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NEW RESULTS FOR WITNESSES OF ROBIN’S CRITERION

YANNICK SAOUTER

Abstract. In a seminal paper, Robin proved that the Riemann hypothesis
holds if and only if the inequality σ(n) =

∑
d|n d < eγn log logn holds for all

integers greater than 5040, where γ is the Euler-Mascheroni constant. In this

article, we prove new results on putative violations of Robin’s criterion.

1. Introduction

In a seminal paper [1], Robin proved that the Riemann hypothesis holds if and
only if the inequality σ(n) =

∑
d|n d < eγn log log n holds for all integers greater

than 5040, where γ is the Euler-Mascheroni constant. Since then, much work has
been done to prove that Robin’s criterion holds for wide families of integers. For
instance, it is known that this is the case if n is

• odd and greater than 9 [2],
• square-free and greater than 30 [2],
• square-full and greater than 36 [2],
• the sum of two squares and greater than 720 [3],
• not divisible by the 5th [2] (resp. 7th [4], 11th [5], 20th [6]) power of a prime,

• smaller than 1010
10

[7] (resp. 1010
13.099

[6]).

In the following, we prove that a putative integer failing at Robin’s criterion has
at least 965 billion distinct prime factors. Moreover, details on valuations of small
prime numbers in its factorization are derived.

2. Definitions and prerequisites

In the following, N will denote a generic putative counterexample. It will be said
that N is a witness for Robin’s criterion. Variables beginning by a symbol p or q will
always refer to prime numbers. In particular, the list of prime integers in ascending
order will be denoted {pi} with p1 = 2. We also introduce the prime-counting
function π(x) =

∑
p≤x 1 as well as the Chebyshev function θ(x) =

∑
p≤x log p

and the primorial values Pn =
∏n
i=1 pi. The number of distinct prime factors of

an integer n will be denoted ω(n) =
∑
p|n 1. In the following, we will also denote

g(x) = O∗(f(x)) whenever |g(x)| ≤ |f(x)| for all x in the range under consideration.
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Theorem 2.1. We have

θ(x) =
x≥3594641

x+O∗
(

0.2 x

log2 x

)
,(2.1)

π(x) =
x≥4×109

x

log x

(
1 +

1

log x
+

2

log2 x
+O∗

(
7.32

log3 x

))
,(2.2)

∏
p≤x

(
1− 1

p

)
=

x≥2278382

e−γ

log x

(
1 +O∗

(
0.2

log3 x

))
.(2.3)

Proof. These equations are respectively Theorem 4.2, Theorem 5.1 and Theorem
5.9 in [8]. �

3. On the number of prime factors of a witness

We set K = ω(N). Then we have

Lemma 3.1. We have

σ(N)

N
≤
∏
p|N

p

p− 1
≤

K∏
i=1

pi
pi − 1

.(3.1)

Proof. The function σ is multiplicative and we have σ(pk)
pk

=
∑k
i=0

1
pi = p−1/pk

p−1 ≤
p
p−1 . Therefore the first inequality is obtained. The second comes from the fact

that the function x→ x
x−1 is decreasing for x > 1. �

By hypothesis, we have σ(N)/N > exp(γ) log logN . Therefore, using the lower
bound on N given in [6], we obtain

Corollary 3.1.1. We have

K∑
i=1

log

(
1− 1

pi

)
≤ −4.01106074891310624828.(3.2)

If the left-hand sum of (3.2) is computed with enough precision, lower bounds on
the number of prime factors of a Robin’s criterion witness can then be computed.
Using (2.3), it is also possible to obtain a rough estimate. For x ≥ 2278382, we
have

−γ − log log x+ log

(
1− 0.2

log3 x

)
≤
∑
p≤x

log

(
1− 1

p

)
.(3.3)

If we set x = 2.891×1013 in (3.3), then the left-hand side evaluates to −4.011055±
10−6 and is therefore greater than the right-hand side of (3.2). As a consequence,
we have K ≥ π(x). Using (2.2), we have then K ≥ 9.645 × 1011. An explicit
computation of the right-hand side of 3.3 could give a tighter lower bound for K.
A direct evaluation is possible but would lead to a costly execution time. A great
speedup can be obtained by the use of the Meissel-Lehmer summation method over
primes. From the Taylor series with integral remainder, we have, for 0 < x < 1:

log(1− x) = −x− x2

2
− x3

3
+O∗

(
x4

4(1− x)

)
.(3.4)
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Therefore, for K0 being an integer such that 1 ≤ K0 ≤ K, we obtain

SK =

K∑
i=1

log

(
1− 1

pi

)

=

K0∑
i=1

log

(
1− 1

pi

)
−

K∑
i=K0+1

(
1

pi
+

1

2p2i
+

1

3p3i

)
+O∗

(
K

2p4K0+1

)

=

K0∑
i=1

(
log

(
1− 1

pi

)
+

1

pi
+

1

2p2i
+

1

3p3i

)

−
K∑
i=1

(
1

pi
+

1

2p2i
+

1

3p3i

)
+O∗

(
K

2p4K0+1

)
.

(3.5)

In applications, K0 will be chosen so that the remainder error term of (3.5) will
be small enough. The first sum is then computed directly and we are left with

computing sums of the form Tj(K) =
∑K
i=1 1/pji . The Meissel-Lehmer method [9]

was initially designed to compute the prime-counting function π(x) =
∑
p≤x 1.

It was soon noted that this method could be adapted to evaluate sums of the
form

∑
p≤M λ(p) where λ is a totally multiplicative function. In [10], such an

implementation has been described to compute T1(M) =
∑
p≤M 1/p. In the present

work, the method is extended for general sums of the form Tj(M) =
∑
p≤M 1/pj .

At this point, new definitions are required. Let then λ be a totally multiplicative
function, i.e. such that λ(1) = 1 and λ(ab) = λ(a)λ(b) for any integers a and b. If
n > 1 is an integer, we define l(n) to be the least prime number dividing n with the
additional convention that l(1) = ∞. If we suppose that the prime decomposition
of n is of the form n = qa11 · · · q

ak
k , we define ω∗(n) = a1 + · · ·+ ak. By convention,

we set ω∗(1) = 0. With the additional convention p0 = −∞, for any real value
x ≥ 1 and integers j, k ≥ 0, the following three functions are introduced:

Φ(x, j) =
∑

1≤n≤x
l(n)>pj

λ(n), Ψ(x, j) =
∑

1≤n≤x
l(n)=pj

λ(n), Pk(x, j) =
∑

1≤n≤x
l(n)>pj
ω∗(n)=k

λ(n).

We have then obviously Φ(x, j) =
∑
k≥0 Pk(x, j). For 0 ≤ k ≤ 2, expressions

Pk(x, j) can be transformed and we have

P0(x, j) = λ(1) = 1,

P1(x, j) =
∑

pj<p≤x

λ(p) = P1(x, 0)− P1(pj , 0),

P2(x, j) =

π(x1/2)∑
i=j+1

π(x/pi)∑
l=i

λ(pipl)

=

π(x1/2)∑
i=j+1

λ(pi).

[ π(x/pi)∑
l=1

λ(pl)−
i−1∑
l=1

λ(pl)

]
.
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Moreover, if x ≤ pka, then Pk(x, a) = 0. Therefore, if we set a = π(x1/3) + 1, we
have

Φ(x, a) = 1 + P1(x, a) + P2(x, a)

= 1 + P1(x, 0)− P1(pa, 0) + P2(x, a)

so that

P1(x, 0) = Φ(x, a) + P1(pa, 0)− P2(x, a)− 1.(3.6)

Moreover, we have the following disjoint union:

{1 ≤ n ≤ x | l(n) > pj} ={1 ≤ n ≤ x | l(n) > pj+1}
∪ {pj+1.n

′ | 1 ≤ n′ ≤ x/pj+1, l(n
′) > pj}

and we obtain

Φ(x, j + 1) = Φ(x, j)− λ(pj+1)Φ

(
x

pj+1
, j

)
.(3.7)

By definition, we have Tk(M) = P1(M, 0) for λ(x) = 1/xk. This expression is first
rewritten using (3.6). In the right-hand side, P1(pa, 0) can be computed by a prime
sieve up to pa or recursively by using again the Meissel-Lehmer method. The value
P2(M,a) can be computed by a prime sieve up to M/pa+1, if accumulated values∑π(x/pi)
j=1 λ(pj) and

∑i−1
j=1 λ(pj) are kept in memory. Finally, the term Φ(M,a) is

iteratively transformed by the recurrence (3.7) up to the point that it is rewritten as
the sum and difference of terms of the form Φ(y, b) with either b = 0 and y > M2/3,
or y ≤ M2/3. We focus first on terms of the second form. In order to compute
them, a sieve up to M2/3 is performed. The interval [1,M2/3] is cut into successive
blocks Bk = [(k− 1)N + 1, kN ] with N = bM1/3c. We suppose that, before sieving
interval Bk, the values Φ(k(N − 1), j) and Ψ(k(N − 1), j) with 0 ≤ j ≤ a have
been computed and are available in memory. The sieve of interval Bk is performed
in such a way to determine prime numbers of the interval Bk but also to keep in
memory for all n ∈ Bk, the least prime number dividing n, i.e. l(n). We compute
then

Φ(kN, 0) = Φ((k − 1)N, 0) +
∑
n∈Bk

λ(n),(3.8)

Ψ(kN, j) = Ψ((k − 1)N, j) +
∑
n∈Bk

l(n)=pj

λ(n)(3.9)

and then, iteratively on j,

Φ(kN, j) =
∑

1≤n≤kN
l(n)>pj−1

λ(n)−
∑

1≤n≤kN
l(n)=pj

λ(n)(3.10)

= Φ(kN, j − 1)−Ψ(kN, j).(3.11)

Finally, for any value Φ(y, b) with y ∈ Bk required in the summation, we first
compute

Φ(y, 0) = Φ((k − 1)N, 0) +

y∑
n=(k−1)N+1

λ(n)(3.12)
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and then, iteratively on j,

Φ(y, j) = Φ(y, j − 1)−Ψ(y, j)(3.13)

= Φ(y, j − 1)−Ψ((k − 1)N, j)−
∑

(k−1)N+1≤n≤y
l(n)=pj

λ(n).(3.14)

The computed value Φ(y, b) is then saved in memory. At this point, we are left with
terms of the first form, say Φ(y, 0) =

∑y
n=1 λ(n) with y > M2/3. Computations by

direct summations would lead to excessive computational cost. Following [10], the
Euler-MacLaurin summation theorem was used instead.

Definition 3.2. The set of Bernoulli polynomials Bn with n ≥ 0 is defined itera-

tively on n by B0 = 1 and, for n > 0, B′n = nBn−1 with
∫ 1

0
Bn(x)dx = 0.

Theorem 3.3. Let m,n ∈ N with m < n. Let r ∈ N∗ such that f ∈ Cr([m,n]).
Then we have

n∑
k=m

f(k) =

∫ n

m

f(t)dt+
1

2
(f(m) + f(n))

+

br/2c∑
p=1

b2p
(2p)!

(f (2p−1)(n)− f (2p−1)(m))

+
(−1)r+1

r!

∫ n

m

B̃r(t)f
(r)(t)dt

(3.15)

where bn = Bn(1) and B̃r(t) is the period 1 function coinciding with the polynomial
Bn on the interval [0, 1].

We have also

Proposition 3.4. For all k ∈ N∗, b2k = (−1)k+12(2k)!
(2π)2k

ζ(2k). Moreover, for all

x ∈ R, |B̃2k(x)| ≤ |b2k| and |B̃2k+1(x)| ≤ (k + 1/2)|b2k|.

Therefore, with Theorem 3.3, it is possible to compute expressions of the form∑n
k=m 1/kj and using Proposition 3.4 the size of the last integral of the right-hand

side of (3.15) can be estimated. In applications, this integral will be considered as
an error term. Setting r = 4 in Theorem 3.3, we have
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k pk
∑k
i=1 log(1− 1/pi)

7726 78781 −3.00000622762836686699± 10−20

22692 258197 −3.10000361628611903743± 10−20

75516 958547 −3.20000065709966032135± 10−20

288592 4082053 −3.30000001038312813469± 10−20

1285140 20244503 −3.40000003613662278743± 10−20

6776871 118793447 −3.50000000838882920349± 10−20

43073879 839559299 −3.60000000043396596749± 10−20

336502549 7288129661 −3.70000000002492940295± 10−20

3301587824 79410773459 −3.80000000000855532965± 10−20

41665102302 1112324163331 −3.90000000000058896005± 10−20

694360371976 20565764172307 −4.00000000000000806678± 10−20

965335869632 28921153575169 −4.01106074891308670632± 10−20

965335869633 28921153575211 −4.01106074891312128309± 10−20

Table 1. Values for
∑k
i=1 log(1− 1/pi)

Lemma 3.5. Let m,n ∈ N∗ with m < n. Then, we have

n∑
k=m

1

k
= log(n)− log(m) +

1

2n
+

1

2m
− 1

12n2
+

1

12m2

+
1

120n4
− 1

120m4
+ nϑ1(m),

n∑
k=m

1

k2
=

1

m
− 1

n
+

1

2n2
+

1

2m2
− 1

6n3
+

1

6m3

+
1

30n5
− 1

30m5
+ nϑ2(m),

n∑
k=m

1

k3
=

1

2m2
− 1

2n2
+

1

2n3
+

1

2m3
− 1

4n4
+

1

4m4

+
1

12n6
− 1

12m6
+ nϑ3(m)

(3.16)

with

|ϑ1(m)| ≤ 1

30m5
, |ϑ2(m)| ≤ 5

m6
, |ϑ3(m)| ≤ 12

m7
.(3.17)

For applications, computations have to be done with at least 20 digits after the
decimal point. They could be performed using the 128 bits float128 C type.
However, truncations done with functions related to this type are not provided to
the user and taking the worst cases systematically for all evaluations would give
an excessive final error term. Therefore, the interval arithmetic library MPFI [11]
was used instead with a precision of 192 bits. Errors implied by Lemma 3.5 can
be directly included into the interval structures and the final result can then be
directly interpreted.

The cutting parameter K0 involved in the sums SK of (3.5) was set to K0 =
π(108) and we obtain
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K0∑
i=1

(
log

(
1− 1

pi

)
+

1

pi
+

1

2p2i
+

1

3p3i

)
=

− 0.031340528933542815457± 10−20.

(3.18)

Values for the logarithm of the product over primes have been computed for various
parameter values. Results of computations are summarized in Table 1 and we have

Lemma 3.6. If N fails for the Robin’s criterion, then the number of distinct prime
factors of N is greater than 965335869632.

Using our implementation of the Meissel-Lehmer method, for pk = 28921153575-
169, the execution of the three summations took 307000 seconds in time on a
recent Intel-i7 Linux computer, i.e. 85 hours and 27 minutes. This could be easily
improved since our implementation was not very optimized. Moreover, summations
of
∑

1/p2 and
∑

1/p3 could have been stopped below pk, since high index terms
do not contribute much to the final result. A comparison has been made with
direct computation. To this end, another program was written to sieve prime
numbers and accumulate the sum

∑
p≤x

log(1 − 1/p). The reference implementation

of the Atkin-Bernstein sieve [12] and the library MPFI were used. For x = 1011,
with the same computer, the direct computation took 16882 seconds where 386
seconds were used by the Atkin-Bernstein sieve. This sieve has a time complexity
of O(x/ log log x). The time required for the accumulation is proportional to the
number of prime numbers below x and is therefore of order O(x/ log x). Given this
information, it is possible to estimate the required time of a direct evaluation for
x = pk. The global time is then estimated to approximately 4 × 106 seconds with
105 seconds required for the sieve. The expected time is then about 1100 hours and
thus the Meissel-Lehmer method provides a speedup by almost a factor of 13. This
quite modest value is explained by the moderate size of arguments. However, the
asymptotic complexity of the Meissel-Lehmer method is O(x2/3 log x) while that of
direct evaluation is O(x/ log log x).

4. On the valuation of small prime factors

Champion values n for σ(n)/n are integer values such that σ(n)/n > σ(m)/m
for all integers m such that 1 ≤ m < n. It has been remarked by Ramanujan in [13]
that champion values n for σ(n)/n are necessarily of the form n = 2a1 .3a2 · · · pakk
with a1 ≥ a2 ≥ · · · ≥ ak ≥ 1. These numbers were called Hardy-Ramanujan
numbers and from [2]

Lemma 4.1. The putative least Robin’s witness N ′ is a Hardy-Ramanujan number.

This lemma is proven by application of the following two lemmas.

Lemma 4.2. Suppose M = qa11 .qa22 · · · q
al
l with a1 ≥ a2 ≥ · · · ≥ al ≥ 1. Let

{q′i|1 ≤ i ≤ l} be the ascending sequence of the prime numbers {qi|1 ≤ i ≤ l} and
let M1 = q′

a1
1 .q

′a2
2 · · · q′

al
l . Then we have M1 ≤M and σ(M1)/M1 ≥ σ(M)/M .

Proof. The proof is made by recurrence on l. If l = 1, Lemma 4.2 is a tautology.
If l = 2 then M = qa11 .qa22 . If q1 < q2, we have again a tautology. Therefore, let us
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suppose that q1 > q2. We have then:

M = qa11 .qa22 = qa21 .qa1−a21 .qa22

≥ qa21 .qa1−a22 .qa22 = qa12 .qa21 = M1

(4.1)

and the first property is proven. Moreover, we have:

σ(M)

M
=
σ(qa11 )

qa11

σ(qa22 )

qa22
=
[ a1∑
i=0

1

qi1

][ a2∑
i=0

1

qi2

]
=
[ ∑
0≤i,j≤a2

1

qi1q
j
2

]
+
[ ∑
a2+1≤i≤a1
0≤j≤a2

1

qi1q
j
2

]
.

(4.2)

If a2 + 1 ≤ i ≤ a1 and 0 ≤ j ≤ a2, then j ≤ i and the first property proven above
for l = 2 gives qi1q

j
2 ≥ q

j
1q
i
2 and then

σ(M)

M
≤
[ ∑
0≤i,j≤a2

1

qi1q
j
2

]
+
[ ∑
a2+1≤i≤a1
0≤j≤a2

1

qi2q
j
1

]

=
[ a2∑
i=0

1

qi1

][ a1∑
i=0

1

qi2

]
=
σ(M1)

M1
.

(4.3)

Suppose now that the result is true for l and suppose that M = qa11 .qa22 · · · q
al+1

l+1 .
Let m be such that 1 ≤ m ≤ l + 1 and qm ≤ qi for all 1 ≤ i ≤ l + 1. We have
then q′1 = qm. Suppose first that m = 1 and set L = qa22 .qa33 · · · q

al+1

l+1 and apply
the recurrence hypothesis to L. We obtain then L1 with L1 ≤ L and σ(L1)/L1 ≥
σ(L)/L. Now set M1 = qa11 .L1. Then M1 is of the prescribed form and M1 ≤ M
as well as σ(M1)/M1 ≥ σ(M)/M . Suppose then that m > 1 and rewrite M as

M = qa11 .qamm .

l+1∏
i=2
i 6=m

qaii . From the recurrence hypothesis for l = 2, we have then

qa1m q
am
1 ≤ qa11 qamm and σ(qm

a1q1
am)/(qa1m q

am
1 ) ≥ σ(qa11 qamm )/(qa11 qamm ). Therefore, if

we set L = qam1 .

l+1∏
i=2
i 6=m

qaii , we have q′1
a1 .L ≥ M and σ(q′1

a1 .L)/(q′1
a1 .L) ≥ σ(M)/M ,

since σ is a multiplicative function. Apply then the recurrence hypothesis to obtain
L1 from L, set M1 = q′1

a1 .L1 and conclude as previously. �

Lemma 4.3. Let R be a set of prime numbers, possibly empty. Suppose L =
qa11 .qa22 · · · q

al
l with a1 ≥ a2 ≥ · · · ≥ al ≥ 1, q1 ≤ q2 ≤ · · · ≤ ql and qi 6∈ R,

for 1 ≤ i ≤ l. Let {q′i|1 ≤ i ≤ l} be the ascending sequence of the first l prime
numbers avoiding R. Then if we set L1 = q′

a1
1 .q

′a2
2 · · · q′

al
l , we have L1 ≤ L and

σ(L1)/L1 ≥ σ(L)/L.

Proof. We have q′i ≤ qi for 1 ≤ i ≤ l and thus L1 ≤ L. Moreover we have
σ(qa)/qa =

∑a
i=0 1/qi and is thus a decreasing function for parameter q. Therefore

we have σ(L1)/L1 ≥ σ(L)/L. �

With the two preceding lemmas, it is then possible to prove Lemma 4.1. Indeed,
if N is an arbitrary Robin’s witness, applying Lemma 4.2 for M = N and then
Lemma 4.3 for L = M1 and R empty, we obtain a Hardy-Ramanujan integer N ′ =
L1 such that N ′ ≤ N and σ(N ′)/N ′ ≥ σ(N)/N . Moreover log logN ′ ≤ log logN
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and thus N ′ is a Robin’s witness. As a consequence, if it exists, the least Robin’s
witness is necessarily a Hardy-Ramanujan number. In order to study the valuation
of small prime numbers in Robin’s witness factorizations, we will use the following
lemma.

Lemma 4.4. Suppose that N = pkM with k ≥ 0, M = qa11 .qa22 · · · q
al
l with a1 ≥

a2 ≥ · · · ≥ al ≥ 1 and qi 6= p for 1 ≤ i ≤ l. Let {q′i|1 ≤ i ≤ l} be the ascending
sequence of the first l prime numbers excluding p and let N ′ = pkM ′ with M ′ =
q′
a1
1 .q

′a2
2 · · · q′

al
l . Then we have N ′ ≤ N and σ(N ′)/N ′ ≥ σ(N)/N . Moreover if N

is a Robin’s witness, then N ′ is also a Robin’s witness.

Proof. The proof is similar to that of Lemma 4.1 given in the previous paragraph
with R = {p}. �

Let then N be an arbitrary Robin’s witness such that pk|N and (N/pk, p) = 1
with k ≥ 0 and p ≤ pK and let N ′ be the corresponding Robin’s witness obtained
by application of Lemma 4.4. From Table 1, we have K ≥ 9.65 × 1011 and pK ≥
2.89× 1013. We have then

σ(N ′)

N ′
=
σ(pk)

pk
σ(M ′)

M ′
≤

1− 1
pk+1

1− 1
p

K−1∏
i=1

q′i
q′i − 1

≤
1− 1

pk+1

1− 1
p

p− 1

p

K∏
i=1

pi
pi − 1

≤
(

1− 1

pk+1

)
eγ log pK

(
1− 0.2

log3 pK

)−1
.

(4.4)

On the other hand, we have ω(M ′) ≥ K − 1 and p 6 |M ′, so that M ′ ≥ PK/p since
p ≤ pK . Therefore we have N ′ ≥ pk−1PK and by hypothesis, we obtain

log((k − 1) log p+ θ(pK)) ≤
(

1− 1

pk+1

)
log pK

(
1− 0.2

log3 pK

)−1
.(4.5)

In the following, we will use that for −1/2 ≤ x ≤ 1/2, x − x2 ≤ log(1 + x). From
the lower bound on pK , we have (1 − 0.2/ log3 pK)−1 < 1.000006717. We have
|θ(x) − x| ≤ 0.2x/ log2 x for x ≥ 3594641, so that θ(pK) ≥ 2.8893 × 1013. If we
suppose, for example, that |k − 1| log p < 103, then |(k − 1) log(p)/θ(pK)| ≤ 1/2.
Moreover, if we suppose that log(p) ≤ 20, we obtain

log(θ(pK)+(k − 1) log p) = log(θ(pK)) + log

(
1 +

(k − 1) log p

θ(pK)

)
≥ log(θ(pK)) +

(k − 1) log p

θ(pK)
−
(

(k − 1) log p

θ(pK)

)2

≥ log(θ(pK))− log p

θ(pK)
− 106

θ(pK)2

≥ log(θ(pK))− 6.9205× 10−13

(4.6)

so that

log(θ(pK))− 6.9205× 10−13 ≤ 1.000006717

(
1− 1

pk+1

)
log pK .(4.7)
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Moreover, from (2.1), we have

log(θ(pK)) ≥ log

(
pK −

0.2pK

log2 pK

)
≥ log(pK) + log

(
1− 0.2

log2 pK

)
≥ log(pK)− 0.0002082071737.

(4.8)

We obtain then successively

log(pK)− 0.000208207173 ≤ 1.000006717

(
1− 1

pk+1

)
log pK

1− 0.0002081638727

log pK
≤ 1.000006717

(
1− 1

pk+1

)
0.9999932825 ≤ 1.000006717

(
1− 1

pk+1

)
0.9999865655 ≤

(
1− 1

pk+1

)
pk+1 > 74435.

(4.9)

In the preceding derivations, the value k = 0 is admissible. In this case, it means
that p does not divide N . Therefore p does not divide the corresponding integer N ′

either. However, upon existence of N ′, (4.9) permits us to claim that p > 74435.
Therefore, by contradiction, if p ≤ 74435, neither such N nor N ′ can exist. As a
consequence, a putative Robin’s witness is divisible by all the prime numbers up to
74419. Appealing again to (4.9) gives the following lemma:

Lemma 4.5. Suppose N is a witness for Robin’s criterion. Then N is divisible by
p if 2 ≤ p ≤ 74419, by p2 if 2 ≤ p ≤ 271, by p3 if 2 ≤ p ≤ 41, by p4 if 2 ≤ p ≤ 13
and by 75, 56, 310 and 216.

An equivalent formulation is the following one.

Lemma 4.6. If N is a witness for Robin’s criterion, then N is divisible by 211.35.5.
P7.P13.P41.P271.P74419.

These results can still be improved. Indeed, we have

Lemma 4.7. For 599 < x < 2.169× 1025, we have

θ(x) = x+O∗
(√

x

8π
log2 x

)
.(4.10)

Proof. This result is a direct application of Theorem 2 of [14], knowing that the
Riemann hypothesis has been verified up to height T = 3× 1012 [6, 15]. �

We have then, for 2.8921× 1013 ≤ pK ≤ 2.169× 1025,

log(θ(pK)) ≥ log(pK)− log2(pK)

8π
√
pK
−
(

log2(pK)

8π
√
pK

)2

≥ log(pK)− 7.110395218× 10−6.

(4.11)

For pK ≥ 2.169× 1025, (4.8) gives

log(θ(pK)) ≥ log(pK)− 0.0000587660267.(4.12)
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Using this latter equation for pK ≥ 2.8921 × 1013, derivations similar to those
of (4.9) give then

pk+1 > 116103.(4.13)

5. Conclusion

In this paper, we have obtained new results about the factorization of potential
integers violating the Robin’s criterion. These results could be numerically im-
proved if the lower bound of possible counterexamples is pushed further. From an
analytical point of view, it is also most probable that (2.3) could also be tightened
if density results for nontrivial zeros of the Riemann zeta function [16] are used.
However, in regard to the size of considered integers, as well as of the delicacy of
Robin’s criterion, it seems quite unlikely that the Riemann hypothesis could be
disproven by finding an explicit counterexample.
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