
HAL Id: hal-03389139
https://hal.science/hal-03389139

Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Determining radius and position of a sphere from a
single catadioptric image

Simone Gasparini, Vincenzo Caglioti

To cite this version:
Simone Gasparini, Vincenzo Caglioti. Determining radius and position of a sphere from a sin-
gle catadioptric image. Journal of Intelligent and Robotic Systems, 2008, 52 (3-4), pp.447-463.
�10.1007/s10846-008-9225-6�. �hal-03389139�

https://hal.science/hal-03389139
https://hal.archives-ouvertes.fr


Determining radius and position of a sphere

from a single catadioptric image

Vincenzo Caglioti and Simone Gasparini

Dipartimento di Elettronica e Informazione,
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 Milano (Italy)

{caglioti,gasparini}@elet.polimi.it

Abstract. In order to improve robot capabilities related to playing with
a flying ball, reliable methods to localize a sphere in the 3D space are
needed. When the radius of the sphere is known, it can be localized by
analyzing a single, perspective image of it. When the sphere radius is
not known, a single perspective image is not sufficient. In this paper we
consider axial-symmetric catadioptric cameras, i.e. devices consisting of
an axial-symmetric mirror plus a perspective camera, whose viewpoint
is on the symmetry axis. If the viewing rays are not all concurrent at
a single point, this camera is said to be non-central. We show that,
using a noncentral axial-symmetric catadioptric camera, a single image
is sufficient to determine both the position of a sphere and its radius.
Some preliminary experimental results are also presented.

1 Introduction

The recovery of 3D information from 2D images can find many applications
both in Computer Vision and in Mobile Robotics. In this work we deal with the
determination of both the radius and the 3D position of a sphere from a single
image. Using a standard perspective camera, if the radius is known, a sphere
can be localized from its apparent contour image. Consider a sphere of radius R
and let D be the (unknown) distance between the sphere center and the camera
viewpoint. Consider now the two points of the contour image of the sphere for
which the angle between the associated viewing rays is maximum: if α is the
semi-angle between these two rays, then it yields that sin α = R/D, which can
be solved to determine D. Therefore the sphere can be easily localized.

This task becomes challenging when no a priori information about the sphere
is given. To tackle this problem we use a so-called catadioptric camera, which
is generally constituted by a mirror placed in front of a perspective camera. We
show that under broad conditions we can determine both the radius and position
of a sphere from a single catadioptric image.

The main application of this work is in the field of mobile robotics, where
the localization of a sphere, i.e. a ball, is a crucial task for robots playing soccer
in RoboCup contests [8]. In order to detect and localize a ball, many approaches



has been employed. In [15] a stereo vision system is used to give an optimal es-
timation of the 3D position of the ball and the other objects in the field of play.
The approach with single frontal perspective camera is also widely exploited:
the most common techniques for ball detection rely on color information and
are based on fast color segmentation of the image to detect and track objects
[3], [5]. Recently a color-independent technique has been presented by [13] which
developed an edge-based ball detection system with an Ada Boost learning pro-
cedure that constructs a cascade of classification and regression trees. Also the
system proposed by [7] is a color independent edge tracking algorithm and al-
lows to locate arcs and circle in order to identify the ball. Catadioptric cameras
are also used since they enlarge the field of view of the camera and allow the
robot to see all the objects around [12]. However, for all these methods the 3D
localization of the ball can not be computed without knowing the radius of the
ball (the size of the ball is standardized in each RoboCup League), or making
other assumptions, such that all relevant objects are located on the ground of
the field [3], or by using team coordination methods in order to integrate in a
SLAM framework the sensing information coming from other teammates [18].

Spherical objects have been also investigated for calibration purpose: Agrawal
et al. [1] and Zhang [20] used image of spheres to calibrate (frontal) perspective
cameras while Yingv [19] developed a calibration procedure for central catadiop-
tric cameras using the occluding contour of a sphere in the catadioptric image.

This paper is structured as follows: in Section 2 catadioptric cameras and
some related basic geometric properties are introduced, and the addressed prob-
lem is formulated. In Section 3 the geometric aspects of the determination of
radius and distance of a sphere with a non-central axial symmetric catadioptric
camera are discussed and in Section 4 the resolution algorithm is described. In
Section 5 some preliminary experimental results are presented both with syn-
thetic and real images. Section 6 concludes the paper.

2 Catadioptric cameras and problem formulation

A catadioptric camera is generally constituted by a curved mirror placed in front
of a perspective camera. In a catadioptric camera, the viewing ray coming from
a scene point is specularly reflected by the mirror surface, before it goes through
the camera viewpoint and crosses the image plane. Catadioptric cameras are
attractive because of the possibility to employ them in omni-directional vision.

A catadioptric camera is calibrated, if the viewing ray associated to each
image point is known.

If all viewing rays concur at a same point (called “center”), the camera is said
to be central. A central camera can be obtained by placing a hyperbolic mirror,
or an elliptical mirror, in front of a perspective camera, in such a way that the
viewpoint of the camera is on one of the foci of the mirror surface [2]. In this
way, the center, where all viewing rays concur, is on the other focus (Figure 1).

Any calibrated central camera reduces to a perspective camera.
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Fig. 1. Examples of catadioptric cameras: (a) a central catadioptric camera based on
a paraboloidal mirror in which the camera viewpoint is placed on one of the foci of
the mirror so that all the viewing rays concur at the other focus ; (b) in a noncentral
catadioptric camera based on spherical mirror the viewing rays do not concur at the
same point.

Noncentral cameras, cameras whose viewing rays are not all concurrent [16],
can be realized, e.g., by linear push-broom cameras [10], cross-slit cameras [9],
catadioptric cameras [14].

With respect to central cameras, noncentral cameras remove some degenera-
cies: e.g., the viewing surface, i.e., the union of the viewing rays, of a straight
line in the 3D space is not planar. This fact has can be exploited to localize a
straight line in the 3D space from a single image [6].

On the other hand, some difficulties arise in the image-based characterization
of curved (self-occluding) surfaces. In particular, using a central camera, the
plane tangent to a curved surface at a point on the contour generator can easily
be derived from the image: it is the backprojection of the tangent to the apparent
contour. Using a noncentral camera, since the viewing rays can be skew, the
image-based characterization of the plane tangent to a curved surface is more
difficult.

In the sequel, we will focus on single-image cameras, i.e., cameras such that
through any space point external to the mirror surface there is only one viewing
ray. It can be shown that if the mirror surface is convex the camera is single-
image.

According to the specular reflection laws, the viewing ray associated to an
image point p, is the line l through the point B (where the line Op intersects
the mirror surface) such that the normal to the mirror surface at B bisects the
angle between OB and l.



2.1 Axial-symmetric catadioptric cameras

Now, axial-symmetric catadioptric cameras are considered.
An axial-symmetric catadioptric camera consists of an axial-symmetric mir-

ror and a perspective camera, whose viewpoint O is on the symmetry axis of the
mirror.

The mirror surface of an axial-symmetric catadioptric camera can be ob-
tained by rotating a planar curve, called profile, about the symmetry axis. The
intersection between the mirror surface and the symmetry axis is called apex.

Notice that, since the symmetry axis of the mirror goes through the viewpoint
of the perspective camera, the image (by means of the perspective camera) of
the symmetry axis collapses into a single point. This condition is not related to
placing the camera such that the image of the apex coincides with the principal
point.

Planes containing the symmetry axis of the mirror are said to be axial planes.
From symmetry, the viewing ray through any space point P must be contained
in the axial plane through P : therefore, all the viewing rays cross the symmetry
axis (possibly, at the infinite).

By symmetry, any viewing ray is coplanar with the z-axis: therefore each
viewing ray crosses the z axis at a point (possibly, at the infinite).

By rotational symmetry, the set of all the viewing rays can be subdivided into
“equivalence classes”, where all rays in a same equivalence class form the same
angle with the symmetry axis, and cross it at a same point. Each equivalence
class identifies a (right) cone of rays, whose axis is the symmetry axis.

2.2 Problem formulation

The addressed problem is formulated. A calibrated, axial-symmetric catadioptric
camera is given. In a calibrated camera, the mapping between any pixel and its
associated viewing ray is known.

The mirror surface is supposed to be convex, so that any point in the free
space is crossed by only one viewing ray: i.e., the camera is single-image.

A sphere of unknown radius is placed at an unknown position in the 3D
space. The sphere is entirely visible from the catadioptric camera, namely, it is
only occluded by itself.

The apparent contour of an unknown sphere is extracted.
The addressed problem is to determine both the radius and the position of

the sphere, starting from its apparent contour.

3 On the apparent contour of a sphere viewed by a

noncentral axial-symmetric camera

The proposed method for determining radius and position of the sphere uses the
following relevant features: a specific pair of viewing rays, and a specific pair of
axial planes.



A. A specific pair of viewing rays.
By placing a sphere at a generic position relative to a noncentral, axial-

symmetric camera, axial-symmetry is removed. However, a planar symmetry is
preserved: the system constituted by the axial-symmetric camera plus the sphere
is symmetric about the plane, which contains the sphere center and the camera
(mirror) axis.

This symmetry plane is an axial plane.
Since this plane is a symmetry plane for the sphere, it cuts the sphere at a

great circle C. The circumference of this great circle is said to be a “meridian”
of the sphere. Hence the viewing rays, contained in the symmetry plane, which
are tangent to the sphere, are tangent to the meridian C.

Since the sphere is visible, then there are (at least) two such tangent rays
within the symmetry plane. In general, from mirror convexity, there are only
two tangent rays within the symmetry plane. The two rays of this pair intersect
at a point B within the symmetry plane: in general this intersection point does
not lie on the mirror axis.

B. A specific pair of axial planes.
Consider the two axial planes tangent to the sphere: these planes are bisected

by the symmetry plane. Also the two tangency points are symmetric w.r.t. the
symmetry plane. The two viewing rays through the tangency points are tangent
to the sphere, since they are contained in the tangent planes. These two viewing
rays are symmetric w.r.t. the symmetry plane as well.

The two tangency points belong to a same great circle (see Figure 2). This
great circle is symmetric w.r.t. the symmetry plane, and it is perpendicular to
the direction of the mirror axis: we call this great circle the “equator” of the
sphere, and we indicate it by E.

4 Determining radius and position of the sphere

First we consider the two axial planes tangent to the sphere. Let A be the image
of the mirror axis: as said in Section 2.1, this image is a single point.

Image lines through this point A backproject onto axial planes. Therefore,
the two (most angularly separated) image lines through A, that are tangent to
the apparent contour of the sphere, backproject to the axial planes that are
tangent to the sphere (see Figure 2).

From calibration, the angle formed by these tangent planes can be determined
from the image lines tangent to the apparent contour of the sphere.

Let α be the semi-angle formed by these two tangent planes. Let D be the
unknown distance between the sphere center and the mirror axis, and let R be
the unknown radius of the sphere:

R

D
= sin α (1)

Now the two viewing rays, tangent to a meridian of the sphere, are deter-
mined.
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Fig. 2. Example of rays tangent to a great circle of the sphere in a non-central axial
symmetric catadioptric camera: (a) the 3D model with the camera placed at the origin
of the axes looking at the conical mirror in gray (bottom) and the apparent contour
of the sphere reflected on the mirror (points in magenta); (b) the image points of the
apparent contour of the sphere. The green rays in (a) are the viewing rays associated
to the two tangent points of image contour (circled in green in (b)) w.r.t. the image
point A of the mirror axis: these rays are tangent to the sphere and to the great circle
E on the sphere itself (in blue).

The symmetry plane is the plane bisecting the two above axial planes tangent
to the sphere. From calibration, one can determine the image projection of the
symmetry plane: this projection is again a line through A. The two intersection
points between this image line and the apparent contour correspond to two
viewing rays that are both tangent to the sphere, and contained in the symmetry
plane. From the argument in the previous subsection, these viewing rays are
tangent to the meridian C of the sphere. These viewing rays are completely
characterized from calibration. Let l be the line bisecting these two viewing
rays, and let β be the angle formed by l and either of them. Let γ be the angle
formed by l and the direction of the mirror axis. Let ∆ be the distance between
the mirror axis and the intersection point B of the two rays.

From Figure 3, we derive:

R

D − ∆
=

sin β

sin γ
(2)

Angle β can be calculated in two equivalent ways:

1. Consider the two contour points whose viewing rays are both contained in
the symmetry plane and calculate the semi-angle between these two rays;

2. Consider the two contour points for which the angle between the associ-
ated viewing ray and the z-axis is maximun and minimum respectively, and
calculate the semi-angle between these two rays;

The two methods are geometrically equivalent, but the second method appears
to be more robust to noise.
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Fig. 3. An example of rays tangent to a meridian of a sphere in a non-central axial
symmetric catadioptric camera with a conical mirror; the coordinate system (r, z) (as-

suming r =
√

x2 + y2) is referred to the symmetry plane containing the z-axis and
passing through the center of the sphere.

Since the angles α, β and γ are known from the image and from calibration,
the two last equations can be solved for the two unknowns R and D. In this
way both the radius R of the sphere, and its distance D from the mirror axis
are determined. The localization can be completed by using the line l bisecting
the two rays, which are tangent to the sphere at the meridian C. The sphere is
centered at the point of l, whose distance from the mirror axis is D.

The localization is completed.

5 Preliminary experimental results

In order to validate the above method we performed some experiments both on
synthetic data and real images.

5.1 Experiments with synthetic data

We developed a 3D simulator for a catadioptric camera based on a conical mirror.
Given the position and the size of a sphere, the relevant apparent contour image
is generated. Then two pairs of symmetric points are chosen, namely the pair
of tangent points w.r.t. the axis image point A, and the pair of points lying on
the symmetry axis of the contour. For each pair the relevant viewing rays is
calculated in order to solve the system of Equation 1 and Equation 2.

We performed some experiments using synthetic image rendered by POV-Ray
[17], an open-source rendering engine. We model the mirror as a high-reflective



cone placed in front of the (virtual) camera with its symmetry axis lying on the
optical axis of the camera. Then we place some spheres of different size R at
various distances D from the mirror axis. Figure 5.1 collects the images used
in the experiments and the relevant value for R and D. Once the catadioptric
image is rendered, the image contour of the ball is extracted. Since the shape
and the position of the cone w.r.t. the camera is known from the 3D model
as well as the camera parameters, the 3D localization and radius estimate is
then calculated by applying the algorithm explained in Section 4 and solving
the system of Equation 1 and Equation 2.

In order to verify the robustness of the method we corrupted the previous
rendered image with noise: for each image, Gaussian white noises with an in-
creasing value of σ was added. Figure 5 shows a detail of a image rendered with
POV-Ray and the same detail corrupted with different Gaussian white noises.

Table 1 collects the results and the estimate errors. Table 1.a, which collects
the results for images without noise, shows that the errors are smaller (less
than 1%) as the ball is placed near the mirror axis (Images 1 to 5), with the
exception of Image 6 where the image of the ball is too small so that the whole
algorithm is more prone to errors in detecting and selecting the pairs of points
used to estimate both radius and distance. This leads to a larger localization
error (about 2% on D). As the ball is placed far away from the mirror axis
(Images 7 to 9) the errors increase (up to 5% on D). However the R/D ratios
are preserved since the R/D errors are comparable to the errors of the previous
images.

Tables 1.b-d show how noise affects the estimate of R and D as the σ increase.
In particular for a given distance D the noise obviously affects the estimate of
the ball with lower radius R. The worst case is the one of image 9 with an error
of nearly 9% on D. However it should be noted that the error on R/D ratios are
less than 1% for all images.



(a) σ = 0

Image R R/D ˆR/D eR/D(%) D D̂ eD(%)

1 3 0.300 0.300 0.008 10 9.946 0.545
2 2 0.200 0.200 0.117 10 9.935 0.646
3 1 0.100 0.100 0.096 10 9.885 1.155

4 5 0.263 0.263 0.037 19 18.906 0.497
5 2.5 0.132 0.131 0.092 19 18.861 0.733
6 1 0.053 0.052 0.378 19 18.595 2.131

7 10 0.250 0.250 0.017 40 37.889 5.277
8 7.5 0.188 0.187 0.028 40 39.145 2.137
9 5 0.125 0.125 0.046 40 38.783 3.043

(b) σ = 5

Image R R/D ˆR/D eR/D(%) D D̂ eD(%)

1 3 0.300 0.300 0.004 10 9.946 0.539
2 2 0.200 0.200 0.120 10 9.934 0.664
3 1 0.100 0.100 0.113 10 9.881 1.192

4 5 0.263 0.263 0.037 19 18.905 0.499
5 2.5 0.132 0.132 0.172 19 18.711 1.522
6 1 0.053 0.053 0.432 19 18.201 4.204

7 10 0.250 0.251 0.463 40 37.036 7.411
8 7.5 0.188 0.189 0.781 40 36.915 7.713
9 5 0.125 0.126 0.789 40 36.384 9.041

(c) σ = 10

Image R R/D ˆR/D eR/D(%) D D̂ eD(%)

1 3 0.300 0.300 0.011 10 9.944 0.561
2 2 0.200 0.200 0.130 10 9.930 0.699
3 1 0.100 0.100 0.132 10 9.877 1.230

4 5 0.263 0.263 0.022 19 18.888 0.588
5 2.5 0.132 0.132 0.189 19 18.691 1.626
6 1 0.053 0.053 0.462 19 18.194 4.242

7 10 0.250 0.251 0.472 40 37.077 7.308
8 7.5 0.188 0.189 0.791 40 36.945 7.638
9 5 0.125 0.126 0.803 40 36.348 9.130

(d) σ = 20

Image R R/D ˆR/D eR/D(%) D D̂ eD(%)

1 3 0.300 0.300 0.058 10 9.935 0.648
2 2 0.200 0.200 0.164 10 9.920 0.798
3 1 0.100 0.100 0.191 10 9.860 1.398

4 5 0.263 0.264 0.367 19 18.048 5.009
5 2.5 0.132 0.132 0.246 19 18.635 1.921
6 1 0.053 0.053 0.497 19 18.137 4.545

7 10 0.250 0.251 0.447 40 36.968 7.580
8 7.5 0.188 0.189 0.782 40 36.982 7.546
9 5 0.125 0.126 0.901 40 36.040 9.900

Table 1. Localization results for images rendered with POV-Ray. R/D and D is the

real radius-distance ratio and the real distance value (in cm); ˆR/D and D̂ is the esti-
mated ratio and distance (in cm). eR/D(%) and eD(%) are the percentage estimation
error.



(1) R = 3 D = 10 (2) R = 2 D = 10 (3) R = 1 D = 10

(4) R = 5 D = 19 (5) R = 2.5 D = 19 (6) R = 1 D = 19

(7) R = 10 D = 40 (8) R = 7.5 D = 40 (9) R = 5 D = 40

Fig. 4. The set of rendered images used in our experimental activities. The mirror has
been modeled as a highly-reflective cone with a semi-aperture of 45◦ and radius of 5cm.
The cone is placed in front of the (virtual) camera such that the symmetry axis of the
mirror and the optical axis coincide; the ball has been modeled as a sphere of radius
varying from 1cm to 10cm and placed at a distance varying from 10cm to 40cm far
from the mirror axis.



(a) σ = 0 (b) σ = 5

(c) σ = 10 (d) σ = 20

Fig. 5. A detailed view of Image 1 (a) and the same detail corrupted with an additive
Gaussian white noise with σ = 5 (b), σ = 10 (c) and σ = 20 (d).



5.2 Experiments with real images

We also performed some preliminary experiments with real images. As a case
study we chose a catadioptric camera with a conical mirror. However it is im-
portant to remark that the above method can be applied to any noncentral,
axial symmetric catadioptric camera whose mirror is convex. We analyzed some
images with a soccer ball, similar to the one used in some Robocup Leagues, and
with a yellow tennis ball. The image contours are extracted and the estimated
radii and distances are compared with the ground truth.

In this preliminary experimentations, we followed a rough two-step calibra-
tion method: first, the intrinsic camera parameters [21] is estimated using the
Matlab Calibration Toolbox [4]. Then the external circumference of the conical
mirror is localized w.r.t. the camera following the method described in [11].

The image of the ball is detected using color information: we develop a color-
based detector inspired to [5] that automatically detect the ball image. In order
to extract the apparent contour of the sphere we have developed a fast sub-pixel
algorithm for edge extraction based on Gaussian interpolation, which allows to
reach an accuracy of one twentieth of a pixel. Once the apparent contour points
are extracted we applied the procedure described in Section 4.

Figure 6 shows two sample catadioptric images with a tennis ball, while
Figure 7 shows two sample catadioptric images with a soccer ball. Table 2 re-
ports the results for each image with the relevant errors in estimating the radius
and the distance of the ball from the mirror axis. The percentage errors are in
the most cases less than 10%. We think that the errors are due to the rough
calibration of the whole system and to an incorrect alignment of the camera
and the mirror, which yields the image of the symmetry axis not to collapse
into a single image point. However we are developing a more reliable and robust
calibration procedure in order to minimize the misalignment of the camera and
thus to reduce errors.

In order to make the procedure more robust we are also planning to develop
an optimization method which, starting from the estimates calculated solving
Equation 1 and Equation 2, considers even the other contour points in order
to minimize, for example, the distance error from the estimated center of the
sphere.

6 Conclusions

A study has been presented on the determination of radius and position of a
sphere in 3D space from single 2D images, acquired by a catadioptric camera
constituted by an axial symmetric mirror plus a perspective camera with the
viewpoint lying on the symmetry axis of the mirror. The geometric aspects
of catadioptric cameras are presented and a simple procedure for determining
the distance and the radius of the sphere from its occluding image contour is
described. Preliminary experimental results both on synthetic and real images
are also presented. Ongoing research is aimed at developing a more reliable



Image R/D ˆR/D eR/D(%) D D̂ eD(%)

Tennis 1 0.2 0.193 3% 16 17.75 10.9%
Tennis 2 0.16 0.156 2.5% 20 21.39 6.9%
Soccer 1 0.224 0.237 5% 49 47.1 5.8%
Soccer 2 0.137 0.150 9.4% 80 74.67 6.6%

Table 2. Localization results for real image. R/D and D is the real measured radius-

distance ratio and the real measured distance (in cm); ˆR/D and D̂ is the estimated
ratio and distance (in cm). eR/D(%) and eD(%) are the percentage estimation error.

calibration procedure in order to minimize the misalignment between the camera
and the mirror and to make the whole procedure more robust to noise.
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