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Abstract In this paper we propose a change-point test for a strictly stationary short-memory sequences.
Several cases of dependence are investigated among whose strong mixing and θ-dependence. A simulation
study show the good performances of the method.
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1. Introduction

Change-points are discontinuity times in the distribution of a time series. Change-point detection in
time series, is a problem of great interest in many application areas. For instance, economic, financial
or climatic time series are often affected by structural changes in forces induced by external or internal
events (see e.g. [2], [25], [24]). Hence, since the pioneer paper [40], the problem of testing for changes
points (structural changes ) in the distribution of a time series have received a lot of attention in
statistics. From a general point of view, change-point tests address the question whether a stochastic
process is stationary during the entire observation period or not. More precisely, let us consider the
observation (X1, . . . , Xn) of a time phenomenon modeled by strictly stationary discrete time process
X. We want to test:

H0 : ∃ f1 (Xi)16i6n have common marginal density f1, (1)

versus

H1 : ∃ (f1, f2), f1 6= f2 0 < θ < 1,

{
(Xi)16i6[nθ] have marginal densityf1
(Xi)[nθ]+16i6n have marginal densityf2.

When (X1, . . . , Xn) is a sequence of independent and identically distributed random variables, this
testing problem has given rise to a huge literature (see [11] and [9] for accounts of various methods).
Most of these works focus on the shift of a particular distribution parameter, such as mean or variance,
neglecting more subtle changes. Moreover, most time series exhibit some kind of temporal dependence
so that the tests developed in the iid context need suitable modifications to be adapted to the non
iid case. The effect of dependence on change-point test procedures has been first addressed in [5]
(see also Tang and MacNeill (1993), Antoch, Hušková, and Prášková (1997)). In the literature, the
tests developed for uni- variate/multivariate time series include Horváth, Kokoszka, and Steinebach
(1999), Vogelsang (1998, 1999) for a change in the mean; Inclan and Tiao (1994), Lee and Park (2001),
Gom- bay, Horváth, and Hušková (1996) for a change in the mar- ginal variance; Giraitis, Leipus, and
Surgailis (1996) and In- oue (2001) for a change in the marginal distribution function; Picard (1985),
Giraitis and Leipus (1992), and Lavielle and Lu- dena (2000) for a change in the spectrum; Berkes,
Gombay, and Horváth (2009), Galeano and Peña (2007) for a change in the autocovariance function at
certain lags. For change-point detection in time series models or regression models with de- pendent
errors, see Andrews (1993), Davis, Huang, and Yao (1995), Lee, Ha, and Na (2003), Ling (2007), Qu
and Perron (2007), Aue et al. (2008), Gombay (2008), among others. We refer the interested readers to
the excellent review articles by Kokoszka and Leipus (2002) and Perron (2006) for more refer- ences. It
seems that the techniques developed for change-point detection are specific to the quantity/parameter
of interest. For example, the test for a change in variance is quite different from the test for a change
in spectrum. This brings considerable dif- ficulty to the practitioners, who want to use these tests
routinely to check the stability of certain characteristics of a time series at hand. see Perron (2006)
and Aue and Horva?th (2013) for recent reviews on change point tests for time series (for the mean)
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2 M. Boutahar and L. Reboul

Nonparametric tests for change points in the whole marginal distribution of strictly stationary
processes under particular structures of temporal dependence have been proposed, among others by
[34], [45], [23], [33], [35], [32]. Most of these tests are inspired from empirical distribution function
based goodness of fit tests (such as Cramér-Von-Mises or Kolmogorov-Smirnov) or use kernel density
estimates of the tested densities. In nonparametric goodness of fit tests theory, [39]’s type smooth tests
have been shown to be very serious competitors of the above mentioned methods (see e.g. [20], [21],
[28],[27]). Namely, such tests demonstrate better performance at detecting more subtle differences than
constant location/scale shifts.

For the two-sample testing problem H0 : f1 = f2, [18] recently proposed a data driven test for
comparing the marginal densities of a bivariate strictly stationary dependent process X under different
assumptions on the dependence structure of X, including long or short memory structures. Extending
[29], [22], [26], and [37], the test statistics proposed by [18] is based on a coefficient’s comparison of
densities expansions along an appropriated orthogonal basis. The number of coefficients to compare
is chosen by a data-driven method (see [30]). The authors derive the asymptotic distribution of their
test statistic and show that the test based on the limiting quantile is consistent under contiguous
alternatives. A simulation study enhances good performances in the short memory case, especially
for strong-mixing X. In this paper, we use a generalization of [18]’s test strategy together with weak
invariance principle theorems in view to deal with the change-point detection problem in a dependent
time series. This test is proposed in a very general setting, covering several kind of dependence structure
of the time sequence. As particular cases, we apply our results to independent, strong-mixing and
θ-dependent sequences. The rest of the paper is organized as follows. In Section 2 we introduce a data-
driven test statistic for (1). In Section 3, we derive its limiting distribution and study the consistency
of the test based on the limiting quantile under suitable alternatives, in a general setting. In Section 4
we apply our general methodology to independent, strong-mixing and θ-dependent sequences. Section
6 shows simulations results and Section 7 is devoted to the proofs.

2. A data-driven smooth test

Let X be a discrete time process defined on some probability space (Ω,A,P) and taking values in R. Let
ν be a given probability measure with density h with respect to some reference measure λ (Lebesgue’s
or counting measure for instance). Hereafter, all the marginal densities involved in the test are taken
with respect to λ and are assumed to belong to the space L2(ν) of square integrable functions with
respect to ν.
In this setup, we wish to test (1) based on the observation (X1, . . . , Xn) of X.

For that task, we consider the expansions of f1 and f2 along a dense family (Qj)j∈N of orthonormal
functions in L2(ν):

f1 =
∑
j>0

aj(θ)Qj and f2 =
∑
j>0

bj(θ)Qj , (2)

with

aj(θ) = E(Q̃j(X1)) =

∫
R
Qj(t)f1(t)dν(t) , bj(θ) = E(Q̃j(Xn)) =

∫
R
Qj(t)f2(t)dν(t),

Here, E denotes the expectation and we set Q̃j = hQj for all j ∈ N (recall that ν = hλ). Then, (1)
can be rewritten as

H0 : ∀ 0 6 θ 6 1, ∀j > 0; aj(θ) = bj(θ) against H1 : ∃ 0 < θ < 1, ∃ jθ > 0 ajθ (θ) 6= bjθ (θ). (3)

In view to define a test strategy for (3), we shall consider for every 0 6 θ 6 1 a sequence (Un(k, θ)k>1

of Neyman’s type test statistics. They are defined, up to a renormalization factor, as the sum of the
squared differences between the empirical estimators of the k first coefficients in (2). More formally,
setting for all j > 1

V (j)
n (θ) =

[nθ](n− [nθ])

n3/2
(âj(θ)− b̂j(θ)),
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âj(θ) =


0 if 0 6 θ < n−1

1

[nθ]

[nθ]∑
t=1

Q̃j(Xt) if θ ∈ [n−1, 1]
b̂j(θ) =


1

n− [nθ]

n∑
t=[nθ]+1

Q̃j(Xt) if θ ∈ [0, 1)

0 if θ = 1

we define for all k > 1

Un(k, θ) =

k∑
j=1

(V (j)
n (θ))2. (4)

For given θ ∈ (0, 1), Un(k, θ) is a proper statistic for testing that aj(θ) = bj(θ), j = 1, . . . , k. More
precisely, each component of Un(k, θ) is used to compare aj and bj in order to detect H1. Thus we
need to let k tend to infinity to detect all possible alternatives. However, choosing too large k tends
to power dilution of the test.
Hereafter, we follow the idea of [30] to make a data driven selection of k. In the case of independent
observations, [30] first introduced such a rule which has been shown to be very successful further
on (see among others [29], [27], [1], [31]). It consists of a modified version of Schwarz’s Bayesian
information criterion (see [44]), based on an expansion of the maximum likelihood function (for an
heuristic justification of this rule in the short-range dependent case and the two-sample testing problem,
see Remark 1 of [18].)

Namely, let us consider a strictly positive control sequence of integers dn such that limn→∞ dn =∞.
At first step, we select among all possible dimensions between 1 and dn the minimum maximizer of
the information criterion Kθ,n, as follows:

Kθ,n = min
{
k : 1 6 k 6 dn, Un(k, θ)− k log n > Un(j, θ)− j log n, 1 6 j 6 dn

}
. (5)

Once Kθ,n is determined, we define our main test statistic as

Ũn(θ) = Un(Kθ,n, θ). (6)

Since θ is unknown in (3), we propose to use as a test statistic an obvious increasing function of the
maximum of the Ũn(θ)’s over θ ∈ [0, 1]. Here, we choose

Ũn = sup
06θ61

√
Ũn(θ), (7)

For practical purposes, notice that Ũn(θ) is a left hand continuous step function such that Ũn(θ) = 0

for every θ < n−1, Ũn(1) = 0 with jumps at θ = i/n, i = 1, . . . , n so that the computation of the
optimum requires to compare at most n values.

3. Large sample properties

In this section, we first study the asymptotic distribution under H0 of Ũn, under broad enough condi-
tions to cover most of the usual short memory structures of dependence of the underlying process X.
We then prove the consistency of our test against a large class of alternatives.

Our test strategy is then indicated in a last paragraph. We first give assumptions under which these
results hold.

3.1. Assumptions

From now on, we set for all k > 1, Q̃∗k(X) = Q̃k(X) − E0(Q̃k(X)) where E0 is the expectation under
H0 and we denote by (rn(k))n>0 the partial sums of the absolute series of its auto-covariances :

rn(k) =

n−1∑
t=0

∣∣∣E0

(
Q̃∗k(X0)Q̃∗k(Xt)

)∣∣∣ , n = 1, 2, . . . , (8)
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Moreover, we denote by D[0, 1] the Skorohod space of right continuous with left-hand limits functions
from [0, 1] into R endowed with Skorohod’s topology and we use D

=⇒ to indicate weak convergence on
D[0, 1] . Moreover, we define Wn : Ω→ D[0, 1] by

Wn(θ) =
[nθ]

n
a1(θ) =

1√
n

[nθ]∑
t=1

Q̃∗1(Xt), θ ∈ [0, 1]

Hereafter, we make the following assumptions:

(A):
1

dn

dn∑
k=1

rn(k) = O (1) .

(B): Wn(θ)
D

=⇒ σW (θ) under H0, where {W (θ), θ ∈ [0, 1]} denotes a standard Brownian Motion and
σ is a positive constant.

Let us describe further on the meaning and implications of these assumptions. First, notice that the
behavior of (rn(k))n>0 describes the range of dependence of the process Q̃∗k(X): it is short-range de-
pendent when the sequence (rn(k))n>0 is bounded while unbounded sequences characterize long-range
dependent processes (see e.g. [6]). Assumption (A) thus informs us about the asymptotic behavior of
the partial sums rn(k) for a fixed k, such assumption generally holds if the processes Q̃∗k(X), k > 1
have short memory as soon as their spectral densities are bounded at zero.

Assumption (B) amounts to say that the partial sums of Q̃∗1(X) satisfy a Donsker’s type invariance
principle. Such a well known result in the i.i.d. setting generally still hold under suitable moments
assumptions for certain classes of short range dependent processes. We will see in the next subsection

that the asymptotic behavior under the null of Ũn(θ) is that of
(
V

(1)
n (θ)

)2
. To give an idea of this

behavior, notice that simple calculations yield

V (1)
n (θ) = Wn(θ)− [nθ]

n
Wn(1). (9)

so that V (1)
n (θ)

D
=⇒ σB(θ), where B is a standard Brownian Bridge. Thus, when (B) holds, we have

the convergence of Ũn to the supremum of a Brownian Bridge.

3.2. Asymptotic distribution under the null

Hereafter, we derive the asymptotic distribution of Ũn under the null. Theorem 1 below claims that
under the null hypothesis, only the first component in (Un(k, θ))16k6d(n) is required to construct a
nontrivial test.

Theorem 1. Let dn = o(log(n)) and assume that (A) holds. Thus, under H0, one has for every θ,
0 6 θ 6 1,

Kθ,n
P−→ 1. (10)

Moreover, if (B) holds
Ũn

L−→ σŨ∞ (11)

where σ > 0, Ũ∞ = supθ∈[0,1] |B(θ)| and B(θ) is a standard Brownian Bridge.

The cumulative distribution function of Ũ∞ is given by (see equation (11.39) of [7])

FŨ∞
(z) = 1 + 2

∞∑
k=1

(−1)k exp(−2k2z2). (12)
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3.3. Convergence under contiguous alternatives

In the sequel, we show that for suitable alternatives, the test based on the limiting quantile is consistent.
Namely, let us set δk(θ) = ak(θ)− bk(θ) and consider the following two alternatives:

H∗1 : ∀k > 1, δk(θ) = o(1/
√
n),

H∗∗1 : ∃K > 1 such that ∀ k 6= K, δk(θ) = o(1/
√
n)

and δK(θ) = O(
√

log n/nβ−1/2), with 0 < β < 1.

Denoting by E1 and P1 the expectation and probability under the corresponding alternative we con-
sider the two following assumptions:

(A*): There exists some C∗ > 0 such that

1

d(n)

d(n)∑
s=1

E1

(
|V (k)
n (θ)− δk(θ)|2

)
< C∗,

(B*): V (K)
n (θ)−

√
nδK(θ) = OP1

(
√

log(n)).

Theorem 2. Let dn = o(log(n)) and assume that t (A*) holds. Then,

• Under H∗1 , Kθ,n
P−→ 1. Moreover, if (B) holds Ũn

L−→ σŨ∞, where σ and Ũ∞ are defined as in
Theorem 1.

• Under H∗∗1 , Kθ,n
P−→ K. Moreover, if (B*) holds, Ũn

P−→ +∞.

Therefore, under H∗1 , the perturbation will not be detected by the test procedure while it will be
detected under H∗∗1 .

3.4. Test strategy

In invariance principle results, the constant σ in B is generally such that σ2 = limnWn(1). Let σ̂n be
a consistent estimator of σ, conveniently chosen according to the nature and the dependence structure
of Q̃∗1(X). Using the above mentioned results, we are able to construct a parameter free test based on
the limiting distribution of Ũn.

In practice we will consider the following statistic, the asymptotic distribution of which is free of
the parameter σ.

B̃Rn = sup
06θ61

√
B̃Rn(θ), (13)

where

B̃Rn(θ) = BRn(Kn,θ, θ), with BRn(k, θ) =
Un(k, θ)

σ̂2
n

andKn,θ is defined by (5). Thus, let qα be the α-upper percentile point of the distribution of Ũ∞. Recall

that its distribution is given by (12). Then, the test with critical region
{
B̃Rn > qα

}
has asymptotic

level α.

4. Applications

In this section, we check the validity of Section 3’s results on three types of short-memory structures of
the process X. Subsection 4.1 deals with the independent case. In Subsections 4.2, and 4.3, we study
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6 M. Boutahar and L. Reboul

the strong mixing and θ-weak dependent cases. These cases are not exhaustives. The key point is that
for short-memory processes X, processes Q̃k(X) generally inherit the short-memory structure of X,
for convenient classes of functions Q̃k depending on the specific short-memory dependence structure of
X (see Remark 1) so that (B) will generally be achieved by a weak invariance principle theorem and
(A) will generally obtain under moment conditions controlling the order of magnitude of the partial
sum rn(k) of the process Q̃k(X).

The proofs are easily obtained by combining some results in [18] and known invariance principle
theorems. So, they will only be sketched in the text. Extensions of these results are discussed in
Subsection 4.4. Hereafter, we denote by ‖.‖q denotes the Lq norm under H0.

4.1. Independent sequences

We start with the basic case of independence. Let (X1, . . . , Xn) be an i.i.d. sequence. Set

σ2 = ‖Q̃∗1(X0)‖22 = E0(Q̃∗1(X0)2), (14)

and assume that σ2 > 0. Then,

Corollary 1. Let dn = o(log n) and assume that there exist C > 0 and n0 > 0 such that for all
n > n0,

(i)
1

dn

dn∑
k=1

‖Q̃∗1(X0)‖22 < C.

Then, under H0

Ũn
L−→ σŨ∞,

with Ũ∞ defined as in Theorem 1.

Proof. Since for given k > 0, E0(Q̃k(X0)Q̃k(Xt)) = 0 for all t > 0, we have rn(k) = ‖Q̃∗1(X0)‖22, with
rn(k) defined by (8), so that (A) is equivalent to (i) and (B) straightforwardly arises from Donsker’s
theorem.

4.2. α-mixing sequences

We assume in the sequel that X satisfies a mixing condition. More specifically, we assume here strong
or α-mixing in [43]’s sense. Formally, setting P = σ(Xt, t 6 0), F = σ(Xt, t > m) and defining the
decreasing sequence (α(m))m>0 of strong mixing coefficients of X by

α(m) = sup
A∈P,B∈F

|P(A ∩B)− P(A)P(B)|,

we say that Z is α-mixing if
lim

m→+∞
α(m) = 0.

A lot of classical models satisfy this condition. For instance, linear stochastic processes are α-mixing,
as soon as the error process has a Lebesgue-integrable characteristic function (see [47]).

Let us set

σ2 =

∞∑
−∞

E0

(
Q̃∗1(X0)Q̃∗1(Xt)

)
and assume that σ2 > 0.Then,

Corollary 2. Let dn = o(log n) and assume that X is a strictly stationary α-mixing process with
non-increasing coefficients sequence (α(m))m>0 and such that
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A nonparametric change-point smooth test for dependent sequences 7

(i) There exist C > 0, n0 > 0 and δ > 0 such that for all n > n0,

1

dn

dn∑
k=1

‖Q̃∗k(X0)‖22+δ < C.

(ii)
∑
m>0

m2/δα(m) <∞.

Then, under H0

Ũn
L−→ σŨ∞,

with Ũ∞ defined as in Theorem 1.

Proof. In order to check (A) we first notice that (Q̃k(Xt)) is α-mixing since it can be expressed as
a measurable function of X. Then, as in [18]’s proof of corollary 2, we use [42]’s covariance inequality
given in Theorem 1.1 altogether with the former remark to show that

lim
n→∞

rn(k) 6 K‖Q̃∗k(X0)‖22+δ

∑
t>0

(t+ 1)2/δα(t)

δ/(2+δ)

, (15)

with K = 4 exp(2/(2 + δ)). So, (A) obtains by (i)-(ii).
Assumption (B) straightforwardly follows from [16]’s invariance principle Theorem 1 under (i) and
(ii) (which imply condition (1.2) of the theorem) and σ2 > 0.

4.3. θ-dependent sequences

Mixing properties are satisfied by fairly general models, but they are not easy to check and sometimes
do not hold. Namely, they do not cover the case of linear processes with discrete innovations (see
e.g. [3]). A less restrictive and easier to prove condition is to assume that X admits one of the weak
dependence conditions studied in [15]. We focus here on θ-dependence (see [13]). Let us define the
Lipschitz modulus of a function g from Rd into R by

Lip(g) = sup
x 6=y

|g(x)− g(y)|
‖x− y‖1

,

where ‖x‖1 =
∑d
i=1 |xi|. For (u, v) ∈ N∗ × N∗, let Fu and Gv respectively denote the set of bounded

by 1 measurable functions from (R2)u
.
= R2 × . . . × R2 (u times) into R and the set of bounded by

1 functions from (R2)v into R with finite Lipschitz modulus. We say that X is θ-dependent if for all
(u, v) and all sets of indices i1 6 . . . 6 iu 6 j1 −m 6 j1 6 . . . 6 jv, we have for all f ∈ Fu, g ∈ Gv,

|cov(f(P ), g(F ))| 6 vLip(g)θ(m), (16)

where P = (Xi1 , . . . , Xiu), F = (Xj1 , . . . , Xjv ) and (θ(m))m>0 is a decreasing sequence such that

lim
m→+∞

θ(m) = 0.

As previously, we set

σ2 =

+∞∑
t=−∞

E0(Q̃∗1(X0)Q̃∗1(Xt))

and we assume that σ2 > 0. Then, we have

Corollary 3. Let dn = o(log(n)) and assume that X is a strictly stationary θ-dependent process with
non-increasing coefficients sequence (θ(m))m>0 and such that

(i) There exist C > 0, n0 > 0 and δ > 0 such that for all n > n0,

1

dn

dn∑
k=1

‖Q̃∗k(X0)‖(2+δ)/(1+δ)2+δ < C.
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8 M. Boutahar and L. Reboul

(ii)
∑
m>0

m1/δθ(m) <∞.

(iii) The functions (Q∗k)16k are Lipschitz.

Then, under H0

Ũn
L−→ σŨ∞,

with Ũ∞ defined as in Theorem 1.

Proof. First note that (iii) implies the θ-dependence of (Q̃k(Xt)), with coefficients sequence θk(r) 6
θ(r). Then, as in [18]’s proof of corollary 3, we use the covariance inequality of [12]’s Proposition 1 and
follow the proof of [12]’s Lemma 2 to show that

lim
n→∞

rn(k) 6 K‖Q̃∗k(X0)‖(2+δ)/(1+δ)2+δ

∑
t>0

(t+ 1)1/δθ(t)

δ/(1+δ)

, (17)

with K = 2(4+δ)/(2+δ), so that (A) obtains by (i)-(ii).
Under conditions (i) and (ii) and since σ2 6= 0, Assumption (B) straightforwardly follows from the
invariance principle theorem stated in [12]’s Theorem 2 (after application of Lemma 2 and Corollary
1 of this paper).

Remark 1. Notice that Corollaries 2 and 3 hold because the process Q̃∗k(X) has the same dependence
structure as X. But while in the mixing case, only measurability of the Q̃∗k’s is required to achieve this
property, the Q̃∗k’s need to be Lipschitz in the θ-dependent case.

4.4. Extensions

The aforementioned applications are not exhaustive.

• Firstly, Q̃∗k(X) has the same dependence structure asX as soon as Q̃∗k is a measurable function for
mixing structure or satisfy a Lipschitz condition for weak-dependent structures so that invariance
principles for X are easily transposed to Q̃∗k(X).

• Secondly, the results obtained for α-mixing and θ-dependent X may be straightforwardly ex-
tended to several other weak dependence structures, by adapting the assumptions of the Corol-
laries and the covariances inequalities used in the proofs. Convariance inequalities and invariance
principle theorems for various weak dependence conditions ( such as τ , τ ′ λ and θ - depen-
dences) can be found in [19], [12] and [15] while analogue results under mixing conditions (such
as ρ-mixing, Φ-mixing, ... ) are studied in [7], [17], [41]. See also [36] for a survey on invariance
principle results for short memory processes.

• Thirdly, this study only focusses on short memory processes. Invariance principles for long-
memory processes do not hold in general, except for particular classes (gaussian or linear pro-
cesses, see e.g. [10, 14] and references therein). The

√
n- normalization and gaussian limit no more

hold. Moreover in general, no heredity conditions ensures the dependence structure of Q̃∗k(X).

5. Practical implementation of the test

In view to perform the test, many parameters have to be fixed in practice : the family (Qj)j>0 and an
associated measure ν, the sequence (dn) and an estimator of the variance of the limiting distribution
of the test statistic. These choices have already been discussed in details in [18], so we just recall them
and only mention few modifications. We also recall alternative test statistic allowing to improve in
some cases the performances of the test.

Choice of dn. The computation of the selection rule (5) requires the choice of a sequence dn. It
can be seen on simulations that empirical levels and powers do not depend on dn for sufficiently large
values of this parameter. Detailed comments on this choice can be found in [18].
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A nonparametric change-point smooth test for dependent sequences 9

Choice of the basis (Qj)j>0 and of the reference measure. The definition of the statistic relies
on the choice of (Qj)j>0 and of an absolute continuous measure ν such that (Qj)j>0 is an orthogonal
family of L2(ν) and f1 and f2 belong to L2(ν). This choice depends on the support of f1. Relevant
families that comply with the assumptions (i)-(iii) of Corollaries 1-3 are given in [18]. Namely, for X
taking values in R, we can choose the standard normal distribution for ν with its associated Hermite
polynomials ; for X taking values values in R+, we can choose the exponential distribution with mean
1 for ν with its associated Laguerre polynomials ; for X taking bounded values, we can consider the
uniform distribution for ν and its associated Legendre polynomials.

Choice of σ̂n. The limiting distribution of the test statistic requires the estimation σ2
n of an un-

known variance parameter σ2. In the independent case, σ2 is estimated by its empirical version

σ̂2
n =

1

n

n∑
s=1

(V (1)
s )2. In the short-memory cases, classical estimators of the spectral density g of Q̃∗1(X)

may be used to estimate the long run variance σ2. Usual choices are kernel based estimators (see e.g.
[38], [4] and references therein). For linear processes, one can also consider the smoothed periodogram
(see Brockwell and Davis (1991)). Several other estimators have been put forward for particular types
of processes. In our simulations, we will use for instance the spectral estimator proposed in [8] for
AR(1) processes.

However, in the change in mean case, it has been showed (see ...) that the power can decrease
to zero as the magnitude of change ? gets very large, which is counterintuitive as we expect a test
to be more powerful when the alternative gets far- ther away from the null. In the literature, this
phenomenon was called nonmonotonic power (Vogelsang 1999) and its source has been identified
through theoretical analysis and simulations by Vogelsang (1999), Deng and Perron (2008), and Juhl
and Xiao (2009), among others. Heuristically, the decrease in power accompanied with larger shift is
because the bandwidth ln is severely biased upward under the alternative, which leads to an inflation
in the estimate of the scale s. When the scale estimate sn is too large, the KSn test statistic tends
to be small, result- ing in a low rejection rate. Note that the fixed bandwidth (e.g., n1/3) is immune
to the nonmonotonic power problem but is not adaptive to the magnitude of autocorrelations in the
series and it could lead to severe size distortion; see Shao and Zhang (2010) for simulation evidence.
Following the description of the SN idea in the previous section, a seemingly natural extension of the
SN approach to the change point testing problem is to replace sn in KSn by Wn However, as shown in
Shao and Zhang (2010), the above naive extension fails to attenuate the nonmonotonic power problem.
The major problem with KSn is that it does not take into account the change-point alternative. To
circumvent the prob- lem, Shao and Zhang (2010) proposed a new self-normalization process in order
to estimate the long-run variance, taking into account the change point. Precisely, in order to test a
break point in the time series Yt, they used lobato(2001) to propose

Vn(l) = n−2

(
l∑
t=1

(
S1,t −

(
t

l

)
S1,l

)2

+

n∑
t=l+1

(
St,n −

(
n− t+ 1

n− l

)
Sl+1,n

)2
)

where Si,j =

j∑
t=i

Yt, i 6 j. Here, we put Yt = Q∗1(Xt) and use the test statistic

B̃R2n = sup
06θ61

√
B̃Rn(θ) = sup

l=1,...n

√
B̃Rn(l/n), (18)

B̃R2n(θ) = BR2n(Kn,θ, θ), with BR2n(k, θ) =
Un(k, θ)

Vn([nθ])

and Kn,θ is defined by (5). One has that

Vn([nθ]) =⇒ σ2V (θ)

so that by the continuous mapping

B̃R2n =⇒ sup
06θ61

|B(θ)|√
V (θ)

,
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10 M. Boutahar and L. Reboul

with

V (θ) =

∫ θ

0

(
B(u)−

(u
θ

)
B(θ)

)2
du+

∫
t

heta1 B(1)−B(u)− 1− u
1− θ

(B(1)−B(θ))

)2

du

Thus, let qα be the α-upper percentile point of the distribution of Ũ∞. Recall that its distribution

is given by (12). Then, the test with critical region
{
B̃Rn > qα

}
has asymptotic level α.

Through extensive simulations, the SN-based test of KS has been shown to have superior size
compared to some recently pro- posed alternatives by Crainiceanu and Vogelsang (2007) and Juhl and
Xiao (2009), which have been developed to alleviate the nonmonotonic power problem. The power of
the SN-based test was seen to be monotonic although there has been no rig- orous theory that justifies
the nonmonotonic power property of the SN-based test. The extension to testing for a change point in
other quantities, such as marginal quantiles and spectral distri- bution function at certain frequencies,
have also been developed in Shao and Zhang (2010).

6. Simulation study

In order to evaluate the finite-sample performances of our test B̃Rn described in Subsection 3.4, we
run Monte-Carlo simulations on order one gaussian autoregressive models and several sample sizes.
For each model and sample size, we compute and compare the empirical levels and powers of B̃Rn
with that of [34]’s test named L̃Nn in the sequel. The nominal level is fixed at α = 5%. We present
below the models and tests as well as the obtained results.

6.1. Models

The simulated examples are based on the observation of sequences of size n ∈ {50, 100, 200, 500, 1000}.

• In the first set of models, denoted by Model 1 we consider α-mixing processes X:

Xt =

{
a1Xt−1 + εt if 1 6 t 6 [n/2]

b0 + b1Xt−1 + σεt if [n/2] + 1 6 t 6 n.

Here, (εt) is a standard Gaussian white noise, (a1, b0, b1) are real constants and |a1| < 1 and |b1| <
1. We get for t ∈ Z and n ∈ N∗, Xt  N

(
0, 1/(1− a21)

)
and Cov(Xt, Xt+n) = an1/(1−a21) before

the change-point while Xt  N
(
b0/(1− b1), σ2/(1− b21)

)
and Cov(Xt, Xt+n) = σ2bn1/(1 − b21)

after the change-point, so that this set of models allows us to investigate location-scale alterations
of the null hypothesis by varying b0 and σ as well as several degrees of within-sample dependence
controlled by a1 and b1.

• In the first set of models, denoted by Model 2, we consider θ-dependent sequences. Namely, we
simulate an order 1 Gaussian autoregressive (AR(1)) underlying processes X which allows us to
investigate more subtle departures from the null than the classical location-scale shifts. Namely,
Xt has a uniform distribution on [−1, 1] before the change-point while under the alternative, its
density after the change-point satisfies:

f2(x) =
1

2
+

2x(µ− |x|)
µ2

1|x|<µ

We vary µ in {0.33, 0.67}. In order to get a θ-dependent structure, we generate a sequence of
size n of the processes X = 2u − 1, Y = F−Y 1(V ) where FY is the Cdf od Y and U and V are
independent copies of the AR(1) process

U∗t =
1

2
(U∗t−1 + εt), with εt i.i.d  B(1/2)

The process U∗ has uniform marginals on [0, 1]. In this case, the α-mixing condition fails to hold,
but the process X is θ-dependent.
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A nonparametric change-point smooth test for dependent sequences 11

6.2. Tests

The computation of our test B̃Rn needs the calibration of the parameters described in Section 5.
Firstly, the sequence dn involved in the selection rule is set at dn = 10. Secondly, according to the
support R of the models considered in our simulation study, we have to choose an orthogonal family
(Qj) and an associated measure. For Model 1, we used for (Qj) Hermite polynomials with associated
Gaussian measure, so that

Q̃j(x) = Qj(x) exp(−x2/2).

For Model 2, we used for (Qj) Legendre polynomials with associated uniform measure.
Finally, in order to estimate σ2, we use [8]’s estimator specifically adapted to AR(1) models. It is

defined as follows.
ĝ (0) =

1

2π

∑
|k|6q

w(
k

q + 1
)γ̂(k), q < n, (19)

where w(x) = 1− x2 is the Parzen spectral window,

γ̂(k) =
1

n

n−|k|∑
t=1

(Yt+k − Ȳn)(Yt − Ȳn), Ȳn =
1

n

n∑
t=1

Yt

with Yt = Q̃∗1(Xt) and the truncation parameter q is given by

q =

[(
6â2

(1− â2)2
n

) 1
5

]
(20)

where â is the least squares estimator of the autoregressive parameter in the model.

[34]’s competitor test is based on the test statistic :

L̃Nn = max
16k6m

sup
06θ61

dn(θ, xk),

where x1, . . . , xm are distincts real numbers,

dn(θ, x) =

(
nh

fn(x)‖K‖2

)1/2
[nθ]

n

(
n− [nθ]

n

)(
(f[nθ](x)− f∗n−[nθ](x)

)
,

f[nθ](x) =
1

[nθ]h

[nθ]∑
j=1

K

(
x−Xj

h

)
, f∗n−[nθ](x) =

1

(n− [nθ])h

n∑
j=[nθ]+1

K

(
x−Xj

h

)
,

K is an kernel function and h is a bandwidth satisfying h = hn → 0 and nh→∞ as n goes to infinity.
Under suitable conditions, [34]’s theorem 2.3. states that

L̃Nn
L−→ L̃N∞ = max

16i6m
sup
θ∈[0,1]

|Bi(θ)| ,

under the null, where the Bi(θ)’s are independent Brownian Bridges, so that the distribution function
of L̃N∞ is G(z) = Fm

Ũ∞
(z), with FŨ∞

defined by (12).

For the practical computation of L̃Nn , we use a gaussian Kernel. Bandwidth selection is done by
the univariate plug-in selector (see [46]) and optimized for fn.

6.3. Size of the test

The sizes in Model 1 were obtained by setting b0 = 0, σ = 1 and a1 = b1 so that

Xt = a1Xt−1 + εt,
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12 M. Boutahar and L. Reboul

with εt  N (0, 1) . We vary a1 ∈ {0, 0.3, 0.5, 0.7} in order to investigate several degrees of within-
sample dependent. This degree increases with a1 and a1 = 0 corresponds to independence within
sample.

In Model 2, Xt has a uniform distribution on [−1, 1].
The empirical levels of the tests were defined as the percentage of rejection of the null hypothesis

over 2000 replications of the test statistics and reported in Tables 6.4 and ??.

Table 1. Empirical size of B̃Rn and L̃Nn (in %) in Model 1
hhhhhhhhhhhhModel α

n
n = 50 n = 100 n = 200 n = 500 n = 1000

a1 = −0.3 B̃Rn

L̃Nn

2.55− 3.35
0.05

3.25− 5.2
0

3.45− 4.35
0.05

4.6− 5.3
0.15

a1 = 0.0 B̃Rn

L̃Nn

2.20
0.05

3.75
0.05

3.30
0.05

3.55
0.35

4.45
0.30

a1 = 0.3 B̃Rn

L̃Nn

2.45
0.15

4.1
0.4

4.85
0.45

5.15
0.95

4.95
0.95

a1 = 0.5 B̃Rn

L̃Nn

2.35
0.5

4.85
0.75

4.90
1.5

5.4− 7.33
1.73

a1 = 0.6 B̃Rn

L̃Nn

3.20
1.25

5.20
2.05

7.25
3.05

6.55
4.05

4.95
5.1

a1 = 0.7 B̃Rn

L̃Nn

3.9− 4.55
2.70

6.8− 5.95
3.9

7− 8.35
6.3

6.93− 10.26
8.6

a1 = 0.8 B̃Rn

L̃Nn

4.50
6.65

9.15
13.30

12.45
18.3

From Tables 1 and 2 we observe that our statistic B̃Rn has a good size i.e. the empirical size
converges quickly to a nominal size α.
However the statistic L̃Nn of Le and Na has a size distortion, it underrejects the null hypothesis.

6.4. Power of the test

Table 2. Empirical size of B̃Rn and L̃Nn (in %) in Model 1
hhhhhhhhhhhhModel α

n
n = 50 n = 100 n = 200 n = 500 n = 1000

b0 = 1, a1 = b1 = 0, σ = 1 B̃Rn

L̃Nn

36.05(43.6ui)
3.85

79.1
32.3

99.1
84.65

100
100

100
100

b0 = a1 = b1 = 0, σ = 0.5 B̃Rn

L̃Nn

1.8− 3.2(3.35)
0.4

2.9− 3(3.85)
8.2

2.9− 3.25(3.75)
46.35

4− 3.8(3.4)
97

b0 = 0, a1 = 0.3, b1 = 0.4, σ = 1 B̃Rn

L̃Nn

23.1
6.85

57.15
32.05

88.3
70.45

99.85
99.30

100
100

Tables 3 and 4 show that B̃Rn outperforms the statistic L̃Nn for a moderate sample size (n=100,
n=200). But for large size (n=500, n=1000) the two statistics B̃Rn and L̃Nn have the same empirical
power. We observe also that as the sample size inreases the power of the two statistics becomes good.

7. Proofs

7.1. Proof of Theorem 1

In the following, we denote by P0 the probability underH0 and we recall that. Un(k, θ) =

k∑
j=1

(V (j)
n (θ))2.

To prove (10), let us show that P0(Kθ,n > 2) tends to zero as n tends to infinity.
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By definition of Kθ,n and Markov’s inequality, we have

P0(Kθ,n > 2) = P0

(
max

26k6d(n)
{Un(k, θ)− k log n} > Un(1, θ)− log n

)
= P0 (∃s, 2 6 k 6 d(n), Un(k, θ)− k log n > Un(1, θ)− log n)

= P0

∃s, 2 6 k 6 d(n),

k∑
j=2

(V (j)
n (θ))2 > (k − 1) log n


6 P0

(
∃k, 2 6 k 6 d(n), (V (k)

n (θ))2 > log n
)

6
d(n)∑
k=2

P0

(
(V (k)
n (θ))2 > log n

)

6
1

log n

d(n)∑
k=2

E0

(
|V (k)
n (θ)|2

)
,

Using similar calculations as in (9) yields

V (k)
n (θ) = W (k)

n (θ)− [nθ]

n
W (k)
n (1),

with

W (k)
n (θ) =

1√
n

[nθ]∑
t=1

Q̃∗k(Xt), θ ∈ [0, 1]

so that

E0

(
|V (k)
n (θ)|2

)
=

1

n

[nθ]∑
l=1

[nθ]∑
t=1

E0

(
Q̃∗k(Xt)Q̃

∗
k(Xl)

)
+

[nθ]2

n3

n∑
l=1

n∑
t=1

E0

(
Q̃∗k(Xt)Q̃

∗
k(Xl)

)
− 2[nθ]

n2

[nθ]∑
l=1

n∑
t=1

E0

(
Q̃∗k(Xt)Q̃

∗
k(Xl)

)
Notice that since (Xt)t∈Z is strictly stationary, the same happens for (Q̃∗k(Xt))t∈Z. Therefore, clas-

sical calculations using the stationarity of the process yield

n∑
l=1

n∑
t=1

E0

(
Q̃∗k(Xt)Q̃

∗
k(Xl)

)
6 2n

n∑
t=1

(
1− t

n

)
E0

(
Q̃∗k(X1)Q̃∗k(Xt)

)
Therefore,

E0

(
|V (k)
n (θ)|2

)
6 6

n∑
t=1

∣∣∣E0

(
Q̃∗k(X1)Q̃∗k(Xt)

)∣∣∣ = 6rn(k)

so that
P0(Kθ,n > 2) 6 6C o(1)

by (A) and convergence (10) in Theorem 1 holds.

Let us now show (11). By (10), one has√
Ũn(θ) =

∣∣∣V (1)
n (θ)

∣∣∣+ oP0
(1)

with V (1)
n (θ) given by (9). Thus, when (B) holds, one has

Wn(θ)
D

=⇒ σW (θ),
[nθ]

n
Wn(1)

D
=⇒ θσW (1)

where W is a standard Brownian motion so that

V (1)
n (θ)

D
=⇒ σB(θ)

and (11) in Theorem 1 obtains by the continuous mapping theorem.
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14 M. Boutahar and L. Reboul

7.1.1. Proof of Theorem 2

Under H∗1 , following the proof of Theorem 1, then using standard power inequalities, we have

P1(Kθ,n > 2) 6
1

log n

d(n)∑
k=2

E1

(
|V (k)
n (θ)|2

)
6

2d(n)

log(n)

(
C∗ + n|δk(θ)|2

)
.

Therefore, P1(Kθ,n > 2) = oP1
(1) by Assumption (A*).

Under H∗∗1 , one has with similar arguments P1(Kθ,n > K) = oP1
(1).

On the other hand,

P1(Kθ,n < K) = P1 (∃k < K,Un(k, θ)− k log n > Un(K, θ)−K log n)

= P1

∃k < K,

K∑
j=k

(V (j)
n (θ))2 6 (K − k) log(n)


6

K−1∑
k=1

P1

 K∑
j=k

(V (j)
n (θ))2 6 (K − k) log(n)


6 KP1

(
|V (K)
n (θ))|√
log(n)

6
√
K

)
.

Moreover, one has

V
(K)
n (θ)√
log(n)

=
1√

log(n)

(
V (K)
n (θ)− [nθ](n− [nθ])

n3/2
δK(θ)

)
+

[nθ](n− [nθ])

n3/2
δK(θ)√
log(n)

,

and
[nθ](n− [nθ])

n3/2
= O(

√
n)

so that
V

(K)
n (θ)√
log(n)

= OP1
(n1−β) +OP1

(1) tends to infinity as n tends to infinity.

It follows that Kn,θ → K and that the test statistic Ũn converges to infinity as soon as (B*) holds.
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