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Abstract

Multisets are sets that allow repetition of elements, therefore accounting for their frequency, or multiplicity of

observation. As such, multisets provide flexible resources for scientific modeling. In the present work, after revising

the main aspects of traditional sets, we introduce some of the main concepts and characteristics of multisets, which is

followed by their generalization to take into account vectors and matrices, and then functions and scalar and vector

fields. These developments require multisets to become capable of coping with negative multiplicities, which gives rise

to several additional set operations. Then multiset operations can be naturally incorporated into real function spaces

allowing, among other possibilities, the definition of a De Morgan theorem between real-valued functions. Special

attention is given to understanding the Jaccard and coincidence similarity indices in the context of real-valued multisets

and functions, and it is shown that these indices, especially the latter, can yield narrow and sharp peaks corresponding

to pattern matchings while attenuating secondary structures.

‘In the bag, seashells gathered long ago resound.’

LdaFC

1 Introduction

Multisets (e.g. [1, 2, 3, 4, 5, 6]) — henceforth msets —

can be informally understood as sets allowing repeated

entries of the same element. In a sense, they are at least

as much compatible with human intuition than sets. For

instance it is often more relevant to know that our bag

contains 4 apples than knowing simply that there are only

apples in it. Given their enhanced potential for represent-

ing real-world structures and dynamics, msets result pro-

vide particularly effective resources for scientific modeling

(e.g. [7]).

The present work has three main objectives: (i) to

present an introduction to msets; (ii) develop extensions

and generalizations to real-valued functions and scalar

and vector fields; and (iii) illustrate the potential of the

presented and proposed concepts and methods with re-

spect to applications of the real-valued Jaccard and coin-

cidence indices. The latter index [8] integrates the infor-

mation provided by the Jaccard and interiority indices,

therefore providing a more strict and detailed quantifica-

tion of the similarity between the two compared msetes.

Special attention is given to extending element multi-

plicity to negative values, which is necessary condition

for generalizing msets to functions and fields. This gener-

alization has several interesting effects, such as allowing

the important complement operation to be performed by

using the empty mset instead of the universe mset. In

addition, several additional mset operations can be de-

fined respectively to how the positive and negative mul-

tiplicities are to be taken into account, some of which

directly related to the Jaccard and coincidence similarity

indices [8].

We start by reviewing the main concepts and properties

of traditional sets, and then present the concept of msets,

as well as some of their simpler properties, also including

several examples. The challenges implied by the definition

of a universe set for musets is briefly characterized and

discussed. It is also argued that the operations of sum

and subtraction between msets correspond to one of the

main distinction between multiset and set theories.

The possibility to generalize msets to several other

mathematical structures including vectors, matrices,

functions, scalar and vector fields, as well as probability

densities are approached next, including several examples.

In particular, the extension of msets as representations

of functions and scalar fields paves the way for obtain-

ing hybrid expressions involving combinations of the the

set operations of union and intersection with algebraic

expressions involving sum, subtraction, product and divi-

sion of sets. We illustrate the potential of this approach
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by extending the De Morgan theorem to functions and

fileds.

The interesting possibility to approach similarity in-

dices such as the Jaccard and coincidence in terms of

msets is then developed. We then presents how the defini-

tion of the common product between two msets or mfunc-

tions paves the way to obtaining integrated signal opera-

tions including filtering and enhanced template matching.

In particular, we illustrate the enhanced potential of the

real-valued Jaccard and coincidence indices for template

matching, an operation frequently performed in the ar-

eas of pattern recognition and neuronal networks. When

compared to the classic cross-correlation, the real-valued

Jaccard, and particular the coincidence index are verified

to yield substantially sharper and narrower peaks indicat-

ing the position of the pattern matches, while secondary

smaller scale structures are attenuated. This important

property paves the way to several related applications of

the coincidence index in artificial intelligence, deep learn-

ing, and scientific modeling.

The application of msets and the Jaccard index to

quantify the relationship between two or more densities

or clusters is then described with respect to an example

related to the iris dataset. The measurement of the sepa-

ration between clusters corresponds to an important issue

in both pattern recognition (e.g. [9, 10]), deep learning

(e.g. [11, 12, 13]), and modeling (e.g. [14, 7])

For simplicity’s sake, the term msets are henceforth ab-

breviated as msets.

2 Traditional Sets

A set (e.g. [1, 15]) is an unordered collection of items, or

elements, which are not allowed to repeat. A set A with

elements a, b, and c is typically represented as:

A = {a, b, c}

The two essential properties of sets therefore are that

the elements may appear in any order, which distinguish

sets from vectors, and that the elements cannot be re-

peated.

Observe that a set can also have sets as elements. The

number of elements in a set is called its cardinality or size,

being represented as |A|.
A subset B of a given set A consists of a set so that any

of its elements belong to A. If A contains N elements,

there will be |A| = 2N possible subsets that can be derived

from it. The set containing all possible subsets of A is

called its power set PA.

An important point about sets that is sometimes over-

looked regards the fact that they always refer to a re-

spective universe set Ω. More specifically, once this set

is established, any possible set needs to be a subset of Ω.

Observe that Ω can have any type of elements, though the

situation where the elements are homogenous (e.g. posi-

tive integers, or real values) is of particular interest.

In case some sets are given but the universe set is not

provided, it is still possible to estimate the respective uni-

verse set as corresponding to the union of all the existing

sets.

The universe set is of fundamental importance because

the operation of complement of a set is defined with re-

spect to it. More specifically, the complement of a set A

consists of all elements of Ω that are not in A. The com-

plement of a set is henceforth represented as AC , being

implicit that the operation refers to a given Ω.

Sets can be finite or infinite, as well as discrete or con-

tinuous. A finite set is any set A so that |A| < ∞. A

discrete set is characterized by having all its elements

corresponding to isolated points p. Any continuous set

is infinite, but discrete sets can be finite or infinite.

An interesting point regards the relationship between

an element, let’s say ‘a’ and the set {a}. These two math-

ematical structures are not identical because it is possible

to include an element into {a}, but not into ‘a’.

The empty set, represented as φ = {} is a subset of any

possible set.

Given two sets A and B, their union consists of a third

set C containing all elements from A and B. The inter-

section of these two sets corresponds to a set C containing

all elements that are in both A and B. A subset B of A

can therefore be understood as to be so that A ∩B = A.

Any set is a subset of itself.

The difference between two sets A and B, indicated as

A − B, corresponds to the set C containing all elements

that are in A but are not in B.

Given three sets A, B, and C derived from a given

Ω, the following properties directly involving the universe

and empty set are verified:

ΩC = Ω− Ω = Φ (1)

ΦC = Ω− Φ = Ω (2)

AC = Ω−A (3)

Ω ∪ Φ = Ω (4)

Ω ∩ Φ = Φ (5)

A ∪AC = Ω (6)

A ∩AC = A (7)

A ∪ Φ = A (8)

A ∩ Φ = φ (9)

Additional operations involving one or two sets A and
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B include the following:

A ∪A = A (10)

A ∩A = A (11)

A ∪B = B ∪A (12)

A ∩B = B ∩A (13)

A ∪BC = Ω− (B −A) (14)

A ∩BC = A−B (15)

And operations involving three sets A, B and C include:

A ∪ (B ∪ C) = (A ∪B) ∪ C (16)

A ∩ (B ∪ C) = (A ∩B) ∪ C (17)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (18)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (19)

(A ∪B)C = AC ∩BC (De Morgan) (20)

(A ∩B)C = AC ∪BC (De Morgan) (21)

Examples of continuous sets include intervals along the

real line, e.g. [0, 1] and (b, c], and regions in R2, such as

(x, y) satisfying
√
x2 + y2 ≤ r.

3 Multisets

Basically, msets are sets allowing the repetition of ele-

ments, which is understood as their multiplicity or fre-

quency. As with sets, the order of the elements is imma-

terial. Examples of msets include:

A = {|a, a, b, b, b, d|};
B = {|1, 2, 1, 2, 1, 2, 1|} = {|1, 1, 1, 1, 2, 2, 2|};

C = {|1, a, 2, b, b, 3, c, c, c, 1, d, 2, a, a|} =

= {|1, 1, 2, 2, 3, a, a, a, b, b, c, c, c|};
D = {|a, a, b, d|}.

Observe the different symbol adopted henceforth in this

work in order to emphasize the distinction between a tra-

ditional set ({}), and a mset ({||}).
A more compact representation of a mset A can be

obtained by using 2-tuple or pairs [a,m(a)], where ‘a’ is

an element and m(a) it its multiplicity, i.e. the number of

times it appear in A. In the case of the above examples,

we have:

A = {|a, a, b, b, b, d|} = {|[a, 2]; [b, 2]; [d, 1]|};
B = {|1, 1, 1, 1, 2, 2, 2|} = {|[1, 4]; [2, 3]|};
C = {|1, 1, 2, 2, 3, a, a, a, b, b, c, c, c|} =

= {|[1, 2]; [2, 2]; [3, 1]; [a, 3]; [b, 2]; [c, 3]|};
D = {|a, a, b, d|} = {|[a, 2]; [b, 1]; [d, 1]|}. (22)

Though this type of representation of msets actually

corresponds to a set, because it is impossible to have two

identical entries, we shall maintain the ‘{||}’ notation in

order to emphasize that a mset is being meant.

When referring to the multiplicity of an element, it is

important to specify to which mset this is being referred.

This can be done by writing mA(a), meaning the multi-

plicity of the element a in the mset A.

The property analogous to inclusion in sets can be

stated as follows. A mset A is included in another mset

B whenever mA(a) ≤ mB(a). For instance, in the case of

the examples above, we have mA(a) = 2 and mC(a) = 2.

The support of a given mset A is defined as:

SA = {x|x ∈ Ω,m(x) > 0} (23)

As such, this set can be understood as containing all

distinct elements in A. Observe that the support set pro-

vides a useful index for identifying the possible elements

in the respective msets.

For instance, the supports of the msets in Equation 22

SA = {a, b}
SB = {1, 2}

SC = {1, 2, a, b, c}
SD = {a, b, d}

(24)

The combined support of two msets is the union of their

respective supports. Thus, in the case of the previous

example, we have:

SA,B = {a, b, d, 1, 2} (25)

SA,B,C,D = {a, b, c, d, 1, 2} (26)

4 Multiset Operations

A set A is said to be included into another set whenever:

mA(x) ≤ mb(x),∀x ∈ A (27)

For simplicity’s sake, we will indicate this operation

using the same symbol as for sets, i.e. A ⊆ B, as the type

of operation can be inferred from A and B being sets or

msets.

In the case of the mset examples above, we can write

that D ⊆ A.

The union C of two msets A and B can be defined as:

C = A ∪B = {|[x,mC(x)], x ∈ SA,B |},
with mC(x) = max {mA(x),mB(x)} (28)

Examples considering the msets in the beginning of Sec-

tion 3 include:

A ∪B = {|a, a, b, b, b, d, 1, 1, 1, 1, 2, 2, 2|} =

{|[1, 2]; [b, 2]; d, 1]; 1, 4]; [2, 3]|}
A ∪D = {|a, a, b, d|} = {|[a, 4]; [b, 4]; [d, 2]|}
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Let A and B be msets. The sum of these two sets,

henceforth represented as C = A+B, is defined as:

C = A+B = {|[x,mC(x)], x ∈ SA,B |},
with mC(x) = mA(x) +mB(x) (29)

Figure 1 illustrates the two different ways in which the

common elements of two msets A and B are collected into

their respective union and sum msets.

Figure 1: The union (a) and sum (b) of two msets A and B typically

yield different resulting msets. In the case of the union operation,

each of the elements of the same type are compared, with the el-

ements with the maximum multiplicity being incorporated into C.

The sum of the two msets incorporates all the mA(xi) + mB(xi)

elements into C.

Examples respective to the msets in the beginning of

Section 3 include:

A+B = {|a, a, b, b, b, d, 1, 1, 1, 1, 2, 2, 2|} =

{|[1, 2]; [b, 2]; [d, 1]; 1, 4]; [2, 3]|}
A+D = {|a, a, a, a, b, b, b, b, d, d|} = {|[a, 4]; [b, 4]; [d, 2]|}

Thus, we have that the mset operations of union and

sum are related in the sense that both collect the ele-

ments from the two msets, but the way in which this is

done is quite different, with the multiplicities of the mset

obtained by union becoming necessarily smaller or equal

than that of the mset obtained by sum, i.e. mA∪B(xi) ≤
mA+B .

It is interesting to consider these two operations in the

context of possible respective applications. The sum of

the two msets ensures conservation of the total number

of elements (such as in conservative or flow-related prob-

lems), being therefore more indicated for related situa-

tions. The union of two msets can be conceptually under-

stood as a choice procedure which does not ensure con-

servation of the multiplicities.

The intersection between two msets A and B can be

defined as:

C = A ∩B = {|[x,mC(x)], x ∈ SA,B |},
with mC(x) = min {mA(x),mB(x)} (30)

Examples drawn from the msets in the beginning of

Section 3 include:

A ∩B = {||}
A ∩D = {|a, a, b|} = {|[a, 4]; [b, 4]; [d, 2]|}

(31)

The difference or subtraction between two msets is ex-

pressed as:

C = A−B = {|[x,mC(x)], x ∈ SA,B |},
with mC(x) = max {mA(x)−mB(x), 0} (32)

In Section 8, we will show that allowing negative mul-

tiplicities paves the way to defining the mset complement

as well as to several additional mset operations.

Figure 2 illustrates the intersection and difference be-

tween two msets A and B.

Respective examples include:

A−D = {|b, b|} = {|[b, 2]|}
D −A = {||}

(33)
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Figure 2: The intersection (a) and difference (b) of two msets A and

B typically yield quite different resulting msets. In the case of the

intersection operation, each of the elements of the same type are

compared, with the elements with the minimum respective multi-

plicity being incorporated into C. The difference between A and B

depends on mA(xi) −mB(xi). As the result is negative in the case

of the present example, no elements are incorporated into A−B.

5 Multisets Properties

It can be shown that msets as presented in the previous

section satisfy the following properties:

A ∪ Φ = A (34)

A ∩ Φ = Φ (35)

A ∪A = A (36)

A ∩A = A (37)

A ∪B = B ∪A (38)

A ∩B = B ∩A (39)

A ∪ (B ∪ C) = (A ∪B) ∪ C (40)

A ∩ (B ∪ C) = (A ∩B) ∪ C (41)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (42)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (43)

where Φ is the empty mset, which contains null multi-

plicities for all elements in the respective support. This

set can be expressed as:

Φ = {[xi, 0]} i = 1, 2, . . . , |S| (44)

So, we have that msets follow all the properties in Equa-

tions 8 to Equations 21 , except those involving comple-

mentation.

The definition of the complement of an mset has been a

challenging issue (e.g. [6]), which has to do with the fact

that, typically, multiplicities have been restricted to non-

negative integer multiplicities (see also [16] and [17]). In

particular, restricting the mset difference operation multi-

plicities to take only non-negative values makes it difficult

to define a respective complement operation. For this rea-

son, several useful De Morgan properties, as well as other

related results, are not extended msets.

6 The Multiset Jaccard Indices

The Jaccard index represents an effective and conceptu-

ally appealing manner to quantify the similarity between

any two sets A and B (e.g. [18, 19, 20, 21, 22, 23, 24, 25,

26, 23, 27, 28, 29, 8]), having therefore being extensively

applied in a vast range of problems in several scientific

and technological fields.

In its most basic form, the Jaccard index between an

two sets A and B can be expressed as:

J (A,B) =
|A ∩B|
|A ∪B|

(45)

It is possible to adapt the Jaccard index to msets by

making:

JM (A,B) =

∑N
i=1 min (m(ai),m(bi))∑N
i=1 max (m(ai),m(bi))

(46)

where ai and bi are the elements of the sets A and B,

respectively, and N is the cardinality of the universe of

those sets. We also have that 0 ≤ JM (A,B) ≤ 1.

As an example, let’s consider A = {a, b, b, c, c, c} and

B = {a, b, c, c, d}. Then, we have:

J (A,B) =
1 + 1 + 2 + 0

2 + 3 + 5 + 1
=

4

11
(47)

It is possible to adapt the Jaccard index to mfunctions

by making:

J (A,B) =

´
Φ

min (mA(~x),mB(~x))´
Φ

max (mA(~x),mB(~x))
(48)

where Φ is the common support of the two functions or

scalar fields, and 0 ≤ J (A,B) ≤ 1.

As such, the Jaccard index can be understood as a func-

tional, or mfunctional of the two functions of scalar fields.
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The Jaccard index has been enhanced and extended to

functions, scalar fields, joint variations and more than 2

sets [8]. In particular, the latter type of Jaccard index for

3 sets A, ,B and C can be written as:

J (A,B,C) =
A ∩B ∩ C
A ∪B ∪ C

(49)

7 Multisets, Vectors, Matrices

In this section we will discuss the relationship between

msets and vectors. Observe that a vector can be under-

stood as an mset with real multiplicities.

First, we recall that the elements in a vector are ex-

pected to follow a well-determined order as indicated by

their indices. For instance, in the case of the vector in R5:

~v = [3, 2.5, π, 0,−1]

we have five indices i = 1, 2, . . . , 5, so that we can spec-

ify the respective element values as v[1] = 3, v[2] = 2.5,

v[3] = π, v[4] = 0, and v[5] = −1.

By understanding the values of the components of a

vector as generalized multiplicities, we can immediately

derive the following mset from the above vector:

V = {|[1, 3]; [2, 2.5]; [3, π]; [4, 0]; [5,−1]|}

More generally, we have that a vector ~v can be bijec-

tively represented by the following mset:

~v = {[i, v[i]]} (50)

Therefore, we have that an mset can be derived from

any vector, but that a vector can be obtained from an

mset only if their elements are ordered in some manner,

e.g. by taking their respective values instead of under-

standing them as labels. This situation becomes more

evident when one considers non-numeric elements. As

such, msets can be used to study the elements of vectors

without taking into account their relative position along

the vector.

It is also interesting to contemplate the relationship be-

tween the above discussion and the traditional sets con-

taining multiplicities. More specifically, we can write the

set containing all multiplicities in the vector ~v above as:

Ṽ = {3, 2.5, π, 0,−1} = {0, 3, 2.5,−1, π} = etc.

Though V and Ṽ are very similar, they are not identi-

cal because in V the correspondence of the elements and

the respective multiplicity is maintained by the specifi-

cation of the respective element in the ordered pair. By

representing vectors as msets, we not only preserve the

operations of subtraction and difference, but also incorpo-

rates the possibilities of defining intersections and unions

between any two vectors.

Another interesting possibility is to incorporate new

operators for multiplication and division into the mset

framework, which can be done straightforwardly, while

avoiding divisions by zero.

Interestingly, it is also possible to obtain mset repre-

sentations from matrices or even other more sophisticated

mathematical structures as tensors. In the case of matri-

ces, this can be done by incorporating the indexing infor-

mation in the respective mset. For instance, an N ×M
matrix can be represented as the mset:

A = {[i, j, A[i, j])]} (51)

An additional point remains to be discussed regarding

the fact that vectors, matrices and other mathematical

structures are restricted to non-negative integer entries.

In the present work, we propose the mset difference

operation to be modified as:

C = A−B = {|[x,mC(x)], x ∈ SA,B |},
with mC(x) = mA(x)−mB(x) (52)

It is now possible to extend the multiplicities to take

any real value.

While the empty is as observed before, i.e. correspond-

ing to an mset with null multiplicities for every element in

the support, we now need to identify a suitable universe

set. In the case of vectors with dimension 1×N this can

be done by making:

Ω+ = {[i,∞]} , i = 1, 2, . . . N (53)

Ω− = {[i,−∞]} , i = 1, 2, . . . N (54)

Now, we have that the complement of an mset can be

expressed as:

AC = Φ−A (55)

Observed that the empty mset has been used instead

of the universe mset.

We can now incorporate the following additional prop-

erties to real-valued msets:

ΩC
+ = Ω+ − Ω+ = Φ (56)

ΩC
− = Ω− − Ω+− = Φ (57)

AC = Φ−A = −A (58)

Ω+ ∪ Φ = Ω+ (59)

Ω− ∪ Φ = Φ (60)

Ω+ ∩ Φ = Φ (61)

Ω− ∩ Φ = Ω− (62)

A ∪AC = |A| (63)

A ∩AC = −|A| (64)
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We can also define the following operations on a generic

mset A:

A+ = {|[x,mA(x)], x ∈ SA|},
with mA(x) = max {mA(x), 0} (65)

and

A− = {|[x,mA(x)], x ∈ SA|},
with mA(x) = min {mA(x), 0} (66)

which allow us to write:

A ∪ Φ = A+ (67)

A ∩ Φ = A− (68)

The fact that A ∪ Φ is not A and A ∩ Φ is not Φ as

in traditional set theory motivates us to find a new mset

operation for real-valued msets that could lead to a re-

spective counterpart. This can be done by defining the

signed union of two msets A and B as follows:

C = A tB =

= {|[x, smA(x)smB(x) max {|mA(x)|, |mB(x)|}]|}
with x ∈ SA,B (69)

where smA(x) stands for the sign of the multiplicity

mA(x) and smB(x) stands for the sign of the multiplic-

ity mB(x).

The signed intersection can be expressed as:

C = A uB =

= {|[x, smA(x)smB(x) min {|mA(x)|, |mB(x)|}]|}
with x ∈ SA,B (70)

The above expression was previously reported [30] in

the context of cosine similarity analogous to the L1 norm.

Now, we can write:

A t Φ = A (71)

A u Φ = Φ (72)

Observe that the consideration of possibly negative

multiplicities has led to additional respective properties.

8 Functions and Scalar Fields

The possibility to represent vectors as msets paves the

way to a number of interesting possibilities. One of

them is to represent discrete and continuous functions

and scalar fields (vector fields can be approached as vec-

tors of scalar fields). We develop these possibilities in the

following.

Let g(x) be a real function of a real variable x in a

discrete or continuous support set S, i.e.x ∈ S. This

function can be fully represented, in invertible manner, in

terms of the following respective real-valued mset:

f(x) = f = {[x, f(x)]} , with x ∈ S (73)

Therefore, the extension of the above characterized

real-valued msets to real-valued function is immediate.

Though for simplicity’s sake we shall often call the msets

associated from functions as mfunctions, it should be kept

in mind that there is absolutely no difference between real-

valued msets and real functions.

All the respective operations and properties are also

kept, which means that it becomes possible to combine

all the traditional function operations with the multiset

operations.

For instance, it becomes possible and valid to write:

r(x) = (g(x) ∩ h(x)) + g(x)

s(x) = (g(x) + h(x)) ∪ (g(x)− h(x))

t(x) = [g(x) ∩ h(x)]− [g(x) ∪ h(x)]

where r(x), g(x) and h(x) are generic real-valued func-

tions on a support S.

These three functions are illustrated in Figure 3 assum-

ing the function in Equation 74.

Figure 3: The functions r(x), s(x) and t(x) obtained through mset

operations.

We have already seen that the complement of a vec-

tor multset becomes the operation of sign change, and so

we have with functions in the sense that r(x)C becomes

−r(x). This allows us to derive the following De Morgan

extension to real-valued functions on a generic support S:

−[g(x) ∩ h(x)] = −g(x) ∪ −h(x)

−[g(x) ∪ h(x)] = −g(x) ∩ −h(x)

A similar approach can be applied to transform dis-

crete scalar fields defined on more than one variables into

respective msets, involving the index mapping described

above.
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Let’s illustrate the above concepts and possibilities in

terms of the two following functions:

g(x) = e−10x2

h(x) = 2e−10|x−0.1| (74)

Figure 4 depicts the two above functions as well as their

union, intersection, sum, and subtraction.

(a)

(b)

Figure 4: Two continuous functions g(x) and h(x) of a single vari-

able (a), and their respective mset operations (b) of union, intersec-

tion, sum, and subtraction.

This examples illustrate several interesting points.

First, we have the understanding of functions as respec-

tive msets immediately allows them to be operated by

mset operations such as union and intersection. In addi-

tion, we observe that the sum of two functions is larger

or equal than their union, as well as the possibility of the

subtraction operation yielding negative values.

It is also interesting to observe the potential of the oper-

ations of union and intersection in producing sharp deriva-

tives and discontinuities, which contributes an interesting

manner of representing an ample range of function types

as combinations of these operations, not to mention the

operations of sum, subtraction, product and quotient.

Consequently, it becomes an interesting possibility to

develop transformations of functions, analogous to the

Fourier transform, considering not only series of basis

functions, but also intersections and/or unions, and/or

other possible hybrid operations between msets. One par-

ticularly useful benefit would be to become able to express

functions with discontinuous derivatives as combinations

of functions that are completely smooth. Also, it should

be observed that the operations of sum and subtraction

are bilinear, while the minimum and maximum, which

mediate most of the mset operations, are not.

Another interesting perspective concerns in under-

standing the Jaccard similarity index from the perspective

of real-valued msets, which yields:

JR(f(x), g(x)) =
f(x) u g(x)

f(x)©∗ g(x)
(75)

where:

f(x)©∗ g(x) =

ˆ
S

max(sff(x), sg, g(x))dx (76)

Related similarity indices have appeared previously in

discrete manner in the context of analogies between the

cosine similarity index in L1 spaces [30, 31].

Given that the Jaccard index does not take into account

the relative interiority of the two compared sets [8], it has

been combined with the interiority (or overlap e.g. [32])

index to yield the coincidence index between two func-

tions, which can be expressed as:

CR(f(x), g(x)) = JR(f(x), g(x))IR(f(x), g(x)) (77)

where:

IR(f(x), g(x)) =

´
S

min(sff(x), sg, g(x))dx

min {Sf , Sg}
(78)

Sf =

ˆ
S

|f(x)|dx (79)

Sg =

ˆ
S

|g(x)|dx (80)

The operation of template matching consists of, given a

function f(x), to quantify, along x, the similarity between

its portions and another reference template function g(x).

This can be immediately implemented by by applying the

real-valued Jaccard and coincidence indices to those two

functions while one is slid respectively to the other, there-

fore implementing respective cross-correlations. High re-

sulting values indicate portions of f(x) that are similar to

g(x).

Figure 5 presents the result of matching the template

in (b) with the function in (a) by using the traditional

cross-correlation (c), the real-valued Jaccard index (d),

the interiority index (e) and the and coincidence index

(f).
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Figure 5: The templated in (b) is to be compared with the mfunction in (a) and the results obtained by using the traditional cross-correlation

(c), the real-valued Jaccard index (d), the interiority index (e) and the and coincidence index (f). The potential of the real-valued Jaccard,

and in particular the coincidence index, for obtaining narrower and sharper identification of the peak correspondence between the template

and object function, while attenuating the effect of secondary matches, can be plainly observed.

As it can be verified, both the real-valued Jaccard and

coincidence indices yielded a precise and well-localized

identification of the maximum similarity between the por-

tions of function f(x) with the template function g(x),

not only for the positive parts, but also with respect to

the negative. The secondary matchings appeared with

substantially smaller values. This example illustrates the

enhanced potential of the coincidence index for pattern

recognition, filtering and neuronal network applications.

9 Multisets in Pattern Recogni-

tion

The possibility to use msets to represent any type of den-

sity paves the way to interesting applications in pattern

recognition and deep learning (e.g. [9, 10, 33, 11, 12, 13]).

In this section we illustrate how msets and the Jaccard

index can be readily applied in order to quantify the sim-

ilarity between two (or more) clusters represented by re-

spective density functions, a frequent problem (e.g. [34]).

Let’s consider the three sets of points in the scatterplot

shown in Figure 6, which corresponds to the three species

of iris flower in the frequently adopted iris dataset. Only

two out of their 4 features have been chosen in the follow-

ing example for simplicity’s sake.

Figure 6: A scatterplot representing the distribution of three types

of iris flowers represented by two respective features x and y.

The density obtained from the respective discrete sam-

ples through gaussian kernel expansion are shown in Fig-

ure 7.

The obtained multiset Jaccard index for each pairwise

combination of categories are presented in Table 1.

The obtained results are fully compatible with the in-

terrelationships between the three densities, or clusters,

in Figure 6. In addition, the three-wise Jaccard index

9



Figure 7: The three density scalar fields obtained by gaussian kernel

expansion of each of the three categories.

setosa versicolor virginica

setosa 1 2.6e-5 0

versicolor 2.6e-5 1 0.145

viginica 0 0.145 1

Table 1: The Jaccard indices obtained for pairwise combinations

between the three iris species. The resolution has been limited to 6

digits.

from Equation 49 result nearly null, indicating a really

small chance that the three densities correspond to the

same cluster.

10 Concluding Remarks

The fascinating subject of msets has been presented in a

hopefully introductory manner, followed by developments

aimed at extending them to real-valued multiplicities. By

allowing functions and fields to be understood as msets,

several possibilities are made viable, some of which are

explored in the present work.

In addition to introducing several of the basic mset

concepts, the present work also proposed how the com-

plement operation can be defined in a robust manner by

allowing the subtraction of msets to take negative val-

ues. This paved the way for recovering several properties

analogous to traditional sets involving the complement

operation, including the De Morgan theorem, as well as

to identifying additional mset operations.

The extension of msets to real functions and fields was

also proposed, paving the way to defining functionals, of

which the real-valued Jaccard and coincidence indices for

are examples. The interpretation of several of the charac-

teristics and properties of real-valued msets become par-

ticularly intuitive when approached in terms of functions.

For instance, the fact that one function is contained into

another can be graphically verified by checking the re-

spective graphs. In addition, the incorporation of mset

operations into real functions paves the way to obtained

complex non-analytical functions (i.e. with derivative dis-

continuities) by combining smooth basic functions.

We have also illustrated the impressive potential of

the coincidence index for performing template matching,

yielding sharper and narrower detection peaks while at-

tenuating secondary matches. These features are a conse-

quence of the enhanced potential of the coincidence index

in quantifying similarity in a detailed manner, which can

be particularly useful in pattern recognition, deep learn-

ing, artificial intelligence and scientific modeling in gen-

eral. For instance, neuronal networks can be constructed

in which the synaptic input and integration, traditionally

modeled and implemented in terms of the classic inner

product, are performed by using the real-valued Jaccard

or coincidence indices, therefore incorporating the respec-

tive advantages of these approaches.

The application of the real-valued Jaccard index to

quantifying the similarity between two scalar fields cor-

responding to cluster densities of the iris dataset is also

illustrated, with encouraging results.

The presented concepts and methods pave the way to

several interesting applications, also motivating further

integrations between the structures and properties be-

tween the domains of set theory, propositional logic, and

analysis.
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