiv accelerometers were placed on the wrist of
their non-skilled hand and captured acceleration in three axes
(x,y,z) with a sample frequency of 60 Hz.

To ensure that all daily records had the same length,
we excluded records with missing data. The result of this
filtering is summarised in Table 1.

TABLE 1: Dataset after filtering. Total Hours = Number of hours
recorded. Total Days = Number of days with records. N 5-days =
Number of children with five-day datasets. N Complete = Number
of children with five-days datasets after filtering. N Pairs = Number
of children with matching pre-post datasets pairs, after filtering.

Group Total
Hours

Total
Days

N
5-days

N
Complete

N
Pairs

Experimental Pre 7080 295 59 54 45Post 6360 265 53 50

Control Pre 3120 130 26 26 24Post 3000 125 25 25

C. RATIONALE
A high-level analysis of the total time spent daily in PA
between the control and the experimental group from the first
iEngage study [36] showed that pre-intervention, both groups
spent similar time in each PA intensity (p-values of 0.63,
0.62, 0.76, 0.29 for Sedentary, Light, Moderate and Vigorous
intensities respectively). In contrast, the post intervention
data showed a significant increase in PA in the experimental
group, especially in MVPA levels (p-values of 0.003, 0.017
respectively for Moderate and Vigorous), compared to no
change in the control group. While this is consistent with the
intervention reaching the overall desired effect (at least short
term) on this population, we sought more insights on how this
activity is distributed throughout the day, and how it evolved
(RQ1 and RQ2). To answer these questions, we must analyse
finer-grained information about the salient structure of PA
with regards to intensity, duration and frequency of PA bouts.
This led us to explore bouts of PA in terms of intensity level,
length and frequency. Considering bout duration is necessary
to provide meaningful analysis of data because very short
bouts will contain lots of noise and longer bouts may dilute
MVPA time if mixed with lighter PA. Furthermore, it has
been shown that PA sessions of at least 5 min including
at least 80% of MVPA bouts were probably required for
effective positive health outcomes [37]. The next important
aspect was to enable meaningful comparison between PA
behaviours: for instance, a period of mostly sedentary time

followed by a mostly MVPA period is no different to a period
of mostly MVPA period followed by sedentary time. In con-
trast, a period with very scattered MVPA among otherwise
sedentary time is different to a grouped period of MVPA
occurring within light activity for instance. This led us to
model behaviours over a certain period of time to absorb
meaningless differences yet conserving the overall shape of
the activity over that period of time. Once these behaviours
are modelled, we can then compare them.

IV. METHODOLOGY FOR EXTRACTING PHYSICAL
ACTIVITY BEHAVIOURS
The methodology is summarised in Figure 1. Both datasets
(pre- and post-intervention) were pre-processed and trans-
formed into sequences of PA intensity levels vectors. Then
we compressed these into bouts of PA per intensity level and
used characteristics of these bouts as features to cluster the
data and identify types of PA behaviours during the relevant
period (day or hour). The next sub-sections will detail these
steps.

Data Pre-Processing

PA Intensities

Bouts of PA

Clustering Features

PA Behaviour Clusters

FIGURE 1: Methodology for extracting PA behaviours

A. DATA PRE-PROCESSING
The data was pre-processed using R [38], which has a specific
library to manipulate GENEActiv trackers data [39]. We
converted the accelerometer binary files to accelerometer
data frames and applied the data cleaning explained in sec-
tion III. Then we translated the three-dimensional 60 Hz
acceleration data frame into gravity-subtracted Signal Vector
Magnitudes (SVMgs) [40] quantities within a 1 second epoch
(see Formula 1). Each data is timestamped.

SVMgs =
60∑
i=1

|
√
x2
i + y2i + z2i − g| (1)

The 1 second epoch was chosen because children engage
in moderate to vigorous activities mostly in very short bouts.
For example, it has been reported that 80% of MPA and 93%
of VPA are performed in bouts lasting less than 9s and 4.7s
respectively [41] [42]. This indicates that children behaviour,
in particular PA patterns, maybe incorrectly assessed and that
smaller epochs are needed to detect accurate activity.

B. FROM SVMGS TO PA INTENSITY LEVELS
We categorised each 1-sec SVMgs into a PA intensity level
according to cut-offs scientifically validated for assessment
of PA intensity in children [43] (Table 2).
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TABLE 2: SVMgs Cut Off Levels

Physical Activity Intensity Levels SVMgs Cut Off
Sedentary [0, 4.5[

Light [4.5, 16.5[
Moderate [16.5, 42[
Vigorous ≥ 42

Using the above cut-offs each second was coded with a
letter as follows: S for sedentary time, L for light PA, M
for moderate PA and V for vigorous PA (Figure 2). As an
example, a piece of 5 seconds length of this string can be
LLLMVV, which can be read as 3 seconds of light activity
followed by 1 second of moderate activity and followed by 2
seconds of vigorous activity.

FIGURE 2: SVMgs time series of one child over one day (the figure
is truncated between 80-200 SVMgs for a better display). The red
horizontal line represents the cut-off from sedentary to light, the
blue line the cut-off from light to moderate, and the green line the
cut-off from moderate to vigorous

C. BOUTS OF PA

As mentioned earlier, we analysed the data through the notion
of bouts with a focus on MVPA and sedentary time (SED)
bouts during daytime. Let us first introduce some definitions.

• A bout is a continuous episode of PA at a specific range
of intensity level.

• The length of a bout is the number of seconds spent
during that bout.

• The bout frequency is the number of occurrences of all
bouts of a certain length during a day.

As the daily recommendations are expressed in terms of
MVPA (combining moderate and vigorous PA), we merged
M and V into one category "MVPA". For instance, a sequence
of 11 seconds spent in M, 8 seconds in V, and 12 seconds in
M preceded and followed by L’s would generate one bout of
MVPA that would be 31 seconds long. This is pictured in
Figure 3.

FIGURE 3: From PA levels to bouts (and merging Moderate and
Vigorous levels)

Before using these bouts as features for the clustering, we
conducted a quick analysis of their distribution, by comput-
ing the total time spent in MVPA done in bouts of at least x
seconds. Formula 2 shows the reverse cumulative sequence,
where t is the bout length and b is the number of seconds
spent in bouts of length of at least t. For t=1, this is equivalent
to the total number of seconds spent in MVPA bouts of 1
second. For t=2, the total number of seconds spent in bouts
of at least 2 seconds (therefore excluding the time spent in
bouts only 1 second long), and so on.

BoutsCumSumt =
n∑

i=t

bi (2)

Figure 4 shows a sample of the result of these calculations,
where every line shows the average daily MVPA cumulative
bout length for a particular child. Over 10 seconds the lines
start to flatten as bout length increases.

This figure shows a lot of potential noise in the 1-2 seconds
bout, and an exponentially decreasing function that flattens
after 30 seconds for MVPA. The same method was applied to
SED bouts showing that the curve flattens after 300 seconds
(not shown).

FIGURE 4: Reverse Cumulative Bout Lengths

We ran a paired T-Test on the before and after cumulative
series which reveals that overall, children in the experimental
group increased MVPA bouts length (p-value=6.883e-10),
increased MVPA bout frequency (p-value=0.008), decreased
SED bout length (p-value=2.2e-16) and decreased SED bout
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frequency (p-value=2.2e-16). Such analysis thus brings new
information to characterise how the intervention impacted
behaviours.

D. CLUSTERING FEATURES
We selected various thresholds of bout length following
the established literature [44] and empirically, based on the
exploration above. In particular, meaningful MVPA detected
by GENEActivs was found to start from 3 seconds, as any
shorter activity is likely to be agitation rather than physical
activity. For MVPA we selected bout lengths of at least
3, 10 and 30 seconds, and for SED at least 60, 120, 300
seconds. Then, for each length and each PA Intensity Level,
we calculated two indicators: the frequency of bouts, and
the accumulated time spent (in seconds). The resulting 12
clustering features are summarised in Table 3.

TABLE 3: Clustering Features

Feature
Number

Measure

1 Total Time of MVPA over or equal 3 seconds length
2 Total Time of MVPA over or equal 10 seconds length
3 Total Time of MVPA over or equal 30 seconds length
4 Number of bouts MVPA over or equal 3 seconds length
5 Number of bouts MVPA over or equal 10 seconds length
6 Number of bouts MVPA over or equal 30 seconds length
7 Total Time of SED over or equal 60 seconds length
8 Total Time of SED over or equal 120 seconds length
9 Total Time of SED over or equal 300 seconds length
10 Number of bouts SED over or equal 60 seconds length
11 Number of bouts SED over or equal 120 seconds length
12 Number of bouts SED over or equal 300 seconds length

E. BEHAVIOUR CLUSTERING
After feature normalisation and Principal Component Anal-
ysis dimensionality reduction, K-means algorithm was ap-
plied.

We selected this algorithm as a first step because it is a
widely used, well-rounded algorithm, relatively easy to im-
plement and suited given the reduced number of dimensions.
We also attempted using a non-spherical clustering tech-
nique, DBSCAN [45], but it generated a less cohesive cluster
model. We acknowledge other clustering methods could nev-
ertheless be explored [46], especially more complex, state-
of-the-art algorithms that may be better suited since the ratio
between the amounts of MVPA and sedentary behaviours
may require different distance metrics, such as ensembles
[47], weighting [48] or alternative clustering models [49].

The resulting clusters are expected to capture PA be-
haviours of all children pre- and post-intervention, helping
to understand the whole cohort behaviour changes.

V. PHYSICAL ACTIVITY BEHAVIOURS: RESULTS
Our methodology characterises behaviours of PA at a coarse
enough level, yet captures essential elements of how the PA
is distributed throughout the day. The idea is to identify the
types of distributions of activity that are present in the cohort
data, and to distinguish these distributions. We investigated
two approaches:

– The Daily approach (subsection V-A), looking for daily
activity patterns: Indeed, two days (for 2 different chil-
dren, or 2 days for the same child) can show the same
total quantity of MVPA (e.g. 40 minutes), but one will
contain a lot of sedentary time and long sessions of
MVPA, whilst another can show more broken down
MVPA but less sedentary time (hence more light activ-
ity).

– The Hourly approach (subsection V-B), dwelling down
on the hourly patterns, and allowing a more fine-grained
analysis of when, during the day, activity occurs and
evolves.

A. PA DAILY BEHAVIOURS CLUSTERING
For the daily PA behaviours analysis we only considered
awake time from full school days, hence we excluded days
where bracelets were installed and removed and filtered out
sleeping times. As can be seen in Table 4 this resulted in 104
PA records of length of up to 45 hours of daytime activity
(three 15-hour days from 7:00 to 21:59 hrs.).

TABLE 4: Daily records post filter

Group Days Total3 2 1
Pre 44 10 0 54
Post 46 4 0 50

We computed daily behaviour vectors using the 12 daily
features shown in Table 3 and averaging daily values over the
three days. The resulting 104 (54 pre- and 50 post-) vectors
would thus characterise a child’s average daily PA, either pre-
or post-intervention.

The 12 daily features were standardised and passed
through Principal Components Analysis (PCA) to reduce the
number of features and maximise their variance. We retained
the first three Principal Components (PCs) based on three
criteria [50]: cumulative percentage of total variation <=
80%, size of variances of PCs (eigen value of > 1.0 criterion)
and a scree graph (see Figure 5).

FIGURE 5: PCs scree graph
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K-means unsupervised algorithm [51] with k=6 was ap-
plied. This number of clusters was determined by analysing
when including another cluster did not improve enough the
total within-cluster sum of square.

Behaviour clustering identified six types of daily PA be-
haviours (Table 5). Daily cluster 1 (D1) contains days with
the smallest number of bouts spent in MVPA and the highest
number of bouts spent in SED while D6 shows the highest
number of bouts spent in MVPA and the second lowest
number of bouts spent in SED. Other clusters present in-
termediate characteristics. It is clear that the most active
daily clusters (D4, D5, D6) are also the least sedentary ones.
Across all clusters, the time spent in bouts of MVPA over
30 seconds and their number is drastically less than the
MPVA occurring in shorter bouts, which can be explained
by the spontaneous activity of children at this age. Indeed,
most of the spontaneous activity is below 30 seconds with
a high recovering capacity [52]. This is also consistent with
studies showing that young children fatigue less during one
or several repeated high-intensity exercise bouts than adults
[53].

TABLE 5: Daily Clusters Centroids

SED Intensities Measure 1 (N=14) 2 (N=22) 3 (N=11) 4 (N=17) 5 (N=25) 6 (N=15)
>= 60 Secs

Tot. Time (min) 354.4 247.5 455.6 263.4 160.1 184.8
Num. of Bouts 129.1 89.7 57.2 104.7 66 68.7

>= 120 Secs
Tot. Time (min) 247.1 165.9 406.4 171.7 96.7 120.9
Num. of Bouts 51.2 29.4 21 37.4 19 21.9

>= 300 Secs
Tot. Time (min) 132.9 100.3 369.2 86 53.2 71.6
Num. of Bouts 12.5 6.6 8.1 8.1 3.4 5

MVPA Intensities Measure 1 (N=14) 2 (N=22) 3 (N=11) 4 (N=17) 5 (N=25) 6 (N=15)
>= 3 Secs

Tot. Time (min) 29.8 35.3 37.5 54.6 68 92.4
Num. of Bouts 251.9 370.1 351.2 448.2 655.1 729.7

>= 10 Secs
Tot. Time (min) 14.1 11.1 14.9 26.7 25.4 47
Num. of Bouts 38.3 39.6 49.4 77.6 89.2 136.8

>= 30 Secs
Tot. Time (min) 6 2.1 4 9.9 5.5 17.1
Num. of Bouts 6.7 3 5.2 11 7 20

Given these observations, we ordered the clusters in in-
creasing level of MVPA amounts, from the lowest activity
daily cluster (D1) to the highest activity one (D6), and
characterised them as seen in Table 6 using 3 seconds bouts.

TABLE 6: Daily Cluster Descriptions (Those meeting the daily
recommendation of MVPA are flagged with *, and borderline with
+).

Daily
Cluster

Summary Description

D1 Less active cluster (Half of MVPA recommended
amount) and frequent bouts of SED time.

D2 Not very active cluster (Around half of MVPA rec-
ommended amount) combined with average amount
of SED time.

D3 Low MVPA (Around half of MVPA, but in slightly
longer bouts) and highest SED time, including in
longest bouts.

D4+ Borderline active cluster (centroid 5 min short of
MVPA recommended levels, but with longer and
more frequent bouts than the previous clusters) com-
bined with frequent short SED time.

D5* Active cluster (meets the recommended amounts of
MVPA), frequent number of short MVPA bouts with
the lowest SED times and frequencies.

D6* Active cluster, with highest amount of MVPA but
with slightly longer SED times and bouts than the
other active cluster.

B. PA HOURLY BEHAVIOURS CLUSTERING
For the hourly PA behaviours analysis, the entire cleaned
dataset was used. This included nights and the days where
the bracelets were installed and removed, resulting in 10496
hours of data for the 104 PA records. The detail for each
group can be seen in Table 7.

TABLE 7: Hourly records post filter

Group Total children N Hours
Pre 54 5386
Post 50 5110

We computed hourly behaviour vectors using again the 12
daily features from Table 3. The resulting 10496 vectors (up
to 121 hours x 104 participants pre- and post-intervention)
would thus characterise a child’s PA over that specific hour.

After feature normalisation, the first three Principal Com-
ponents were retained (see Figure 6).

FIGURE 6: PCs scree graph

We ran k-means unsupervised algorithm with k=4. The
number of clusters was again determined using the total
within-cluster sum of square method.
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Table 8 shows the centroids of the hourly clusters. In
the hourly cluster 1 (H1), children spent the whole hour on
long sedentary bouts with negligible MVPA. while in H4,
children spent almost a quarter of an hour doing high bursts
of MVPA, with hardly any sedentary time in between. H2 and
H3 features were intermediate.

TABLE 8: Hourly Clusters Centroids

SED Intensities Measure 1 (N=4340) 2 (N=2359) 3 (N=3268) 4 (N=529)
>= 60 Secs

Tot. Time (min) 57.6 26.9 5.6 5
Num. of Bouts 4.8 11.4 3.2 2.6

>= 120 Secs
Tot. Time (min) 56.6 17.2 2.1 2.5
Num. of Bouts 4.1 4.4 0.6 0.7

>= 300 Secs
Tot. Time (min) 52.6 6.6 0.6 0.8
Num. of Bouts 2.9 0.8 0.1 0.1

MVPA Intensities Measure 1 (N=4340) 2 (N=2359) 3 (N=3268) 4 (N=529)
>= 3 Secs

Tot. Time (min) 0.1 0.9 4.1 15
Num. of Bouts 0.6 10 41.7 95.5

>= 10 Secs
Tot. Time (min) 0 0.2 1.4 9.3
Num. of Bouts 0 0.7 5.1 24.3

>= 30 Secs
Tot. Time (min) 0 0 0.2 4.2
Num. of Bouts 0 0 0.3 4.6

Given these observations, we ordered the clusters in in-
creasing amounts of MVPA, from the lowest activity hourly
cluster (H1) to the highest activity one (H4), and characterise
them as seen in Table 9.

TABLE 9: Hourly Cluster Descriptions

Hourly
Cluster

Summary Description

H1 Sedentary cluster/Sleep. Long bouts of SED time,
negligible MVPA. These are mostly the sleeping
hours.

H2 Not very active cluster. Infrequent brief bouts of
MVPA (1 min long) and almost half of the hour (26
min) spent on SED bouts of various length.

H3 Lightly active cluster. Occasional short bouts of
MVPA combined with infrequent and brief bouts of
SED, implying most of the time is spent on light
activity.

H4 Active cluster. High amount of MVPA bouts of vari-
ous length combined with infrequent and short bouts
of SED time.

VI. ANALYSING PA BEHAVIOUR CHANGE
This novel clustering approach, focusing either on day or
hour offers a unique opportunity to zoom in and out a typical
day or hour and to analyse individual and cohort data. This
provides new insight into how participants (here children)
respond to the knowledge and skills they learn about healthy
physical activity behaviours because we can characterise
individuals, days or hours not only based on PA descriptor
but also on sedentary behaviour.

Complementary to a previous study, the daily and hourly
clusters capture salient characteristics of the children’s PA
behaviours such as intensity, duration of bouts of various
intensities, frequency of PA engagement as well as time of
the day. This approach brings new insights on PA behaviour
since previous studies on PA including with children (e.g.

[20], [21]) present cumulative and sectorised analyses of the
PA, making difficult a global interpretation of the results.

This novel cluster analysis enables an analysis of each
salient characteristic of the behaviour, showing differences at
the cohort level, as well as at an individual level, and with
regards to international recommendations (with the daily
clusters) and the distribution of activity throughout the day
(with the hourly clusters). Let us illustrate how these clusters
can help answer the initial research questions.

A. CAN WE EXTRACT DAILY CHANGES OF PA
BEHAVIOUR FROM ACCELEROMETER DATA, AT AN
APPROPRIATE GRANULARITY TO MEANINGFULLY
ASSESS THE IMPACT OF HEALTH INTERVENTIONS
WITH REGARDS TO THE DAILY RECOMMENDED
TARGETS?
The daily behaviour clusters can help determine whether
and to which extend the experimental population changed
behaviours by comparing the clusters they belong to before
and after the intervention. Especially, behaviour can be de-
scribed in different ways, according to the structure of the PA
(Table 6). This is highly relevant since this structure can have
different impact on children health according to personal
objectives, physical fitness level and other environmental
factors associated to PA [54].

In the case of iEngage program, the analysis of accelerom-
etry in both periods pre- and post-intervention revealed the
nature and importance of the changes in relation to the
minimum daily recommendations (Table 6). In particular, the
Daily Cluster movement matrix (Table 10) permits to analyse
each salient characteristic simultaneously as captured by the
four clusters: it shows that 47% of children already belonged
to an active cluster and remained in the same cluster or moved
to a more active cluster; 13% of them were in a cluster below
the recommended guidelines of MVPA and moved to a more
active cluster; 35% of them were in a cluster that did not meet
the recommended guidelines of MVPA and remained in the
same or moved to another cluster that was slightly less active
but also less sedentary; 4% of the children were in an active
cluster and moved to a cluster that is not.

TABLE 10: Daily cluster movement matrix

To Daily Cluster
1 2 3 4 5 6

From Daily Cluster

1 4 2 0 1 0 0
2 2 3 2 1 2 0
3 0 2 1 1 0 1
4 0 1 0 4 0 1
5 0 0 1 1 7 2
6 0 0 0 0 2 4

We can visually observe behaviour changes according to
various elements of the PA structure. For instance in Table 10
(movement matrix between before and after) the behaviour
changes in relation to MVPA and international guidelines: the
green area shows desirable movements (moves or stays in a
cluster that fulfils the recommendation) and blue indicates no
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improvement (stays in the same cluster that do not fulfils the
MVPA recommendation) and red shows negative movements
(moves from a cluster that fulfils the recommendation to
one that not). If we are interested in the sedentary times,
a slightly different ordering of the clusters would yield a
slightly different matrix (D3 would become the most seden-
tary cluster). This method can be a new and reliable method
to interpret globally the impact of an intervention at the
scale of a cohort as well as at the individual level and help
answer other research questions. Although the clusters are
ordered in increasing level of MVPA and a movement from
one cluster to a higher one is generally better, it is not always
the case. For instance, a movement from D2 to D3 seems to
be better at first glance because children in D3 spent more
a little more time in longer MVPA than D2, but children in
D3 also had longer bouts of SED. Given this, clusters may
not be always comparable by numbers and partial order may
exist. Despite the above, we know that D4 (borderline), D5
and D6 fulfil the MVPA recommendations, so we coloured
the behaviour changes based on this. The green area shows
desirable movements (moves or stays in a cluster that ful-
fils the recommendation) and blue indicates neutral changes
(stays clusters that do not fulfils the MVPA recommendation,
but each one with different amount of MVPA and SED) and
red shows undesirable movements (moves from a cluster that
fulfils the recommendation to one that not).

B. WHAT TECHNIQUE CAN BE USED TO FURTHER THE
ANALYSIS OF PA BEHAVIOUR CHANGE IN RELATION
TO THE PART OF THE DAY IT OCCURRED?

For RQ2, the hourly behaviour clusters provide more spe-
cific insights into the period of the day where such potential
behaviour changes occurred.

We examined the distribution of time spent on each hourly
cluster throughout their school day. Figure 7 displays the
proportion of time spent in each of the four clusters during
a typical day pre-intervention.

It is very informative to see that most children (90%) spend
time in active clusters (H3 and H4) between 8am and 3pm.
After 3pm, only about 25% of children remain active. The
data also clearly show that the time before class start (8-
9am) morning and afternoon recess times (10am and 2pm)
are characterised by the highest proportion of children in
the more active cluster (H4). Only a very small proportion
(less than 5%) spend time in H4 after school. This shows
that schools remain the place where children engage in active
behaviours compared with outside school hours.

FIGURE 7: Distribution of hourly clusters during one particular pre-
intervention day (24 hours). The x axis shows the day and hour, in
1-hour long intervals, and y axis shows the percentage of children
present in each cluster. Clusters numbers are ordered from less
active (H1) to more active (H4).

To address RQ2 and analyse the PA during specific periods
of time, we used the following windows of time: Before
School (7-9am), During School (9am-3pm), After School (3-
7pm), Evening (7-9pm) and Night (9pm-7am). For each, we
calculated the proportion of time participants spent in the
relevant activity clusters, both pre- and post-intervention. In
Table 11 we observe a general shift towards higher activity
clusters and less time spent in the low activity clusters.

Notably, we observe a drop in the most sedentary clusters
(H1 and H2) Before School, After School and Evening, whilst
the time spent in the very active cluster (H4) more than
doubled After School. We also observe that the time spent
across the activity clusters During School is similar, although
slightly more active. This suggests that the participants were
more likely to engage in more active behaviour in their own
time, outside school hours, especially after school.

TABLE 11: Percentage of time spent on each hourly cluster by
period of time

Period of Time Intervention H1 H2 H3 H4
Before School

Pre 28.2 24.4 40 7.3
Post 20.5 30.4 38.6 10.5

During School
Pre 7 14.4 67.9 10.7
Post 6.7 11.4 68.8 13.2

After School
Pre 10.8 42.2 43 3.9
Post 7.4 39.8 44.4 8.4

Evening
Pre 16.7 52.5 26.6 1.3
Post 10.2 56.3 31.3 2.3

Night
Pre 85.9 11.3 2.8 0.1
Post 83.7 11.5 4.6 0.2

Analysing in more detail the After School period we found
a significant (Mann Whitney U test, p-value <0.05) increase
of time spent in H4 evenly distributed between 16:00 to
19:00, in a magnitude of four folds, and that most of these

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3044295, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

changes occurred by spending less time on H1 and H2
especially after 17:00 (see Table 12).

While this increase of time spent in the most active cluster
(H4) post-intervention indicates a more active behaviour, the
cluster centroids (refer to Table 8) allow us to examine in
more details the change in PA of the cohort. It suggests that
these children had a behaviour with few sedentary bouts, in
particular almost none over long periods (>= 300 secs bouts)
and frequent bouts of MVPA, not only the short ones (>= 3
secs), which are at least 4 times more frequent in H4 than
in any other cluster, but also the longer ones (>= 30 secs),
which are mostly only present in H4 and indicate a sustained,
purposeful period of MVPA such as exercise or physical
games.

TABLE 12: Percentage of time spent on each hourly cluster After
School time

Time Intervention H1 H2 H3 H4
15:00

Pre 4.4 16.6 68.3 10.7
Post 3.4 18.9 65.5 12.3
p-value 0.64 0.48 0.56 0.68

16:00
Pre 10 48 40.3 1.9
Post 8 45.8 38 8.2
p-value 0.80 0.76 0.67 0.02

17:00
Pre 13.6 54.8 29.9 1.7
Post 8.9 47.5 36.9 6.8
p-value 0.87 0.28 0.20 0.04

18:00
Pre 15.2 49.6 33.6 1.6
Post 9.5 47 37.3 6.2
p-value 0.90 0.62 0.42 0.02

The result of this analysis suggests that children became
progressively active after school until dinner time. This in-
crease is consistent with research showing that the child’s
environment, including parental/community support, access
to facilities and feeling of security, is a positive factor for
engaging in PA [55]. Indeed, each child in iEngage was as-
signed missions involving family, friends or support persons.

VII. CONCLUSION
We presented a methodology to extract salient aspects of
children’s PA behaviour and how these changed before and
after a Health education intervention. We model the PA into
bouts of PA intensities, using their length and frequency,
as features to cluster the daily and hourly PA behaviour in
relation to international recommendations. These clusters are
then used to examine the differences between before and after
the intervention.

This approach is complementary to using descriptive
statistics to measure overall behaviour changes between pre
and post- intervention data (via ANOVA or similar): It pro-
vides an aggregated analysis (via clusters), yet capturing
important and essential aspects of the activity (the length and
frequency of bouts of PA). It also enables a smaller grained
analysis to understand the impact of the intervention at a
general and individual level, starting from a high level and

zooming into more specific parts of the day, as we illustrated
with the After School time example.

Such analysis may also help refine Health guidelines with
regards to PA as the current recommendations are mostly
based on the health outcomes of exercise intervention studies.
The novel PA analysis approach proposed here allows experts
to extract a different type of information, which considers the
structure of free-living activities. This could pave the way
for adopting new methodologies, particularly where physical
fitness and markers of cardiovascular or metabolic health are
also available.

Our methodology can easily be adapted to other types of
time aggregation than day and hour, and include a wider
range of relevant features such as sleeping. Cluster move-
ments (Table 10) can be interpreted in relation to different
guidelines as well, such as minimal recommended daily
minutes spent on VPA or maximal amounts and lengths of
sedentary behaviours bouts. This flexibility of our work is
highly relevant since the guidelines for physical activity and
sedentary behaviours evolve over the years as evidence grows
of links between specific physical activity behaviours and
health. Future work could also explore whether the use of
other clustering algorithms and distance metrics (e.g. [47]
[48] [49]) could further improve the quality of the physical
activity clusters, hence of patterns discovery.
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