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This paper considers a generalized form of the standard linear complementarity prob-
lem with unique solution and provides a more precise expression of an upper error
bound discovered by Chen and Xiang in 2006. This expression has at least two ad-
vantages. It makes possible the exact computation of the error bound factor and it
provides a satisfactory upper estimate of that factor in terms of the data bitlength
when the data is formed of rational numbers. Along the way, we show that, when any
rowwise convex combination of two square matrices is nonsingular, the ℓ∞ norm of the
inverse of these rowwise convex combinations is maximized by an extreme diagonal
matrix.
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1 Introduction

Error bounds play a prominent role in the analysis of mathematical problems and the
algorithms to solve them, in particular in numerical optimization [28]. This paper focuses
on error bounds discovered by Chen and Xiang [10; 2006] for the linear complementarity
problem with a P-matrix and simplifies the expression of its upper factor. The paper also
deduces some consequences of this new expression.

In its standard form [11], the linear complementarity problem (LCP) reads

0 6 x ⊥ (Mx+ q) > 0, (1.1)

where the unknown is x ∈ R
n (the set of real vectors with n components), while M ∈ R

n×n

(the set of real matrices of order n) and q ∈ R
n are data. Inequalities on vectors must be

understood componentwise (for example x > 0 in (1.1) means xi > 0 for all i ∈ [1 :n], the
set of the first n integers). The compact writing of the problem in (1.1) means that one has
to find a vector x ∈ R

n
+ := {x ∈ R

n : x > 0} such that Mx+ q > 0 and xT(Mx + q) = 0
(“T” is used to denote vector or matrix transposition).

A matrix M ∈ R
n×n is said to be a P-matrix if all its principal minors are positive

(i.e., the determinant detMII > 0, for all I ⊆ [1 :n]; by convention detM∅∅ = 1). One
denotes by P the class of P-matrices. It is known that problem (1.1) has a unique solution,
whatever q is, if and only if M ∈ P [32; 1958]. There are many other characterizations of
the P-matricity [11], including algorithmic ones [2, 3].

For the sake of generality and for taking advantage of its symmetric formulation, which
allows us to shorten some proofs, this paper considers an LCP in a slightly more general
form than (1.1), namely

0 6 (Ax+ a) ⊥ (Bx+ b) > 0, (1.2)

where A, B ∈ R
n×n and a, b ∈ R

n are the data (see for example [11, 27, 33]). Throughout
this work, we assume that problem (1.2) has a unique solution x̄. Conditions on A and B
ensuring this property, whatever the vectors a and b are, will be recalled in proposition 3.1.

An error bound associated with a set S is an estimate of the distance to S by quantities
that are easier to evaluate than this distance, usually those that are used to define the set.
The set considered in this paper is the solution set of the LCP (1.2), which has been said
to be reduced to the singleton {x̄}, while the quantity used to estimate the distance to x̄
is defined as follows.

Let ‖ · ‖ denote an arbitrary norm on R
n. The natural residual [22, 23] associated

with the linear complementarity problem (1.2) is the function r : Rn → R
n whose value at

x ∈ R
n is given by

r(x) := min(Ax+ a,Bx+ b), (1.3)

where the minimum operator “min” acts componentwise (for two vectors u, v ∈ R
n and

i ∈ [1 :n]: [min(u, v)]i = min(ui, vi)). It is clear that x solves (1.2) if and only if r(x) = 0,
since min(Ax+ a,Bx+ b) = 0 if and only if, for all i ∈ [1 :n], (Ax+ a)i > 0, (Bx+ b)i > 0
and either (Ax + a)i or (Bx+ b)i vanishes. Therefore ‖r(x)‖ is a possible measure of the
proximity of x to x̄. In this paper, we consider error bounds of the form

∀x ∈ R
n : β̌ ‖r(x)‖ 6 ‖x− x̄‖ 6 β ‖r(x)‖,
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where β̌ and β are positive constants (independent of x), that we call the lower and upper

error bound factors, respectively. Error bounds for the LCP have been the subject of many
contributions, see [30, 26, 24, 22, 23, 21, 10, 9, 12, 20, 8], the references therein, as well as
the subsequent papers citing them.

For P and Q ∈ R
n×n, we define

[P,Q] := {X ∈ R
n×n : P 6 X 6 Q},

where the inequalities act again componentwise (i.e., P 6 X 6 Q means Pij 6 Xij 6 Qij

for all i, j ∈ [1 : n]). Hence, for the identity matrix I, [0, I] is a compact notation for the set
of diagonal matrices with diagonal elements in the interval [0, 1]. Note also that the set of
extreme points of [0, I], denoted by ext[0, I], is the set of diagonal matrices with diagonal
elements in {0, 1} (see [31; p. 162] for the definition of an extreme point of a convex set;
one can use [15; proposition 2.12] for a rigorous proof of this claim).

For D ∈ [0, I], we denote by

CD := (I −D)A+DB (1.4)

the rowwise convex combination of the matrices A and B ∈ R
n×n. We show in proposi-

tion 3.1 that the LCP (1.2) has a unique solution whatever the vectors a and b are, if and
only if

∀D ∈ [0, I] : CD is nonsingular. (1.5)

Therefore, this assumption is made throughout this paper. When this assumption holds,
we show in proposition 3.2, as a straightforward extension of [10; 2006, (2.3)], that the
following lower and upper error bounds hold:

∀x ∈ R
n :

(

max
D∈[0,I]

‖CD‖
)−1

‖r(x)‖ 6 ‖x− x̄‖ 6

(

max
D∈[0,I]

‖C−1
D ‖

)

‖r(x)‖, (1.6)

where ‖ · ‖ denotes a norm on R
n and the induced matrix norm.

In this paper, we are interested in giving more precision on the way the lower and upper
error bound factors appearing in (1.6) can be computed, when the ℓ∞ norm is used. If the
lower bound factor is easy to evaluate (see section 3.2), the upper bound factor

β := max
D∈[0,I]

‖C−1
D ‖∞ (1.7)

raises more difficulty. This concern makes perfect sense because, as far as we know, this
upper error bound factor is the best one obtained so far for the LCP (1.1) with M ∈ P;
in particular, it is smaller, hence better, than the one of Mathias and Pang [24] (see [10;
theorem 2.3]). We shall show that the evaluation of β can be simplified since one has

β = max
D∈ext[0,I]

‖C−1
D ‖∞. (1.8)

This extends to higher dimension the simple observation that, when n = 1, the map
D ∈ [0, 1] 7→ ‖C−1

D ‖∞ is monotone, so that it attains its maximum on [0, 1] at a point in
{0, 1}. For n > 1, however, Dkk ∈ [0, 1] 7→ ‖C−1

D ‖∞ may be nonmonotone (see the example
in section 4.2), so that an analysis along this line is not straightforward. Furthermore, this
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map can be neither convex nor concave (see example 3.3). For these reasons, we shall
present a specific, rather long and indirect, proof of (1.8). The simplification (1.8) of (1.7)
may look minor at first glance, but it may be interesting for reasons that are discussed in
section 4.4: it simplifies the computation of β for small n and it may be crucial for giving
an upper estimate of β in terms of the data bitlength in some complexity analysis.

The paper is organized as follows. The next background section presents two results
that will play an important role in getting the expression (1.8) of β: the first one deals with
the norm of a matrix inverse and the second deals with min-max duality in optimization.
Section 3 is dedicated to the proof of (1.8). Section 4 illustrates the result and its proof
by several examples or counter-examples. We conclude by some thoughts on complexity
issues.

Notation

The unit closed ball associated with a norm ‖ · ‖ is denoted by B̄ := {x : ‖x‖ 6 1} and the
unit sphere by ∂B := {x : ‖x‖ = 1}.

2 Background

Once a result is discovered, one may then look for a more direct

proof. When first hunting for certainty it is reasonable to use

whatever tools one possess.

Jonathan M. Borwein [6; 2016].

This section presents two results that will play a major part in our strategy to get the
desired result in section 3. The first one (lemma 2.1) gives an expression of ‖A−1‖, for
a nonsingular matrix A ∈ R

n×n, in terms of an optimization problem. Consequences of
this expression for the ℓ∞ norm are given in corollary 2.2 and in the technical lemma 2.3.
The second result (lemma 2.4) highlights conditions to have strong duality on a product
space X × [1 : p] for a pairing function that has a separable property. These results could
be found elsewhere, but presenting them here with the level of details that is needed below
and with their proof is probably helpful for the reader.

2.1 Norm of a matrix inverse

For a given nonsingular matrix function z ∈ R
p 7→ A(z) ∈ R

n×n, analyzing the map
‖[A(·)]−1‖ is often more difficult than analyzing ‖[A(·)‖. It is possible, however, to toggle
from one map to the other thanks to the following lemma.

Lemma 2.1 (norm of a matrix inverse) If A ∈ R
n×n is a nonsingular square ma-

trix and if ‖ · ‖ denotes a vector norm and its induced matrix norm, then

min
‖v‖=1

‖Av‖ = ‖A−1‖−1. (2.1a)

In addition, v̄ solves the problem in the left-hand side of (2.1a) if and only if w̄ :=
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‖A−1‖Av̄ solves the problem in the left-hand side of

max
‖w‖=1

‖A−1w‖ = ‖A−1‖. (2.1b)

Proof. 1) Let us first prove (2.1a). By the nonsingularity of A, the following identity
holds

α := min
‖v‖=1

‖Av‖ = min
‖A−1w‖=1

‖w‖. (2.2)

Note that α > 0 by the nonsingularity of A and the compacity of ∂B. Then ‖A−1w‖ 6 1
for any w verifying ‖w‖ = α (since otherwise w̃ := w/‖A−1w‖ would verify ‖A−1w̃‖ = 1
and ‖w̃‖ = ‖w‖/‖A−1w‖ < α, contradicting the fact that α is the optimal value of the
problem in right-hand side of (2.2)). This implies that

max
‖w‖=α

‖A−1w‖ = 1,

since any solution w to the problem in the right-hand side of (2.2) is such that ‖w‖ = α
and ‖A−1w‖ = 1. The identity (2.1a) now follows by

1 = max
‖w‖=α

‖A−1w‖ = α max
‖w‖=1

‖A−1w‖ = α ‖A−1‖.

2) Let v̄ solve the problem in the left-hand side of (2.1a) and define w̄ := Av̄/α. Then
‖w̄‖ = 1 and ‖A−1w̄‖ = ‖v̄‖/α = ‖A−1‖, which shows that w̄ solves the problem in the
left-hand side of (2.1b).

Reciprocally, suppose that w̄ solves the problem in the left-hand side of (2.1b) and set
v̄ := αA−1w̄. Then, ‖v̄‖ = α‖A−1w̄‖ = 1 and ‖Av̄‖ = α, so that v̄ solves the problem in
the left-hand side of (2.1a). ✷

For the ℓ2-norm, the identity (2.1a) can also be obtained by using the relation between
the smallest λmin and the largest λmax eigenvalues of inverse symmetric matrices:

min
‖v‖2=1

‖Av‖22 = λmin(ATA) =
1

λmax(A−1A−T)
=

1

‖A−T‖22
= ‖A−1‖−2

2 .

Nevertheless, the infinity norm is used below, as well as the link highlighted in lemma 2.1
between the vectors v̄ giving the minimum in (2.1a) and the vectors w̄ giving the maximum
in (2.1b).

As we just said, in the sequel, the infinity vector and its induced matrix norms, both
denoted by ‖·‖∞, are used. For this reason, we consider this case in corollary 2.2 below and
bring some precision. We denote by ei the ith basis vector of Rn and set e :=

∑

i∈[1 :n] e
i,

which is the vector of all ones. By definition and computation [18; § 5.6.5] (see also (2.8a)-
(2.8d) in the proof of corollary 2.2 below), for a matrix A ∈ R

n×n, one has

‖A‖∞ := max
‖w‖∞=1

‖Aw‖∞ = max
i∈[1 :n]

‖Ai :‖1, (2.3)
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where Ai : := (ei)TA denotes the ith row of A and ‖v‖1 :=
∑

i∈[1 :n] |vi| denotes the ℓ1-norm
of v ∈ R

n. We also denote by “sign” the maximal monotone multifunction R ⊸ R that is
the subdifferential of the absolute value function: it associates with t ∈ R the following set
of R:

sign t :=







{−1} if t < 0
[−1, 1] if t = 0
{1} if t > 0.

(2.4)

One finds other definitions of sign(0), in particular to make it a single-valued function,
but our choice of definition is important for the sequel, like in the formulas (2.5b) below.
Recall that ‖ · ‖1 is the dual norm of ‖ · ‖∞ with respect to the Euclidean scalar product,
which means that

‖v‖1 = max
‖w‖∞=1

vTw = max
‖w‖∞=1

|vTw|. (2.5a)

The solution sets of these maximum problems are

Argmax
‖w‖∞=1

vTw = (sign v) ∩ ∂B∞ and Argmax
‖w‖∞=1

|vTw| = (± sign v) ∩ ∂B∞, (2.5b)

where, for a vector v ∈ R
n, sign v := (sign v1)×· · ·×(sign vn) ⊆ R

n (hence sign 0Rn = B∞),
± sign v := (sign v)∪ (− sign v) and the boundary ∂B∞ of B∞ is present only to deal with
the case where v = 0. For a nonsingular square matrix A, we adopt the following notation

W∞(A) := Argmax
‖w‖∞=1

‖A−1w‖∞ = {w ∈ ∂B∞ : ‖A−1w‖∞ = ‖A−1‖∞}, (2.6a)

V∞(A) := Argmin
‖v‖∞=1

‖Av‖∞ = {v ∈ ∂B∞ : ‖Av‖∞ = ‖A−1‖−1
∞ }. (2.6b)

The second equality in (2.6a) comes from the definition of the induced matrix norm ‖ · ‖∞
in (2.3), while the second equality in (2.6b) is deduced from the identity (2.1a). The next
corollary gives other expressions of these sets.

Corollary 2.2 (ℓ∞-norm of a matrix inverse) Suppose that A ∈ Rn×n is a non-

singular matrix. Set β := ‖A−1‖∞ and α := 1/β. Then,

W∞(A) =
⋃

{

± sign(A−Tei) : ‖(A−1)i :‖1 = β
}

, (2.7a)

V∞(A) = αA−1
(

W∞(A)
)

. (2.7b)

Proof. [(2.7a)] Observe first that

β = max
‖w‖∞=1

‖A−1w‖∞ [definition of the matrix norm ‖ · ‖∞] (2.8a)

= max
‖w‖∞=1

max
i∈[1 :n]

|(ei)TA−1w| [definition of the vector norm ‖ · ‖∞] (2.8b)

= max
i∈[1 :n]

max
‖w‖∞=1

|(ei)TA−1w| [the two max’s commute] (2.8c)

= max
i∈[1 :n]

‖A−Tei‖1 [(2.5a)]. (2.8d)

We can now establish the identity (2.7a).
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[⊆] If w̄ ∈ W∞(A), w̄ solves the problem in (2.8a)-(2.8b), by definition. Let ı̄ ∈ [1 :n]
be a solution to the inner problem max{|(ei)TA−1w̄| : i ∈ [1 :n]} appearing in (2.8b).
Then, the pair (w̄, ı̄) maximizes the map (w, i) ∈ ∂B∞ × [1 :n] 7→ |(ei)TA−1w|. It
follows that ı̄ solves to the problems in (2.8c)-(2.8d) and w̄ is a solution to the inner
problem max{|(ēı)TA−1w| : ‖w‖∞ = 1} appearing in (2.8c). Hence, by (2.5b), w̄ ∈
± sign(A−Tēı) and, by (2.8d), β = ‖A−Tēı‖1 = ‖(A−1)̄ı :‖1.

[⊇] Suppose now that w̄ ∈ ± sign(A−Tēı) for some ı̄ ∈ [1 :n] satisfying ‖A−Tēı‖1 = β.

– By this last identity, ı̄ solves the problem in (2.8d), hence the problem in (2.8c).
– By the nonsingularity of A−T, one component of A−Tēı does not vanish, so that
w̄ ∈ ± sign(A−Tēı) ∩ ∂B∞. By (2.5b), this implies that w̄ solves the problem
max{|(ēı)TA−1w| : ‖w‖∞ = 1}.

It results from these last two observations and (2.8a)-(2.8c), that w̄ solves the problem
in (2.8a)-(2.8b). We have shown that w̄ ∈ W∞(A).

[(2.7b)] This is a consequence of the last claim in lemma 2.1, according to which
v̄ ∈ V∞(A) if and only if v̄ = αA−1w̄ with w̄ ∈ W∞(A). ✷

We conclude this section by synthesizing in the following lemma a mechanism that, de-
spite its innocuous appearance, plays a major part in the proof of proposition 3.4 below. As
shown in the lemma’s proof, this mechanism is only operational when some element of A−1

vanishes, but this fact is revealed indirectly, through a property of a vector v ∈ V∞(A).

Lemma 2.3 (technical) Suppose that A ∈ R
n×n is nonsingular, that α := ‖A−1‖−1

∞

and that v ∈ V∞(A) has the property that |(Av)k| < α for some k ∈ [1 :n]. Then, there

exists a v′ ∈ V∞(A) such that (Av′)k = 0.

Proof. Let β := 1/α. Since v ∈ V∞(A), the vector defined by w := βAv is in W∞(A),
by (2.7b). By assumption, (Av)k ∈ (−α,α), so that wk ∈ (−1, 1). These two facts on w
and (2.7a) imply that there must be some index i such that

w ∈ ± sign(A−Tei), ‖(A−1)i :‖1 = β and (A−1)ik = 0.

Define the vector w′ ∈ R
n by vanishing the kth component of w:

w′
i :=

{

wi if i 6= k
0 otherwise.

Then, we also have w′ ∈ ± sign(A−Tei), implying that w′ ∈ W∞(A). The sought vector
is v′ := αA−1w′. Indeed, on the one hand, v′ ∈ V∞(A) by (2.7b). On the other hand,
Av′ = αw′ implying that (Av′)k = 0, as desired. ✷

2.2 Strong duality for separable functions

Let be given a set X and p functions ϕi : X → R̄. Usually, equality does not hold in the
weak duality inequality [17, 16, 5, 15]

inf
x∈X

max
i∈[1 : p]

ϕi(x) > max
i∈[1 : p]

inf
x∈X

ϕi(x). (2.9)
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Take for example, X = R, p = 2, ϕ1(x) = (x+1)2 and ϕ2(x) = (x− 1)2, in which case the
left-hand side value is 1, while the right-hand side value is 0 (see [16; lemma 4.5] for a way
of modifying (2.9) that ensures equality). The situation is very different, more elementary
and more favorable, when X is a Cartesian product X = X1 × · · · × Xp of sets Xi and
each function ϕi only depends on the ith component xi ∈ Xi of x = (x1, . . . , xp) ∈ X;
then equality holds above with some other interesting properties. This particular situation,
which occurs below, is analyzed in the next lemma. In this one, the problems

inf
x∈X

max
i∈[1 : p]

ϕi(xi) and max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi).

are called the primal and dual problems, respectively. A primal (resp. dual) solution is a
solution to this primal (resp. dual) problem.

The following pictures illustrate this particular situation and help to have a good un-
derstanding of the next lemma, which is useful for the sequel.

N
1 2 53 4 6 p. . .

R

N
1 2 53 4 6 p. . .

R

v̄ v̄

The first p integers i are given in abscissa and the values of the ϕi(xi)’s are given in ordinate.
We shall see that there is no duality gap for this problem: the common primal and dual
optimal value, denoted by v̄, is represented by the horizontal (red) line in the two pictures.
For each integer i ∈ [1 : p], the horizontal short bar gives the value inf{ϕi(xi) : xi ∈ Xi},
which may or may not be equal to v̄, but is always less than this optimal value, by
the right-hand side of (2.10a). In the left-hand side picture, the crosses are the values
ϕi(xi) for some x ∈ X (hence, for a particular abscissa, a cross is always above the
horizontal short bar), while in the right-hand side picture, the crosses are the values ϕi(x̄i)
for some primal solution x̄ ∈ X, which must not exceed v̄ by left-hand side of (2.10a). The
dual problem consists in determining the indices i ∈ [1 : p] for which the short bar values
inf{ϕi(xi) : xi ∈ Xi} are maximal; in the pictures, the dual solution set is {2, 4, 5}. The
primal problem consists in determining x ∈ X such that the maximum of the ϕi(xi)’s (the
ordinate of the highest crosses) is as small as possible.

The next lemma not only shows the lack of duality gap for the separable case, but also
describes the sets of primal and dual solutions. It also shows how to construct a primal
solution from the dual solutions, as well as a dual solution from the primal solutions.

Lemma 2.4 (strong duality for separable functions) Let X := X1×· · ·×Xp be

the Cartesian product of nonempty sets Xi and let ϕi : Xi → R, i ∈ [1 : p], be arbitrary

functions. An x ∈ X is written x = (x1, . . . , xp), with xi ∈ Xi for i ∈ [1 : p].

1) (No duality gap) The following identity holds

inf
x∈X

max
i∈[1 : p]

ϕi(xi) = max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi). (2.10a)
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Denote by v̄ the common value of the two sides of this identity.

2) (Set of primal solutions) The set of primal solutions is the possibly empty set

X̄ := X̄1 × · · · × X̄p, where

X̄i := {xi ∈ Xi : ϕi(xi) 6 v̄}. (2.10b)

3) (Set of dual solutions) The set of dual solutions is the nonempty set

Ī := {i ∈ [1 : p] : ϕi(xi) > v̄ for all xi ∈ Xi}. (2.10c)

4) (Saddle-point property) The following properties are equivalent:

(i) (x̄, ı̄) ∈ X̄ × Ī,
(ii) (x̄, ı̄) is a saddle-point of the map (x, i) ∈ X × [1 : p] 7→ ϕi(xi), meaning that

∀ (x, i) ∈ X × [1 : p] : ϕi(x̄i) 6 ϕı̄(x̄ı̄) 6 ϕı̄(xı̄), (2.10d)

(iii) x̄ı̄ minimizes ϕı̄ on Xı̄ and ı̄ maximizes ϕi(x̄i) on [1 : p].

5) (Deducing a primal solution from the dual solutions) Suppose that, for any dual

solution ı̄ ∈ Ī, the problem inf{ϕı̄(xı̄) : xı̄ ∈ Xı̄} has a solution x̂ı̄, then the primal

problem has a solution x̄ ∈ X satisfying

x̄Ī = x̂Ī and Ī = Argmax
i∈[1 : p]

ϕi(x̄). (2.10e)

6) (Deducing a dual solution from the primal solutions) Suppose that X̄ 6= ∅. Then,

ı̄ ∈ Ī if and only if, for all x̄ ∈ X̄, ı̄ maximizes i ∈ [1 : p] 7→ ϕi(x̄i),

Proof. 1) By the weak duality property (2.9) and the fact that ϕi only depends on the ith
component of x, the inequality “>” holds in (2.10a). Let us prove the reverse inequality.
Let ε > 0. For any i ∈ [1 : p], there is an xεi ∈ Xi such that

ϕi(x
ε
i ) 6 inf

xi∈Xi

ϕi(xi) + ε.

Therefore,
max
i∈[1 : p]

ϕi(x
ε
i ) 6 max

i∈[1 : p]
inf

xi∈Xi

ϕi(xi) + ε. (2.11)

It is here that the separability assumption intervenes. Since the left-hand side of (2.11) is
the value at xε := (xε1, . . . , x

ε
p) of the function x = (x1, . . . , xp) ∈ X 7→ maxi∈[1 : p] ϕi(xi),

the following inequality certainly holds

inf
x∈X

max
i∈[1 : p]

ϕi(xi) 6 max
i∈[1 : p]

ϕi(x
ε
i ).

Combining with (2.11), we get

inf
x∈X

max
i∈[1 : p]

ϕi(xi) 6 max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi) + ε.
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Since ε > 0 is arbitrary, the inequality “6” holds in (2.10a).
2) The point x̄ = (x̄1, . . . , x̄p) is a primal solution if and only if

max
i∈[1 : p]

ϕi(x̄i) 6 inf
x∈X

max
i∈[1 : p]

ϕi(xi) = v̄ or ∀ i ∈ [1 : p] : ϕi(x̄i) 6 v̄.

This fact reads x̄ ∈ X̄ , for the given X̄.
3) It is clear that Ī is nonempty, since the dual problem consists in taking the maximum

of p values in R∪{−∞}. An index ı̄ ∈ [1 : p] is a solution to the dual problem if and only if

inf
xı̄∈Xı̄

ϕı̄(xı̄) > max
i∈[1 : p]

inf
xi∈Xi

ϕi(xi) = v̄ or ∀xı̄ ∈ Xı̄ : ϕı̄(xı̄) > v̄.

This fact reads ı̄ ∈ Ī, for the given Ī.
4) By (2.10a), there is no duality gap. Then, by the standard minmax duality theory

[14; proposition VI.1.2] (see also [15; theorem 14.3]), the equivalence (i) ⇔ (ii) follows.
Now, condition (iii) is just another way of expressing (2.10d).

5) According to (2.10c), for i /∈ Ī, there is an x̃i ∈ Xi such that ϕi(x̃i) < v̄. Let x̄ ∈ X
be defined by

x̄i =

{

x̂i i ∈ Ī
x̃i otherwise.

For i ∈ Ī 6= ∅, one has

ϕi(x̄i) = ϕi(x̂i) [definition of x̄]

= inf{ϕi(xi) : xi ∈ Xi} [assumption on x̂i]

= v̄ [i ∈ Ī and definition of v̄].

And, for i /∈ Ī, one has

ϕi(x̄i) = ϕi(x̃i) [definition of x̄]

< v̄ [i /∈ Ī and definition of x̃i].

Since ϕi(x̄i) 6 v̄ for all i ∈ [1 : p], (2.10b) shows that x̄ is a primal solution. Furthermore,
x̄ı̄ = x̂ı̄ for all ı̄ ∈ Ī, so that the first identity in (2.10e) holds. We also have that
Argmax{ϕi(x̄i) : i ∈ [1 : p]} = Ī, which is the second identity in (2.10e).

6) The implication “⇒” follows from the implication (i) ⇒ (iii) in point 4.
We prove the implication “⇐” by contraposition. Suppose that ı̄ is not a dual solution.

Then, by (2.10c), one can find x̃ı̄ ∈ Xı̄ such that ϕı̄(x̃ı̄) < v̄. For some primal solution x̂,
which exists by assumption, we construct the point x̄ ∈ X whose ith component is given by

x̄i =

{

x̂i if i 6= ı̄

x̃ı̄ if i = ı̄.

Since ϕi(x̄i) 6 v̄ for all i ∈ [1 :n] (this is because ϕi(x̂i) 6 v̄ for all i ∈ [1 :n] and
ϕı̄(x̃i) < v̄), the vector x̄ is also a primal solution, by (2.10b). However, ϕı̄(x̄ı̄) = ϕı̄(x̃ı̄) <
v̄ = maxi ϕi(x̄i) shows that ı̄ does not maximize i ∈ [1 : p] 7→ ϕi(x̄i). ✷
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3 Finitely computable error bounds for the LCP

The goal of this section is to give some localization of the solution set of problem (1.7).
More specifically, its main result, proposition 3.4, shows that a solution can always be
found in ext[0, I], the set of extreme points of [0, I] (one may find solutions with a diagonal
element in (0, 1) however; examples are given in sections 4.1 and 4.3).

3.1 On the generalized LCP

For the sake of precision and for the reader’s convenience, we adapt to the generalized LCP
(1.2) some results that are well known for the standard LCP (1.1). The next proposition
gives conditions ensuring the uniqueness of the solution to (1.2) whatever the vectors a
and b are; one of them (condition (iv)) is the general assumption (1.5). The equivalence
(i) ⇔ (ii) is related to [27; 1990, proposition 2], which considers another form of generalized
LCP, but our proof is different. The equivalence (ii) ⇔ (iv) extends [1; lemma 2.1], which
assumes that A is a positive diagonal matrix.

Proposition 3.1 (well-posedness of the generalized LCP) The following prop-

erties are equivalent

(i) the LCP (1.2) has a unique solution whatever the vectors a and b are,

(ii) A is nonsingular and BA−1 ∈ P,

(iii) B is nonsingular and AB−1 ∈ P,

(iv) (I −D)A+DB is nonsingular for all D ∈ [0, I].

Proof. [(i) ⇔ (ii)] Let us show that (i) implies that A is nonsingular. Since A is a
square matrix, it suffices to prove its injectivity. Let u be such that Au = 0. Consider the
LCP in x:

0 6 Ax ⊥ (Bx+ |Bu|) > 0,

where |Bu| is the vector made of the absolute values of the components of Bu. This LCP
admits the solutions x = 0 and x = u. Hence u = 0 by the assumed uniqueness property
of (1.2).

Assume now that A is nonsingular. Then, the solutions y to the following standard
LCP

0 6 y ⊥ (BA−1y + b−BA−1a) > 0. (3.1)

are in bijection with the solutions x to (1.2) through the relation y = Ax + a. There-
fore, existence and uniqueness of the solution to (1.2) is equivalent to the existence and
uniqueness of the solution to (3.1), a property that is known to be equivalent to BA−1 ∈ P
(recalled after the definition of the P-matricity in the introduction).

[(i) ⇔ (iii)] This follows from the equivalence (i) ⇔ (ii), by symmetry of the gener-
alized LCP (1.2).

[(ii) ⇔ (iv)] When (iv) holds, A is nonsingular (take D = 0 in (iv)). Now, when A is
nonsingular, (iv) is equivalent to the property

∀D ∈ [0, I] : (I −D) +D(BA−1) is nonsingular.
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By [1; lemma 2.1], this last property is equivalent to BA−1 ∈ P. ✷

We now derive the lower and upper error bounds (1.6) for the LCP (1.2). This is a
straighforward adaptation to problem (1.2) of the error bound of Chen and Xiang [10],
who consider problem (1.1).

Proposition 3.2 (error bounds for the generalized LCP) Consider the LCP

(1.2). Denote by ‖ · ‖ an arbitrary norm on R
n and its induced matrix norm, de-

note by r the natural residual (1.3) and define CD by (1.4). If (1.5) holds, then the

lower and upper error bounds (1.6) hold.

Proof. Chen and Xiang [10; 2006, § 2] start by observing that, for u, v, ū and v̄ ∈ R
n,

one has
min(u, v)−min(ū, v̄) = (I −D)(u− ū) +D(v − v̄), (3.2a)

where D is the diagonal matrix, dependent on (u, v, ū, v̄), that has its diagonal element
Dii, for i ∈ [1 :n], defined by

Dii :=



















arbitrary in [0, 1] if ui = vi and ūi = v̄i,
0 if ui 6 vi and ūi 6 v̄i, with one strict inequality,
1 if ui > vi and ūi > v̄i, with one strict inequality,
ui−ūi−min(ui,vi)+min(ūi,v̄i)

(ui−ūi)−(vi−v̄i)
otherwise.

The four cases are clearly disjoint. The fourth and last case above corresponds to the cases
where (ui 6 vi and ūi > v̄i) or (ui > vi and ūi < v̄i) ; in these cases, the denominator of
the fraction defining Dii is nonzero. They observe that D ∈ [0, I]. Indeed, this is imposed
in the first three cases above and for the fourth case, one has

r if ui 6 vi and ūi > v̄i, one has Dii = (ūi − v̄i)/((ūi − v̄i) + (vi − ui)) ∈ [0, 1] ;
r si ui > vi and ūi < v̄i, one has Dii = (ui − vi)/((ui − vi) + (v̄i − ūi)) ∈ [0, 1].

Now, for a solution x̄ to the LCP (1.2), define u := Ax+ a, v := Bx+ b, ū := Ax̄+ a
and v̄ := Bx̄+ b. Clearly, min(u, v) = r(x), min(ū, v̄) = 0 and, therefore, (3.2a) yields

r(x) = [(I −D)A+DB](x− x̄) = CD(x− x̄). (3.2b)

One deduces from this identity that

‖r(x)‖ 6 ‖CD‖ ‖x− x̄‖, (3.2c)

Furthermore, since D ∈ [0, I], CD is nonsingular by the assumption (1.5), so that one also
deduces from (3.2b):

‖x− x̄‖ 6
∥

∥C−1
D

∥

∥ ‖r(x)‖, (3.2d)

Of course D in (3.2c) and (3.2d) depends on x and x̄, but, since D ∈ [0, I], one certainly
has (1.6) by taking the maximum in D ∈ [0, I] in these two estimates. ✷
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3.2 Computation of the lower error bound factor

Before focusing in section 3.3 on the main objective of this paper, which is the simplification
of the upper error bound factor in (1.6), let us mention that the lower error bound factor
in (1.6), with the ℓ∞ norm, namely

(

max
D∈[0,I]

‖CD‖∞
)−1

, (3.3)

can be easily computed.
Observe first that, for two vectors u and v and a vector norm ‖ · ‖, one has

max
t∈[0,1]

‖(1 − t)u+ tv‖) = max(‖u‖, ‖v‖) = max
t∈{0,1}

‖(1 − t)u+ tv‖). (3.4)

Next,

max
D∈[0,I]

‖CD‖∞ = max
D∈[0,I]

max
i∈[1 :n]

‖(1−Dii)Ai: +DiiBi:‖1 [(1.4) and (2.3)]

= max
i∈[1 :n]

max
Dii∈[0,1]

‖(1−Dii)Ai: +DiiBi:‖1 [the two max’s commute]

= max
i∈[1 :n]

max(‖Ai:‖1, ‖Bi:‖1) [(3.4)]

= max(‖A‖∞, ‖B‖∞). (3.5)

This shows that (3.3) can be easily computed. Observe that, by (3.4), the maximum in
(3.3) is obtained for D ∈ ext[0, I]. In view of (3.5), it is also obtained for D = 0 or D = I.

3.3 Computation of the upper error bound factor

Before stating the precise result, let us consider the next example, which shows that the
function that is maximized in (1.7) can be rather nonlinear; in particular, it may neither
be convex nor concave. Therefore, the optimal value of the optimization problem in (1.7)
and its solutions may not be easy to compute.

Example 3.3 (nonlinearity of D 7→ ‖C−1

D
‖∞) For A = I and B ∈ P, the map D ∈

[0, I] 7→ ‖C−1
D ‖∞ has no guaranteed convexity or concavity property.

Consider the LCP (1.2) with

A = I and B =

(

1 + ε 1
1 1

)

∈ P,

where ε > 0 is a small number. One computes easily

CD =

(

1 + εD11 D11

D22 1

)

and C−1
D =

1

∆

(

1 −D11

−D22 1 + εD11

)

,

where ∆ := 1+ εD11 −D11D22 is the determinant of CD, which is positive on [0, I]. Using
(2.3), one gets

‖C−1
D ‖∞ =

max(1 +D11, 1 + εD11 +D22)

∆
.
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By looking at ‖C−1
D ‖∞ on the segment D11 ∈ [0, 1] 7→ (D11, 1 −D11), the diagonal of the

square, we get the maximum of two functions, which has the following form

D11 ∈ [0, 1] 7→ max(1 +D11, 2− (1− ε)D11)

1− (1− ε)D11 +D2
11

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.98

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

For a small ε > 0, the first part of the max is a concave function of D11 ∈ [0, 1] around its
maximum at D11 =

√
3 − 1 ≃ 0.7321 (for ε = 0). The graph of this function is given in

the figure above (for ε = 10−3); note that the first part of the max gives the second arch
in the figure. Therefore, for the given matrix M , the map D ∈ [0, I] 7→ ‖C−1

D ‖∞ is neither
convex nor concave.

Actually, the maximum of ‖C−1
D ‖∞ is obtained for D = Diag(1, 1), which is not on the

segment D11 ∈ [0, 1] 7→ (D11, 1 −D11), on which the map presents two hills, as shown by
the figure above. ✷

By the compactness of [0, I] and the continuity of D ∈ [0, I] 7→ ‖C−1
D ‖∞, the maxi-

mization problem (1.7), recalled below

β := max
D∈[0,I]

‖C−1
D ‖∞, (3.6)

has a solution, say D̄. Since CD̄ is nonsingular, β given by (3.6) is finite and positive.
Then, one can also define the positive number

α := β−1. (3.7)

The goal of this section is to show that the value β can be obtained by restricting the
feasible set of problem (3.6) to ext[0, I], the set of extreme diagonal matrices of [0, I]:

β = max
D∈ext[0,I]

‖C−1
D ‖∞. (3.8)

The key mechanism of the proof of the main of this paper, proposition 3.4 below, is based
on lemma 2.3 and is illustrated in section 4.3 in the particular case where A = I and
B = M .

Proposition 3.4 (validity of (3.8)) Suppose that A and B ∈ R
n×n satisfy (1.5) and

that D̄ solves the optimization problem in (3.6). Then, if D̄kk ∈ (0, 1) for some k ∈
[1 : n], D̄ remains optimal if D̄kk is changed to any value in [0, 1]. In particular, the

value of β defined by (3.6) is also given by (3.8).

Before starting the analysis, let us observe that the objective of problem (3.6) is made of
the composition of the nonlinear smooth function D 7→ C−1

D and the convex function ‖·‖∞,
but this objective is maximized, not minimized, so that the theory developed for the class
of composite problems [7, 29, 4] does not apply. For this reason, we provide a specific proof
of proposition 3.4. This one is postponed to page 16.

Part of the analysis is based on the following rewriting of β, defined by (3.6) (some
more justifications are given after (3.9e), CD is defined by (1.5)):

max
D∈[0,I]

‖C−1
D ‖∞ = max

D∈[0,I]

(

min
‖v‖∞=1

‖CDv‖∞
)−1

[(2.1a)] (3.9a)
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=

(

min
D∈[0,I]

min
‖v‖∞=1

‖CDv‖∞
)−1

(3.9b)

=

(

min
‖v‖∞=1

min
D∈[0,I]

‖CDv‖∞
)−1

[the two min’s commute] (3.9c)

=

(

min
‖v‖∞=1

min
D∈[0,I]

max
i∈[1 :n]

|(CDv)i|
)−1

[definition of ‖ · ‖∞] (3.9d)

=

(

min
‖v‖∞=1

max
i∈[1 :n]

min
Dii∈[0,1]

|(1−Dii)(Av)i +Dii(Bv)i|
)−1

, (3.9e)

where we have been able to switch minD and maxi from (3.9d) to (3.9e), without duality
gap, thanks to point 1 of lemma 2.4 and the fact that [0, I] = [0, 1]× · · · × [0, 1] (n times)
is a Cartesian product and that |(CDv)i| = |(1 −Dii)(Av)i + Dii(Bv)i| only depends on
Dii. In (3.9c), we have a minimum in v (i.e., the infimum is attained), since by (3.9b) the
function (D, v) 7→ ‖CDv‖∞ has a minimizer (D̄, v̄) on [0, I] × ∂B∞, which implies that v̄
solves the problem in (3.9c) (this property of nested optimization problems is discussed
around [15; corollary 1.10]). Let us deduce some consequences of the identities in (3.9).

According to (3.6), the value of the left-hand side in (3.9a) is β > 0 and, according
to (3.7), the optimal values of the optimization problems inside the parentheses in (3.9b)-
(3.9c) is α > 0, so that

α = min
D∈[0,I]

min
‖v‖∞=1

‖CDv‖∞, (3.10a)

= min
‖v‖∞=1

min
D∈[0,I]

‖CDv‖∞. (3.10b)

Therefore, one can write

D̄ solves (3.6) ⇐⇒ ∃ v̄ such that (D̄, v̄) solves problems (3.10). (3.11)

We also have

D̄ solves (3.6)
v̄ ∈ V∞(CD̄)

}

⇐⇒ (D̄, v̄) solves problems (3.10). (3.12)

This is because, when D̄ solves (3.6) and v̄ ∈ V∞(CD̄) (i.e., v̄ minimizes ‖CD̄v‖∞ on
∂B∞ by (2.6b)), (D̄, v̄) solves the problems in (3.10). Reciprocally, when (D̄, v̄) solves the
problems in (3.10), then D̄ solves (3.6) by (3.11) and v̄ minimizes ‖CD̄v‖∞ on ∂B∞, which
also reads v̄ ∈ V∞(CD̄) by (2.6b).

Pursuing along the vein that exploits (3.9), we see that the optimal value of the op-
timization problems inside the parentheses in (3.9d)-(3.9e) is also α > 0, so that, for a v̄
such that (D̄, v̄) solves the problems in (3.10) for some D̄ ∈ [0, I], one has

α = min
D∈[0,I]

max
i∈[1 :n]

|(CDv̄)i|, (3.13a)

= max
i∈[1 :n]

min
Dii∈[0,1]

|(1−Dii)v̄i +Dii(Mv̄)i|. (3.13b)

15



We shall also use the following implication:

(D̄, v̄) solves problems (3.10)
D̄′ solves (3.13a)

}

=⇒
{

(D̄′, v̄) solves problems (3.10)
D̄′ solve (3.6).

(3.14)

Indeed, by the left-hand side of the implication, (D̄, v̄) minimizes ‖CDv‖∞ on [0, I]×∂B∞

and D̄′ minimizes ‖CD v̄‖∞ on [0, I]. Then, (D̄′, v̄) minimizes ‖CDv‖∞ on [0, I]× ∂B∞ or,
equivalently, (D̄′, v̄) solves problems (3.10). Next, D̄′ solves (3.6), by (3.11).

We conclude this preliminary discussion with an elementary lemma.

Lemma 3.5 (elementary) Suppose that ν and µ ∈ R, that α > 0 and that

min
δ∈[0,1]

|(1− δ)ν + δµ| = α. (3.15)

Then, the solution set of the optimization problem in (3.15) is {0}, {1} or [0, 1].

Proof. By (3.15):
∀ δ ∈ [0, 1] : |(1− δ)ν + δµ| > α.

Note first that ν and µ must not vanish and must have the same sign, since, otherwise, the
minimum value in (3.15) would be zero, which would contradict α > 0. Then, three cases
can occur.

r If |ν| = |µ|, then ν = µ since ν and µ have the same sign. In that case, the objective of
the optimization problem in (3.15) is the constant |ν|, so that its solution set is [0, 1].

r If |ν| < |µ|, then the solution set of the optimization problem in (3.15) is {0}.
r If |ν| > |µ|, then the solution set of the optimization problem in (3.15) is {1}. ✷

Proof of proposition 3.4. Suppose that A and B ∈ R
n×n satisfy (1.5) and that D̄

solves the optimization problem in (3.6). Since the last claim of the proposition is clear, we
only focus on the first part of it, assuming that D̄kk ∈ (0, 1) for some k ∈ [1 :n]. By (3.11)-
(3.12), there is a v̄ ∈ V∞(CD̄) such that (D̄, v̄) solves the problems in (3.10). The goal
of the proof is now to show that one can replace D̄kk by any value in [0, 1], to form a
diagonal matrix D̄′ that is still a solution to (3.6). Sometimes (case 1 below), this goal
will be reached with the chosen initial v̄ ; other times (case 2 below), it will be necessary
to change the optimal D̄ and v̄ ∈ V∞(CD̄) several times (infinitely often is not excluded,
with a limit argument) to reach the goal. Before introducing these cases, we highlight the
principal argument that is used in the proof.

Principal argument. Recall that the optimal value of (3.6) is denoted by β := ‖C−1
D̄

‖∞,
which is positive, and that α := 1/β = ‖CD̄ v̄‖∞ for the chosen v̄ ∈ V∞(CD̄). Now, we
want to determine the other values that the kth diagonal element D̄kk of the optimal D̄
can take, if any, while keeping the optimality of the resulting diagonal matrix. Here is the
mechanism that allows us to change D̄kk. By point 2 of lemma 2.4, for the current v̄ and
for any value D̄′

kk taken in the interval

[ak, bk] := {Dkk ∈ [0, 1] : |(1−Dkk)(Av̄)k +Dkk(Bv̄)k| 6 α}, (3.16)
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the diagonal matrix D̄′ defined by

D̄′
ii :=

{

D̄′
kk if i = k

D̄ii otherwise,

is a solution to problem (3.13a). By (3.14), we get that D̄′ is a solution to problem (3.6).
In conclusion, for any v̄ ∈ V∞(CD̃) with D̃ solving (3.6), the interval [ak, bk] defined by
(3.16) is a set of optimal values for D̄kk. These intervals depend on v̄. Our objective
is to show that the union of these intervals [ak, bk] for some well chosen v̄ ∈ V∞(CD̃)

and solutions D̃ to (3.6) is [0, 1] (the reasoning only holds when D̄kk ∈ (0, 1)). In case 1
below, one has [ak, bk] = [0, 1], immediately. In case 2 below, the objective is realized by
changing v̄ and D̃, alternatively, possibly infinitely often.

By optimality of D̄ for (3.13a), we have |(CD̄ v̄)k| 6 α. Therefore, either min{|(CD v̄)k| :
Dkk ∈ [0, 1]} = α or min{|(CD v̄)k| : Dkk ∈ [0, 1]} < α. We now examine these two
complementary cases.

1) Case where

min
Dkk∈[0,1]

|(1 −Dkk)(Av̄)k +Dkk(Bv̄)k| = α. (3.17)

By lemma 3.5, with ν = (Av̄)k and µ = (Bv̄)k, the solution set of problem (3.17) is either
{0}, {1} or [0, 1]. From (3.16) and (3.17), this solution set is also the interval [ak, bk].
Therefore, by the principal argument described above, for the considered vector v̄ solving
(3.10b), the kth element of the optimal D̄ can be {0}, {1} or any value in [0, 1]. Since
D̄kk ∈ (0, 1), by asumption, one has [ak, bk] = [0, 1], which concludes the proof in
this case.

2) Case where

min
Dkk∈[0,1]

|(1 −Dkk)(Av̄)k +Dkk(Bv̄)k| < α. (3.18)

In that case, the interval [ak, bk] defined by (3.16) is not guaranteed to contain 0 or 1.
By modifying the vector v̄, however, we show that one can find intervals of substi-
tutes for D̄kk, maintaining the optimality of the diagonal matrix, that cover all the
interval [0, 1]; this is the desired result.

It suffices to extend the interval [ak, bk] of optimal values for D̄kk to the left so that it
contains 0, because, by symmetry, the interval [ak, bk] can then also be extended to the
right so that it contains 1 (switch A and B and replace D by I −D).

One can assume that ak > 0, since otherwise there is nothing to prove. This implies
that α < ‖A‖∞ (because, by optimality of D̄, one has α = ‖CD̄ v̄‖∞ 6 ‖C0v̄‖∞ =
‖Av̄‖∞ 6 ‖A‖∞ and α 6= ‖A‖∞ since otherwise |(Av̄)k| 6 ‖Av̄‖∞ = α and ak = 0 by
(3.16)).

We do this extension by an iterative procedure whose iterates, indexed by j ∈ N, are
pairs (D̄j , v̄j) verifying

(D̄j , v̄j) solves the problems in (3.10), (3.19a)

D̄j
ii = D̄ii for i 6= k, (3.19b)

(1− D̄j
kk)(Av̄

j)k + D̄j
kk(Bv̄j)k = 0, (3.19c)

0 < D̄j+1
kk 6 (1− α/(2‖A‖∞))D̄j

kk. (3.19d)
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The iterative process is interrupted as soon as 0 is in the interval

[ajk, b
j
k] := {Dkk ∈ [0, 1] : |(1 −Dkk)(Av̄

j)k +Dkk(Bv̄j)k| 6 α}, (3.20)

that is, as soon as ajk = 0. It will be clear from the construction of these intervals that
their union will be formed of solutions for D̄kk. Actually, the reasoning below does not
control directly ajk but it controls D̄j

kk ∈ [ajk, b
j
k], which tends to zero by (3.19d).

r Let us determine (D̄0, v̄0) and verify (3.19a)-(3.19c) for j = 0 ((3.19d) for j = 0 will
be verified when D̄1

kk will be determined, in the next point).

When (3.18) holds, point 2 of lemma 2.4 ensures that changing D̄kk in order to
have |(CD̄ v̄)k| < α will not change the optimality of D̄, so that we can actually
assume that |(CD̄v̄)k| < α. Then, lemma 2.3 with A = CD̄ and v = v̄ ∈ V∞(CD̄)
tells us that one can find a v̄0 ∈ V∞(CD̄) such that (CD̄v̄

0)k = 0, which reads
(1− D̄kk)(Av̄

0)k + D̄kk(Bv̄0)k = 0. Therefore, setting D̄0 := D̄, we see that (3.19b)
and (3.19c) hold. Furthermore, (3.19a) also holds since, by (3.12), D̄ solves (3.6) and
v̄0 ∈ V∞(CD̄) imply that (D̄0, v̄0) solves the problems in (3.10).

r Let us now show how to construct (D̄j+1, v̄j+1) from (D̄j, v̄j), if this is necessary.

Assume that ajk > 0 (otherwise, there is no reason to pursue the iterative process).

Then, 0 6= (Av̄j)k 6= (Bv̄j)k (otherwise ajk = 0) and by definition of ajk in (3.20):

(1− ajk)(Av̄
j)k + ajk(Bv̄j)k = α sign((Av̄j)k). (3.21)

Indeed, if (1−ajk)(Av̄
j)k+ajk(Bv̄j)k = α, one has, by definition of ajk, (1−t)(Av̄j)k+

t(Bv̄j)k > α for all t ∈ [0, ajk), in particular (1 − 0)(Av̄j)k + 0(Bv̄j)k > α, so that

(Av̄j)k > α > 0. Similarly, (1−ajk)(Av̄
j)k+ajk(Bv̄j)k = −α implies that (Av̄j)k < 0.

Now, define the diagonal matrix D̄j+1 ∈ [0, I] by

D̄j+1
ii ∈

{

(ajk + D̄j
kk)/2 if i = k

D̄ii otherwise,
(3.22)

so that (3.19b) is verified with j + 1 instead of j. Adding side by side (3.19c) and
(3.21), and using the definition (3.22) of D̄j+1, we get

(1− D̄j+1
kk )(Av̄j)k + D̄j+1

kk (Bv̄j)k =
1

2
α sign((Av̄j)k). (3.23)

Subtracting side by side (3.19c) from (3.23), using (Av̄j)k 6= (Bv̄j)k, (Av̄j)k −
(Bv̄j)k = (Av̄j)k/D̄

j
kk by (3.19c) again and finally |(Av̄j)k| 6 ‖A‖∞ yields

D̄j
kk − D̄j+1

kk =
(α/2) sign(Av̄j)k
(Av̄j)k − (Bv̄j)k

=
α/2

|(Av̄j)k|
D̄j

kk >
α

2‖A‖∞
D̄j

kk,

which is (3.19d).

We still have to determine v̄j+1 and to verify (3.19a) and (3.19c) with j + 1 instead
of j. By (3.22) and (3.19c), D̄j+1

kk ∈ [ajk, D̄
j
kk] ⊆ [ajk, b

j
k]. This implies that, like D̄j,
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D̄j+1 solves problem (3.13a) with v̄ = v̄j (point 2 of lemma 2.4) and, by (3.19a) and
(3.14), (D̄j+1, v̄j) solves the problems in (3.10). Now, by (3.23),

|(1− D̄j+1
kk )(Av̄j)k + D̄j+1

kk (Bv̄j)k| < α or |(CD̄j+1 v̄j)k| < α.

Then, lemma 2.3 with

A = CD̄j+1 and v = v̄j ∈ V∞(CD̄j+1)

(the last membership comes from the fact that (D̄j+1, v̄j) solves the problems in
(3.10) and the implication “⇐” in (3.12)) tells us that one can find a

v̄j+1 ∈ V∞(CD̄j+1) such that (CD̄j+1 v̄j+1)k = 0.

The first membership implies (3.19a) with j +1 replacing j, by the implication “⇒”
of (3.12) (note that D̄j+1 solves (3.6) by the implication “⇐” of (3.12)). The second
identity reads (3.19c) with j + 1 replacing j.

By the two previous points, the iterative procedure defining (D̄j, v̄j), for j ∈ N, is well
defined, unless it is interrupted by the fact that ajk = 0 for some j ∈ N, which is a
desirable property since then D̄ is solution to (3.6) with any D̄kk ∈ [0, bk].

If the procedure does not terminate, one has D̄j
kk → 0 by (3.19d) and D̄ is optimal for

any D̄kk ∈ [D̄j
kk, bk]. Since the set of solutions to problem (3.6) is closed, we get that

D̄ is optimal for any D̄kk ∈ [0, bk].

4 Discussion

4.1 Optimal diagonal elements in [0, 1]

It may occur that the kth diagonal element of a solution D̄ to (3.6) can be any number
in [0, 1]. This is clearly the case when A = B, since then CD given by (1.4) is the matrix A
and, therefore, is independent of D ∈ [0, I]. Similarly, and more generally, if the kth row
of A− B vanishes, CD is independent of Dkk ∈ [0, 1], so that any number in [0, 1] can be
taken for the kth element of an optimal diagonal matrix. See also section 4.3 for a less
trivial example.

4.2 No Cartesian product structure

The goal of this section is to show that there is no guaranteed Cartesian product structure
for the elements of the diagonal matrices solving problem (3.6) and that this lack of guar-
anteed Cartesian product structure also holds for the solution pairs (D̄, v̄) to the problems
in (3.10). The example also illustrates case 1 of the proof of proposition 3.4, which occurs
when (3.17) holds.

Consider the P-matrix

M =

(

1/2 1
−1 1/2

)

. (4.1)
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We have

MD =

(

1−D11/2 D11

−D22 1−D22/2

)

and M−1
D =

1

∆

(

1−D22/2 −D11

D22 1−D11/2

)

,

where ∆ := detMD = 1− 1
2 (D11 +D22) +

5
4 D11D22. Therefore, by (2.3),

‖M−1
D ‖∞ = 1

∆ max
(

1 +D11 − 1
2D22, 1− 1

2D11 +D22

)

=

{

(1 +D11 − 1
2D22)/∆ if D11 > D22

(1− 1
2D11 +D22)/∆ otherwise.

The right-hand side plot shows the level curves of D ∈ [0, 1]2 7→ ‖M−1
D ‖∞ and its two (red)

dots are the points at which this function is maximized. Observe that D11 7→ ‖M−1
D ‖∞ is

monotone increasing for D22 = 0 and monotone decreasing for D22 = 1.
It is pure calculation to see that (1 + D11 − 1

2D22)/∆ is increasing with D11 and
decreasing with D22 on [0, 1]2, so that the first part of the max above is maximized for
D = Diag(1, 0), in which case ‖M−1

D ‖∞ = 4. Symmetrically, the second part of the max
above, namely (1 − 1

2D11 + D22)/∆, is obtained by switching D11 and D22 in the first
part of the max. It is therefore maximized for D = Diag(0, 1) for which ‖M−1

D ‖∞ = 4.
Therefore, for the matrix M in (4.1), problem (3.6) has two solutions D̄ = Diag(1, 0) and
D̄ = Diag(0, 1) and the optimal value of (3.6) is β = 4. Now ‖M−1

0 ‖∞ = ‖I‖∞ = 1 and
‖M−1

I ‖∞ = ‖M−1‖∞ = 6/5, so that neither Diag(0, 0) nor Diag(1, 1) is a solution. This
shows that the solution set of (3.6) is not the image by Diag of a Cartesian product.

The matrix (4.1) allows us to illustrate case 1 of the proof of proposition 3.4, which
occurs when (3.17) holds.

r For D̄ = Diag(1, 0), one gets V∞(MD̄) = {(−1, 14), (1,−1
4 )}. For v̄ = (−1, 14), Mv̄ =

(−1
4 ,

9
8) and the intervals defined by (3.16) are

[a1, b1] = {D11 ∈ [0, 1] : |(1−D11)(−1) +D11(−1/4)| 6 1/4} = {1},
[a2, b2] = {D22 ∈ [0, 1] : |(1−D22)(1/4) +D22(9/8)| 6 1/4} = {0},

which give indeed the diagonal elements of the considered D̄. For v̄ = (1,−1
4 ), Mv̄ =

(14 ,−9
8) and the intervals defined by (3.16) are

[a1, b1] = {D11 ∈ [0, 1] : |(1−D11)(1) +D11(1/4)| 6 1/4} = {1},
[a2, b2] = {D22 ∈ [0, 1] : |(1−D22)(−1/4) +D22(−9/8)| 6 1/4} = {0},

which also give the diagonal elements of the considered D̄.

r For D̄ = Diag(0, 1), one gets V∞(MD̄) = {(−1
4 ,−1), (14 , 1)}. For v̄ = (−1

4 ,−1), Mv̄ =
(−9

8 ,−1
4) and the intervals defined by (3.16) are

[a1, b1] = {D11 ∈ [0, 1] : |(1−D11)(−1/4) +D11(−9/8)| 6 1/4} = {0},
[a2, b2] = {D22 ∈ [0, 1] : |(1−D22)(−1) +D22(−1/4)| 6 1/4} = {1},

which give indeed the diagonal elements of the considered D̄. For v̄ = (14 , 1), Mv̄ =
(98 ,

1
4) and the intervals defined by (3.16) are

[a1, b1] = {D11 ∈ [0, 1] : |(1−D11)(1/4) +D11(9/8)| 6 1/4} = {0},
[a2, b2] = {D22 ∈ [0, 1] : |(1−D22)(1) +D22(1/4)| 6 1/4} = {1},
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which also give the diagonal elements of the considered D̄.

This example also shows that there is no Cartesian product structure in the solutions
(D̄, v̄) ∈ R

n×n × R
n to the problems in (3.10).

4.3 Illustration of the proof of proposition 3.4

This section provides a nontrivial example of matrix M for which any number in [0, 1] can
be chosen for a diagonal element of an optimal D̄ (compare with section 4.1, where this
possibility is trivially verified). For this, it is necessary to have an element of M−1

D̄
that

vanishes (see also the proof of lemma 2.3). Along the way, the example illustrates case 2
of the proof of proposition 3.4, which occurs when (3.18) holds.

Consider the P-matrix

M =

(

1/2 0
3 5

)

.

We have

MD =

(

1−D11/2 0
3D22 1 + 4D22

)

and M−1
D =

(

1
1−D11/2

0
−3D22

(1−D11/2)(1+4D22)
1

1+4D22

)

.

Clearly, D̄11 = 1, since this makes ‖(M−1
D )1:‖1 and ‖(M−1

D )2:‖1 maximal for D11 ∈ [0, 1],
whatever D̄22 is in [0, 1] (the right-hand side plot shows the level curves of D ∈ [0, 1]2 7→
‖M−1

D ‖∞ and the rightmost vertical line, made of the maximizers of this function). There-
fore,

M−1
D̄

=

(

2 0
−6D̄22

1+4D̄22

1
1+4D̄22

)

.

Then, ‖(M−1
D̄

)1:‖1 = 2, while ‖(M−1
D̄

)2:‖1 = (1 + 6D̄22)/(1 + 4D̄22) ranges in [1, 7/5], so
that β = 2 by (2.3), α := 1/β = 1/2 and the optimal set of D̄’s is Diag({1}, [0, 1]).

To illustrates case 2 of the proof of proposition 3.4, which occurs when (3.18) holds,
consider the following solution pair (D̄, v̄) to the problems in (3.10):

D̄ =

(

1 0
0 3/4

)

and v̄ =

(

1
−17/32

)

.

For the given D̄, one computes easily the set

V∞(MD̄) = ({−1} × [7/16, 11/16]]) ∪ ({1} × [−11/16,−7/16]]),

to which the given v̄ must belong. Observe that (3.18) holds for k = 2:

min
D22∈[0,1]

|(1−D22)v̄2 +D22(Mv̄)2| = min
D22∈[0,1]

| − 17/32 + (7/8)D22| = 0 < α = 1/2.

In particular, one has |(1 − D̄22)v̄2 + D̄22(Mv̄)2| = 1/8 < α (the right-hand side dot in
figure 4.1 has the coordinates (D̄, |MD̄ v̄|) = (3/4, 1/8)). Here are two iterations of the
proof of proposition 3.4 (case 2); see figure 4.1.
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Figure 4.1: Illustration of the proof of proposition 3.4. See the description in the text.

r The first iterate (D̄0, v̄0) satisfying (3.19a)-(3.19d) is defined with D̄0 = D̄ and a v̄0 =
(1,−9/16) ∈ V∞(MD̄0) given by lemma 2.3. Il follows that the interval defined by (3.20)
is [a02, b

0
2] = [1/12, 1].

r The second iterate (D̄1, v̄1) satisfying (3.19a)-(3.19d) is defined as follows. Only the
second (k = 2) component of D̄0 is modified to get D̄1: one sets D̄1

11 = D̄11 = 1 and
D̄1

22 = 1
2(a

0
2 + D̄0

22) = 5/12 (see (3.22)). Then |(MD̄1 v̄0)2| = 1/4 < α = 1/2 (the left-
hand side point in figure 4.1 is (D̄1

22, |(MD̄1 v̄0)2|))) and a v̄1 = (1,−15/32) ∈ V∞(MD̄1)
is given by lemma 2.3. Il follows that the interval defined by (3.20) is [a12, b

1
2] = [0, 31/36].

Gathering the two intervals computed during these two iterations, we get [0, 31/36] ∪
[1/12, 1] = [0, 1]. Hence, for this special case, the procedure terminates after two stages.

4.4 Complexity issues

The simplification (1.8) of the error bound factor β given by (1.7) allows us to compute
it by evaluating the map D ∈ [0, I] 7→ ‖C−1

D ‖∞ at the 2n extreme points of [0, I], which
are the diagonal matrices D with diagonal entries in {0, 1}. We believe that this is an
improvement for small values of n. Nevertheless, for large n, this exponential number of
evaluations can make this exact extensive computation approach very time consuming.
Now, it is not unlikely that, for special classes of matrices, the simplification (1.8) can
yield an efficient way of computing the error bound factor. Finally, we are also exploring
the possibility to simplify this extensive evaluation by a specific algorithm based on the
developments made in this paper.

Another interest of the simplified formula (1.8) of β deals with the complexity analysis
of some algorithms for solving the generalized linear complementarity problem (1.2) with
matrices A and B verifying (1.5) (equivalent to the P-matricity of M if (A,B) = (I,M))
and integer (or rational) data. When the complexity is expressed in terms of the data
bitlength and when the error bound (1.6) intervenes, the question may arise to know
whether the error bound factor can be bounded above by a formula using the data bitlength
or the bitlength of the matrix A and B, denoted L(A,B) say, since the data bitlength is
certainly larger than L(A,B). It is known from [25; paragraph straddling pages 209-210]
(probably also implicit in [19]), that, for an arbitrary nonsingular matrix M ∈ R

n×n,

‖M−1‖∞ 6 n 2L(M)+1.

Thanks to the formula (1.8) of β, the error bound factor is equal to ‖C−1
D̄

‖∞, for some
D̄ ∈ ext[0, I]. Therefore, the rows of CD̄ defined by (1.4) are those of A or B. As a result,
one certainly has

L(CD̄) 6 L(A,B). (4.2)
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As a result, with D̄ solving the optimization problem in (1.8), one has

max
D∈[0,I]

‖C−1
D ‖∞ = ‖C−1

D̄
‖∞ 6 n 2L(CD̄)+1

6 n 2L(A,B)+1.

Without (4.2), the upper bound would have been in terms of L(CD̄), which could be
infinite since the optimal diagonal matrix D̄ could have irrational numbers in some entries.
Therefore, thanks to (4.2), for the generalized linear complementarity problem (1.2), with
matrices A and B verifying (1.5), one has the error bound

∀x ∈ R
n : ‖x− x̄‖∞ 6 n 2L(A,B)+1 ‖min(Ax+ a,Bx+ b)‖∞, (4.3)

where x̄ is the unique solution to the generalized LCP.
This subject is further explored in [13].
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