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Abstract

Multsets are sets that allow repetition of elements, therefore account for their frequency of observation. As such,

multisets pave the way to a number of interesting possibilities of both theoretical and applied nature. In the present

work, after revising the main aspects of traditional sets, we introduce some of the main concepts and characteristics

of multisets, which is followed by their generalization to take into account vectors, matrices, functions, scalar fields,

and densities. The potential of multisets in pattern recognition and deep learning is also briefly characterized and

illustrated.

‘In the bag, long ago gathered seashells resound.’

LdaFC

1 Introduction

Multisets can be informally understood as sets capable

of incorporation of repeated entries of the same element

(e.g. [1, 2, 3, 4, 5, 6]).

In the present work, we aim at providing an introduc-

tion to this interesting area, while also briefly covering

the Jaccard index adapted to multiset, and applications

to pattern recognition.

We start by reviewing the main concepts and properties

of traditional sets, and then present the concept of mul-

tisets, as well as some of their simpler properties. The

challenges implied by the definition of a universe set for

multisets is breifely characterized and discussed. It is also

argued that the operations of sum and subtraction be-

tween multisets correspond to one of the main distinction

between multiset and set theories.

The possibility to generalized multisets to several

other mathematical structures including vectors, matri-

ces, functions, scalar and vector fields, as well as prob-

ability densities are approached next, including several

examples. In particular, the extension of msets as rep-

resentations of functions and scalar fields paves the way

for obtaining hybrid expressions involving combinations

of the the set operations of union and intersection with

algebraic expressions involving sum, subtraction, product

and division of sets.

The Jaccard index, as well as its extension to multisets

and multiple arguments, is then briefly presented as an

interesting manner to compare any of the mathematical

structures mentioned above after they have been trans-

formed into respective multisets.

The application of multisets and the Jaccard index to

quantify the relationship between two or more clusters is

then described with respect to an example related to the

iris dataset. The measurement of the separation between

clusters corresponds to an important issue in both pattern

recognition (e.g. [7, 8]), deep learning (e.g. [9, 10, 11]), and

modeling (e.g. [12, 13])

For simplicity’s sake, the term multisets are henceforth

abbreviated as msetmset.

2 Traditional Sets

A set is an unordered collection of items, or elements,

which are not allowed to be repeated. A set A with ele-

ments a, b, and c is typically represented as:

A = {a, b, c}

The two essential properties of sets therefore are that

the elements appear in any order, which distinguish sets

from vectors, and that the elements cannot be repeated.

The number of elements in a set is called its cardinality

or size, being represented as |A|.
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A subset B of a given set A consists of a set so that

any of its elements are contained in A. If A contains N

elements, there will be |A| = 2N possible subsets that can

be derived from it. The set containing all possible subsets

of A is called its power set PA.

An important point about sets that is sometimes over-

looked regards the fact that they always refer to a re-

spective universe set Ω. More specifically, once this set

is established, any possible set needs to be a subset of

Ω. Observe that Ω can have any type of element, though

the situation where the elements are homogenous is of

particular interest.

In case some sets are given but the universe set is not

provided, it is possible to estimate the respective universe

set (within hypotheses and subject to incompleteness in

case new sets appear) as corresponding to the union of

the supplied sets.

The universe set is of fundamental importance because

the operation of complement of a set is defined with re-

spect to the universe set. More specifically, the comple-

ment of a set A consists of all elements of Ω that are not

part of A. The complement of a set is henceforth repre-

sented as AC , being implicit that the operation refers to

a given Ω.

Sets can be finite or infinite, as well as discrete or con-

tinuous. A finite set is any set A so that |A| < ∞. A

discrete set is characterized by having all its elements cor-

responding to isolated points p, in the sense that each of

these points possesses a neighborhood which when united

with the universe set yields only p. Any continuous set is

infinite, but discrete sets can be finite or infinite.

An interesting point regards the relationship between

an element, let’s say ‘a’ and the set {a}. These two math-

ematical structures are not identical because it is possible

to include an element into {a}, but not into ‘a’.

The empty set, represented as φ = {} is a subset of any

possible set.

Given two sets A and B, their union consists of a third

set C containing all elements from A and B. The intersect

of these two sets corresponds to a set C containing all

elements that are in both A and B. A subset B of A can

therefore be understood as to be so that A∩B = A. Any

set is a subset of itself.

The difference between two sets A and B, indicated as

A − B, corresponds to the set C containing all elements

that are in A but are not in B.

Given three sets A, B, and C derived from a given Ω,

the following properties are satisfied:

A ∪AC = Ω (1)

A ∩AC = A (2)

A ∪ φ = A (3)

A ∩ φ = φ (4)

A ∪A = A (5)

A ∩A = A (6)

A ∪B = B ∪A (7)

A ∩B = B ∩A (8)

A ∪ (B ∪ C) = (A ∪B) ∪ C (9)

A ∩ (B ∪ C) = (A ∩B) ∪ C (10)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (11)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (12)

(A ∪B)C = AC ∩BC (De Morgan) (13)

(A ∩B)C = AC ∪BC (De Morgan) (14)

3 Multisets

Basically, msets are sets allowing the repetition of ele-

ments, which is understood as their multiplicity or fre-

quency. As with sets, the order of the elements is imma-

terial. Examples of mset include:

A = {|a, a, b, b, b, d|};
B = {|1, 2, 1, 2, 1, 2, 1|} = {|1, 1, 1, 1, 2, 2, 2|};

C = {|1, a, 2, b, b, 3, c, c, c, 1, d, 2, a, a|} =

= {|1, 1, 2, 2, 3, a, a, a, b, b, c, c, c|};
D = {|a, a, b, d|}.

Observe the different symbol adopted henceforth in this

work in order to emphasize the distinction between a tra-

ditional set ({}), and a mset ({||}).
A more compact representation of a mset A can be

obtained by using 2-tuple or pairs [a,m(a)], where ‘a’ is

an element and m(a) it its multiplicity, i.e. the number of

times it appear in A. In the case of the above examples,

we have:

A = {|a, a, b, b, b, d|} = {|[a, 2]; [b, 2]; [d, 1]|};
B = {|1, 1, 1, 1, 2, 2, 2|} = {|[1, 4]; [2, 3]|};
C = {|1, 1, 2, 2, 3, a, a, ab, b, c, c, c|} =

= {|[1, 2]; [2, 2]; [3, 1]; [a, 3]; [b, 2]; [c, 3]|};
D = {|a, a, b, d|} = {|[a, 2]; [b, 1]; [d, 1]|}.

Though this type of representation of msets actually

corresponds to a set, because it is impossible to have two

identical entries, we shall maintain the ‘{||}’ notation in

order to emphasize that a mset is being meant.

2



When referring to the multiplicity of an element, it is

important to specify to which mset this is being referred.

This can be done by writing mA(a), meaning the multi-

plicity of the element a in the mset A.

The property analogous to inclusion in sets can be

stated as follows. A mset A is included in another mset

B whenever mA(a) ≤ mB(a). For instance, in the case of

the examples above, we have mA(a) = 2 and mC(a) = 2.

As with sets, it is particularly important to specify the

universe of mset. This can be done in an analogous man-

ner as with sets. As an example, let’s obtain a possible

universe set for the two msets A and B above:

Ω = {a, b, d, 1, 2} (15)

It should be kept in mind that this universe is not anal-

ogous to the counterpart in sets, as it does not actually

account for the possible multiplicity of the involved ele-

ments.

It is now possible to rewrite those two sets in a more

complete, though redundant manner, as follows:

A = {|[a, 2]; [b, 2]; [d, 1]; [1, 0]; [2, 0]|};
B = {|[a, 0]; [b, 0]; [c, 0]; [1, 4]; [2, 3]|};

The support of a given mset A is defined as:

SA = {x|x ∈ Ω,m(x) > 0} (16)

As such, this set can be understood as containing all

distinct elements in A. Observe that the support set pro-

vides a useful index to which symbols can be found in any

of the respective msets.

4 Multiset Operations

A set A is said to be included into another set whenever:

mA(x) ≤ mb(x),∀x ∈ A (17)

For simplicity’s sake, we will indicate this operation

using the same symbol as for sets, i.e. A ⊂ B, as the type

of operation can be inferred from A and B being sets or

msets.

In the case of the mset examples above, we can write

that D ⊂ A.

The union C of two msets A and B can be defined as:

C = A ∪B = {|[x,mC(x)], x ∈ A or x ∈ B|},
with mC(x) = max {mA(x),mB(x)} (18)

Examples considering the msets in the beginning of Sec-

tion 3 include:

A ∪B = {|a, a, b, b, b, d, 1, 1, 1, 1, 2, 2, 2|} =

{|[1, 2]; [b, 2]; d, 1]; 1, 4]; [2, 3]|}
A ∪D = {|a, a, b, d|} = {|[a, 4]; [b, 4]; [d, 2]|}

It is interesting to observe that the resulting multiplic-

ity of each element does not correspond to the sum of the

respective multiplicities, but to the maximum between

them. This is a particularly important point that deserves

further contemplation, so we will be back to it after pre-

senting the concept of sum of two msets.

Let A and B be msets. The sum of these two sets,

henceforth represented as C = A+B, is defined as:

C = A+B = {|[x,mC(x)], x ∈ A or x ∈ B|},
with mC(x) = mA(x) +mB(x) (19)

Figure 1 illustrates the two different ways in which the

common elements of two msets A and B are collected into

the respective union and sum msets.

Figure 1: The union (a) and sum (b) of two msets A and B typically

yield quite different resulting msets. In the case of the union opera-

tion, each of the elements of the same type are compared, with the

elements with the maximum multiplicity being incorporated into

C. The sum of the two msets incorporates all the mA(xi)+mB(xi)

elements into C.

Examples respective to the msets in the beginning of

Section 3 include:

A+B = {|a, a, b, b, b, d, 1, 1, 1, 1, 2, 2, 2|} =

{|[1, 2]; [b, 2]; d, 1]; 1, 4]; [2, 3]|}
A+D = {|a, a, a, a, b, b, b, b, d, d|} = {|[a, 4]; [b, 4]; [d, 2]|}
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Thus, we have that the mset operations of union and

sum are related in the sense that both collect the same

elements from the two msets, but the way in which this

is done is quite different, with the cardinality of the mset

obtained by union becoming necessarily smaller or equal

than that of the mset obtained by sum.

Observe that mA∪B(xi) ≤ mA+B . It is interesting to

consider these two operations in the context of possible

respective applications. The sum of the two msets en-

sures conservation of the total number of elements, being

therefore more indicated for related situations. The union

of two msets can be conceptually understood as a kind of

mid point between the sum of msets and the conventional

union of traditional sets. Though the union of msets will

typically yield larger msets than the union, it will not

guarantee conservation of the total number of elements.

A typical situation in which the union of msets can be

applied is when the incorporation of the elements from

the two msets is performed in terms of a choice, with the

larger set being taken.

The intersection betweenf two msets A and B can be

defined as:

C = A ∩B = {|[x,mC(x)], x ∈ A or x ∈ B|},
with mC(x) = min {mA(x),mB(x)} (20)

Examples drawn from the msets in the beginning of

Section 3 include:

A ∩B = {||} =

A ∩D = {|a, a, b|} = {|[a, 4]; [b, 4]; [d, 2]|}
(21)

The difference or subtraction between two msets is ex-

pressed as:

C = A−B = {|[x,mC(x)], x ∈ A or x ∈ B|},
with mC(x) = max {mA(x)−mB(x), 0} (22)

It is interesting to observe that the restriction of not

having negative values can be overlooked without great

impact on the other properties and operations as ad-

dressed in the present work.

Figure 2 illustrates the intersection and difference be-

tween two msets A and B.

Respective examples include:

A−D = {|b, b|} = {|[b, 2]|}
D −A = {||}

(23)

Figure 2: The intersection (a) and difference (b) of two msets A and

B typically yield quite different resulting msets. In the case of the

intersection operation, each of the elements of the same type are

compared, with the elements with the minimum respective multi-

plicity being incorporated into C. The difference between A and B

depends on mA(xi) −mB(xi). As the result is negative in the case

of the present example, no elements are incorporated into A−B.

5 Multisets Properties

It can be shown that msets satisfy the following proper-

ties:

A ∪ φ = A (24)

A ∩ φ = φ (25)

A ∪A = A (26)

A ∩A = A (27)

A ∪B = B ∪A (28)

A ∩B = B ∩A (29)

A ∪ (B ∪ C) = (A ∪B) ∪ C (30)

A ∩ (B ∪ C) = (A ∩B) ∪ C (31)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (32)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (33)

Informally speaking, the above properties can ben un-

derstood by identifying each repeated element in an mset

with unique respective tags, in which case they would
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behave with respect to the operation of union and inter-

section exactly in the same way as common sets.

So, we have that msets follow all the properties in Equa-

tions 1 to Equations 14 , except those involving comple-

mentation. Indeed, the definition of the complement of

an mset has been a challenging issue (e.g. [6]), which has

to do with the fact that there is no bound to the size

of possible msets generated by making additions between

any non-empty mset. For instance, we can write:

A = {|a|}
A+A = {|a, a|}

A+A+A = {|a, a, a, |}
. . . (34)

For this reason, the useful De Morgan properties, as

well as other related results, do not hold for msets. In

addition, there are relative few properties involving the

sum and subtraction of msets.

In a sense, it isthese two operations that differentiates

msets from sets because, as commented above, msets be-

have like sets respectively to their union and intersection

when the elements are tagged.

In a sense, though we gain two new operations when

working with msets, these operations imply some specific

challenges to be addressed. In the present work, we will

simply assume that the complement of msets are not avail-

able.

6 Multisets, Vectors, Matrices

In this section we will discuss the relationship between

msets and vectors. First, we recall that the elements in a

vector are expected to follow a well-determined order as

indicated by their indices. For instance, in the case of the

vector in R5:

~v = [3, 2.5, π, 0,−1]

we have five indices i = 1, 2, ldots, 5, so that we can

specify the respective element values as v[1] = 3, v[2] =

2.5, v[3] = π, v[4] = 0, and v[5] = −1.

By understanding the values of the components of a

vector as generalized multiplicities, we can immediately

derive the following mset from the above vector:

V = {|[1, 3]; [2, 2.5]; [3, π]; [4, 0]; [5,−1]|}

Therefore, we have that an mset can be derived from

any vector, but that a vector can be obtained from an

mset only if their elements are ordered in some manner,

e.g. by taking their respective values. As such, msets can

be used to study the elements of vectors without taking

into account their relative position along the vector.

It is also interesting to contemplate the relationship be-

tween the above discussion and the traditional sets. More

specifically, we can write the set containing all values in

the vector ~v above as:

Ṽ = {3, 2.5, π, 0,−1} = {0, 3, 2.5,−1, π} = etc.

Though V and Ṽ are very similar, they are not identical

because in V the order of the elements is maintained.

This difference becomes critically important in case we

want to apply the operations of addition and subtraction

between msets, which would be otherwise impossible in

case of sets because we would not know which element of

one set should be added to which element in the other set.

By representing vectors as msets, we not only maintain

the operations of subtraction and difference, but also in-

corporates the possibilities of defining intersections and

unions between any two vectors.

Another interesting possibility is to incorporate new

operators for multiplication and division into the mset

framework, which can be done straightforwardly, while

avoiding divisions by zero.

Interestingly, it is also possible to obtain mset rep-

resentations from matrices or even other more sophisti-

cated mathematical structures as tensors. In the case

of matrices, this can be done by mapping the indices

i = 1, 2, . . . , Ni and j = 1, 2, . . . , Nj into a single index

k, e.g.:

k ←→ Ni(j − 1) + i− 1 (35)

so that the matrix becomes a vector, which can then be

transformed into the respective mset as described above.

Interestingly, observe that though the obtained msets

would not directly provide the respective indices of the

elements, they can be nevertheless obtained from the uni-

fied index.

7 Functions and Scalar Fields

The possibility to represent vectors as msets opens the

way to a number of interesting possibilities. One of

them is to represent discrete and continuous functions

and scalar fields (vector fields can be approached as vec-

tors of scalar fields). We develop these possibilities in the

following.

We start with a discrete function as illustrated in Fig-

ure 3.

It is often interesting to represent such discrete func-

tions in terms of sums of Dirac delta functions.

Provided that we limit the extension of this function

along the horizontal axis, e.g. i = 1, 2, . . . , N , it can be

immediately represented in terms of the vector:

~f = [f(xi)] (36)
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Figure 3: A generic discrete function f(xi).

which can then be transformed into the respective mset

as described in the previous section.

A similar approach can be applied to transform dis-

crete scalar fields defined on more than one variables into

respective msets, involving the index mapping described

above.

Now, we can approach the case of continuous functions

and scalar fields simply by taking the separation between

the points along the horizontal axis to the limit of 0. As

a consequence, the functions and scalar fields will become

associated to msets with infinite elements, but these can

still be operated by the ‘max()’, ‘min()’, ‘+’ and ‘− op-

erations required by the mset operations.

Let’s illustrate the above concepts and possibilities in

terms of the two following functions:

g(x) = e−10x
2

h(x) = 2e−10|x| (37)

Figure 5 illustrates the two above functions as well as

their union, intersection, sum, and subtraction after hav-

ing been converted into respective msets.

This examples illustrates several interesting points.

First, we have the transformation of functions into re-

spective msets immediately allow them to be operated by

union and intersction. In addition, we observe an exam-

ple that the sum of two functions is larger or equal than

their union, as well as the possibility of the subtraction

operation yielding negative values.

Figure 5 shows the two additional operations of product

and quotient between the two functions g(x) and h(x)

above, avoiding the divisions by zero.

It is interesting to observe that the potential of the

operations of union and intersection in producing sharp

derivatives and discontinuities, which contribute an inter-

esting manner of representing an ample range of function

types as combinations of these operations, not to mention

the operations of sum, subtraction, product and quotient.

The above developments also allow new functions to

be obtained as combinations of logic operations as the

(a)

(b)

Figure 4: Two functions g(x) and h(x) of a single variable (a), and

their respective mset operations (b) of union, intersection, sum, and

subtraction.

Figure 5: Two functions g(x) and h(x) of a single variable (a), and

their respective mset operations (b) of union, intersection, sum, and

subtraction.

union and intersection and numeric operations as sum,

subtraction, product, and division. For instance, it be-
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comes possible to write things such as:

r(x) = (g(x) ∩ h(x)) + g(x)

s(x) = (g(x) + h(x)) ∪ (g(x)− h(x))

t(x) = [g(x) ∩ h(x)]− [g(x) ∪ h(x)]

(38)

These three functions are illustrated in Figure 6 assum-

ing the function in Equation 37.

Figure 6: The functions r(x), s(x) and t(x) obtained through mset

operations.

The potential of these hybrid constructions is as large

as our imagination, because it allows the incorporation of

much of the concepts, structures, and properties of both

arithmetic, set theory, and also logic (which is directly

analogous to set theory).

8 The Multiset Jaccard Indices

The Jaccard index represents an effective and conceptu-

ally appealing manner to quantify the similarity between

any two sets A and B (e.g. [14, 15, 16]), having therefore

being extensively applied in a vast range of problems in

several scientific and technological fields.

In its most basic form, the Jaccard index between an

two sets A and B can be expressed as:

J (A,B) =
A ∩B
A ∪B

(39)

It is possible to adapt the Jaccard index to msets by

making:

JM (A,B) =

∑N
i=1 min (m(ai),m(bi))∑N
i=1 max (m(ai),m((bi)

(40)

where ai and bi are the elements of the sets A and B,

respectively, and N is the cardinality of the universe of

those sets. We also have that 0 ≤ JM (A,B) ≤ 1.

As an example, let’s consider A = {a, b, b, c, c, c} and

B = {a, b, c, c, d}. Then, we have:

J (A,B) =
1 + 1 + 2 + 0

2 + 3 + 5 + 1
=

4

11
(41)

The Jaccard index has been enhanced and extended to

functions, scalar fields, joint variations and more than 2

sets [16]. In particular, the latter type of Jaccard index

for 3 sets A, ,B and C can be written as:

J (A,B,C) =
A ∩B ∩ C
A ∪B ∪ C

(42)

9 Multisets in Pattern Recogni-

tion

The possibility to use msets to represent any type of den-

sity paves the way to interesting applications in pattern

recognition and deep learning (e.g. [7, 8, 9, 10, 11]). In

this section we illustrate how msets and the Jaccard index

can be readily applied in order to quantify the similarity

between two (or more) clusters represented by respective

density functions.

Let’s consider the three sets of points in the scatterplot

shown in Figure 7, which corresponds to the three species

of iris flower in the frequently adopted iris dataset. Only

two out of their 4 features have been chosen in the follow-

ing example for simplicity’s sake.

Figure 7: A scatterplot representing the distribution of three types

of iris flowers represented by two respective features x and y.

The density obtained from the respective discrete sam-

ples through gaussian kernel expansion are shown in Fig-

ure 8.

The obtained multiset Jaccard index for each pairwise

combination of categories are presented in Table 1.
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Figure 8: The three density scalar fields obtained by gaussian kernel

expansion of each of the three categories.

setosa versicolor virginica

setosa 1 2.6e-5 0

versicolor 2.6e-5 1 0.145

viginica 0 0.145 1

Table 1: The Jaccard indices obtained for pairwise combinations

between the three iris species. The resolution has been limited to 6

digits.

The obtained results are fully compatible with the in-

terrelationships between the three densities, or clusters, in

Figure 7. In addition, the threewise Jaccard index from

Equation 42 result nearly null, indicating a really small

chance that the three densities correspond to the same

cluster.

10 Concluding Remarks

The fascinating subject of multisets has been presented

in a hopefully introductory manner.

We started with a brief review of traditional sets and

their properties, which was followed by a progressive pre-

sentation of multisets and their characteristics. The pos-

sibility of obtaining multiset generalizations capable of

dealing with functions, scalar fields, and densities, was

then described and illustrated.

The extension of the Jaccard index, which is intrin-

sically related to set theory, to msets and also to allow

the consideration of more than two sets were also pre-

sented, which paved the way to employing these combined

concepts for the characterization of relationships between

clusters in feature spaces, a problem that is common to

both the areas of pattern recognition and deep learning.

The presented concepts and methods pave the way to

several interesting applications, also motivating further

integrations between the structures and properties be-

tween the domains of set theory, propositional logic, and

analysis.
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Costa’s Didactic Texts – CDTs

CDTs intend to be a halfway point between a

formal scientific article and a dissemination text

in the sense that they: (i) explain and illustrate

concepts in a more informal, graphical and acces-

sible way than the typical scientific article; and

(ii) provide more in-depth mathematical develop-

ments than a more traditional dissemination work.

It is hoped that CDTs can also incorporate new

insights and analogies concerning the reported

concepts and methods. We hope these character-

istics will contribute to making CDTs interesting

both to beginners as well as to more senior

researchers.

Each CDT focuses on a limited set of interrelated

concepts. Though attempting to be relatively

self-contained, CDTs also aim at being relatively

short. Links to related material are provided in

order to provide some complementation of the

covered subjects.

Observe that CDTs, which come with absolutely

no warranty, are non-distributable and for non-

commercial use only.

Please check for new versions of CDTs, as they can

be revised. Also, CDTs can and have been cited,

e.g. by including the respective DOI. Please cite

this CDT in case you use it, so that it may also be

useful to other people. The complete set of CDTs

can be found at: https://www.researchgate.

net/project/Costas-Didactic-Texts-CDTs,

and a respective guide at: https://www.

researchgate.net/publication/348193269_A_

Guide_to_the_CDTs_CDT-0
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