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A B S T R A C T   

The growing interest in patient perception and experience in healthcare has led to an increase in the use of 
patient-reported outcomes (PRO) data. However, chronically ill patients may regularly adapt to their disease 
and, as a consequence, might change their perception of the PRO being measured. This phenomenon named 
response shift (RS) may occur differently depending on clinical and individual characteristics. 

The RespOnse Shift ALgorithm at the Item level (ROSALI), a method for RS analysis at the item level based on 
Rasch models, has recently been extended to explore heterogeneity of item-level RS between two groups of 
patients. The performances of ROSALI in terms of RS detection at the item level and biases of estimated dif-
ferences in latent variable means were assessed. 

A simulation study was performed to investigate four scenarios: no RS, RS in only one group, RS affecting both 
groups either in a similar or a different way. Performances of ROSALI were assessed using rates of false detection 
of RS when no RS was simulated and a set of criteria (presence of RS, correct identification of items and groups 
affected by RS) when RS was simulated. 

Rates of false detection of RS were low indicating that ROSALI satisfactorily prevents from mistakenly 
inferring RS. ROSALI is able to detect RS and identify the item and group(s) affected when RS affects all response 
categories of an item in the same way. The performances of ROSALI depend mainly on the sample size and the 
degree of heterogeneity of item-level RS.   

1. Introduction 

The growing interest in patient perception and experience in healthcare 
has led to an increase in the use of patient-reported outcomes (PRO) data to 
incorporate the patient perspective into clinical care, in clinical trials and in 
healthcare policy [1–4]. PRO instruments can be used to measure unob-
servable constructs such as health-related quality of life (HRQoL), fatigue or 
anxiety. Such constructs are often referred to as “latent traits” and they are 
measured via self-reported questionnaires in which items are often grouped 
within several domains (physical, emotional, social…). PRO data come 
directly from patients without involving the perspective of anyone else and 
aim to reflect patient’s own experience of illness. 

Longitudinal PRO data are of value for the analysis and interpreta-
tion of PRO change over time in epidemiological or clinical research 
studies following a specific health event, e.g. diagnosis, treatment 

initiation. However, PRO data remain difficult to analyze and interpret. 
Indeed, in the context of chronic disease, for instance, patients may have 
to regularly adapt to their illness. For example, patients might experi-
ence levels of acute pain that they had never experience before their 
surgery. As a consequence, they might change their perception of the 
construct to be measured (e.g. chronic pain) and of the items reflecting 
it. Hence, in case of a change in perception of the PRO, longitudinal PRO 
data may not be comparable over time (e.g. scores of chronic pain before 
and after surgery) due to lack of measurement invariance, also called 
response shift (RS) whose definition has been recently updated by 
Vanier et al. [5]. RS is considered to be a “special case of violation of the 
principle of conditional independence when observed change is not fully 
explained by target change” (i.e. change in the construct of interest) as a 
result of “a change in meaning in self-evaluation of a target construct” 
[5]. Violation of the principle of conditional independence may be due 
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to how RS manifests itself through recalibration (a change in one’s in-
ternal standards), reprioritization (a change in one’s values), and rec-
onceptualization related to one’s redefinition of the target construct [6]. 

In case of RS, the estimation of longitudinal change in PRO data can 
be biased if it is not accounted for and it may threaten the interpretation 
of change and the assessment of possible intervention effects [7]. In-
fluence of RS on PRO evaluation may lead to suboptimal medical de-
cisions on both the individual patient and health policy levels [8]. At the 
patient/clinician level, shared decision making may not be fully 
informed if it is based on previous published PRO studies not accounting 
for RS. At healthcare policy level, guidelines on treatment preference 
can be obfuscated by RS. However, RS could also be a result of positive 
adaptations to health challenges and can also reveal maladaptive dis-
orders that are worth detecting [9,10]. Whatever the adopted viewpoint, 
it seems important to detect and quantify RS in a reliable manner. 

Most statistical methods proposed for RS detection are performed at 
the domain level [11,12]. These methods consist in the analysis of sum 
scores that summarize the information of item responses into one value. 
In particular, patients with different response profiles can have the same 
sum score. As domain-level RS analyses cannot distinguish which items 
are specifically affected by RS, Schwartz et al. [13] suggested that 
analyzing RS at the item level could provide additional information for 
the interpretation of RS effects [13]. Different methods have been pro-
posed for RS detection at the item level based on different latent variable 
models (Structural Equation Modelling, Item Response Theory and 
Rasch Measurement Theory) where the latent variable represents the 
unobservable PRO of interest (e.g. HRQoL). They were compared 
recently [14] in a simulation study and the method based on Rasch 
Measurement Theory (RMT) models, called the RespOnse Shift ALgo-
rithm at the Item level (ROSALI) showed better performances compared 
to other methods for detecting and accounting for recalibration (RC) in 
the measurement of PRO change. Rates of incorrect detection of RC of 
ROSALI ranged from 0.6% to 2.6% and rates of correct detection of RC 
ranged from 83.2% to 100% depending on the questionnaire length and 
the number of response categories. However, in this former version of 
ROSALI it was assumed that the majority of patients experiences RS the 
same way. This restrictive assumption of the homogeneity of RS within a 
sample is often made when using most RS detection methods whether 
they be at the item level or at the domain level [12]. However, change in 
interpretation of items may be influenced by cultural, or personality 
differences, as well as life circumstances, and/or because of different 
health experiences or events. A study assessing self-reported depression 
before and after several treatments (e.g. cognitive behavioral therapy, 
antidepressant) evidenced RS leading to overestimation of depressive 
symptomatology after the treatment period [15]. Heterogeneity in RS 
effects was suggested as RS seemed to be higher for patients in the 
psychotherapy groups probably because they have received more psy-
choeducation than patients receiving only medication. To date, the ef-
fect of measured or unmeasured covariates on RS in longitudinal PRO 
data has been investigated using Structural Equation Modelling by 
incorporating covariates in the analysis [16], performing stratified 
analysis [9] or using a combination of Mixed Models and Growth 
Mixture Models and Structural Equation Modelling [10]. Nevertheless, 
all these studies were performed at the domain level. Hence, new de-
velopments are needed to account for RS heterogeneity at the item level. 
ROSALI has thus been extended to explore the heterogeneity of item- 
level RS between groups in studies comparing two groups of patients 
[17]. For example, patients from two different treatment groups might 

experience their illness in a different way and RS may occur differently 
in each group or even occur in only one treatment group. 

In studies comparing two groups of patients, the perception of items 
might also be different from one group to another at a specific time, a 
phenomenon referred as differential item functioning (DIF). DIF analyses 
are frequently used in cross-sectional studies to assess if some items display 
DIF according to some covariates (e.g. cancer sites, age, gender) [18,19]. 
DIF can also bias the estimation of the difference in PRO between groups 
[20]. Hence, in longitudinal studies comparing two groups of patients 
between time 1 and time 2, DIF should also be considered along with RS. 
Therefore, ROSALI was not only extended to explore different RS between 
groups but also to assess whether some items function differently between 
groups at time 1. To date, the latest version of ROSALI enables to detect 
and adjust for DIF and RS in the estimation of PRO change to ensure valid 
comparisons between groups and over time. These major changes of 
ROSALI were described elsewhere [17] alongside with an illustrative 
example of interpretation of the results of the algorithm. 

Performances of methods for RS detection have rarely been assessed 
and conducting simulation studies have been recommended to fill this 
gap [11,12]. Although the performances of ROSALI without a covariate 
were satisfactory in a previous simulation study [14], the effects of the 
major changes made to extend ROSALI for longitudinal studies with two 
groups need to be assessed. The aim of this article is thus to assess the 
performances of ROSALI in terms of RC detection at the item level in the 
context of longitudinal studies designed for the comparison of two 
groups of patients using a simulation study. 

2. Methods 

ROSALI and the simulated datasets for the simulation study are based 
on RMT models. Models from RMT assume a non-linear link between 
observed item responses and the unobservable latent variable that rep-
resents the PRO of interest (e.g. HRQoL). 

2.1. Generation of data 

Simulated datasets were composed of answers of N patients in each of 2 
groups (g = 0 or 1) responding at two time (t = 1 or 2) to J polytomous 
items with M response categories. A partial credit model (PCM) from RMT 
was used to model patients’ responses to polytomous items [21,22] as a 
function of the latent variable (θ(t)i ) of each patient i at time t and of the 
threshold parameters (δ(t)jpg) of item j for response category p in group g at 
time t. Each item had the same number of response categories (M), 0 is 
considered as the least favorable response (negative response) with respect 
to the latent variable (e.g. poor HRQoL), the other responses were ordered 
going from 1 to (M − 1) (i.e. M − 1 possible positive responses). Fig. 1 
presents the category probability curves of an item j at two different times. 
For each response category, a curve represents the probability for a patient 
to endorse this response category as a function of his/her level on the 
latent variable at a given time. Threshold parameters are operationalized 
as the intersections of the probability curves of two adjacent response 
categories; it represents the latent variable level for which a patient has the 
same probability of choosing one or the other adjacent response category. 
The higher the threshold parameter, the higher the level of the latent 
variable must be to endorse this response category. 

The probability for patient i, belonging to group g, to answer x to 
item j at time t is given by: 

P
(

X(t)
ij = x|θ(t)

i , β, gi, βinter, t2, δ(t)j1g,⋯, δ(t)j(M− 1)g

)
=

exp
(

x
(

β × gi + βinter × t2 × gi + θ(t)
i

)
−
(∑x

p=1δ(t)jpg

))

∑(M− 1)
l=0 exp

(
l
(

β × gi + βinter × t2 × gi + θ(t)
i

)
−
(∑l

p=1δ(t)jpg

))
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With 
[

Θ(1)

Θ(2)

]

∼ N
([

μ(1)

μ(2)

]

;Σ
)

The latent variable Θ is a random variable assumed to be normally 

distributed with mean vector 
[

μ(1)

μ(2)

]

where μ(1) and μ(2) are the means of 

the latent variable at time 1 and time 2 respectively, and the covariance 

matrix is Σ =

[
σ2

1 σ1,2

σ2,1 σ2
2

]

. θ(t)i is the realization of Θ for patient i at 

time t. 
We have : X(t)

ij the response of patient i to item j at time t; gi the group 
indicator variable for patient i (0 if patient i is in group 0, 1 otherwise); t2 
the time indicator variable (t2 = 1 for time 2, 0 otherwise); β the group 
effect parameter; βinter the time × group interaction parameter. For 
group 0: μ(1)

0 = μ(1) and μ(2)
0 = μ(2)(time effect) and for group 1 : μ(1)

1 =

μ(1) +β and μ(2)
1 = μ(2) + β + βinter. δ

(t)
jpg is the pth threshold parameter for 

item j in group g at time t (p > 0). 
The effects of sample size, size of the questionnaire and number of 

response categories were investigated in the simulation study. Their 
simulated values were based on sample sizes and questionnaire char-
acteristics that can be encountered in studies assessing PRO. No group 

effect (β = 0) or a small group effect (β = 0.2) as well as no time effect 
(μ(2) = 0) or a medium time effect (μ(2) = 0.3) were simulated on the 
latent variable. Values of the simulation parameters (sample size N, 
distribution of the latent variable: means μ(t)

g , g = 0,1 and t = 1,2, and 
covariance matrix Σ, number of items J and response categories M) used 
to generate the datasets are presented in Table 1. 

2.2. Threshold parameters 

Threshold parameters were chosen in such a way that items’ distri-
bution is centered on the mean of latent variable at time 1 [14,23]. This 
reflects the situation where the questionnaire is suitable for a population 
with a normally distributed latent variable. 

2.2.1. Time 1 
Threshold parameters were computed as follows. The first threshold 

of each item (δ*
j1) was initialized with the j

J+1 th percentile from a stan-
dard normal distribution. Other threshold parameters were regularly 
spaced so that threshold parameters of an item j have a range of 2 with 
δ*

jp = δ*
j1 +2 ×

p− 1
M− 2 (p∊[2; M − 1]). Threshold parameters were finally 

centered on the same mean as the latent variable in group 0 (0) by 
subtracting the mean of all threshold parameters of all items δjp =

δ*
jp − δ*

jp . Values for threshold parameters used at time 1, as a function of 
the number of items and response categories, are presented in Table 2, 
(e.g. when J = M = 4, threshold parameters of item 2 were − 1.25, 
− 0.25, and 0.75). 

No difference in threshold parameters of any item between groups at 
time 1 was simulated, that is: δ(1)jp0 = δ(1)jp1∀p, j. Hence, no DIF was simu-
lated at time 1. 

2.2.2. Time 2 
RC, a change in internal standards of measurements, is operation-

alized as a change in perception of the response categories of items in 
RMT models. In the simulation study, the occurrence of RC was char-
acterized by a difference in threshold parameters between both times. 

Fig. 1. Example of category probability curves of an item j for 2 times of measurement. Example for one item with 4 response categories: probability curves obtained 
with a Partial Credit Model (PCM). δ(t)

jp : the pth threshold parameter of item j at time t– defined by the equal probability to answer to two adjacent categories. As 
threshold parameters change over time, recalibration occurs on this item j. Δjp : amount of recalibration for the pth threshold parameter of item j. 

Table 1 
Simulation parameters.  

Parameters Simulated values 

Sample size (N) with 2 equal group sizes 200; 300; 500 
Number of items (J) 4; 7 
Number of response categories (M) 4; 7 
Latent variable mean in group 0 at time 1 (μ(1)

0 ) 0 

Group effect (β = μ(1)
1 ) 0; 0.2 

Time effect (μ(2)
0 ) 0; 0.3 

Time × group interaction (βinter) 0 
Covariance matrix (Σ) 

[
1 0.6

0.6 1

]
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Two types of RC were distinguished: uniform if all the threshold pa-
rameters of a given item differed across times, in the same direction and 
to the same extent, or non-uniform otherwise. The amount of RC of item 
j for threshold p in group g is defined as the shift in threshold parameters 
between time 1 and time 2 Δjpg = δ(2)jpg − δ(1)jpg . Fig. 1 illustrates a case of 
non-uniform RC where the first and the last threshold parameters 
change across times for a given item. For example, the third threshold 
parameter increase is Δj3g = 1.5 between time 1 and time 2 (δ(1)jpg = 0.75 

at time 1 and δ(1)jpg=2.25 at time 2). In such a case, an individual with the 
same level of latent variable (e.g. 2 on the latent variable scale) at both 
times is more likely to answer x = 3 at time 1 and x = 2 at time 2 due to 
RC, operationalized as the increase of the third threshold parameter. 

RC could affect none, one or both groups:  

• When no RC (noRC) was simulated, all threshold parameters of all 
items remained the same between the time 1 and time 2. (δ(2)jpg = δ(1)jpg ,

∀j,p, g)
• When RC was simulated on a given item j, its threshold parameters 

were different across times. Simulated RC could differ as follows:  
• - Similar RC (RCSim): the same shifts in threshold parameters were 

simulated in both groups with the same type of RC (i.e. uniform or 
non-uniform). (δ(2)jpg = δ(1)jpg + Δp∀p, g)

• - Differential RC only in one group (RC1grp): RC was simulated only 
in group 1. (δ(2)jp1 = δ(1)jp1 + Δp and δ(2)jp0 = δ(1)jp0∀p)

• - Differential RC in both groups (RC2grp): RC was simulated in both 
groups with different shifts for each group but the same type of RC. 
(δ(2)jpg = δ(1)jpg + Δjpg∀p, g)

Table 3 presents the sets of shifts in threshold parameters for each 
group 

(
Δjpg

)
according to the scenario of simulated RC (RCSim, RC1grp 

or RC2grp), the number of response categories and type of RC. The 

simulated values of threshold parameters at time 2 are equal to δ(2)jpg =

δ(1)jpg + Δjpg. For example, when non-uniform similar RC was simulated 
on item 2 with 4 response categories, the first, second and third 
threshold parameters were − 1.25, − 0.25 and 0.75 respectively at time 1 
(see Table 2). The components of the set {-1,0,1} were added to the 
threshold parameters to obtain the simulation values for time 2: − 2.25, 
− 0.25, and 1.75 respectively. 

Only one item was affected by RC: either a central item (item 2 when 
J = 4, item 4 when J = 7), or an extreme item, here with the item with 
the highest threshold parameters (item 4 when J = 4, item 7 when J =
7). The combination of all parameter values led to 624 different cases. 
500 replications were simulated for each case. 

2.3. ROSALI 

ROSALI is based on models from RMT, cross-sectional and longitu-
dinal PCMs.  

- Cross-sectional PCM at time 1 

The probability for patient i, belonging to group g, to answer x to 
item j is given by : 

P
(

X(1)
ij = x|θ(1)

i , β, gi, δ(1)j1g,⋯, δ(1)j(M− 1)g

)

=
exp

(
x
(

β × gi + θ(1)
i

)
−
(∑x

p=1δ(1)jpg

))

∑(M− 1)
l=0 exp

(
l
(

β × gi + θ(1)
i

)
−
(∑l

p=1δ(1)jpg

))

With Θ(1) ∼ N
(
μ(1); σ2

1
)

- Longitudinal PCM 

The probability for patient i, belonging to group g, to answer x to 

Table 2 
Matrix of threshold parameters at time 1 according to the number of items (J) and number of response categories (M).   

Number of response categories (M) M = 4 M = 7 

Number of items (J)  δ(1)j1g δ(1)j2g δ(1)j3g  δ(1)j1g δ(1)j2g δ(1)j3g δ(1)j4g δ(1)j5g δ(1)j6g  

J = 4 Item 1 
Item 2 
Item 3 
Item 4 

⎛

⎜
⎜
⎝

− 1.84 − 0.84 0.16
− 1.25 − 0.25 0.75
− 0.75 0.25 1.25
− 0.16 0.84 1.84

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

− 1.85 − 1.45 − 1.05 − 0.65 − 0.25 0.16
− 1.26 − 0.86 − 0.46 − 0.06 0.35 0.75
− 0.75 − 0.35 0.05 0.46 0.86 1.26
− 0.16 0.25 0.65 1.05 1.45 1.85

⎞

⎟
⎟
⎠

J = 7 Item 1 
Item 2 
Item 3 
Item 4 
Item 5 
Item 6 
Item 7 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 2.16 − 1.16 − 0.16
− 1.68 − 0.68 0.32
− 1.32 − 0.32 0.68
− 1.01 − 0.01 0.99
− 0.68 0.32 1.32
− 0.33 0.67 1.67
0.15 1.15 2.15

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 2.15 − 1.75 − 1.35 − 0.95 − 0.55 − 0.15
− 1.68 − 1.28 − 0.88 − 0.48 − 0.08 0.32
− 1.32 − 0.92 − 0.52 − 0.12 0.28 0.68
− 1.00 − 0.60 − 0.20 0.20 0.60 1.00
− 0.68 − 0.28 0.12 0.52 0.92 1.32
− 0.32 0.08 0.48 0.88 1.28 1.68
0.15 0.55 0.95 1.35 1.75 2.15

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

δ(1)jpg : pth threshold parameter for group g at time 1 of item j; for each matrix rows are items and column are threshold parameters. 

Table 3 
Sets of shifts in threshold parameters for each group according to the scenario of simulated recalibration (RCSim, RC1grp or RC2grp), the number of response cat-
egories and the type of recalibration.    

Uniform recalibration Non-uniform recalibration 

Scenario Number of response categories group 0 group 1 group 0 group 1 

RCSim 4 {1,1,1} {-1,0,1} 
7 {1,1,1,1,1,1} {-1,-0.5,0,0,0.5,1} 

RC1grp 4 {0,0,0} {1,1,1} {0,0,0} {-1,0,1} 
7 {0,0,0,0,0,0} {1,1,1,1,1,1} {0,0,0,0,0,0} {-1,-0.5,0,0,0.5,1} 

RC2grp 4 {-0.8,-0.8,-0.8} {1,1,1} {-1,0,0} {0,0,1.5} 
7 {-0.8,-0.8,-0.8,-0.8,-0.8,-0.8} {1,1,1,1,1,1} {-1,-0.5,0,0,0,0} {0,0,0,0,0.5,1} 

RCSim : Similar recalibration, RC1grp : Differential recalibration when RC affects only group 1, RC2grp : Differential recalibration when RC affects both groups. 
{Δj1g,Δj2g,⋯,Δj(M− 1)g} : set of shifts in threshold parameters for each response category (p = 1,…,M − 1) of an item j affected by RC for simulated patients from group 
g. 
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item j at time t is given by :  

With 
[

Θ(1)

Θ(2)

]

∼ N
([

μ(1)

μ(2)

]

;Σ
)

The model parameters are estimated using marginal maximum 
likelihood. One identifiability constraint is applied to all models of 
ROSALI: the nullity of the mean of the latent variable at time 1 for group 
0 (μ(1)

0 = 0). Other identifiability constraints are applied according to the 
steps of ROSALI detailed below and are summarized in Table 4. 

ROSALI consists of 2 main parts [17]. In the first part (steps A to C), 
differences in threshold parameters between groups at time 1 are 
investigated. The second part (steps 1 to 4) consists in the detection of 
items affected by RC and the estimation of the group effects on the latent 
variable and of RC effects. ROSALI is presented in Figs. 2 and 3. The 
different steps of ROSALI are summarized below. Full details on the 
ROSALI algorithm can be found elsewhere [17]. ROSALI has been 
automated into a Stata (Stata Statistical Software: Release 15. College 
Station, TX: StataCorp LLC) module stored at Boston College’s Statistical 
Software Components archive [24]. 

2.3.1. Part 1 of ROSALI: Investigating differences in threshold parameters 
between groups at time 1 

Fig. 2 presents the different steps of the first part of ROSALI. Different 
cross-sectional PCMs at time t = 1 are used in the first part: a model A 
(full model) where all threshold parameters of all items are freely esti-
mated between groups and a restricted model B where all threshold 

parameters are constrained to be equal between groups. Models A and B 
are compared with a likelihood ratio test (LRT). If this test is not sig-
nificant at a significance level of 5%, threshold parameters of all items 
are constrained to be equal between both groups at time 1 and ROSALI 
moves on to part 2 for RC detection (see Fig. 3). Otherwise, if the LRT is 
significant, differences in threshold parameters between both groups are 
suspected and ROSALI proceeds to step C which is an iterative step to 
detect which items seem to have different threshold parameters between 
groups at time 1, starting from model B. At each iteration of step C, 
constraints of equality of threshold parameters between groups are 
relaxed item-by-item. For each item, the equality of threshold parame-
ters for all response categories between groups is tested with a Wald test. 
A Bonferroni [25] correction accounting for the number of items to be 
tested is applied to avoid inflation of the type I error rate due to multiple 
testing. Item with the most significant test is selected and the equality of 
the difference in threshold parameters across all response categories is 
tested to determine if the difference is uniform or non-uniform for this 
item. The model is updated to take account of (non–)uniform differences 
in threshold parameters between groups on the selected item j, and step 
C is repeated on this updated model to identify differences on the 
remaining items. 

This step is stopped when there are no items left with a significant 
difference between groups at time 1 or when only one item remains to be 
tested and ROSALI moves on to part 2. 

2.3.2. Part 2 of ROSALI: RC detection 
Fig. 3 presents the different steps of the second part of ROSALI. The 

second part focuses on the detection of difference in threshold param-
eters across times. Different longitudinal PCMs are used in this part, 
taking into account differences in threshold parameters between groups 

at time 1 identified in the first part (steps A to C). The first step is to 
compare two models with a LRT: a full model 1 where all threshold 
parameters of all items are freely estimated across times (RC on all 
items) and a restricted model 2 where all threshold parameters are 
constrained to be equal across times (no RC on any item). If the LRT is 
not significant at 5%, all threshold parameters are constrained to be 
equal across times and ROSALI moves on to step 4. Otherwise, if the LRT 
is significant, differences in threshold parameters across times (RC) are 
suspected and ROSALI proceeds to the iterative step 3, to identify which 
items seem to be affected by RC. For each item, starting from model 2, 
several models 3 are estimated where constraints of equality of 
threshold parameters across times are relaxed item-by-item. For each 
item j, the equality of threshold parameters for all response categories 
between time 1 and time 2 is tested with a Wald test of overall RC 
occurrence. A Bonferroni correction accounting for the number of items 
to be tested is applied. The item with the most significant test is selected. 
A Wald test is realized to see if RC on the selected item is similar in both 
groups or not :

• If the Wald test is significant: differential RC is assumed and occur-
rence of RC is tested group-by-group with a Wald test and a Bon-
ferroni adjustment according to the number of groups is applied. 
Then, for each group where RC is detected, a test evaluates whether 
RC is considered uniform or not.  

• If the Wald test is not significant: similar RC is assumed, model 3 is 
updated to add a constraint of similar RC for the selected item. Then, 

Table 4 
Identifiability constraints of the models of ROSALI.   

Description Identifiability 
constraints  

Part 1 Investigating differences in 
threshold parameters between 
groups at time 1   

Model 
A 

Full model: difference in 
threshold parameters between 
groups at time 1 on all items 

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1  

μ(1)
0 = μ(1)

1  

Model 
B 

Restricted model: equality of 
threshold parameters between 
groups at time 1 on all items 

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1   

Model 
C 

Model B with equality 
constraints relaxed for 1 or 
more items 

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1   

Part 2 Recalibration detection   
Model 

1 
Full model: recalibration on all 
items 

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1 , σ2(2)

0 = σ2(2)
1  

μ(1)
0 = μ(2)

0 ,

μ(1)
1 = μ(2)

1 ,

βinter = 0  
Model 

2 
Restricted model: no 
recalibration 

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1 , σ2(2)

0 = σ2(2)
1   

Model 
3 

Model 2 with equality 
constraints across times 
relaxed for 1 or more items 

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1 , σ2(2)

0 = σ2(2)
1   

Model 
4  

μ(1)
0 = 0, σ2(1)

0 =

σ2(1)
1 , σ2(2)

0 = σ2(2)
1   

μ(t)
g : mean of the latent variable for group g (g = 0,1) at time t (t = 1,2). 

σ2(t)
g : variance of the latent variable for group g (g = 0,1) at time t (t = 1,2). 

βinter: coefficient associated with the group by time interaction. 

P
(

X(t)
ij = x|θ(t)

i , β, gi, βinter, t2, δ(t)j1g,⋯, δ(t)j(M− 1)g

)
=

exp
(

x
(

β × gi + βinter × t2 × gi + θ(t)
i

)
−
(∑x

p=1δ(t)jpg

))

∑(M− 1)
l=0 exp

(
l
(

β × gi + βinter × t2 × gi + θ(t)
i

)
−
(∑l

p=1δ(t)jpg

))
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a Wald test is performed on the estimations of the updated model to 
evaluate the type of RC on this item (uniform or non-uniform). 

Model 3 is updated to account for differences in threshold parame-
ters across times on the selected item, and step 3 is repeated on this 
updated model to identify RC on the remaining items. This step is 
stopped when there are no items left with a significant RC test or when 
only one item remains to be tested. 

A final step 4 is performed. A model 4 is estimated accounting for 
differences in threshold parameters between groups at time 1 found in 
part 1 and differences in threshold parameters across times (RC) found 
in part 2, if appropriate. Effects on the latent variable means are esti-
mated and tested with Wald tests: group effect (H0: β = 0), time effect 
(H0 : μ(2)

0 = 0) and time × group interaction (H0 : βinter = 0). Differences 
in threshold parameters between groups or/and RC effects are also 
estimated in model 4. 

3. Analysis 

ROSALI was applied to each replicated dataset of the 624 simulated 
cases. ROSALI performance was assessed using model 4 in terms of RC 
detection and bias in the estimations of the parameters related to the 
latent variable. Datasets were simulated and analyzed with Stata (Stata 
Statistical Software: Release 15. College Station, TX: StataCorp LLC). 

3.1. Evaluation of the performance of ROSALI 

For datasets in which no RC was simulated (noRC), the rate of false 
detection of RC was defined as the percentage of datasets for which RC 
was detected on at least one item. Likewise, the rate of false detection of 
differences in threshold parameters between groups at time 1 was also 
computed, on these datasets, since no group difference was simulated at 
time 1. 

When RC was simulated (RCSim, RC1grp, and RC2grp), different 

Fig. 2. Part 1 of ROSALI (Step A–C). Cross-sectional Partial Credit Models at time 1 to detect differences in threshold parameters between groups. RC: recalibration.  

Fig. 3. Part 2 of ROSALI (Step 1–4). Longitudinal Partial Credit Models to detect difference in threshold parameters across times (recalibration, RC) and evaluation of 
covariate’s effects. 
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criteria were defined to assess the performance of RC detection and are 
presented in Fig. 4. Each criterion, increasingly restrictive, was estab-
lished to investigate the performance of the different steps of ROSALI.  

• Criterion n◦1 – most flexible: Was ROSALI able to detect RC on at 
least one item (including or not the item on which RC was 
simulated)?  

• Criterion n◦2: Was ROSALI able to identify the absence of difference 
in threshold parameters between groups at time 1?  

• Criterion n◦3: Was ROSALI able to rightly detect RC on at least the 
item on which RC was simulated?  

• Criterion n◦4: Was ROSALI able to rightly detect RC only on the item 
on which RC was simulated? 

• Criterion n◦5: Was ROSALI able to rightly identify similar or differ-
ential RC and the groups in which RC was simulated?  

• Criterion n◦6 - perfect: Was ROSALI able to rightly detect the type of 
RC (uniform or non-uniform)? That is, was ROSALI able to detect 
exactly what was simulated (item on which RC was simulated, 
similar or differential RC, group(s) on which RC was simulated and 
type of RC, and nothing else)? 

The performance of ROSALI was assessed using the percentage of 

datasets that met the different criteria (from Most flexible to Perfect). 
The difference between the percentages of datasets meeting the different 
criteria was also studied. For instance, the difference between criteria 
n◦2 and n◦3 indicates how much ROSALI failed to identify the correct 
item on which RC was simulated. These criteria aimed to help the 
diagnosis of the strengths and weaknesses of the algorithm. Thus, 
ROSALI can be considered as having good performance if the percent-
ages of datasets meeting the different criteria are high and differences 
between criteria are low. 

3.2. Type I error and power of the tests of group, time, and interaction 
effects 

When group and time effect as well as their interaction were simu-
lated at 0, the type I error of the test of each effect was calculated as the 
percentage of datasets where the test of the nullity of the associated 
parameter was significant. Besides, when group and time effects were 
simulated as being different from 0, the power of the tests was computed 
as the percentage of datasets where the tests were significant. Biases in 

Fig. 4. Criteria for evaluation of ROSALI algorithm. The condition in bold in-
dicates the additional condition when moving from one criteria to the other 
from “Most flexible” to “Perfect”. RC: recalibration. 

Table 5 
Detection rates using the most flexible and perfect criteria, according to: sce-
narios of simulated recalibration (RCSim, RC1grp, RC2grp), number of items (J), 
number of response categories (M) and sample size (N) for datasets with simu-
lated (non–)uniform recalibration.      

Uniform recalibration Non-uniform 
recalibration 

Scenario J M N Most 
flexible (%) 

Perfect 
(%) 

Most 
flexible (%) 

Perfect 
(%) 

RCSim 4 4 200 98 84 61 53   
300 100 86 86 76   
500 100 85 99 88 

4 7 200 100 89 53 47   
300 100 88 83 75   
500 100 87 99 89 

7 4 200 95 83 50 42   
300 100 85 78 69   
500 100 86 98 88 

7 7 200 100 89 45 39   
300 100 88 75 68   
500 100 87 97 89  

RC1grp 4 4 200 92 80 42 32   
300 99 87 71 60   
500 100 87 96 87 

4 7 200 100 90 33 25   
300 100 90 62 53   
500 100 89 93 85 

7 4 200 87 76 32 25   
300 98 85 60 50   
500 100 89 90 82 

7 7 200 98 90 25 19   
300 100 90 51 45   
500 100 89 87 79  

RC2grp 4 4 200 100 77 62 11   
300 100 85 87 31   
500 100 84 100 61 

4 7 200 100 89 31 3   
300 100 88 62 10   
500 100 86 94 34 

7 4 200 100 82 49 11   
300 100 87 77 29   
500 100 86 98 63 

7 7 200 100 90 47 7   
300 100 88 80 24   
500 100 87 97 52 

The results are summarized for all simulated values of group effect, time effect 
and item position. 
RCSim: Similar recalibration, RC1grp: Differential recalibration with recalibra-
tion only in one group, RC2grp: Differential recalibration with recalibration in 
both groups, J: Number of items in the d, M: Number of response categories, N: 
Sample size, NU: Non-uniform, U: Uniform, RC: recalibration. 
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the estimation of group effect, time effect and interaction between group 
and time were estimated as the difference between the mean of the es-
timations of the effect and the value of the corresponding simulation 
parameter in each of the 624 different cases. 

4. Results 

4.1. No RC simulated 

Rates of false detection of a difference in threshold parameters be-
tween groups at time 1 and/or of RC in model 4 were low, ranging from 
1.6% to 7.0% (results not shown). None of the simulation parameters 
(sample size, time effect, group effect, number of items and response 
categories) seemed to have an impact on this rate. 

4.2. RC simulated 

Table 5 presents detection rates using the most flexible and perfect 
criteria according to different scenarios of simulated RC (RCSim, RC1grp 
or RC2grp), number of items (J), number of response categories (M) and 
sample size (N). Table 6 presents differences in rates between the 

increasingly restrictive criteria. Group effect, time effect, and the item 
position (central or extreme) did not seem to have an influence on these 
rates. Hence, the following results are summarized for all simulated 
values of group effect, time effect and item position. 

4.2.1. Performance of ROSALI when uniform RC was simulated 
Rates of detection using the most flexible criterion in Table 5 were 

high (they ranged between 87% and 100%), meaning that ROSALI was 
able to detect RC on at least one item but which may not include the item 
on which uniform RC was simulated. Detection rates using the perfect 
criterion were also quite high (they ranged between 76% and 90%) 
meaning that ROSALI usually correctly detected what was exactly 
simulated (item with RC, type of RC, scenarios of simulated RC: RCSim, 
RC1grp or RC2grp). 

The difference in rates between the increasingly restrictive criteria, 
presented in Table 6, can give us some additional clues on the perfor-
mance of ROSALI. For instance, the differences between the rates related 
to criteria n◦4 and n◦5 were usually low and showed that the scenarios of 
simulated RC (RCSim, RC1grp or RC2grp) were correctly identified in 
most cases (differences ranging from 0% to 5%), except when differ-
ential RC was simulated in 2 groups (RC2grp) and J = 4, M = 4 and N =

Table 6 
Differences in detection rates between between criteria, according to the groups affected by recalibration, number of items (J), number of response categories (M) and 
sample size (N) for datasets with simulated (non-)uniform recalibration.  

Difference between criteria 100% – Most 
flexible (%) 

Most flexible – n◦2 (%) n◦2 – n◦3 (%) n◦3 – n◦4 (%) n◦4 – n◦5 (%) n◦5 – Perfect 
(%)     

RC not detected Differences between 
groups at time 1 detected 

Item with simulated 
RC not detected 

Item with simulated RC 
detected + other items 

Wrong group 
detected/wrong 
scenario 

Wrong type 
of RC 

Scenario J M N U NU U NU U NU U NU U NU U NU 

RCSim 4 4 200 2 39 3 2 0 1 3 2 4 3 4 0   
300 0 14 2 2 0 0 4 3 4 4 4 0   
500 0 1 2 2 0 0 4 4 4 4 4 0 

4 7 200 0 47 2 1 0 1 3 2 3 3 4 0   
300 0 17 2 2 0 0 3 3 3 4 4 0   
500 0 1 2 2 0 0 3 4 3 4 4 0 

7 4 200 5 51 2 1 0 0 3 3 4 3 4 1   
300 0 22 3 1 0 0 4 4 4 4 4 0   
500 0 2 2 2 0 0 4 4 4 4 4 0 

7 7 200 0 55 1 0 0 0 2 2 3 2 5 1   
300 0 25 1 1 0 0 3 3 3 3 4 0   
500 0 3 2 1 0 0 4 4 3 3 4 0  

RC1grp 4 4 200 8 58 2 1 0 1 3 2 3 4 4 1   
300 1 29 2 2 0 1 4 3 2 5 4 0   
500 0 4 3 2 0 0 4 4 2 3 4 0 

4 7 200 0 67 2 1 0 1 3 1 2 4 3 1   
300 0 38 2 1 0 1 3 2 2 4 4 1   
500 0 7 2 2 0 0 4 4 2 3 4 0 

7 4 200 14 68 2 1 0 1 3 1 3 3 3 1   
300 2 40 2 1 0 1 4 3 2 4 4 0   
500 0 10 2 2 0 0 4 4 2 3 3 0 

7 7 200 2 75 1 0 0 1 2 1 1 2 3 1   
300 0 49 2 1 0 1 3 2 2 2 3 1   
500 0 13 2 1 0 0 4 3 2 2 4 0  

RC2grp 4 4 200 0 38 2 1 0 1 4 3 9 36 7 9   
300 0 13 2 1 0 0 4 4 1 38 8 13   
500 0 0 2 2 0 0 4 4 0 21 9 11 

4 7 200 0 69 1 1 0 2 3 1 0 18 7 7   
300 0 38 2 1 0 1 4 3 0 31 7 16   
500 0 6 2 2 0 0 3 4 0 26 8 27 

7 4 200 0 51 1 1 0 1 4 2 5 24 7 10   
300 0 23 2 1 0 0 4 3 0 28 8 15   
500 0 2 2 1 0 0 4 4 0 14 8 16 

7 7 200 0 53 1 1 0 0 2 2 0 28 7 10   
300 0 20 1 1 0 0 3 3 0 33 7 19   
500 0 3 1 1 0 0 4 4 0 16 9 24 

The results are summarized for all simulated values of group effect, time effect and item position. 
Simulated scenarios: RCSim: Similar recalibration, RC1grp: Differential recalibration with recalibration only in one group, RC2grp: Differential recalibration with 
recalibration in both groups. 
J: Number of items in the domain, M: Number of response categories, N: Sample size, NU: Non-uniform, U: Uniform, RC: recalibration. 
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200 (differences between criteria n◦4 and n◦5 was 9% on average). The 
correct type of RC was identified in case of similar RC or when RC was 
simulated in one group only (differences between the detection rates 
using criterion n◦5 and the perfect criterion, ranged from 3% to 5% for 
RCSim and RC1grp). However, differences between these criteria were a 
bit higher (ranging from 7% to 9%) when differential RC was simulated 
in both groups (RC2grp) meaning that ROSALI assumed that RC was 
non-uniform instead of uniform. 

4.2.2. Performance of ROSALI when non-uniform RC was simulated 
In Table 5, the rates regarding the most flexible criterion ranged from 

25% to 100%. These rates increased with sample size and decreased as 
the number of items and of response categories increased especially 
when the sample size was lower than 300. It indicates that ROSALI 
struggled in identifying RC when the sample size was equal to 200 and it 
was even harder as the number of items or response categories 
increased. Overall, lower detection rates using the most flexible criterion 
were more often observed when differential RC was simulated in one 
group only (RC1grp) meaning that ROSALI had more difficulty detecting 
RC in this scenario compared to scenarios of similar RC (RCSim) or RC 
simulated in both groups (RC2grp). Detection rates using the perfect 
criterion also increased with sample size and decreased as the number of 
items and of response categories increased. These rates were the highest 
when similar RC was simulated (RCSim, range: 32%-89%) and the 
lowest when differential RC was simulated in both groups (RC2grp 
scenario, range: 3–63%). 

The difference in rates between the increasingly restrictive criteria 
for simulated non-uniform RC, in Table 6, show that generally, the item 
and only the items on which RC was simulated was correctly detected 
(difference between criteria n◦2 and n◦4 ranged from 2% to 4%) pro-
vided that ROSALI detected RC on at least one item. When similar RC 
(RCSim) or differential RC in only one group (RC1grp) was simulated, 
the group(s) was (were) often well-identified (difference between 
criteria n◦4 and n◦5 ranged from 2% to 5%), as well as the correct type of 
simulated RC (difference between criteria n◦5 and n◦6 ranged from 0% 
to 1%). However, when differential RC in both groups (RC2grp) was 
simulated, ROSALI often identified similar RC or RC in one group only 
instead of differential RC in both groups (difference between criteria n◦4 
and n◦5 ranged from 14% to 38%). ROSALI also more frequently 
detected the wrong type of RC (difference between criteria n◦5 and n◦6 
ranged from 7% to 27%) meaning that ROSALI assumed that RC was 
uniform instead of non-uniform. 

4.2.3. Estimations of group effect, time effect and time × group interaction 
Table 7 presents the type I error of the Wald tests of group effect, 

time effect, and their interaction when they were simulated at 0 and 
power of the Wald tests of group and time effect when they were 
simulated as different from 0. Results are presented for the final model of 
ROSALI accounting for differences in threshold parameters between 
groups and over time, i.e. model 4, and for the model assuming no RC, i. 
e. model 2. 

In model 4, the type I error was usually well controlled when no 
group, time effects or their interaction were simulated, (group effect: 5% 
to 7%, time effect: 6% to 9% and interaction time × group: 5% to 8%). 
When a group effect was simulated, the power for the test of group effect 
ranged between 29% and 64%. When a time effect was simulated, the 
estimated power for the test of time effect was ranged between 91% and 
100%. The power of each test increased with sample size, as expected. 

4.2.4. Adjustment of group effect, time effect and time × group interaction 
for RC 

The occurrence of RC can bias the estimated means of the latent 
variable. To give some indications on the ability of ROSALI to correctly 
adjust estimated means for RS, estimated bias of group and time effects 
(Fig. 5) as well as type I error and power of the tests of group and time 
effects, and interaction can be compared between model 2 not 

accounting for RC and model 4 accounting for RC. On Fig. 5, estimations 
of group effect were unbiased in model 2 and in model 4. Estimations of 
time effect were biased only in model 2 when uniform RC was similarly 
(RCSim) or differentially simulated in both groups (RC2grp) or when 
non-uniform RC was simulated differentially in both groups (RC2grp). 
Estimations of time × group interaction were biased only in model 2 
when uniform RC was differentially simulated in one or both groups 
(RC1grp or RC2grp) or when non-uniform RC was simulated differen-
tially in both groups (RC2grp). 

Only small differences were observed on type I error of the test of 
group effect between model 2 and model 4 (Table 7). However, the type 
I error of the test of time effect, in model 2, were very high (range: 28%- 
65%) and much higher than in model 4 when uniform RC was simulated 
similarly (RCSim) or differentially in both groups (RC2grp). Similarly, 
the type I error of the interaction test was also much higher in model 2 
(range: 23%-86%) as compared to model 4 (range: 5%-6%) when uni-
form differential RC (RC1grp or RC2grp) was simulated. 

For the tests of group effect, the estimations of statistical power were 
always lower in model 2 than in model 4. The difference between the 
estimated power ranged from 4% to 12%. For the tests of time effect, the 
estimations of statistical power were usually lower in model 2 than in 
model 4. The difference between the estimated power ranged from − 3% 
to 68%. It was the highest when uniform RC was simulated similarly in 
the two groups (RCSim) and it decreased as sample size increased, for all 
cases. 

5. Discussion 

This simulation study assessed the performances of ROSALI in terms 
of RC detection and bias in the estimations of the parameters related to 
the latent variable in the context of longitudinal studies designed for the 
comparison of two groups of patients. Rates of false detection of RC and/ 
or difference in threshold parameters between groups at time 1 were low 
indicating that ROSALI satisfactorily prevents from erroneously infer-
ring a difference in threshold parameters between groups or across 
times. These good performances may be related to the Bonferroni 
correction applied in the two iterative steps (step C and step 3) following 
likelihood ratio tests and to the iterative steps themselves. This asset of 
ROSALI has already been shown in a previous simulation study [14]. 
When the LRT erroneously suggests the presence of a RC or a difference 
in threshold parameters between groups at time 1, this error is often 
corrected by iterative steps 3 and C, respectively, within which no items 
are flagged. 

In the presence of uniform RC, ROSALI is able to detect RC, identify 
the item and the group(s) affected by RC and the type of RC in light of 
the high levels of detection rates using the perfect criterion. However, 
these detection rates were a bit lower when uniform RC was simulated 
differentially in two groups as ROSALI struggled with the identification 
of the groups affected by RC. For almost all cases, the size of shift in 
threshold parameters for uniform RC was + 1 but for differential RC in 
two groups, the size was − 0.8 in one group and + 1 in the other group, 
making RC likely harder to detect. It therefore seems that we can be 
confident that a uniform RC greater than 1 can be detected by ROSALI 
for studies with similar RC and sample sizes in each group, number of 
items and response categories. 

Performances of ROSALI for RC detection was usually lower for non- 
uniform RC than uniform RC. Indeed, non-uniform RC was sometimes 
difficult to detect at onset (low detection rates using the most flexible 
criterion, especially for sample sizes lower than 300). However, as soon 
as ROSALI could identify non-uniform RC on at least one item, the item 
and only the item on which it had been simulated was correctly detec-
ted. When similar RC or differential RC in only one group was simulated, 
the group(s) was (were) often well-identified, as well as the correct type 
of simulated RC, contrary to differential RC in both groups. The poor 
performances for non-uniform RC may be linked to the values of the 
simulated shifts in threshold parameters. For example, the threshold 
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Table 7 
Type I error of the tests of group effect, time effect and their interaction in models 2 and 4, and power of the tests of group and time effect on models 2 and 4 according to type of RC, simulated scenario (RCSim, RC1grp, 
RC2grp) and sample size.     

Type I error Power    

Group effect = 0 Time effect = 0 Interaction time × group = 0 Group effect = 0.2 Time effect = 0.3   

N Not adjusted for 
RC 

Adjusted for 
RC 

Not adjusted for 
RC 

Adjusted for 
RC 

Not adjusted for 
RC 

Adjusted for 
RC 

Not adjusted for 
RC 

Adjusted for 
RC 

Not adjusted for 
RC 

Adjusted for 
RC 

No RC  200 5% 6% 5% 7% 5% 5% 25% 33% 75% 94%  
300 5% 6% 5% 6% 5% 5% 35% 44% 89% 98%  
500 5% 6% 5% 6% 5% 5% 52% 64% 98% 99%  

Uniform RC Sim 200 5% 6% 35% 8% 5% 5% 25% 32% 23% 91% 
300 5% 6% 47% 7% 6% 6% 36% 44% 29% 97% 
500 5% 6% 65% 7% 5% 5% 52% 64% 41% 99% 

RC1grp 200 6% 7% 5% 7% 23% 6% 26% 33% 75% 92% 
300 5% 6% 5% 7% 31% 5% 34% 44% 90% 97% 
500 4% 5% 5% 6% 47% 5% 52% 63% 98% 100% 

RC2grp 200 5% 6% 28% 7% 56% 5% 25% 32% 98% 91% 
300 5% 6% 40% 7% 71% 5% 34% 42% 100% 97% 
500 5% 5% 59% 7% 86% 5% 51% 63% 100% 99%  

Non- 
Uniform 

RCSim 200 5% 6% 6% 8% 5% 5% 25% 32% 76% 92% 
300 5% 6% 7% 7% 5% 5% 35% 44% 89% 97% 
500 5% 5% 7% 7% 5% 5% 52% 63% 98% 99% 

RC1grp 200 5% 6% 5% 7% 5% 5% 25% 33% 76% 93% 
300 5% 6% 5% 7% 6% 6% 34% 44% 89% 97% 
500 5% 6% 5% 7% 6% 5% 52% 63% 98% 99% 

RC2grp 200 5% 7% 8% 9% 10% 8% 25% 29% 86% 94% 
300 5% 7% 9% 8% 12% 7% 35% 41% 96% 98% 
500 5% 6% 11% 7% 17% 6% 51% 62% 100% 99% 

RCSim: Similar recalibration, RC1grp: Differential recalibration with recalibration only in one group, RC2grp: Differential recalibration with recalibration in both groups, N: sample size. 
Not adjusted for RC: model 2 in ROSALI with no RC assumed, Adjusted for RC: final model of ROSALI in which differences in threshold parameters at time 1 and RC are accounted for. 
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parameters shifted of − 1, 0, and 1 in case of non-uniform RC for an item 
with 4 response categories in the scenarios corresponding to similar RC 
or differential RC in one group. Only some threshold parameters are 
affected by RC and the item location stayed the same. On the contrary, 
the threshold parameters shifted of 1, 1, and 1 in case of uniform RC also 
shifting the item location to the right. Hence, RC affected less response 
categories and to a lesser extent in case of non-uniform RC making it 
more difficult to detect than uniform RC. 

The detection rates using the perfect criterion increased with the 
sample size (N). The effect of sample size seems higher in case of non- 
uniform RC. However, the detection rates showed a ceiling effect and 
we can expect that for smaller sizes of uniform RC than in this simulation 
study, the effect of sample size would be as high as for non-uniform RC. 
Hence, a sample size higher than 200 is recommended as detection rates 
using the perfect criteria were not satisfactory for non-uniform RC in 
datasets with N = 200. 

The type I error of the test of group effect was usually well controlled 
but the power of the test of group effect was low confirming that an 
effect size of 0.2 for the group effect is small and consequently rather 
difficult to detect, a fortiori when the sample size is small (N = 200). 

Not accounting for RC had an impact on type I error and power of the 
test of time effect as the type I error of time effect was not well 
controlled. These results may be explained from the under-estimation of 
the latent variable mean when similar uniform RC was simulated or its 

over-estimation when uniform or non-uniform RC was simulated 
differentially in both groups. 

5.1. Limitations and perspectives 

The performances of ROSALI were evaluated only in terms of RC 
detection in this simulation study. The properties of ROSALI in terms of 
detection of differences in threshold parameters at time 1 could not be 
studied as no differences between groups have been simulated at time 1. 
Furthermore, the biases of estimated time by group interaction, and 
power of the test of interaction could not be estimated as a single 
simulated value of interaction (=0) was investigated. As for time and 
group effects, we can expect that the bias of interaction would depend on 
the size of the interaction term, on the type of RC (uniform or not) and 
whether the groups are affected the same way by RC. Unbiased esti-
mations of group and time effects were obtained in model 4 adjusting for 
RC and the same could be expected for the interaction term. The effect of 
unequal group sizes has not been investigated either. We can expect that 
the group size in combination with the size of RC will influence the 
performances of ROSALI when RC occurs only in one group (RC1grp) or 
differentially in both groups (RC2grp). Other conditions have to be 
studied in the near future to complete the assessment of the perfor-
mances of ROSALI. All simulated datasets were complete meaning that 
there were no missing data with regards to item responses nor group 

Fig. 5. Bias of group and time effects and time × group interaction when effects were not simulated and when they were simulated according to type of recalibration 
(RC) and groups affected by RC (RCSim : Similar recalibration, RC1grp : Differential recalibration when RC affects only group 1, RC2grp : Differential recalibration 
when RC affects both groups). The boxplots compare estimations from model 2 (Not adjusted for RC) and model 4 (Adjusted for RC) from ROSALI. 
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covariate. A simulation study could inform on the impact of missing data 
on the performances of ROSALI. As parameters are estimated using 
marginal maximum likelihood, it is expected that in case of MCAR and 
MAR mechanisms and intermittent missing items or missing group 
covariates, the estimations will be asymptotically unbiased. However, 
given the loss of precision of estimators, a loss in the performances of 
ROSALI can be expected. Furthermore, a pre-requisite to the use of 
ROSALI is that a unidimensional PCM should fit the data at each time. 
Robustness of ROSALI in case of deviations from the underlying as-
sumptions of the PCM is unknown and could be investigated in further 
simulation studies. For instance, a model from item response theory like 
a longitudinal generalized partial-credit model (GPCM) might fit the 
data better. Depending on the amount of misfit, the estimators might be 
biased [26] resulting in a loss of performances for ROSALI. Model misfit 
may also be indicative of RS. If a GPCM better fits the data at time 2 only, 
it can be indicative of reprioritization RS operationalized as a change in 
discrimination parameters (constrained to be equal to 1 in the PCM but 
freely estimated in the GPCM). If a multidimensional model better fits 
the data at time 2, the definition of the target construct may have 
changed indicating reconceptualization RS. Last, models from Rasch 
measurement theory (e.g. the PCM) assumes local independence, i.e. the 
items are conditionally independent given the latent variable. In the 
longitudinal PCM of ROSALI, the items are also assumed to be locally 
independent across time points as the latent variables are correlated at 
each time point but item responses are not correlated. The violation of 
this assumption can also cause misfit of the PCM. Local dependence of an 
item over time is operationalized as a change in threshold parameters at 
time 2 depending on the answer at time 1. If a majority of people have 
answered the same response category at a locally dependent item over 
time at time 1, RS can be mistakenly suspected in place of local 
dependence [27]. Local dependence can be one of the alternative ex-
planations of change of threshold parameters for RS detection methods 
based on Rasch models. Whatever the RS detection methods, possible 
alternative explanations should be examined to interpret the results 
[12]. 

Further developments are needed to better grasp the determinants of 
RS. Indeed, to take into account the clinical and psychological charac-
teristics of patients, RS detection methods should be able to investigate 
the effects of covariates with more than two response categories and to 
investigate the effects of several covariates simultaneously. Finally, 
ROSALI is relevant when a major health event (e.g. diagnosis, treatment 
initiation, major surgical operation) has been identified and the analysis 
is performed before and after this event. However, in chronic conditions, 
the event that may trigger RS may not occur at the same time for all 
patients or the time of the event may not be identified prior to the RS 
analysis. Thus, ROSALI and methods for RS detection in general could 
benefit from performing the RS detection over multiple time points to 
help better understanding the psychological adaptation process to 
chronic conditions. A combination of linear mixed model with RMT by 
considering the latent variable as a latent process in continuous time 
may help investigating longitudinal measurement invariance [28]. 
Indeed, the trajectory of the latent variable over time could be modelled 
jointly with the trajectories of threshold parameters that may be related 
to RS. 
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