
HAL Id: hal-03388815
https://hal.science/hal-03388815v1

Preprint submitted on 20 Oct 2021 (v1), last revised 6 Dec 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Training Integrable Parameterizations of Deep Neural
Networks in the Infinite-Width Limit

Karl Hajjar, Lénaïc Chizat, Christophe Giraud

To cite this version:
Karl Hajjar, Lénaïc Chizat, Christophe Giraud. Training Integrable Parameterizations of Deep Neural
Networks in the Infinite-Width Limit. 2021. �hal-03388815v1�

https://hal.science/hal-03388815v1
https://hal.archives-ouvertes.fr

Training Integrable Parameterizations of Deep Neural

Networks in the Infinite-Width Limit

Karl Hajjar∗,1, Lénäıc Chizat2, and Christophe Giraud1

1Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 91405 Orsay, France
2Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland

October 20, 2021

Abstract

To theoretically understand the behavior of trained deep neural networks, it is nec-
essary to study the dynamics induced by gradient methods from a random initialization.
However, the nonlinear and compositional structure of these models make these dynamics
difficult to analyze. To overcome these challenges, large-width asymptotics have recently
emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood via these asymptotics that the na-
ture of the trained model radically changes depending on the scale of the initial random
weights, ranging from a kernel regime (for large initial variance) to a feature learning
regime (for small initial variance). For deeper networks more regimes are possible, and in
this paper we study in detail a specific choice of “small” initialization corresponding to
“mean-field” limits of neural networks, which we call integrable parameterizations (IPs).

First, we show that under standard i.i.d. zero-mean initialization, integrable param-
eterizations of neural networks with more than four layers start at a stationary point
in the infinite-width limit and no learning occurs. We then propose various methods to
avoid this trivial behavior and analyze in detail the resulting dynamics. In particular,
one of these methods consists in using large initial learning rates, and we show that
it is equivalent to a modification of the recently proposed maximal update parameter-
ization µP. We confirm our results with numerical experiments on image classification
tasks, which additionally show a strong difference in behavior between various choices of
activation functions that is not yet captured by theory.

1 Introduction

While artificial neural networks routinely achieve state-of-the art performance in various
real-world machine learning tasks, it is still a theoretical challenge to understand why and
under which conditions they perform so well. The training algorithm—typically a variant
of stochastic gradient descent (SGD) with random initialization—plays a central role in this
performance but is difficult to analyze for general neural network architectures, because of
their highly non-linear and compositional structure. Large-width asymptotics, which have
previously been considered for other purposes (Neal, 1995; Bengio et al., 2006), have recently
been proposed to overcome some of these difficulties and have brought numerous insights
on the training behavior of neural networks (Nitanda and Suzuki, 2017; Mei et al., 2018;

∗Corresponding author: karl.hajjar@polytechnique.edu

1

Jacot et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Sirignano
and Spiliopoulos, 2020).

One of these insights is that the magnitude of the random weights at initialization has
a dramatic impact on the learning behavior of neural networks (Chizat et al., 2019). For
two-layer networks and with suitable learning rates, initializing the output layer weights with
a standard deviation of 1/m, where m is the width of the network, leads to feature learning
when m is large, while the same network initialized with a standard deviation of 1/

√
m

leads to the Neural Tangent Kernel (NTK) regime, a.k.a. lazy regime, where the network
simply learns a linear predictor on top of fixed features. This observation suggests that
parameterizations—that is, the choice of the scaling factors, with the width m, of the initial
magnitude and of the learning rates of each layer of a neural network—are of fundamental
importance in the theory of neural networks. While standard deep learning packages offer
various choices of scale at initialization (Glorot and Bengio, 2010; He et al., 2015), those
have been designed with the sole criterion in mind to have a non-vanishing first forward and
backward passes for arbitrary depths. Theory now offers the tools to explore a larger space
of parameterizations and study their dynamics beyond the first forward and backward passes
in the infinite-width limit.

With more than two layers, the categorization of parameterizations is more subtle and
there are disparate lines of work. On the one hand, some parameterizations still lead to
the kernel regime, which is subject to an intense research activity (e.g., Jacot et al., 2018,
2019; Allen-Zhu et al., 2019; Du et al., 2019; Arora et al., 2019; Geiger et al., 2020a,c; Yang,
2020a). Since this regime reduces to learning a linear predictor on top of fixed features in the
large width limit, this parameterization is of limited relevance to understand representation
learning in networks used in practice (although it should be noted that non-asymptotic
analyses reveal interesting effects, e.g., Hanin and Nica, 2019). On the other hand, there is
a growing literature around parameterizations where weights are initialized with a standard
deviation of 1/m (except for the first layer). These are often called “mean-field” models but
we prefer to call them integrable parameterizations (IPs) in this work1, in reference to the
fact that sums of m terms with standard deviation of order of 1/m are absolutely convergent.
There already exists mathematical tools to describe the evolution of the parameters of IPs
in the infinite-width limit but they are not fully satisfactory to understand the properties of
the learned function in the standard setting used in practice (see review in Section 1.2).

Going beyond the dichotomy between the scales 1/m and 1/
√
m, Yang and Hu (2021)

have exhibited, using a technique called the Tensor Program (Yang, 2019, 2020a,b), a general
categorization of parameterizations, in particular between those which allow feature learn-
ing and those which do not. As a result from their analysis, they singled out a maximal
update parameterization µP where, as for the NTK parameterization, the intermediate lay-
ers’ weights are initialized with a standard deviation of 1/

√
m, but the last layer weights

are initialized with a standard deviation of 1/m: they show that with appropriate learning
rates, this leads to maximal feature learning (in a certain sense). This parameterization had
been previously considered in (Geiger et al., 2020b) where the authors study empirically the
effect of the scale (Chizat et al., 2019) on learning.

In (Yang and Hu, 2021), IPs have been excluded from the analysis on the basis that they
are trivial : if one follows the usual training procedure—which we refer to as Naive-IP—the
network starts on a stationary point in the infinite-width limit and the learned function
remains at its initial value.

1For deep neural networks, it is somewhat arbitrary to associate the term mean-field with a specific choice
of scaling so we believe that this term lacks precision when it comes to discussing various parameterizations.

2

1.1 Contributions

Our goal is to draw connections between the various lines of research discussed above, and to
improve our understanding of integrable parameterizations: when and why are they trivial?
How can we avoid triviality and actually learn features? What are the salient properties of
the resulting networks in the infinite-width limit? To answer these questions rigorously, we
leverage the Tensor Program technique developed in (Yang, 2019, 2020a,b; Yang and Hu,
2021). Specifically, our contributions are the following:

• We first show in Theorem 3.1 that with learning rates constant in time, the functions
learned using SGD for integrable parameterizations of neural networks with four layers
or more either remain at their value at initialization or explode in the infinite-width
limit when the weights are initialized using the standard zero-mean i.i.d. schemes used
in practice.

• We show in Theorem 4.1 that using large learning rates, which grow as a power of
m, for the first gradient step—and that step only—allows SGD to escape the initial
stationary point for integrable parameterizations and to initiate a non-trivial learning
phase. In fact, we prove in Theorem 4.2 that the resulting dynamic is equivalent to a
modification of the dynamic of µP where, after the first gradient step, one subtracts
the initial weights from the learned weights of the intermediate layers.

• We study two alternative ways to escape the initial stationary point for integrable
parameterizations and analyze the corresponding dynamics. Removing the scale factor
in 1/m on the bias terms allows to escape the initial stationary point when using
moderately large initial learning rates. A drawback of the resulting dynamics is that
its updates only depend weakly on the input data (see Theorem 5.2). On the other
hand, using a non-centered law also allows to escape the initial stationary point for
i.i.d. initializations without having to use large learning rates, but the dynamics become
degenerate as the updates of the entries of the weight matrix in a given layer are
all equal to the same fixed quantity in the infinite-width limit (see Theorem 5.1).
We investigate numerically the performance of those two models and show that the
aforementioned behaviors are detrimental to learning.

The code to reproduce the results of the numerical experiments can be found at:
https://github.com/karl-hajjar/wide-networks.

1.2 Related Work

While the study of infinitely wide neural networks has a long history (Barron, 1993; Neal,
1995, 1996; Kurková and Sanguineti, 2001; Mhaskar, 2004; Bengio et al., 2006; Bach, 2017),
it is only recently that their training dynamics have been investigated. Two-layer neural
networks with IP enjoy some global convergence properties (Chizat and Bach, 2018) and
favorable guarantees in terms of generalization (Bach, 2017; Chizat and Bach, 2020). Going
beyond two layers, Nguyen and Pham (2020) and Pham and Nguyen (2020) study the infinite-
width limit of IPs and also prove global convergence results for networks with three layers or
more. However, those results hold for standard zero-mean i.i.d. initialization schemes only
for networks with two or three layers (which is consistent with the results of Section 3.1):
for deeper networks they require non-standard (correlated) initializations.

Several other works describe the infinite-width limit of multi-layer IPs: Araújo et al.
(2019) characterize the infinite-width dynamics via a model of McKean-Vlasov type, for
which they prove existence and uniqueness of solutions, and Sirignano and Spiliopoulos
(2021) prove a global convergence result for three-layer networks. They take the number of

3

https://github.com/karl-hajjar/wide-networks

units in each layer to infinity sequentially and describe the dynamics of the limit as a system
of differential equations over the weights/parameters. On the other hand, Fang et al. (2020)
take the infinite-width limit for all layers at once (as in Araújo et al., 2019; Nguyen and
Pham, 2020; Pham and Nguyen, 2020) and describe the resulting dynamics as an ODE over
functions of the features (pre-activations) of the network. It is interesting to note that Araújo
et al. (2019); Sirignano and Spiliopoulos (2021); Pham and Nguyen (2020) all discuss the
difficulties associated with describing the dynamics of the infinite-width of IPs with more
than three layers. As noted in (Araújo et al., 2019), and appropriately addressed by Nguyen
and Pham (2020); Fang et al. (2020); Sirignano and Spiliopoulos (2021), there is a separation
of time scales as soon as there are two hidden layers or more, where the gradients of the
intermediate layers appear to scale as m−2 whereas the gradients of the input and output
layers appear to scale as m−1, requiring separate learning rate values which can make the
analysis of the infinite-width limit more difficult.

In a separate line of work, Yang and Hu (2021) provide with the Tensor Program a
theoretical tool to describe the infinite-width limit of different parameterizations of neural
networks and categorize them between feature learning and kernel-like behavior. However,
IPs with three layers or more are left out of this categorization. Using the same tools, we show
that IPs with more than four layers are indeed trivial at any time step if the initial learning
rates are not appropriately scaled withm under standard zero-mean i.i.d. initializations. This
closes the gap with (Nguyen and Pham, 2020) which proves global convergence results for
IPs with two or three layers initialized using those standard schemes. We also demonstrate
in Section 4 how scaling the initial learning rates appropriately allows to properly train an
IP—inducing a feature learning regime as defined in (Yang and Hu, 2021)—and connect the
resulting model with a version of the maximal update parameterization µP (Yang and Hu,
2021) where the initial weights of the intermediate layers are replaced by zero in the first
update.

The setting where non-centered i.i.d. initialization laws are used is covered in (Nguyen
and Pham, 2020), where it is shown that a certain collapse phenomenon occurs, namely that
the updates of the entries of the weight matrix in a given layer are all equal to the same
deterministic quantity in the large-width limit. We obtain a similar result in Section 5.1
using different theoretical tools.

Tensor Program vs. other formalisms. In contrast to prior literature on IPs, we do
not use the description of the infinite-width limit as a composition of integral transforms.
With the standard (centered i.i.d.) initializations considered in this paper, that description
does not offer much insight about the limit beyond the fact that it starts on a stationary
point. In order to escape this initial stationary point, we propose in this paper to amplify the
random fluctuations around the limit using large initial learning rates. The strength of the
Tensor Program formalism (Yang, 2019, 2020a,b; Yang and Hu, 2021) is precisely that it is
able to describe rigorously the magnitudes of these fluctuations and allows us to analyze the
functions learned with various choices of learning rates. This formalism relies on techniques
initiated in the statistical physics literature (Bayati and Montanari, 2011; Bolthausen, 2014)
that use the Gaussian conditioning technique to describe the behavior of algorithms (such
as message passing) involving random matrices and nonlinearities.

1.3 Organisation of the Paper and Notations

We define and analyze integrable parameterizations in Section 3 and show that they are
trivial for common choices of learning rates. In Section 4, we describe how a specific scaling
of the learning rates allows to escape the initial stationary point, and further investigate the

4

connection between IPs with large initial learning rates and µP. In Section 5, we present two
alternative modifications of IPs to escape the initial stationary point and discuss the impact
of each on the learning dynamics.

We defer all the rigorous proofs of our theoretical results to the Appendix, so as to
make the core message of our work stand out more clearly, and keep the flow of the results
structured and easy to follow. Among other things, this prevents us from diving too deep
into the Tensor Program formalism and calculations (which can be somewhat tedious and
abstruse) in the main part of our work. Most proofs require heavy inductions on the time
step t, and proving the induction step itself often involves inductions on l in the forward
pass (from l = 1 to l = L) and in the backward pass (from l = L to l = 1). Breaking
down all these steps makes for a lengthy Appendix, but the ideas of the proof are relatively
straightforward, only their proper formal writing is tedious.

Throughout the paper, for two integers p, q, we denote by [p] the set {1, . . . , p} and by
[p, q] the set {p, . . . , q}. We write u⊙v for the Hadamard (i.e., element-wise) product of two
vectors u and v. We use Landau notations for comparing two real sequences (um) and (vm):
we write um = O(vm) when there exists a constant C > 0 such that |um|≤ C|vm| for large
enough m, and um = Θ(vm) when we both have um = O(vm) and um = O(vm). We similarly
use the O (respectively Θ) notation for two sequences of real-valued random variables (um)
and (vm) when, almost surely, um = O(vm) (respectively um = Θ(vm)).

2 General Setting

In this section, we introduce the general setting we consider for this work, as well as the
corresponding notations. We also define precisely the notion of parameterization of a neural
network and discuss examples of parameterizations commonly found in the literature.

2.1 Network and Data

Training data. We consider a training dataset
{
(ξ(i), y(i))

}
i∈[n] containing n (input, out-

put) pairs with ξ(i) ∈ Rd and y(i) ∈ R. We will use ξ(i) or y(i) when we refer to the i-th
sample in the training dataset, but use ξt and yt to denote the sample(s) fed to train the
network at time step t, that is for the (t+ 1)-th step of optimization.

Width and depth. Throughout this work, we consider a feed-forward fully connected
neural network, with L hidden layers and a common width m. The total number of layers,
i.e., weight matrices and bias vectors will thus be L+1, and most of our results are concerned
with four or more layers, that is L ≥ 3, and in the limit m→∞. The integer l ∈ [L+1] will
always be used to index the layers of a network, and we call the intermediate layers of a
network the layers indexed by l ∈ [2, L] (i.e., excluding input and output layers).

Activation function. We assume that all the neurons in the network share the same
activation function σ : R→ R. The activation is always taken entry-wise and for any vector
h ∈ Rm, we denote by σ(h) the vector (σ(hp))p∈[m] ∈ Rm.

Weights and forward pass. We denote byW l(t) and Bl(t) respectively the weight matrix
and bias vector of layer l at time step t (i.e., after t steps of SGD), and thus have W 1(t) ∈
Rm×d, W l(t) ∈ Rm×m for l ∈ [2, L] and WL+1(t) ∈ Rm. At any time step t we denote by
hlt(ξ) and x

l
t(ξ) the pre-activations and activations respectively coming out of the l-th layer

5

when feeding input ξ to the network (with the convention that x0t (ξ) = ξ). That is

hlt(ξ) :=W l(t)xl−1
t (ξ) +Bl(t), and xlt(ξ) := σ(hlt(ξ)), for l ∈ [1, L]. (2.1)

Output. We denote the output of the network by

ft(ξ) = f(θ(t); ξ) := (WL+1(t))
⊺
xLt (ξ) +BL+1(t), (2.2)

where θ(t) denotes the set of all network parameters at time t. We often drop the dependency
of the forward pass on the input ξ for brevity and simply use hlt, x

l
t instead of hlt(ξ), x

l
t(ξ)

as it should always be clear from the context which input is being fed to the network. Note
that the weights and biases as well as all the (pre-)activations depend on the width m of the
network (through their dimensions) but we omit this dependency for clarity.

Loss. We denote by ℓ the loss function used to train the network, which is a function from
R2 to R. The fit of a prediction ŷ is thus measured by ℓ(y, ŷ) where y is the desired output.
In all this work, we make the following assumption on the loss function ℓ, which is met by
most common loss functions:

Assumption 1 (Smooth loss w.r.t second argument). The loss ℓ is differentiable with respect
to its second argument and ∂2ℓ(y, ·) is a continuous function for any y ∈ R.

Assumption 1 is essentially here to guarantee that if the sequence (ŷ(m))m∈N∗ converges
almost surely to some ŷ(∞), then ∂2ℓ(y, ŷ

(m)) also converges almost surely to ∂2ℓ(y, ŷ
(∞)).

2.2 Parameterizations of Neural Networks

The fact that the magnitude of the initialization of the weights and of the scale pre-factor
for the weights are key quantities that determine the learning regime achieved by neural
networks—and more generally by differentiable models—was pointed out in (Chizat et al.,
2019). In this paper, we are interested in the behavior of neural networks when their width
m goes to infinity, and we refer to as a parameterization of a neural network the choice of
how (a) the pre-factor of the weights, (b) the variance at initialization and (c) the learning
rates, evolve as a function of m. This concept was called an abc-parameterization by Yang
and Hu (2021), because these dependencies are given by m−a, m−b and m−c.

As explained by these authors, one of those three choices is actually redundant, and
one can do with only the choice of two among those three scales. We take the point view
considering a parameterization as a choice of scale for the pre-factor of the weights (a) and
a choice of scale for the learning rates (c) while the random weights are always initialized
(b) with standard i.i.d. Gaussians N (0, 1). We make this (arbitrary) choice as typically in
the literature, different models of the infinite-width limit correspond to different choices of
scales for the weights’ pre-factors, e.g., NTK corresponds to a pre-factor in 1/

√
m while

“mean-field” models correspond to a choice of pre-factor in 1/m for the weights. We thus
define below ac-parameterizations which are a slight variation of the abc-parameterizations
introduced in (Yang and Hu, 2021).

Definition 2.1. (ac-parameterization). An ac-parameterization of an L-hidden layer fully-
connected neural network is a choice of scalar exponents (a1, . . . , aL+1), and (c1, . . . , cL+1)
such that for any layer l ∈ [L+ 1],

(i) the learnable weights (i.e., those over which we optimize) are initialized with inde-
pendent standard Gaussian random variables wl

jq(0) ∼ N (0, 1), i.i.d. over (l, j, q), i.e.,

wl(0) = U l with (U l)l∈[L+1] independent random matrices with i.i.d. standard Gaussian
entries,

6

(ii) the learnable biases are initialized independently of the weights, with blj(0) ∼ N (0, 1),

i.i.d. over (l, j), i.e., bl(0) = vl with (vl)l∈[L+1] independent standard Gaussian random

vectors, independent of U l,

(iii) the effective weightsW l(t) used to compute the pre-activations at time t areW l(t) =
m−alwl(t), and the effective biases are Bl(t) = m−albl(t), so that the pre-activations
are

hlt =W l(t)xl−1
t +Bl(t) = m−al

(
wl(t)σ(hl−1

t) + bl(t)
)
, l ∈ [1, L],

and the output is

f(θ(t); ξ) = m−aL+1
(
wL+1(t)Tσ(hLt (ξ)) + bL+1(t)

)
,

(iv) the (t+ 1)-th update of learnable weights and biases is given by the update rules

∆wl(t+ 1) := wl(t+ 1)− wl(t) = −ηm−cl∇wlℓ (yt, f(θ(t); ξt)) ,

∆bl(t+ 1) := bl(t+ 1)− bl(t) = −ηm−cl∇blℓ (yt, f(θ(t); ξt)) ,

where θ(t) =
{
(w1(t), b1(t)), . . . , (wL+1(t), bL+1(t))

}
is the full set of all network param-

eters, (ξt, yt) represent the input(s) and target(s) to the network at step t and η ∈ R∗
+

is the scalar part of the learning rate which does not depend on m and which we call
the base learning rate. We denote by ηl := ηm−cl the full learning rate for layer l.

Remark 2.1.

1. Compared to the definition of (Yang and Hu, 2021), we allow for different values of cl at dif-
ferent layers and remove the redundant initialization scale (the b in abc-parameterizations).
Any abc-parameterization with constant c for all layers (as presented in Yang and Hu,
2021) can be recovered (same effective weights and biases at any time step) with an ac-
parameterization with individual learning rates at each layer via the re-parameterization
al ← al + bl, bl ← 0, cl := c− 2bl.

2. As we study the infinite-width limit m → ∞, we need to consider an infinite number
of random weights at initialization. To this end, we consider for any l ∈ [2, L], two
infinite lists of i.i.d. standard Gaussian variables, independent of each other: (U l

jq)j,q∈N∗

and (vlj)p∈N∗ , and often simply call, by an abuse of notations, U l = (U l
jq)1≤j,q≤m for the

corresponding matrix at width m and vl = (vlj)1≤j≤m the corresponding bias vector at

width m. We proceed similarly at initialization for the input weights U1 and the output
vector UL+1.

3. The (t+1)-th update of the effective weights is given by ∆W l(t+1) :=W l(t+1)−W l(t) =
−ηm−(2al+cl)∇wlℓ(yt, f(θ(t); ξt)), and the update of the effective biases by ∆Bl(t+ 1) :=
Bl(t+ 1)−Bl(t) = −ηm−(2al+cl)∇blℓ(yt, f(θ(t); ξt))

Examples of ac-parameterizations:

NTK parameterization. For the NTK parametrization (Jacot et al., 2018) the scaling
is a1 = 0 for the input layer, and al = 1/2 for all the other layers l ∈ [2, L+ 1]. The scaling
of the learning rates is cl = 0 for all layers. Neural networks in the NTK parametrization
have been shown to behave as kernel methods in the infinite-width limit (Jacot et al., 2018;
Yang, 2020a) and there is no feature learning in that limit.

7

µP. To avoid the lazy training phenomenon arising in the NTK parameterization, Yang
and Hu (2021) propose to adjust the scale of the output layer by setting aL+1 = 1, while
keeping a1 = 0 and al = 1/2 for the intermediate layers l ∈ [2, L]. The learning rates are
appropriately adjusted: cl = −1 for any layer l. With this parameterization, Yang and Hu
(2021) show that feature learning (see Definition B.1 in Appendix B.3 for a precise statement)
occurs at every layer.

Integrable Parameterizations (IPs). The limits investigated in Araújo et al. (2019);
Sirignano and Spiliopoulos (2021); Pham and Nguyen (2020); Weinan and Wojtowytsch
(2020) are associated to a scale multiplier in 1/m for all layers except the first one. This
corresponds to the choice a1 = 0 and al = 1 for l ∈ [2, L + 1]. We choose the adjective
“integrable” in reference to the absolute convergence of sums of the form (1/m)

∑
q xq for

i.i.d. random variables with finite expectation. Integrable parameterizations really refer to a
class of ac-parameterizations, because various choices for the learning rate exponents cl are
admissible.

Naive-IP. In the mean-field literature, integrable parameterizations often come with the
standard learning rates corresponding to c1 = cL+1 = −1 for the input/output layers and
cl = −2 for the intermediate layers l ∈ [2, L], see e.g., (Araújo et al., 2019, Remark 3.4), (Fang
et al., 2020, Algorithm 1), (Weinan and Wojtowytsch, 2020, Lemma 5.1), and (Sirignano and
Spiliopoulos, 2021, Equation 4.3). Mean-field models with these learning rates are the natural
counterparts of the infinite-width limits where sums are replaced by integrals, and we call the
integrable parameterization with this specific choice of learning rates the Naive Integrable
Parameterization.

When L = 1, µP and the Naive-IP coincide. For deeper networks, in the setting of abc-
parameterizations described in (Yang and Hu, 2021), µP and Naive-IP correspond to the
same parameterization (same values for a and c) except that the weights of the intermediate
layers are initialized with a standard deviation of 1/m for Naive-IP instead of 1/

√
m for µP,

that is they are downscaled by 1/
√
m compared to µP. In Section 4.2, we show that there

is also a close relationship between µP and IP with large initial learning rates.
We give below an intuitive explanation for the choice c1 = cL+1 = −1 and cl =

−2 for l ∈ [2, L] for the scaling of the learning rates in Naive-IP. For l ∈ [2, L], we
have hlt = m−1(wl(t)xl−1

t + bl(t)), so that ∇wlft(ξt) = m−1(∇hlft(ξt))(x
l−1
t)

⊺
. In addition

∇wL+1ft(ξt) = xLt /m and ∇w1ft(ξt) = (∇h1ft(ξt))(ξt)
⊺. So for one step of SGD:

∆W 1(t+ 1)ξt+1 = −η∂2ℓ(yt, ft(ξt))(ξt⊺ξt+1)m
−(1+c1)(m∇h1ft(ξt)).

∆W l(t+ 1)xl−1
t+1 = −η∂2ℓ(yt, ft(ξt))m

−(2+cl)
(xl−1

t)
⊺
xl−1
t+1

m
(m∇hlft(ξt)), for l ∈ [2, L]

(∆WL+1(t+ 1))
⊺
xLt+1 = −η∂2ℓ(yt, ft(ξt))m−(1+cl)

(xLt)
⊺
xLt+1

m
.

(2.3)
In addition, from the equations of backpropagation, we get

∇hL
t
ft(ξt) =

1

m
wL+1(t)⊙ σ′(hLt) and ∇hlft(ξt) =

(wl(t))
⊺∇hl+1

t
ft(ξt)

m
⊙ σ′(hlt),

for l ∈ [1, L − 1], so that, by a simple induction, ∇hlft(ξt) = O(1/m) for l ∈ [1, L]. In
addition, the averaged inner products (xl−1

t)
⊺
xl−1
t+1/m in Equation (2.3) converge as m→∞.

This point is somewhat technical and is handled within the framework of the Tensor Program.
The choice of cl in Naive-IP thus ensures that the updates are O(1) when m goes to infinity.

8

We conclude this section by giving the definition of a training routine which consists
in the combination of the base learning rate, the sequence of training samples and a loss
function:

Definition 2.2 (Training routine). A training routine is the list consisting of the base
learning rate η > 0, (al, cl)l∈[L+1] in the ac-parameterization, the loss ℓ and the sequence of
training samples (ξ0, y0), . . . , (ξT−1, yT−1) used to train a network for T steps.

3 Deep Networks with Naive Integrable Parameterization are
Trivial

In this section, we point out that, in the wide limit, neural networks in the Naive-IP remain
at their initial value. We then prove that no choice for the learning rates exponents (cl)l∈[L+1]

which is constant in time can induce non-degenerate learning.

3.1 No learning in Deep Networks with Naive Integrable Parameterization

To start with, we show that the functions learned by networks with more than four layers
in the naive integrable parameterization, as described in prior work (Araújo et al., 2019;
Rotskoff and Vanden-Eijnden, 2019; Fang et al., 2020; Nguyen and Pham, 2020; Weinan and
Wojtowytsch, 2020; Sirignano and Spiliopoulos, 2021), remain at there value at initialization
in the infinite-width limit: they are identically equal to zero at any time step. Our proof of
this result is based on the Tensor Program framework (Yang, 2020b; Yang and Hu, 2021),
which requires some regularity assumptions on the activation function.

Definition 3.1. (Pseudo-Lipschitz functions). A function ψ : Rk → R is pseudo-Lipschitz
of degree p > 0 if there exists a constant K > 0, such that, for any x, y ∈ Rk,

|ψ(x)− ψ(y)|≤ K||x− y||

(
1 +

k∑
r=1

|xr|p+
k∑

r=1

|yr|p
)
.

A function is pseudo-Lipschitz, if it is pseudo-Lipschitz of degree p for some p > 0.

In particular, functions with polynomially bounded weak derivatives are pseudo-Lipschitz.
In the next proposition, we require the activation function σ and its derivative to be pseudo-
Lipschitz.

Assumption 2 (Smooth activation). The activation function σ is differentiable and both σ
and its derivative σ′ are pseudo-Lipschitz and not identically zero.

Proposition 3.1 (Naive-IP is trivial). Let L ≥ 3 and consider the naive integrable parame-
terization of a network with L-hidden layers, and an activation function satisfying Assump-
tion 2 and σ(0) = 0. Then, for any training routine which has a loss satisfying Assumption 1,
the function learned by SGD remains at its value at initialization in the infinite-width limit:

∀ t ≥ 0, ∀ ξ ∈ Rd, lim
m→∞

ft(ξ) = lim
m→∞

f0(ξ) = 0 almost surely.

Remark 3.1.

1. In the above statement, “almost surely” is relative to the randomness of the initialization.

9

2. The smoothness Assumption 2 on σ is met by common activation functions such as
GeLU (Hendrycks and Gimpel, 2016), ELU (Clevert et al., 2016), tanh and the sig-
moid activations, but it excludes ReLU and all the other variants of Leaky ReLU. This
assumption is required to apply (Yang and Hu, 2021, Theorem 7.4) (which we recall in Ap-
pendix B.2) which is the main theoretical result of the Tensor Program series (Yang, 2019,
2020a,b; Yang and Hu, 2021), but the result is likely to hold with weaker assumptions, as
observed numerically in Section 6, and we leave this for future work.

3. The assumption σ(0) = 0 is met by the activation functions mentioned above (except the
sigmoid) and is necessary to prove that the network does not move at any layer. Without
this assumption, learning is degenerate but not trivial at all layers. It is trivial at step
t = 1 at all layers except the last two: the coordinates of hL1 and f1(ξ) converge, with m,
to quantities which are not 0 but which are independent of the input ξ to the network,
similarly to the effect described in Section 5.2.

The proof of Proposition 3.1, presented in Appendix D, proceeds by induction over t to show
that the forward and backward passes vanish at any time step. For any time t, we proceed
again by induction over l (from l = 1 to l = L+ 1 for the forward pass and from l = L+ 1
to l = 1 for the backward pass) to prove this vanishing occurs given the magnitudes of
the previous forward and backward passes. The informal idea of the proof is the following:
essentially, the multiplications of the activation vectors by m−1/2U l yield vectors whose
coordinates are distributed as a Gaussian with finite variance as m → ∞ for l ≥ 2 (see
Appendix B.1.1 for more details). At initialization, since wl(0) = m−1U l for l ≥ 2 for IPs,
the coordinates of hl0 converge towards 0 as fast as m−1/2 and that of xl0 towards σ(0) for
σ continuous at 0. For the same reasons, f0(ξ0) converges to 0. In the first backward pass,
multiplications by (W l(0))

⊺
also yield vectors whose coordinates are in O(m−1/2). In contrast

to the forward pass, these scales propagate from l = L to l = 1 and thus compound with
depth, and since the last layer’s gradient xL0 /m is in O(m−1), all the gradients’ coordinates
vanish as m → ∞ and there is no learning. This reasoning can be repeated at later time
steps as there are no correlations between the initial weight matrices and the vectors they
multiply because of the degeneracy of the (pre)-activations (their coordinates become equal
to the constant σ(0) as m → ∞). Those informal calculations are made rigorous by the
Tensor Program.

Proposition 3.1 shows that the parameters of neural networks in the integrable parame-
terization are stuck in a stationary point of the objective function in the infinite-width limit,
and no learning occurs. It might appear obvious that using larger learning rates to correct
the scale with m of the weight updates can avoid this pitfall, but as discussed in the following
Section 3.2—where we study which choices of learning rates can lead to stable learning with
homogeneous activation functions—the issue is more subtle.

3.2 No stable learning with learning rates constant over time

As m grows, to compensate the vanishing gradients in the first SGD step, one can use
larger learning rates than in the Naive-IP. Yet, as explained below, exponents (cl)l∈[L+1] for
the learning rates which allow to escape the stationary point at initialization will induce
an explosion of the pre-activations, if the same values of the exponents are used in the
subsequent gradient steps. Indeed, the next informal statement of Theorem 3.2 shows that,
with IPs, one cannot have non-trivial and stable learning with learning rate scales cl constant
in time.

Theorem 3.1 (Informal). Consider an L-hidden layer fully-connected neural network with
L ≥ 3 in the integrable parameterization. Assume that the contributions of the first and

10

second updates ∆W l(1)xl−1
1 and ∆W l(2)xl−1

2 are non-vanishing and non-exploding with m
at every layer l. Then, the learning rates scales cl cannot have the same value at t = 0 and
t = 1.

In a nutshell, one needs large learning rates to escape the initial stationary point, but keeping
those initial values at later time steps would make the pre-activations blow-up as m → ∞.
The formal version of the previous Theorem 3.1 is given in Theorem 3.2 below. For this
formal statement, we introduce some definitions and assumptions.

Assumption 3 (Smooth non-negative homogeneous activation). The activation function
σ is non-negative, not identically zero and it is positively p-homogeneous with p ≥ 2, i.e.,
σ(λz) = λpσ(z) for any λ > 0 and z ∈ R. Additionally, σ has faster growth on the positive
part of the real line: ∃z > 0 s.t. σ(z) > σ(−z).

Remark 3.2.

1. While the homogeneity assumption is core to the calculation of scales with integrable
parameterization, the fact that p ≥ 2, and that σ is non-negative and has faster growth
on the positive part of the real line are simply here to avoid cumbersome technical
difficulties in the proofs. It is clear that ReLUp satisfies Assumption 3 for any p ≥ 2.

2. With the assumption that p ≥ 2, σ also satisfies Assumption 2, so that the rules of the
Tensor Program can be applied.

Definition 3.2 (Scales of first updates with homogeneity). Let p > 0. We define the
following exponents:

γ1(p) = γL+1(p) = −
1

2

(
1 +

L−1∑
k=0

pk

)
,

and γl(p) = −1−
1

2

L−1∑
k=0

pk, for l ∈ [2, L].

Theorem 3.2 (Formal version). Consider an L-hidden layer fully-connected neural network
with L ≥ 3 in the integrable parameterization, and with no bias terms, except for the first
layer. Assume that the activation function σ satisfies Assumption 3, the loss ℓ satisfies
Assumption 1 and that limm→∞ ∂2ℓ(y0, f0(ξ0)) ̸= 0, and limm→∞ ∂2ℓ(y1, f1(ξ1)) ̸= 0 almost
surely. Assume further that ξ0, ξ1, ξ2 ∈ Rd are all distinct vectors such that ξ⊺0ξ1 ̸= 0 and
ξ⊺1ξ2 ̸= 0. Finally assume that:{

1
m ||∆W

l(1)xl−1
1 ||2= Θ(1), l ∈ [1, L]

(∆WL+1(1))
⊺
xL1 = Θ(1)

(3.1)

and {
1
m ||∆W

l(2)xl−1
2 ||2= Θ(1), l ∈ [1, L]

(∆WL+1(2))
⊺
xL2 = Θ(1)

(3.2)

Then, one necessarily has that:

(i) at t = 0, cl = γl(p) for any l ∈ [1, L+ 1] (see Definition 3.2),

(ii) at t = 1, c1 = cL+1 = −1, and cl = −2 for l ∈ [2, L].

11

Let us comment briefly on the hypotheses of Theorem 3.2. The proof of Theorem 3.2
relies on an analysis of the SGD steps involving both (Yang and Hu, 2021, Theorem 7.4) and
the homogeneity property of the activation function. The requirement that p ≥ 2 allows to
satisfy the smoothness assumption of (Yang and Hu, 2021, Theorem 7.4) and the removal of
the bias terms allows to fully exploit homogeneity. In Section 6, we numerically check that
the result still holds with σ = ReLU, which is p = 1 homogeneous. The corresponding scales
for the learning rates in the ReLU case are γ1(1) = −(L + 1)/2, γl(1) = −(L + 2)/2 and
γL+1(1) = −(L+ 1)/2.

We give below an informal explanation for the values of the learning rates appearing in
Theorem 3.2 in the case of a positively 1-homogeneous activation function. As previously
mentioned in Section 3.1, each multiplication by W l(0) = m−1U l or its transpose yields a
factor in m−1/2 for l ≥ 2. Because of the homogeneity property, this scale propagates from
layer to layer starting from layer 2, and the coordinates of hl0 and x

l
0 are thus in Θ(m−(l−1)/2)

for l ∈ [1, L]. For the backward pass, the first gradient ∇xLf0(ξ0) = UL+1/m has coordinates
in Θ(m−1), and, as already discussed in Section 3.1, from l = L to l = 2, each multiplication
by (W l(0))

⊺
yields an additional factor in m−1/2 and those compound with depth so that

the coordinates of ∇hlf0(ξ0) are in Θ(m−1m−(L−l)/2). Therefore, calling x̃l0 := m(l−1)/2xl0,
and dh̃l0 := m1+(L−l)/2∇hlf0(ξ0), we have after the first weight update

∆W 1(1)ξ1 = −η∂2ℓ(y0, ft(ξ0))(ξ0⊺ξ1)m−c1m−(L+1)/2dh̃10,

∆W l(1)xl−1
1 = −η∂2ℓ(y0, f0(ξ0))m−clm−2m−(L−l)/2−(l−2)/2 (x̃

l−1
0)

⊺
xl−1
1

m
dh̃l0, l ∈ [2, L],

(∆WL+1(1))
⊺
xL1 = −η∂2ℓ(y0, f0(ξ0))m−clm−1m−(L−1)/2 (x̃

L
0)

⊺
xL1

m
.

Since dh̃l0 and x̃l0 have coordinates in Θ(1) by design, and since averaged inner products of
the type (x̃l−1

0)
⊺
xl−1
1 /m converge to finite expectations (by the rules of the Tensor Program,

see Yang and Hu, 2021, Theorem 7.4), we see that the choice c1 = −(L+1)/2, cl = −(L+2)/2
for l ∈ [2, L], and cL+1 = −(L + 1)/2 is the only way to ensure that the updates induce
contributions which have coordinates in Θ(1) at t = 1. Given this choice for the learning
rate scales c1, . . . , cL+1 at t = 0, we readily get that the coordinates of hl1 and xl1 are in Θ(1)
because the contributions W l(0)xl−1

1 have coordinates in O(m−1/2) for intermediate layers,
and in O(1) for the input and output layers. From the Equations (2.3) with t = 1, we see that
for the second gradient step, m∇hlf1(ξ1) has coordinates in Θ(1) because the multiplications
by (W l(1))

⊺
do not yield a factor in m−1/2 due to the scale correction introduced in the first

update. At t = 1, this leads to the choice c1 = cL+1 = −1, and cl = −2 for l ∈ [2, L], in order
to have update contributions with coordinates in Θ(1) at t = 2. These informal calculations
are made rigorous in the proof of Theorem 3.2 using the Tensor Program (Yang, 2020b).

4 Large Initial Learning Rates Induce Learning

In this section, we show that with positively homogeneous activation functions, using large
initial learning rates (polynomial in m) allows the network to escape from the initial station-
ary point and to initiate a non-trivial training phase in the infinite-width limit. Because we
use the homogeneity property extensively for our results, in all this section, as in Section 3.2,
we consider a version of integrable parameterizations where the bias terms are removed
except for the first layer.

As observed in Section 3.2, beyond the fact that IPs require large learning rates (for the
first gradient step) to be trained, one crucial characteristic of IPs is that no choice of learning
rate scales (cl) which are constant in time can induce a favorable learning behavior: one has

12

to first use large learning rates to escape the stationary point at initialization (t = 0) and
then revert to the Naive-IP learning rates for t ≥ 1 to induce stable learning.

Definition 4.1 (IP with large initial learning rates). Let σ be a positively p-homogeneous
activation function with p > 0. We define the integrable parameterization with large ini-
tial learning rates (IP-LLR) as the integrable parameterization of an L-hidden layer fully
connected-network with activation σ such that:

(i) At t = 0: cl = γl(p), for l ∈ [1, L+ 1];

(ii) At t ≥ 1: c1 = cL+1 = −1 and cl = −2, for l ∈ [2, L],

where the values of the γl(p) are given in Definition 3.2.

Remark 4.1.

1. The definition means that ∆wl(1) = −ηm−γl(p)∇wlℓ(y0, f0(ξ0)) for the first weight
update after the forward-backward pass at time t = 0, and for t ≥ 1, the (t + 1)-th
weight update is ∆wl(t+ 1) = −ηm−2∇wlℓ(yt, ft(ξt)) for l ∈ [2, L], and ∆w1(t+ 1) =
−ηm−1∇w1ℓ(yt, ft(ξt)), ∆w

L+1(t + 1) = −ηm−1∇wL+1ℓ(yt, ft(ξt)) after the forward-
backward pass at time t.

2. We give the definition with an arbitrary degree of homogeneity p (the values of the γl(p)
are given in Definition 3.2) as for some theorems where we use the Tensor Program for
the proof, we need sufficient smoothness of the activation function, which is achieved
only when p ≥ 2, but we always use σ = ReLU (which corresponds to p = 1) in
our informal derivations and numerical experiments. Note that since the values of
c1, . . . , cL+1 at t = 0 depend on p, the definition of an IP-LLR parameterization also
implicitly depends on the degree of homogeneity p.

3. Since a1 = 0 for IPs, we leverage the homogeneity property only for layers l ∈ [2, L]
(see Appendix F.2 for more details), so that we might as well assume L ≥ 2 whenever
we study IP-LLR.

4.1 Non-trivial and Stable Learning for Integrable Parameterizations

Theorem 4.1 (Non-trivial and non-exploding learning of IP-LLR). Consider the IP-LLR
parameterization of an L-hidden layer neural network with no bias terms, except for the
first layer, and with an activation function σ satisfying Assumption 3 and a loss function ℓ
satisfying Assumption 1. Let ξ ∈ Rd be an input to the network, and assume ∂2ℓ(y0, 0) ̸= 0.
Then, one has:

(i) f0(ξ)
a.s.−−−−→

m→∞
0.

(ii) f1(ξ)
a.s.−−−−→

m→∞

◦
f1(ξ), 0 < |

◦
f1(ξ)|<∞ a.s.

(iii) f2(ξ)
a.s.−−−−→

m→∞

◦
f2(ξ), |

◦
f2(ξ)|<∞ a.s.

Remark 4.2.

1. We show in our numerical experiments (see Section 6) that with σ = ReLU (i.e., p = 1),
the choice of learning rates for IP-LLR is indeed able to induce learning for networks
deeper than four layers without creating instabilities.

13

2. A similar result could be obtained with more general assumptions on the activation func-
tion σ, namely that σ is twice differentiable almost everywhere and that σ(0) = 0 and
σ′(0) ̸= 0 (which is the case for many activation functions such as GeLU, ELU, tanh),
but at the cost of a more technical proof. The idea in this case is that because of the
scaling in 1/m which makes the forward pass vanish at initialization, one can recover the
homogeneity property by linearizing σ around 0: σ(h) ≃ σ′(0)h. This linearization also
provides the right value |σ′(0)|−1 for the standard deviation of the initial Gaussians in
order to avoid vanishing or explosion at initialization with the depth L. See more details
in Remark F.3.

3. For positively p-homogeneous activations with p ≥ 2, we have σ′(0) = 0 and the behavior
of the network is inherently different from that of a network where the first forward pass
can effectively be linearized (the setting described in the previous point). This difference
appears clearly in the numerical experiments presented in Section 6 where we also discuss
the reasons for such a qualitatively different behavior.

4. In IP-LLR, the initial gradient direction will be determined by the first sample (ξ0, y0)
fed to the network. To avoid giving too much importance to a single sample, one can in
practice average the gradients over a batch of many training samples instead, which is
what we do in our numerical experiments in Section 6.

The idea of the proof essentially lies in the informal calculations of Section 3.2 which are
made rigorous using the framework of the Tensor Program. Point (ii) stems from the fact
that at t = 1, the output is the difference between two expectations in the limit m → ∞,
which can both be shown to be different from 0 and of opposite signs.

4.2 IP-LLR is a Modified µP

In this section, we analyze the behavior of IP-LLR more in detail and show that this model
is actually equivalent to a modification of µP where the initial weights are removed from
the first weight update for all of the intermediate layers. We first show an equivalence
at finite-width in Section 4.2.1 with mild assumptions, and then extend those results to
the infinite-width limit in Section 4.2.2 with slightly more restrictive assumptions on the
activation function σ. Since we study the IP-LLR parameterization, we consider positively
p-homogeneous activation functions, and only the degree of homogeneity allowed will vary
between Sections 4.2.1 and 4.2.2. In short, the main idea behind this equivalence is that
since IP-LLR and µP are both designed to have maximal update contributions at t = 0,
they will induce the same update at initialization, and the only difference at later time steps
is that the initial weights of IP-LLR contribute vanishingly to the pre-activations whereas
those of µP contribute in Θ(1).

4.2.1 Finite-Width Equivalence

As explained in Section 2.2 in the examples of ac-parameterizations, from the point of view
of abc-parameterizations (see Yang and Hu, 2021), both µP and Naive-IP follow the same
training procedure for the effective weights W l, the only difference being the standard de-
viation at initialization which is downscaled by 1/

√
m for Naive-IP compared to µP. In

this regard, since IP-LLR is a modification of Naive-IP where large learning rates are used
at initialization, it comes as no surprise that the learning dynamics of IP-LLR and µP are
closely related. We detail this relationship in this section.

Recall that for µP one has W 1
µP(0) = U1, W l

µP(0) = m−1/2U l for l ∈ [2, L], and

WL+1
µP (0) = m−1UL+1 whereas for any integrable parameterization, one has W 1

IP(0) = U1,

14

W l
IP(0) = m−1U l for l ∈ [2, L + 1]. Consider the following hybrid parameterization (HP)

which consists in training with the maximal update parameterization µP all along, but sim-
ply replacing, for all intermediate layers l ∈ [2, L], the first update W l(1) =W l(0)+∆W l(1)
by W l(1) = m−1U l + ∆W l(1). In other words, this simply consists in using the weight
pre-factors of µP for the intermediate layers in the initial forward and backward passes, and
then using the pre-factors from IP for the initial weights of the intermediate layers in any
subsequent update.

Proposition 4.1 (Finite width equivalence between IP-LLR and HP). Consider the IP-
LLR and HP parameterizations with a p-homogeneous activation function σ with p ≥ 1
and without any bias term except at the first layer. Let us sub/super-script the variables
of each model with IP and HP respectively. Assume the full sequence of training samples
(ξ0, y0), . . . , (ξs, ys), . . . and the loss ℓ are the same for both parameterizations. Assume
further that ∂2ℓ(y0, f

HP
0 (ξ0)) ̸= 0, and denote by η the base learning rate of the IP-LLR

parameterization. Finally consider the following schedule for the base learning rate of HP:

ηHP(0) =
∂2ℓ(y0, f

IP
0 (ξ0))

∂2ℓ(y0, fHP
0 (ξ0))

η,

ηHP(s) = η, s ≥ 1.

Then one has:

∀t ≥ 1, ∀ξ ∈ Rd, fHP
t (ξ) = f IPt (ξ).

The proof, presented in Appendix J.1, simply shows inductively that the effective weight
matrices for both models are equal for all t ≥ 1. Since the Tensor Program is not needed
here as we consider only finite-width networks, we can work with any positively homogeneous
activation function (not necessarily smooth, so that p = 1 is not precluded).

4.2.2 Infinite-Width Equivalence

Similarly to HP, we now consider another hybrid parameterization where the initial weights
W l(0) are simply replaced by 0 in the first update of the intermediate layers. We thus
consider the following hybrid parameterization with zero re-initialization (HPZ): we train
with µP all along, but simply replace, for all intermediate layers l ∈ [2, L], the first update
W l(1) =W l(0)+∆W l(1) by W l(1) = ∆W l(1). In other words, this simply consists in using
the weight pre-factors of µP for the intermediate layers in the initial forward and backward
passes, and then forgetting the contribution of the initial weights of the intermediate layers
in any subsequent update. As already discussed in Section 3.1, the contribution of the initial
weights of the intermediate layers m−1U l vanishes as m→∞ for IP, so that HPZ is simply
the infinite-width equivalent of HP.

Theorem 4.2 (HPZ and IP-LLR are equivalent). Consider the IP-LLR and HPZ parame-
terizations with a p-homogeneous activation function σ with p ≥ 2, and with no bias terms
except at the first layer. Let us sub/super-script the variables of each models with IP and
HPZ respectively. Assume that the training routine is the same for both parameterizations,
and assume further that the loss ℓ satisfies Assumption 1. Then, one has:

∀t ≥ 0, ∀ξ ∈ Rd, lim
m→∞

fHPZ
t (ξ) = lim

m→∞
f IPt (ξ) almost surely.

The proof, presented in Appendix J.2, proceeds by induction to show that the quantities
appearing in the forward and backward passes at every layer are the same for both models

15

at every time step in the infinite-width limit. We use the Tensor Program framework for
this proof so we need smoothness of σ (p ≥ 2) for this result.

In essence, Theorem 4.2 shows that the IP-LLR parameterization is equivalent to µP where
we simply forget the initialization after the first forward and backward passes. Said dif-
ferently, IP-LLR is the same as µP, except that IP-LLR re-initializes the weights of the
intermediate layers l ∈ [2, L] at t = 1 with W l(1) = ∆W l(1), i.e., with the first update
computed after the first forward-backward pass. It is not entirely clear whether forgetting
the initial weights in one step is beneficial or detrimental to learning. On the one hand, it
would seem like forgetting the random initialization could make the network learn faster and
be more robust to perturbations (but this is only speculative at this point, and we leave this
open for future work), on the other hand the large rank of the initial weight matrices with
i.i.d. Gaussian entries might increase the stability of the training dynamics. In other words,
while the randomness from initialization propagates to every layer at every times step for
µP, it is forgotten in one step of SGD for IP-LLR in the infinite-width limit. We explore
the comparative performance of µP and IP-LLR in Section 6 but there appears to be no
clear-cut indication towards one model or the other.

Another interesting difference between IP-LLR and µP is that for any intermediate layer
l ∈ [2, L], while (W l

jq(t)−W l
jq(0))/W

l
jq(0) = Θ(m−1/2) for µP, so that the effective weights

only move infinitesimally (in the infinite-width limit) relatively to their initial values, we
have (W l

jq(t) − W l
jq(0))/W

l
jq(0) = Θ(1) for IP-LLR so that the effective weights actually

move in the infinite-width limit (see more details in Remark F.6).

5 Alternative Methods for Escaping the Initial Stationary
Point

As discussed in Section 4, using large initial learning rates in combination with a positively
homogeneous activation function allows escaping the initial stationary point and induces
stable learning. In this section, we introduce two alternatives to escape this initial station-
ary point and discuss the properties of the resulting models. In contrast to the setting of
Section 4, in all this section, we consider IPs with bias terms at every layer.

A first alternative to escape the initial stationary point, which we discuss in Section 5.1,
is to simply initialize the weight matrices with i.i.d. Gaussian distributions which are not-
centered around 0, as suggested by Nguyen and Pham (2020). This method is able to escape
the stationary point without large initial learning rates and without any homogeneity as-
sumption on the activation function. It turns out that the computations in that setting
are well described within the Tensor Program framework and we show that, as highlighted
in (Nguyen and Pham, 2020, Corollary 37), a collapse phenomenon occurs, where all the indi-
vidual entries in the weight matrix of an intermediate layer evolve by the same deterministic
quantity in the infinite-width limit.

Another alternative is to remove the pre-factor m−1 in front of the bias terms of layers
l ≥ 2. Indeed, as observed in Section 3.1, the vanishing of the forward pass and the weight
updates in integrable parameterizations is mostly due to the multiplications by the weight
matrices m−1U l which results in pre-activations whose coordinates are Θ(m−1/2) for l ∈
[2, L]. Since the bias terms are decoupled from the input to the layer, re-scaling them
appropriately avoids vanishing of the forward pass for IPs. Escaping the initial stationary
point can then be achieved without any homogeneity assumption on the activation function
σ. However, one issue which arises then is that the bias terms have the dominant contribution
to the pre-activations, and since the input signal propagates through the network via the
weight multiplications, the output of the trained network is only “weakly” dependent on its

16

input and the training data. Let us now study in more details these two alternatives.

5.1 Using Non-Centered i.i.d. Initialization

In this section, we consider the following modified version of IPs which we call IP-non-
centered : the forward pass is computed exactly as in IPs but the weight matrices of layers
l ≥ 2 are initialized with wl

jq(0) = U l
jq + ul ∼ N (ul, 1) i.i.d. over (j, q) with ul ̸= 0. This

simply consists in setting wl(0) = U l+ulJ for l ∈ [2, L] and wL+1(0) = UL+1+uL+11 where
J is the square matrix full of ones (whose variable size is the same as U2 and thus equal
to m) and 1 is the vector (of variable size equal to m) full of ones. As we will see shortly,
the effect of this type of initialization is similar to removing the pre-factor in m−1 on the
bias terms in that the vanishing of the matrix multiplications m−1U lxl−1

t is offset by the
appearance of an additional term in the expression of hlt whose coordinates are all equal and
depend on the input data.

5.1.1 First forward Pass

As for any IP, h10 is a Gaussian vector with i.i.d. coordinates following N (0, ||ξ||2+1) at any
width, and for the second layer we have

h20 = m−1(U2x10 + v2) + u2m
−1Jx10.

The coordinates of m−1Jx10 are all equal to (1/m)
∑m

q=1 σ(h
1
0,q), which converges almost

surely, by the law of large numbers, towards E[σ(Z1)] where Z1 ∼ N (0, ||ξ||2+1). When σ =
ReLU this expectation is tractable as shown in Appendix M and equal to

√
(||ξ||2+1)/(2π).

On the other hand, the coordinates of m−1(U2x10 + v2) simply converge to 0. The term
u2m

−1Jx10 thus offsets the vanishing of the term m−1(U2x10 + v2). In the infinite-width
limit, we thus have that x20,j ≃ σ(u2E[σ(Z1)]) for any j ∈ [1,m]. We thus already see

that the coordinates of h20 all converge almost surely to the same deterministic constant
C2 = u2E[σ(Z1)] and the coordinates of x20 towards σ(C2).

Degeneracy in intermediate layers. An easy induction gives that for any l ∈ [2, L], for
any coordinate j, and for large m

hl0,j ≃ ulσ (ul−1σ (. . . σ (u2E [σ (Z1)]))) =: Cl, (5.1)

xl0,j ≃ σ (ulσ (ul−1σ (. . . σ (u2E [σ (Z1)])))) = σ(Cl),

so that the coordinates of the (pre-)activations of any intermediate layer are all equal to
the same deterministic constant for large m. Finally, the output of the first forward pass is
f0(ξ) = m−1((UL+1)

⊺
xL0 +v

L+1)+uL+1(1/m)
∑m

q=1 x
L
0,q and converges almost surely towards

the constant uL+1σ (uLσ (. . . σ (u2E [σ (Z1)]))) (this is made rigorous within the framework
of the Tensor Program).

If σ = ReLU we see that to avoid vanishing of the first forward pass, one must set
ul > 0 for l ∈ [2, L], and we then get that the coordinates of hl0 are roughly all equal to
ulul−1 . . . u2

√
(||ξ||2+1)/(2π). This suggests that to avoid vanishing or explosion with the

depth L, one should set ul = 1 for l ∈ [2, L].

5.1.2 First Backward Pass

We show here that the same degeneracy as in the first forward pass is also at play in the
first backward pass. We have ∇xLf0(ξ0) = WL+1(0) = m−1(UL+1 + uL+11), so that the
coordinates of m∇xLf0(ξ0) are not deterministic in the infinite-width limit and simply follow

17

N (uL+1, 1) i.i.d. We have m∇hLf0(ξ0) = m∇xLf0(ξ0)⊙σ′(hL0) and as shown in Section 5.1.1
the coordinates of hL0 are roughly all equal to the same constant for large m, so that the
coordinates of m∇hLf0(ξ0) are in Θ(1).

Degeneracy for layers l ∈ [1, L− 1]. Using the equations of backpropagation, we have

m∇xL−1f0(ξ0) = m−1(UL)
⊺
(m∇hLf0(ξ0)) + uLm

−1J(m∇hLf0(ξ0)).

The multiplication bym−1(UL)
⊺
yield a vector whose coordinates converge to 0, and the coor-

dinates ofm−1J(m∇hLf0(ξ0)) are all equal to (1/m)
∑m

q=1 dh̃
L
0,q where dh̃

L
0 := m∇hLf0(ξ0) =

m∇xLf0(ξ0) ⊙ σ′(hL0). We thus have that (1/m)
∑m

q=1 dh̃
L
0,q converges almost surely to the

constant uL+1σ
′(CL), where CL is defined in Equation (5.1). Because m∇hL−1f0(ξ0) =

m∇xL−1f0(ξ0)⊙σ′(hL−1
0), we get that the coordinates of m∇hL−1f0(ξ0) are roughly all equal

to the constant uL+1uLσ
′(CL)σ

′(CL−1) for large m. An easy induction then yields that for
any l ∈ [1, L− 1], and for any coordinate j

dx̃l0,j ≃ uL+1 . . . ul+1σ
′(CL) . . . σ

′(Cl+1),

dh̃l0,j ≃ uL+1 . . . ul+1σ
′(CL) . . . σ

′(Cl),

as m → ∞, where dx̃l0 := m∇xlf0(ξ0), dh̃
l
0 := m∇hlf0(ξ0), and Cl is defined in Equa-

tion (5.1). Note that all the Cl depend on ξ0 through Z1 ∼ N (0, ||ξ0||2+1), and the coordi-
nates of m∇hlf0(ξ0) are in Θ(1) for all l ∈ [1, L]. Again, the products of ul which appear
in the backward pass strongly suggest setting ul = 1 for any l ∈ [2, L] to avoid issues with
increasing depth L.

5.1.3 First parameter updates

Now that we have described the first forward and backward passes, we can give the formulas
for the first weight updates of IP-non-centered. We have:

∆W 1(1) = −ηm−(1+c1)∂2ℓ(y0, f0(ξ0))(m∇h1f0(ξ0))ξ
⊺
0

∆B1(1) = −ηm−(1+c1)∂2ℓ(y0, f0(ξ0))(m∇h1f0(ξ0))

∆W l(1) = −ηm−(2+cl)∂2ℓ(y0, f0(ξ0))
(m∇hlf0(ξ0))(x

l−1
0)

⊺

m
, l ∈ [2, L]

∆Bl(1) = −ηm−(3+cl)∂2ℓ(y0, f0(ξ0))(m∇hlf0(ξ0)) l ∈ [2, L]

∆WL+1(1) = −ηm−(1+cL+1)∂2ℓ(y0, f0(ξ0))
xL0
m
,

∆BL+1(1) = −ηm−(2+cL+1)∂2ℓ(y0, f0(ξ0)).

Choice of learning rates and update contributions. To ensure non-vanishing and
non-exploding updates for both the weights and the bias terms, one must choose different
learning rate exponents cl for the weights and for the bias terms for layers l ≥ 2. To make
things simpler, we simply choose cl = −2 for l ∈ [2, L] and c1 = cL+1 = −1 (which are the
learning rates of Naive-IP) for both the weights and the bias terms, which implies that the
updates of the bias terms contribute vanishingly to the second forward pass as m → ∞ for
layers l ∈ [2, L+ 1], but this is offset by the non-centered initialization.

18

Degeneracy of the weight updates. With the choice of learning rate exponents of the
Naive-IP, all the entries of ∆wl(1) are equal to the same deterministic constant for large m
for l ∈ [3, L− 1]. In other words, for those layers l ∈ [3, L− 1], there is a collapse to a single
parameter per layer (since the contribution of the centered initialization vanishes for largem)
which evolves by a deterministic quantity. We recover a result proved by Nguyen and Pham
(2020) (see Nguyen and Pham, 2020, Corollary 37). In Section 3.1 and Proposition 3.1, we
have additionally shown that this translation is 0 when the i.i.d. initialization is centered
around 0. In fact, a slightly more precise statement can be made: although the coordinates
of ∆w2(1) dot not become equal to deterministic constants for large m, the coordinates
of ∆W 2(1)x11 all become equal to the same deterministic constant in the large-width limit
because the term (x10)

⊺
x11/m converges to a finite expectation.

5.1.4 Collapse to Deterministic Dynamics

Repeating the same calculations as in Sections 5.1.1 and 5.1.2 shows that the choice of
learning rate exponents as in Naive-IP (see Section 2.2), i.e., c1 = cL+1 = −1, and cl = −2
for l ∈ [2, L] leads to non-vanishing and non-exploding updates for the weights at any time
step for IP-non-centered, and deterministic dynamics as summarized in the following informal
theorem:

Theorem 5.1 (Informal). Consider IP-non-centered with the Naive-IP learning rates at
every time step, and let t ≥ 0 and ξ ∈ Rd be an input to the network. Then, one has that:

(i) for any l ∈ [2, L − 1], the coordinates of hlt (resp. xlt) all converge to the same deter-
ministic constant,

(ii) for any l ∈ [2, L− 1], the coordinates of m∇xl
t
ft(ξt) (resp. m∇hl

t
ft(ξt)) all converge to

the same deterministic constant,

(iii) for any l ∈ [3, L − 1], the entries of (W l(t) −W l(0)) all converge to the same deter-
ministic constant.

The rigorous version of this theorem, and its proof, formalized within the framework of
the Tensor Program, are presented in Appendix K.2.

5.2 Not Scaling the Bias Terms

In this section, we consider a version of IPs where we remove the pre-factor 1/m for the bias
terms of layers l ≥ 2. We thus consider the following computations in the forward pass:

h1t = w1(t)ξ + b1(t),

hlt =
(
m−1wl(t)xl−1

t

)
+ bl(t), l ∈ [2, L]

ft(ξ) =
(
m−1(wL+1(t))

⊺
xLt

)
+ bL+1(t),

(5.2)

which in other terms simply means that Bl(t) = bl(t) for l ∈ [1, L + 1]. We use the same
initialization for the bias terms as in IPs: bl(0) = vl for l ∈ [1, L + 1], where the entries
of vl are i.i.d. following N (0, 1). We call IP-bias the modified version of the integrable
parameterization described by Equations (5.2).

19

Gaussian first forward pass. For the first forward pass we have that the pre-activation of
the first layer h10 is the same as in IPs at initialization and thus has i.i.d. Gaussian coordinates.
On the other hand, hl0 ≃ bl(0) = vl ∼ N (0, 1) as m→∞, so that the coordinates of the pre-
activations of all the intermediate layers now behave as standard Gaussians in the large-width
limit. Note that in contrast to IP-non-centered, the coordinates of hl0 do not depend on
the input data for l ≥ 2 in the large-width limit. Similarly, we have f0(ξ) ≃ vL+1 ∼ N (0, 1)
(which does not depend on the input ξ) as m→∞.

First parameter updates. The first backward pass still vanishes as in integrable pa-
rameterizations because of the multiplications by (W l(0))

⊺
= m−1/2(m−1/2U l). Indeed, we

have ∇xLf0(ξ) = WL+1(0) = m−1UL+1, and ∇hLf0(ξ) = m−1UL+1 ⊙ σ′(hL0), so that the
coordinates of ∇xLf0(ξ) and ∇hLf0(ξ) are in Θ(m−1). For l ∈ [1, L − 1], we have that
m∇xlf0(ξ) = m−1/2

(
m−1/2(U l+1)

⊺)
(m∇hl+1f0(ξ)), and an easy induction shows that the

coordinates of ∇xlf0(ξ) and ∇hlf0(ξ) are in Θ(m−1m−(L−l)/2) for any l ∈ [1, L]. Note that
as in the forward pass, the backward pass at t = 0 also does not depend on the first training
input input ξ0 except for ∇h1f0(ξ0). We get the following formulas for the first weight and
bias updates at t = 0:

∆W 1(1) = −ηm−c1∂2ℓ(y0, f0(ξ0))(∇h1f0(ξ0))ξ
⊺
0 ,

∆B1(1) = −ηm−c1∂2ℓ(y0, f0(ξ0))∇h1f0(ξ0),

∆W l(1) = −ηm−(2+cl)∂2ℓ(y0, f0(ξ0))
(m∇hlf0(ξ0))x

l−1
0

m
, l ∈ [2, L],

∆Bl(1) = −ηm−cl∂2ℓ(y0, f0(ξ0))∇hlf0(ξ0)), l ∈ [2, L],

∆WL+1(1) = −ηm−(1+cL+1)∂2ℓ(y0, f0(ξ0))x
L
0 /m,

∆BL+1(1) = −ηm−cL+1∂2ℓ(y0, f0(ξ0)).

(5.3)

Initial learning rates. Because the backward pass vanishes in the infinite-width limit,
the learning rate exponents cl still need to be chosen carefully in order to escape the initial
stationary point. However, the two following points stand out: (1) because the first forward
pass does not vanish as in the Naive-IP, the choice of cl does not require any homogeneity
property, and needs not be as large (in absolute value) as for IP-LLR (see the values in
the case p = 1 in the comment after Theorem 3.2); (2) Because we removed the pre-factor
m−1 from the bias terms, ∆W l(1) and ∆Bl(1) do not have compatible magnitudes, which
suggests setting a separate learning rate exponent ϵl for the bias terms, different from cl for
layers l ∈ [2, L + 1], in order to have non-trivial updates for both the weights and the bias
terms. In light of the previous comment and of the update formulas of Equations (5.3), we
set, at t = 0, the learning rate exponents for the weights to

c1 = −1− (L− 1)/2 = −(L+ 1)/2,

cl = −2− (L− l)/2 = −(L− l + 4)/2,

cL+1 = −1,
(5.4)

and for the bias terms to
ϵ1 = c1 = −(L+ 1)/2,

ϵl = −(L− l + 2)/2,

ϵL+1 = 0.

(5.5)

One may compare the learning rates exponents for the weights with those of IP-LLR with
a degree of homogeneity p = 1, which are c1 = cL+1 = −(L + 1)/2, and cl = −(L + 2)/2,
where the absolute value of the exponent does not decrease with the layer l for intermediate

20

layers. Even when the learning rates are appropriately scaled as in Equations (5.4) and (5.5),
∆W l(1) does not depend on the first training input for l ∈ [2, L+1]. We thus get the following
informal theorem, whose formal version within the framework of the Tensor Program is given
in Appendix K.1.

Theorem 5.2 (Informal). Consider the IP-bias as in Equations (5.2), with the initial learn-
ing rates as in Equations (5.4) and (5.5). Then, for any input ξ ∈ Rd to the network,
hl0(ξ), x

l
0(ξ) for l ≥ 2, and f0(ξ) do not depend on ξ in the limit m → ∞. In addition,

∆W l(1) also does not depend on the first training input ξ0 in the infinite-width limit m→∞
for l ∈ [3, L+ 1].

Learning rates at step t ≥ 1. Repeating the calculations of the forward pass with the
updates of Equation (5.3) and with the learning rates for the weights and bias terms as
described in Equations (5.4) and (5.5), we readily get that the coordinates of the second
forward pass are in Θ(1). Then, it is direct to see that the choice of the Naive-IP learning
rate exponents c1 = cL+1 = −1, and cl = −2 for l ∈ [2, L] for the weights and ϵl = −1 for
l ∈ [1, L] and ϵL+1 = 0 for the bias terms yields non-vanishing and non-exploding updates
for the weights and the bias terms at t = 1.

Degeneracy at time t ≥ 1. It follows that the same choice of learning rate exponents
as at t = 1 also induce non-vanishing and non-exploding updates in the limit m → ∞ at
later time steps t ≥ 1. With this choice of learning rates we thus get, for any t ≥ 1, and for
l ∈ [2, L],

hlt ≃ vl +
t−1∑
s=1

∆W l(s)xl−1
t .

With the choice of learning rates prescribed above for t ≥ 1, the products ∆W l(s)xl−1
t

are finite and their numerical value strongly depends on the values of η and ∂2ℓ(ys, fs(ξs)).
Typically, their product is rather small (e.g., ≤ 10−2), and this means that the initial bias
term vl has the dominant contribution to hlt. Therefore, in addition to Theorem 5.2, it can
be also be argued that the forward pass in the intermediate layers only weakly depends on
the training data and on the input to the network at time steps t.

6 Numerical Experiments

In this section we investigate numerically the behavior of the models previously introduced
in this work, namely Naive-IP, IP-LLR, IP-bias, IP-non-centered and µP. In contrast to
the theoretical analysis carried out in Sections 3, 4, and 5, we examine the performance of
the models on a multi-class classification task (instead of a single output prediction) and we
train them using mini-batch SGD (instead of single-sample SGD). In addition to these two
points, we adopt the following slight modifications compared to our theoretical setting.

Standard deviation of initial weights. In our numerical experiments, we allow the
initial Gaussian weight matrices U l and vectors vl to have entries drawn from N (0, δ2l) where
δl can be different from 1 for l ∈ [1, L], but is independent of m. As hinted in Remark 4.2
and explained more in detail in Remarks F.2 and F.3, this is to avoid issues (vanishing or
explosion of the forward/backward pass) with the depth L. The choices of the standard
deviation of the Gaussian depend on the activation function and are summarized in Table 1.

21

activation ReLU GeLU ELU tanh

init. std
√
2 2 1 1

Table 1: Standard deviation δl of the initial Gaussian entries of layers l ∈ [1, L] for different
choices of activation functions.

Re-scaling the standard deviation of the first layer. All the models we consider
have a1 = 0 so that, as mentioned in Section 5.2, the coordinates of h10 follow N (0, ||ξ||2+1)
and the variance is equal to

∑d
k=1 ξ

2
k + 1. To avoid having too large a variance when the

(fixed) dimension d is large, we re-scale the standard deviation of the first layer’s weights
and bias term at initialization by dividing it by

√
d+ 1, that is we use the Gaussian law

N (0, δ21/(d+ 1)) to initialize the entries of w1(0) and b1(0).

Calibrating the initial base learning rates for IP-LLR. As discussed in Section 4.2,
IP-LLR basically amounts to training with µP but forgetting the initialization in the inter-
mediate layers for the first update. We thus roughly haveW l(1) ≃ ∆W l(1) for any l ∈ [2, L],
and the base learning rate η directly influences the magnitude of ∆W l(1) and thus that of hl1.
Typical values for the learning rates, the initial loss derivative ∂2ℓ(y0, 0), and the averaged
inner products involved in the second forward pass are rather small (e.g., ≤ 10−1), and this
will cause the pre-activations of the second forward pass to be of small magnitude, and this
effect compounds quickly with depth as the pre-activations of layer (l − 1) are then multi-
plied by ∆W l(1). This will in turn lead to very small values for the second weight updates
∆W l(2) and can considerably slow down learning in practice. To overcome this issue, we
simply calibrate the initial values of the base learning rates ηl (but cap them at a value of
500 to avoid too large initial updates) of layers l ∈ [2, L] at t = 0, so that the magnitude
of the pre-activation of the intermediate layers in the second forward pass is equal to 1 on
average over the second training batch.

Note that this calibration results in base learning rates ηl which do not depend on m
(they do depend on L however) in the large-width limit as the coordinates of hl1 have non-
zero and finite values for large m. In contrast, this is not possible with the Naive-IP as the
coordinates of hl1 converge to zero as fast as some power of m, which would result in the
base learning rate ηl depending on m which is prohibited (by definition of the base learning
rate).

All the points above can be handled within the framework of the Tensor Program, but
they would unnecessarily over-complicate the analysis and the formulas, which is why we
used a simpler setting in our theoretical analysis.

6.1 Experimental Setup

We evaluate the performance of the different models on two datasets: MNIST2, containing
60,000 training samples and 10,000 test samples, and CIFAR-103, containing 50,000 training
samples and 10,000 test samples. Both datasets consist in a 10-class image classification
task. Since we consider only fully-connected networks, we use gray-scale images which we
also flatten for both datasets, which means the input dimension is d = 28 × 28 = 784 for
MNIST and d = 32× 32 = 1024 for CIFAR-10.

We train for 600 SGD steps on MNIST and 1200 steps on CIFAR-10 using a base learning
rate η = 0.01, a batch-size B = 512, and the cross-entropy loss, which satisfies Assumption 1.

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/~kriz/cifar.html

22

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

(a) Naive-IP (b) IP-LLR

Figure 1: Loss vs. number of optimization (SGD) steps on MNIST for different activation
functions.

For each experiment, we run Ntrials = 5 trials with different random initializations. The
hyperparameters are summarized in Table 2.

L m dMNIST dCIFAR ℓ η B Ntrials

6 1024 784 1024 cross-ent. 0.01 512 5

Table 2: Hyperparameters for training models.

6.2 Naive-IP is Trivial but Large Initial Learning Rates Induce Learning

In this section we compare the numerical performance of Naive-IP and IP-LLR on MNIST for
different activation functions. Essentially, the results we present corroborate Proposition 3.1
and Theorem 4.1, except that numerical evidence tends to show that those results hold
with less restrictive assumptions on the activation function than what we consider in the
theoretical part, as already hinted in Point 2 of Remark 4.2.

As observed in Figure 1, while the loss (averaged over a batch) stays at its initial value for
Naive-IP, we observe a decrease for IP-LLR whose strength depends on the choice of activa-
tion function. Similarly, Figure 2 depicts the evolution of the mean absolute output during

training, that is, we plot for any step t the quantity (1/B)
∑B

i=1(1/10)
∑10

k=1

∣∣∣fk,t (ξ(i)t

)∣∣∣,
where ξ

(i)
t is the i-th sample in the batch at time t and for any class label k ∈ [1, 10], fk,t(ξ)

is the k-th entry of the output of the model (logits for class k) on input ξ. We also observe
here that there is no change in the output for the Naive-IP which stays equal to 0 during
the course of training, whereas for IP-LLR, the mean absolute output value increases from
its initial value, equal to 0, to some positive quantity whose value depends on the activation
function. The solid line in both plots denotes the mean of the metric of interest over multi-
ple (5) random trials while the shaded area represents a 95% confidence interval around the
mean. There is no shaded area for Naive-IP since the output of the network is equal to the
deterministic constant 0 at any time step for large m, as stated in Proposition 3.1.

Finally, we show in Table 3 the test accuracy (averaged over 5 random runs) at the
end of training for the Naive-IP and IP-LLR for different activation functions. The Naive-
IP has the same test accuracy of 0.098 independently of the activation function, which is
roughly equal to that of random guessing which would yield an accuracy of 0.10 as there
are 10 classes. In contrast, IP-LLR has higher-than-chance test accuracy for every choice of
activation function, and while ReLU appears to perform poorly, all other activations perform
relatively well with ELU and GeLU achieving an error lower than 5%.

23

(a) Naive-IP (b) IP-LLR

Figure 2: Mean absolute output vs. number of optimization (SGD) steps on MNIST for
different activation functions.

model
activation

ReLU GeLU ELU tanh

Naive-IP 0.098 0.098 0.098 0.098

IP-LLR 0.113 0.956 0.964 0.932

Table 3: Test accuracies on MNIST for various activation functions.

6.3 IP-LLR vs. µP

We compare the numerical performance of IP-LLR and µP on both MNIST and CIFAR-10,
and investigate the reasons behind the differences observed between different models and
different non-linearities.

As observed in Tables 4 and 5, the performance, as measured by the accuracy on the test
set, is consistent across activation functions for µP whereas the gaps are larger for IP-LLR.
However, the best test accuracy for µP and IP-LLR are comparable: the former achieves
0.975 test accuracy on MNIST and 0.419 test accuracy on CIFAR-10 with σ = GeLU while
the latter achieves 0.964 test accuracy on MNIST and 0.383 test accuracy on CIFAR-10 with
σ = ELU.

Performance and rank collapse. The consistency of µP across activation functions and
the lack of consistency for IP-LLR can be explained by (or at least correlated with) the
diversity, measured in terms of rank, of the (pre-)activations at different layers on large
batches of samples. Indeed, as shown in (Daneshmand et al., 2020), the rank of the family
of pre-activations (considered over large batches) has a dramatic impact on the observed
performance of models. In fact, the authors argue that this might be the reason behind the
empirical success of batch normalization: it allows the rank of these families of pre-activations
to remain large even when the number of hidden layers L is large, whereas they show there
is a collapse in the rank without the batch-normalization operation, which coincides with
poor accuracy. This problem is exacerbated in IP-LLR because the contribution of the initial
weight matrices (which are full-rank) vanishes after the first gradient step, thereby lowering
considerably the rank of the family of pre-activations. Two effects are then at play: (1) the
choice of the activation function σ can induce large differences in the rank of the family of
vectors

(
W l(1)σ(h)

)
h∈S , where S is a large set of vectors; (2) the impact of the activation

function on (1) is compounding with depth and can lead to dramatically small rank (equal
to 1 in the worst case) towards the last layers of the network.

In Figures 3 we plot the rank (the y-axis is in log-scale) of the families
(
hl1(ξ)

)
ξ∈S

24

model
activation

ReLU GeLU ELU tanh

IP-LLR 0.113 0.956 0.964 0.932

µP 0.954 0.975 0.928 0.905

Table 4: Test accuracies on MNIST for various activation functions.

model
activation

ReLU GeLU ELU tanh

IP-LLR 0.100 0.329 0.383 0.284

µP 0.407 0.419 0.356 0.304

Table 5: Test accuracies on CIFAR-10 for various activation functions.

and
(
xl1(ξ)

)
ξ∈S for l ∈ [1, L], where S is the set comprised of the first 5,000 training in-

puts of MNIST. The numerical “rank” is computed as in (Daneshmand et al., 2020) with
torch.matrix_rank() which regards singular values below σmax × m × 10−7 as zero. We
observe that for IP-LLR, the rank of those families with σ = ReLU is one order of mag-
nitude smaller than for other activation functions after layer l = 4 and even collapses to 1
in the last layers, which might explain its poor performance, whereas for µP all activation
functions induce comparable ranks which remain at least on the order of 102 at any layer.
We believe the latter fact is due to the non-vanishing contributions of the initial Gaussian
matrices which are full-rank (with probability 1). In contrast, it would seem like IP-LLR is
much more sensitive to the choice of activation function and we identify the vanishing of the
contribution of the initial weights for intermediate layers as a probable cause for this effect.

Whether the difference between ReLU and other activation functions for IP-LLR is ac-
tually due to the difference between the homogeneity property with σ = ReLU and the
effective linearization property for other activation functions (as highlighted in Remark 4.2)
or to other inherent characteristics of the activation functions is still an open question and
we leave it for future work.

6.4 Learning is Degenerate for IP-bias and IP-non-centered

In this section we show numerically that IP-non-centered and IP-bias (see Sections 5.1 and 5.2
respectively) are able to escape the initial stationary point but that the resulting dynamics
do not seem effective as observed through the evolution of the training loss.

Figure 4 shows that both models are indeed able to escape the initial stationary point as
the magnitude of the output evolves non-trivially during training but in contrast Figure 5,
depicting the training losses on MNIST and CIFAR-10 for both models, shows that learning
is very slow for those models and that the dynamics are not effective in reducing the training
loss.

Additionally, as summarized in Table 6, the slow decrease of the training loss translates
into poor test accuracy at the end of training comparatively with IP-LLR and µP, even with
the best choice of activation function.

7 Conclusion

Recent research has shown that the parameterization of a neural network has a dramatic
impact on its training dynamics, and therefore, on the type of functions that it is able
to learn. Until now, the parameterizations used by practitioners have been restricted to

25

(a) IP-LLR (b) µP

Figure 3: Ranks (log-scale) of the families of pre-activations (hl1(ξ)) and activations (xl1(ξ))
at time t = 1 on MNIST vs. layer l for different activation functions.

dataset
model

IP-LLR µP IP-bias IP-non-centered

MNIST 0.964 0.975 0.113 0.209

CIFAR-10 0.383 0.419 0.100 0.154

Table 6: Test accuracies (averaged over 5 random runs) at the end of training on MNIST and
CIFAR-10. For each model, we show the maximum (averaged) accuracy over all activation
functions. For each model, the activation function which performs best is the same for both
datasets and the pairing model → activation is the following: IP-LLR → ELU, µP→ GeLU,
IP-bias → GeLU, IP-non-centered → ELU.

standard schemes which rely on the analysis of the the first forward and backward passes. In
the present work, pushing the analysis beyond the first gradient step (which is made possible
by the Tensor Program framework), we have studied how to train neural networks with
parameterizations that enjoy radically different behaviors, such as forgetting the contribution
of the initial weights after the first weight update.

The parameterizations we have analyzed, which we refer to as integrable parameteri-
zations, have been previously described with tools from the mean-field literature, and we
have deepened our understanding of these models with a different perspective. Indeed,
we have shown that these parameterizations are trivial for deep networks with centered
i.i.d. initialization and a constant learning rate: they are stuck at initialization. This ob-
servation led us to explore various ways to escape this initial stationary point and initiate
learning. Among those methods, we found that the only one that does not lead to a degen-
erate behaviour is to use large learning rates for the first gradient step. We proved that in
the infinite-width limit the resulting dynamic is equivalent to a modification of µP where the
initial weights are removed after the first gradient step. Importantly, the random fluctua-
tions around the limit—which are ignored in the mean-field description—turn out to actually
be essential for our analysis, since it is by amplifying them that we are able to escape the
stationary point.

Extending our theoretical results to a more general class of activation functions requires
more thorough technical work and is left as an open problem. Also, analyzing rigorously
the impact of the presence or absence of the initial weight matrices on the learning behavior
appears to be an interesting avenue for future research. Finally, understanding the general-
ization properties of IP-LLR and µP remains an important open question but is beyond the
scope of this paper.

26

(a) IP-bias / MNIST (b) IP-bias / CIFAR-10

(c) IP-non-centered / MNIST (d) IP-non-centered / CIFAR-10

Figure 4: Mean absolute value of the output during training.

(a) IP-bias / MNIST (b) IP-bias / CIFAR-10

(c) IP-non-centered / MNIST (d) IP-non-centered / CIFAR-10

Figure 5: Loss vs. number of SGD steps.

27

Acknowledgements

Karl Hajjar and Christophe Giraud receive respectively full and partial support from the
Agence Nationale de la Recherche (ANR), reference ANR-19-CHIA-0021-01 “BiSCottE”.

Appendix

A Notations

We introduce here some additional notations that will come in handy in the text and equa-
tions presented in the Appendix.

Hat matrices. We define the following matrices and output weight vector (see Defini-
tion 2.1 for the definitions of the matrices U l):{

Ŵ 1 = U1

Ŵ l = m−1/2U l, l ∈ [2, L+ 1].
(A.1)

The pre-factor in m−1/2 is the natural re-scaling of the i.i.d. Gaussian matrices when their
input dimension grows to infinity due to the central limit theorem (CLT).

Omegas. For any ac-parameterization, we define ω1 := m−a1 , and for any l ∈ [2, L + 1],
ωl := m1/2−al . To avoid blow-up or vanishing in the first layer, all the parameterizations we
study have ω1 = 1. This is the case for integrable parameterizations, the NTK parameteriza-
tion and for µP. For integrable parameterizations we also have ωl = m−1/2 for l ∈ [2, L+1],
but for µP, ωl = 1 if l ∈ [2, L] and ωL+1 = m−1/2 (see Section B.3 for a detailed description
of µP).

Those ωl naturally appear in the calculations as the magnitudes of the first forward pass
of an ac-parameterization of a neural network. The term m−al comes from the scaling pre-
factor of the effective weights, and the added m1/2 appears when expressing the computation
in function of the naturally scaled Ŵ l: W l(0) = ωlŴ

l.

Scalar limits. For any scalar ω which depends on m, we denote by
◦
ω the almost sure limit

(when it exists) of this scalar as m→∞.

Gradients. We define for any t and l,

dhlt := ∇hl
t
ft(ξt)

dxlt := ∇xl
t
ft(ξt)

dwl(t) := ∇wl(t)ft(ξt)

dbl(t) := ∇bl(t)ft(ξt)

χt := ∂2ℓ(yt, ft(ξt)).

28

The equations of backpropagation give:

dxLt =WL+1(t)

dwL(t) = m−aL+1xLt

dhlt = dxlt ⊙ σ′(hlt)
dxl−1

t = (W l(t))
⊺
dhlt

dwl(t) = m−aldhlt(x
l−1
t)

⊺
,

dbl(t) = m−aldhlt.

As noted in Definition 2.1 Remark 2.1, one has for l ∈ [1, L],

∆wl(t) = −ηm−clχtdw
l(t) = −ηm−(al+cl)χtdh

l
t(x

l−1
t)

⊺
, (A.2)

∆W l(t) = m−al∆wl(t) = −ηm−(2al+cl)χtdh
l
t(x

l−1
t)

⊺
, (A.3)

∆Bl(t) = m−al∆bl(t) = −ηm−(2al+cl)χtdh
l
t, (A.4)

and for l = L+ 1

∆wL+1(t) = −ηm−clχtdw
L+1(t) = −ηm−(aL+1+cL+1)χtx

L
t , (A.5)

∆WL+1(t) = m−aL+1∆wL+1(t) = −ηm−(2aL+1+cL+1)χtx
L
t , (A.6)

∆BL+1(t) = m−aL+1∆bL+1(t) = −ηm−(2aL+1+cL+1)χt. (A.7)

Z variables. As described in Section B.2, the variables Z with a superscript will be used
to denote the random variable whose law describes the evolution of all coordinates of a given
vector of the forward or backward pass at a given layer in the limit m→∞.

Tilde variables. For z ∈ {hlt, xlt, dhlt, dxlt}, we will use z̃ to denote a variable “without
scale”, i.e., such that Z z̃ has positive and finite variance (see Definition F.1). When we do
so, we always have z = λz̃ for some scalar λ (which might depend on m). The tilde variables
of the backward pass for t ≥ 1 might have different expressions in different contexts or in
different proofs, but we still use the same notation every time as the exact definition should
always be clear from the context.

B An overview of the Tensor Program technique

The Tensor Program technique, first introduced by in Yang (2019), was initially developed
to better understand the behavior at initialization of networks whose weights are initialized
i.i.d. with standard Gaussians as the number of units in each layer grows to infinity. Since
the output of a hidden unit in layer l ≥ 2 is given by

∑m
q=1W

l
pq(0)x

l−1
0,q , the magnitude of the

weights need to be downscaled by some negative power of m to avoid blow-up as m → ∞.
Scalings which have naturally appeared in the literature are m−1/2 and m−1, and lead to
different types of limits.

Using a first version of the Tensor Program (referred to as NETSOR), it is shown in (Yang,
2019) that the output at initialization of a neural network of any architecture (fully-
connected, recurrent, convolutional, with normalization, attention, ...) whose weights are
initialized with W l(0) = m−1/2U l for l ≥ 2 (i.e., al = 0 and bl = 1/2 for l ≥ 2 in the
ac-parameterization) is a Gaussian process in the infinite-width limit.

Going further, and in the light of the recent literature on the neural tangent kernel, Yang
(2020a) studies the first backward pass of networks initialized as above in the limit where

29

m→∞ and has shown that the neural tangent kernel at initialization, defined as K(ξ, ξ̄) :=〈
∇θf0(θ(0); ξ),∇θf0(θ(0); ξ̄)

〉
converges to a deterministic limit for any architecture.

Finally, and most importantly for our work, the Tensor Program is extended in (Yang,
2020b) to cover the forward and backward passes of networks of any architecture at any
time step and not just at initialization. The crucial step taken in (Yang, 2020b) is to be
able to describe the evolution of quantities where both a weight matrix W l and its transpose
(W l)

⊺
are involved. (Yang and Hu, 2021) then applies the results and theorems of (Yang,

2020b) in the particular context of ac-parameterizations (or rather abc-parameterizations as
defined by Yang and Hu, 2021) to describe the infinite-width limits of neural networks with
different parameterizations.

B.1 Intuition behind the technique

To explain the intuition behind the Tensor Program technique and how it comes into play
for neural networks, let us first look at the forward pass of a fully-connected network with L
hidden layers after t steps of SGD. Assume single samples (ξ0, y0), . . . (ξt−1, yt−1) are used at
each step for simplicity. Consider a neural network in any ac-parameterization and an input
ξ to the network. Using Equation (A.3) for the updates, the forward pass of the network at
time t is given by:

h1t =W 1(0)ξ − ηm−(2a1+c1)
t−1∑
s=0

χs (ξ
⊺
s ξ) dh

1
s

hlt =W l(0)xl−1
t − ηm−(2al+cl)

t−1∑
s=0

χs

(
(xl−1

s)⊺xl−1
t

)
dhls l ∈ [2, L]

ft(ξ) = (WL+1(0))
⊺
xLt − ηm−(2aL+1+cL+1)

t−1∑
s=0

χs(x
L
s)

⊺xLt .

To understand what happens in the forward pass, one thus needs to understand the behavior
of the multiplication by i.i.d. Gaussian matrices, that of vectors dhls of the backward pass
as well as that of the inner products (xl−1

s)⊺xl−1
t . As m→∞, the sums defining the matrix

multiplications and inner products involve an infinity of terms and one must therefore un-
derstand how those quantities scale in the limit.

Before we dive into the matrix multiplications, let us look more precisely at what the vectors
dhls look like. We have:

dhls = dxls ⊙ σ′(hls)

dxls = (W l+1(0))
⊺
dhl+1

s − ηm−(2al+cl)
s∑

u=0

χu

(
(dhl+1

u)⊺dhl+1
s

)
xlu l ∈ [2, L].

We observe that inner products appear again, and that in contrast with the forward pass, it
is now the multiplication by the transpose of i.i.d. Gaussian matrices which appears.

We already see that two main quantities appear in the calculations: The initial i.i.d. Gaussian
matrices, and vectors which are generated either (i) through the multiplication of another
vector with a Gaussian matrix or its transpose, or (ii) through some form of non-linearity
involving other vectors as well as the activation function σ and/or its derivative σ′. Before
trying to understand how the inner products behave, let us first dive into the multiplication
by i.i.d. Gaussian matrices.

30

B.1.1 Multiplication by i.i.d. Gaussian matrices

The multiplication of a random vector by an i.i.d. Gaussian matrix can happen in two differ-
ent scenarios: (i) the input vector is independent of the Gaussian weights, and (ii) the input
vector is correlated with the Gaussian weights, which, in the case of neural networks, will
translate into saying that the transpose of the weight matrix is used somewhere to compute
the input vector.

Independent input vector. Consider a list (xq)q∈N∗ of i.i.d. random variables with fi-
nite first and second moments, independent of U l, and consider multiplying this vector by
the i.i.d. Gaussian matrix U l. At any finite-width m the p-th entry of U lx is given by

m∑
q=1

U l
pqxq ≃

m→∞
m1/2N (0,E[x21])

The terms (U l
pqxq)q≥1 are i.i.d. with mean 0 and finite variance E[x21] because xq is indepen-

dent of U l
pq. Therefore, by a central limit argument, the sum will behave likem1/2N (0,E[x21])

for large m. It is thus natural to scale the sum by m−1/2, or equivalently to consider
Ŵ l = m−1/2U l (as defined in Equation A.1) for matrix multiplications.

With the above result in mind, we take a look at the first forward pass at initialization
of a network where all the weight matrices are initialized as W l(0) = Ŵ l (i.e., a1 = 0,
al = 1/2, l ∈ [2, L + 1]). We consider an input ξ ∈ Rd to the network and compute the
pre-activations of each layer recursively. For the first layer, we get that for any p ∈ [m],

h10,p = (Ŵ 1ξ)p = (U1ξ)p

=
d∑

q=1

ξqU
1
pq ∼ N (0, ||ξ||2)

Since the (U1
pq)q are i.i.d. standard Gaussians, the linear combination above is also a Gaussian

with mean 0 and variance
∑

q ξ
2
q = ||ξ||2. Note that since the lists (U1

pq)q are independent for

different p, the vector h10 has i.i.d. coordinates all distributed as N (0, ||ξ||2). We also note
that adding a bias term initialized as N (0, 1) would simply change the variance to ||ξ||2+1.

Then for the second layer we get that for any p ∈ [m]:

h20,p =
1√
m

m∑
q=1

U2
pqσ(h

1
0,q)

law−−−−→
m→∞

N (0,E[σ(h10,1)2])

The terms (U2
pqσ(h

1
0,q))q are i.i.d. with mean zero, and by a central limit argument, we have

that the coordinates of h20 converge in law towards N (0,E[σ(h10,1)2]) where E[σ(h10,1)2]) is

simply E[σ(Z)2]) with Z ∼ N (0, ||ξ||2). Those coordinates are also independent (and Gaus-
sian at any finite width m) conditionally on h10 because the lists (U2

pq)q are independent
(Gaussians) for different p. The different coordinates of h20 are identically distributed at any
finite width m and remain so in the limit. They are not strictly speaking independent at
finite width but the intuition is that they become so in the limit m→∞ as they also become
Gaussian, and that is how they should be thought of in the context of the Tensor Program.

Repeating the calculations above at every layer, we can intuitively describe the forward
pass in the infinite-width limit by describing the law of a single random variable Zl for each

31

layer (whose law is the common law of all the coordinates of the pre-activations hl0), and by
the hand-wavy calculations above, we get the following recursion for the variables Z:

Z1 ∼ N (0, ||ξ||2)
Zl+1 ∼ N (0,E[σ(Zl)

2]), l ∈ [1, L]

Having discussed the case where the input vectors are not correlated with the weight matrix,
we now move on to the case where there is some correlation between the two.

Correlated input vector. As the simplest form of correlation, we consider a vector
x = (Ŵ l)

⊺
z where (zq)q∈N∗ is a list of i.i.d. random variables independent of Ŵ l with fi-

nite first and second moments, and we consider the result of the multiplication h = Ŵ lx.
For any p ∈ [m], we have

hp =
m∑
q=1

m∑
r=1

Ŵ l
pqŴ

l
rqzr

=

 1

m

m∑
q=1

(
U l
pq

)2 zp + 1√
m

∑
r ̸=p

zr

 1√
m

m∑
q=1

U l
pqU

l
rq


By the law of large numbers, the first term will converge almost surely to zp as m → ∞.
For the second term, the intuition is that for any r ̸= p the terms (1/

√
m)
∑

q U
l
pqU

l
rq be-

come distributed as independent Gaussians as m becomes large by a central limit argument.
Then, by another central limit argument, intuitively, the sum over r ̸= p should also be-
comes distributed as N (0,E[z21]). In the limit m → ∞, we thus expect the coordinates of

h = Ŵ l(Ŵ l)
⊺
z to be the sum of two terms: a first term distributed as z1 where the corre-

lation between the entries of Ŵ l and (Ŵ l)
⊺
comes into play, and a second term distributed

as N (0,E[z21]) which is purely Gaussian and where the correlation between the entries of Ŵ l

and (Ŵ l)
⊺
has no effect.

The aim of the Tensor Program series (Yang, 2019, 2020a,b) is to formalize those intuitions
into theorems and rigorous calculations. Of course, the calculations become more complex
when we introduce non-linearities and consider later steps in training than the initialization,
but what the Tensor Program shows is that the intuitions above still hold.

To summarize, the intuition is that in the large-width limit, the coordinates of pre-activation
vectors become i.i.d. and we thus only need to track the law of a single real-valued random
variable. Therefore, any average of some function of the coordinates should converge to an
expectation in the limit m→∞ by a law of large number argument. Finally, any multipli-
cation by Ŵ l yields two terms where one is purely Gaussian and the other depends on the
expression of the vector that is multiplied by Ŵ l in function of (Ŵ l)

⊺
.

B.2 Mathematical formalism

The mathematical formalism of the Tensor Program goes beyond neural network compu-
tations and describes the evolution of any computational systems (with some restrictions)
in the limit m → ∞. The computational system is comprised of different vectors whose
dimensions are equal to m which can be generated from a set of initial vectors in various
ways. The Tensor Program is defined by the sequence of mathematical operations which
produce the vectors from previously generated vectors. The operations are the same at any

32

given width m, only the size of the vectors and matrices involved change with m, and the
aim of the Tensor Program is to provide the tools (formalism and theorems) to be able to
described the behavior of the system in the limit m → ∞. As described in the intuitions
of the previous section B.1, the coordinates of vectors in the program are roughly i.i.d. as
m → ∞ and variables Z are introduced to described the common law of the coordinates in
the limit m→∞.

Initial vectors. Consider a set V :=
{
v1, . . . , vN

}
∈ (Rm)N of initial vectors such that:

(i) the coordinates (vp)p∈[m] are i.i.d. for any v ∈ V and any m. We call Zv a real-valued
random variable whose law is the same as that of all the coordinates.

(ii) The joint law of ZV := (Zv1 , . . . , ZvN) is a Gaussian N (µinit,Σinit) for any m (the
variables Zv do not actually depend on m, but this is simply to say that at any width
m and for any p ∈ [m], the law of (v1p, . . . , v

N
p) is the same N -dimensional Gaussian).

Initial scalars. Similarly, we define a list of initial scalars θ1, . . . , θM which can depend on
m and for which the only requirement is that each θr converges almost surely to some finite

limit
◦
θr as m→∞.

Initial Gaussian matrices. Consider a set W :=
{
Ŵ 1, . . . , ŴP

}
∈ (Rm×m)P , such

that Ŵ r
pq ∼ N (0, 1/m) i.i.d. over p, q for any r, and the (Ŵ r)r∈[P] are independent of each

other and independent of the vectors in V. Since we consider a more general setting than
neural networks, we do not index those matrices by l and can have P ̸= L but for neural
networks, those initial matrices will always be the initialization of the weight matrices of the
intermediate layers l ∈ [2, L], appropriately scaled.

Generation of new vectors/scalars. Given previously generated vectors v1, . . . , vk, pre-
viously generated scalars θ1, . . . , θr, and a non-linearity ψ(· ; ·) : Rk × Rr → R, we can, in
the following ways, generate:

MatMul a vector z = Ŵv for any v ∈ {v1, . . . , vk} and Ŵ ∈ W.

NonLin a vector z = ψ(v1, . . . , vk ; θ1, . . . , θr) where ψ is taken element-wise, i.e., zp =
ψ(v1p, . . . , v

k
p ; θ1, . . . , θr) for any p ∈ [m] and for any m.

Moment a scalar ω = 1
m

∑m
p=1 ψ(v

1
p, . . . , v

k
p ; θ1, . . . , θr) ∈ R.

The non-linearity used does not have to actually depend on all the previous vectors and/or
scalars, but we present the operations this way for simplicity.

Given those operations, the Tensor Program framework allows to seamlessly describe the
infinite-width limit of the computational system defining a given Tensor Program by track-
ing recursively the laws of the variables Z whose law represents the common law of the
coordinates of a given vector. Indeed, every vector z in the program (initial or generated us-
ing previous vectors in the program) will roughly have i.i.d. coordinates in the limit m→∞,
and the Tensor Program associates a real-valued random variable Zz to the vector z. Then,
associated with the operations on vectors and scalars above are the following operations on
the corresponding variables Z which come as their natural counterparts in the infinite-width
limit to track the evolution of the laws of the variables Z:

33

ZInit For initial vectors v ∈ V, define
.
Z v = 0 and Ẑv = Zv. The purpose of those notations

will become clear in the ZMatMul section.

ZMoment Given a scalar ω = (1/m)
∑m

p=1 ψ(z
1
p , . . . , z

k
p ; θ1, . . . , θr), define

◦
ω = E

[
ψ(Zz1 , . . . , Zzk ;

◦
θ1, . . . ,

◦
θ1)

]
(B.1)

ZNonLin Given z = ψ(z1, . . . , zk ; θ1, . . . , θr), define:

Zz = ψ(Zz1 , . . . , Zzk ;
◦
θ1, . . .

◦
θr) (B.2)

ZMatMul Given z = Ŵv for a previous vector v and Ŵ ∈ W, Zz = Ẑz +
.
Z z is the sum of

two terms:

ZHat Ẑz ∼ N
(
0,E

[
(Zv)2

])
is a purely Gaussian term. Additionally, if we letW

Ŵ
be

the set of all vectors in the program of the form Ŵu for some u in the program,
the vector ZW

Ŵ = (Zh)h∈W
Ŵ

is defined to be jointly Gaussian with covariance
matrix given by:

cov(ZWx, ZWy) = E[ZxZy]

Moreover, the vector ZW
Ŵ is defined to be mutually independent of the list of Zu

for u in {Ẑv : v ∈ V ∪
W∈W∪W⊺,W ̸=Ŵ

WW } where W⊺ := {Ŵ ⊺ : Ŵ ∈ W}, and
WW is the set of vectors in the program of the form Wu for some vector u in the
program.

ZDot
.
Z z comes from the potential interactions (correlations) between Ŵ and Ŵ ⊺ in
the computation of z. One can always unwind the expression of Zv and express it

in function of the ẐŴ ⊺y for some x in the program, that is we can always write Zv

as Zv = ϕ(ẐŴ ⊺y1 , . . . , ẐŴ ⊺yk , Ẑx1
, . . . Ẑxr

;
◦
θ1, . . . ,

◦
θs) with x1, . . . , xr such that

Ŵ ⊺ is never used in the computation of those vectors. Then, define:

.
Z z =

k∑
j=1

E
[

∂Zv

∂ZŴ ⊺yj

]
Zyj (B.3)

where ∂Zv/∂ZŴ ⊺yj is simply defined as the j-th partial derivative of ϕ above

when expressing Zv as required for
.
Z . As noted in (Yang and Hu, 2021), if ϕ

is not everywhere differentiable, one can leverage Stein’s lemma to replace the
formula in Equation (B.3) by a linear algebra formula.

Now that we have introduced the necessary concepts and described the content of a Tensor
Program, we can move on to present the main theorem derived in (Yang and Hu, 2021) which
connects the mathematical operations used at finite-width with the infinite-width limit of
the computational system defining a Tensor Program. The “master theorem” formulated
in (Yang and Hu, 2021) is surprisingly simple (although the proof is much more intricate)
yet very powerful, and goes as follows (see Yang and Hu, 2021, Theorem 7.4):

Theorem B.1 (Master Theorem). Given a Tensor Program, for any vectors x1, . . . , xk

and scalars θ1, . . . , θr in the program, and for any pseudo-Lipschitz non-linearity ψ (see
Definition 3.1, page 9), one has that:

1

m

m∑
p=1

ψ(x1p, . . . , x
k
p ; θ1, . . . , θr)

a.s.−−−−→
m→∞

E
[
ψ

(
Zx1

, . . . , Zxk
;
◦
θ1, . . . ,

◦
θr

)]

34

Remark B.1.

1. The theorem essentially states that even though the coordinates of vectors in the program
are not rigorously i.i.d. , they appear so from the perspective of the average by a suitable
non-linearity so that a law of large number type of result holds. Note that for neural
networks, even though the coordinates of the (pre-)activations follow the same law when
using i.i.d. initialization for the weights, it is not a priori clear that we can consider them
as independent copies, and thus that we can summarize the computations using a single
real-valued variable, but the master theorem shows that from the perspective of averaging,
this is in fact the case in the infinite-width limit.

2. In (Yang and Hu, 2021), different versions of the Tensor Program are presented in the
sense that different classes of non-linearities are allowed. These differences induce minor
subtleties in the master theorem and in the proofs. However, most of the results in the
main text of the paper require that the non-linearities be pseudo-Lipschitz (which is the
stronger assumption), both in NonLin and in the master theorem. The Assumption 2
on the activation function σ and its derivative σ′ ensures that any quantity appearing in
the forward or backward computation of a neural network can be expressed as pseudo-
Lipschitz non-linearity.

3. What the Tensor Program and its master theorem show is that to understand the behavior
of the computational system in the infinite-width limit, one simply needs to track the
operations on the variables Z which mimic the recursive operations in the computational
system. Then, quantities which involve sum over coordinates such as inner products
between the vectors in the program (which occur in the forward and backward passes of
a neural network, as well as in the computation of the neural tangent kernel), or norm
computations are easily described, when properly re-normalized, through expectations
involving the corresponding variables Z. The main difficulty is that it is actually hard
(computationally and in the mathematical formulation) to track the correlations between
different Z because, as explained in (Yang and Hu, 2021), of the necessary unwinding in

the definition of
.
Z , so that the computational graph associated with the operations on

the variables Z is hard to implement in practice.

B.3 The maximal update parameterization µP

We close this section by presenting briefly the maximal update parameterization considered
in (Yang and Hu, 2021). To quantify the learning abilities of a given parameterization, Yang
and Hu (2021) introduce the notions of feature learning and feature kernel evolution at a
given layer l ∈ [1, L], which we recall below. Both these definitions concern the large-width
limit of the networks:

Definition B.1 (Feature Learning). An ac-parameterization is said to admit feature learn-
ing at the l-th layer if the quantity ∆xlt(ξ) := xlt(ξ)−xl0(ξ) is such that there exists a training
routine for which, almost surely, there exists a constant C > 0 such that ||∆xlt(ξ)||2/m ≥ C
for large enough m.

Definition B.2 (Kernel Evolution). An ac-parameterization is said to evolve the feature
kernel at the l-th layer if the quantity ∆F l

t (ξ, ξ̄) :=
[
xlt(ξ)

⊺
xlt(ξ̄)− xl0(ξ)

⊺
xl0(ξ̄)

]
/m is such

that there exists a training routine for which, almost surely, there exists a constant C > 0
such that for large enough m, ∆F l

t (ξ, ξ̄) ≥ C.

(Yang and Hu, 2021) goes about categorizing whether different ac-parameterizations admit
feature learning or not. One of the striking result presented is that there is essentially a

35

dichotomy (depending on the values of (al, cl)l∈[L+1]) among ac-parameterizations: an ac-
parameterization either admits feature learning (and evolves the feature kernel) or is in the
kernel regime, meaning that the quantities in definitions B.1 and B.2 converge to 0 almost
surely so that in the infinite width limit, the evolution of the prediction function ft is de-
terministic and depends only on the previous prediction function ft−1 and the loss at time
(t − 1) through a (deterministic) kernel K(ξ, ξ̄) = limm→∞ (xL0 (ξ))

⊺
xL0 (ξ̄)/m (or a rescaled

version thereof).

The categorization result proved in (Yang and Hu, 2021) holds for a certain class of ac-
parameterizations which are deemed stable and non-trivial. Stable refers to the fact that
the pre-activations and output (hl0 and f0(ξ) respectively) at initialization do not blow-up
as m→∞ at any layer. As already hinted in Section B.1, this corresponds to having a1 = 0
and al ≥ 1/2 for l ∈ [2, L + 1]. Non-trivial refers to the fact that the pre-activations of all
layers do not converge to 0 almost surely as m → ∞ at initialization. This corresponds to
having a1 ≤ 0 and al ≤ 1/2 for l ∈ [2, L]. It is mentioned in (Yang and Hu, 2021) that
those parameterizations for which the pre-activations of the intermediate layers converge to
0 almost surely should stay at their initialization throughout the course of training, and we
actually prove in Section 3, using the Tensor Program technique, that this is the case when
L ≥ 3 in the setting where a1 = 0 and al = 1 for l ∈ [2, L+1] (i.e., integrable parameteriza-
tions) unless one uses large (polynomial in m) initial learning rates, a scenario which is not
covered in (Yang and Hu, 2021). We show that in this case, integrable parameterizations are
only trivial at initialization (the pre-activations of all layers except the first one converge to
0 in the infinite-width limit) and are actually in a feature learning regime at all layers after
the first gradient step (t ≥ 1).

The maximal update parameterization µP introduced in (Yang and Hu, 2021) is the re-
sult of the analysis of the values of al, and cl for which the parameterization admits feature
learning at every layer, and maximally so in the sense that if we were to reduce the value
of al then the ∆xlt introduced in Definition B.1 or the pre-activations hlt would blow-up
as m → ∞. In essence, µP corresponds to the values of al, and cl for which ∆xlt is as
large as possible (with regards to its dependency on m) at every layer without creating any
instabilities (pre-activations or updates blowing-up) in the limit m → ∞. A quick anal-
ysis of the updates at t = 0 shows that the choice a1 = 0, al = 1/2 for l ∈ [2, L], and
aL+1 = 1 associated with cl = −1 for all l ∈ [L+ 1] achieves this, and it is rigorously shown
in (Yang and Hu, 2021) that this choice of ac-parameterization induces an update such that,
||∆W l(t)xl−1

t ||2/m = Θ(1). We thus adopt the following definition for µP which is the same
as in (Yang and Hu, 2021, Definition 5.1) but re-parameterized to remove the redundant b
in the abc-parameterization:

Definition B.3 (µP). The maximal update parameterization µP is defined by the following
choice of parameterization:

a1 = 0, c1 = −1,
al = 1/2, cl = −1, l ∈ [2, L],

aL+1 = 1, cL+1 = −1.

C Useful preliminary results

We show in this section a couple of useful results which will prove helpful in the proofs.

36

C.1 Positive finite moments of pseudo-Lipschitz functions of Gaussians

Lemma C.1 (Positive finite moments with polynomially bounded non-linearities). Let ϕ be
a polynomially bounded non-linearity which is not almost everywhere 0, and let Z ∼ N (0, v2)
with v2 <∞. Then, for any p ∈ R+:

(i) 0 ≤ E[|ϕ(Z)|p] <∞,

(ii) if in addition v2 > 0, 0 < E[|ϕ(Z)|p] <∞.

Proof. If v2 = 0, and then ϕ(Z) = ϕ(0) almost surely, so that E[|ϕ(Z)|p] = |ϕ(0)|p<∞.

Now, assume v2 > 0. Since ϕ is bounded by a polynomial of some degree r > 0, |ϕ(z)|≤
C(1 + |z|r) for some C > 0. Then, |ϕ(z)|p= exp(p ln(|ϕ(z)|)) ≤ Cp(1 + |z|r)p. Since v2 > 0,
we have

E[|ϕ(Z)|p] = 1√
2πv2

∫
R
|ϕ(z)|pe−z2/2v2dz

≤ 1√
2πv2

∫
R
Cp(1 + |z|r)pe−z2/2v2dz <∞.

Finally, since ϕ is not almost everywhere 0, neither is |ϕ|p which shows the integral in the
first equality above is not 0, and gives E[|ϕ(Z)|p] > 0.

C.2 The Z dots are 0 in the first forward-backward pass

Lemma C.2 (
.
Z = 0 in the first forward-backward pass). Consider an ac-parameterization

of an L-hidden layer fully-connected neural network with a1 ≥ 0 and al ≥ 1/2 for l ∈ [2, L+1],

and with a non-linearity satisfying Assumption 2. Then for any l ≥ 2,
.
Z Ŵ lxl−1

0 = 0, and for

any l ∈ [1, L],
.
Z (Ŵ l)

⊺
dhl

0 = 0.

Remark C.1. This lemma applies to the NTK, µP, and integrable parameterizations (in
particular IP-LLR) as well as HP and HPZ.

Proof. Consider any ac-parameterization of a fully-connected neural network which has
a1 ≥ 0 and al ≥ 1/2 for l ∈ [2, L + 1], and with a non-linearity satisfying Assumption 2.
Define ω1 = m−a1 and ωl = m−(al−1/2) for l ≥ 2, and the initial scalar αL+1 := m−aL+1 . The
conditions on the al guarantee that the ωl converge almost surely to either 0 or 1 and and
αL+1 converges almost surely to 0, which allows applying the rules of the Tensor Program.

For any l ∈ [2, L], since the computation of xl−1
0 , and thus of Zxl−1

0 do not involve (Ŵ l)
⊺
,

.
Z Ŵ lxl−1

0 = 0 as per the ZDot rule of the Tensor Program. In addition, Zhl
1 = ω1(Ẑ

Ŵ 1ξ+Ẑv1)

and by definition, ẐŴ 1ξ ∼ N (0, ||ξ||2) and Ẑv1 ∼ N (0, 1) are independent Gaussians,

which shows that Zhl
1 ∼ N (0,

◦
ω
2

1(||ξ||2+1)) whose variance is finite because
◦
ω
2

1 ∈ {0, 1}.
By Lemma C.1, this also shows that E[(Zx1

0)2] < ∞. Let l ∈ [2, L] and assume that

E[(Zhl−1
0)2] < ∞ and E[(Zxl−1

0)2] < ∞. We have hl0 = ωlŴ
lxl−1

0 + m−alvl. Since m−2al

converges to 0 almost surely, we can consider it as an initial scalar in the program, which

gives by ZNonLin Zhl
0 =

◦
ωlẐ

Ŵ lxl−1
0 + 0 × Ẑvl1 . Ẑvl1 ∼ N (0, 1) by definition since vl is an

initial vector in the program, so that Zhl
0 =

◦
ωlẐ

Ŵ lxl−1
0 ∼ N (0,

◦
ω
2

l E[Zxl−1
0)2]) whose variance

is finite by the induction hypothesis and because
◦
ωl ∈ {0, 1}. Then by Lemma C.1, we also

get that E[(Zxl
0)2] <∞, which concludes the induction.

37

Let us now deal with the first backward pass for any ac-parameterization. The result will

essentially boil down to having the expectation of the derivatives defining the
.
Z being 0

because the weight matrices are initialized with 0 mean and because of an independence ar-
gument. We have dxL0 = WL+1(0) = m−aL+1UL+1, and dhL0 = dxL0 ⊙ σ′(ZhL

0). By ZNonLin

we thus have

ZdxL
0 =

◦
αL+1Z

UL+1
,

ZdhL
0 =

◦
αL+1Z

UL+1
σ′(ZhL

0).

Now let l ∈ [1, L]. dxl−1
0 = (Ŵ l)

⊺
dhl0 gives

Z(Ŵ l)
⊺
dhl

0 = Ẑ(Ŵ l)
⊺
dhl

0 +
.
Z (Ŵ l)

⊺
dhl

0 ,

and to understand what
.
Z (Ŵ l)

⊺
dhl

0 is, we need to expand the expression of Zdhl
0 in function

of variables which were generated with Ŵ l. So far, the only variable where Ŵ l was used is
hl0 = ωlŴ

lxl−1
0 (with the convention that x00 = ξ0). We thus need to expand the expression

of Zdhl
0 in function of ẐŴ lxl−1

0 . We have, for l = L

ZdhL
0 =

◦
αL+1Z

UL+1
σ′(

◦
ωLZ

Ŵ lxL−1
0)

=
◦
αL+1Ẑ

UL+1
σ′(

◦
ωLẐ

Ŵ lxL−1
0),

where the last equality stems from the fact that ZŴLxL−1
0 = ẐŴLxL−1

0 in the first forward
pass, and the fact that UL+1 is an initial vector in the program which gives by definition
ẐUL+1

= ZUL+1
. We can formally write this as

ZdhL
0 = Ψ(ẐŴLxL−1

0 , ẐUL+1
;
◦
αL+1,

◦
ωL),

where Ψ(z1, z2; θ1, θ2) := θ1z2σ
′(θ2z1) is a pseudo-Lipschitz function because σ′ is, and we

have

∂Ψ

∂z1
(z1, z2; θ1, θ2) = θ1θ2z2σ

′′(θ2z1).

We get that by definition

.
Z (ŴL)

⊺
dhL

0 = E

[
∂ZdhL

0

∂ẐŴLxL−1
0

]
ZxL−1

0

= E
[
∂Ψ

∂z1
(ẐŴLxL−1

0 , ẐUL+1
;
◦
αL+1,

◦
ωL)

]
ZxL−1

0

=
◦
αL+1

◦
ωLE[ZUL+1

σ′′(
◦
ωLẐ

ŴLxL−1
0)]ZxL−1

0

=
◦
αL+1

◦
ωL E[ẐUL+1

]︸ ︷︷ ︸
0

E[σ′′(◦ωLẐ
ŴLxL−1

0)]︸ ︷︷ ︸
<∞

ZxL−1
0︸ ︷︷ ︸

<∞ a.s.

,

where the last equality stems from the fact that by ZHat, ẐŴLxL−1
0 is independent of ẐUL+1

because UL+1 is an initial vector in the program. The fact that the second expectation finite

is because
◦
ωL ∈ {0, 1}, σ′′ is polynomially bounded, and ẐŴLxL−1

0 is a Gaussian with mean

0 and finite variance since E[(ZxL−1
0)2] <∞. This gives

.
Z (Ŵ l)

⊺
dhL

0 = 0.

38

Now suppose l ∈ [1, L − 1] and assume
.
Z (Ŵ l+1)

⊺
dhl+1

0 = 0 which gives Z(Ŵ l+1)
⊺
dhl+1

0 =

Ẑ(Ŵ l+1)
⊺
dhl+1

0 . We have

Zdhl
0 = Zdxl

0σ′(Zhl
0)

=
◦
ωl+1Z

(Ŵ l+1)
⊺
dhl+1

0 σ′(
◦
ωlZ

Ŵ lxl−1
0)

=
◦
ωl+1Ẑ

(Ŵ l+1)
⊺
dhl+1

0 σ′(
◦
ωlẐ

Ŵ lxl−1
0)

where we have used that previous
.
Z are 0 to replace the Z with Ẑ. We can once more

formally write this as

Zdhl
0 = Ψ(ẐŴ lxl−1

0 , Ẑ(Ŵ l+1)
⊺
dhl+1

0 ;
◦
ωl+1,

◦
ωl)

with exactly the same Ψ as for l = L. We get that by definition

.
Z (Ŵ l)

⊺
dhl

0 = E

[
∂Zdhl

0

∂ẐŴ lxl−1
0

]
Zxl−1

0

= E
[
∂Ψ

∂z1
(ẐŴ lxl−1

0 , Ẑ(Ŵ l+1)
⊺
dhl+1

0 ;
◦
ωl+1,

◦
ωl)

]
Zxl−1

0

=
◦
ωl+1

◦
ωlE[Ẑ(Ŵ l+1)

⊺
dhl+1

0 σ′′(
◦
ωlẐ

Ŵ lxl−1
0)]Zxl−1

0

=
◦
ωl+1

◦
ωl E[Ẑ(Ŵ l+1)

⊺
dhl+1

0]︸ ︷︷ ︸
0

E[σ′′(◦ωlẐ
Ŵ lxl−1

0)]︸ ︷︷ ︸
<∞

Zxl−1
0︸ ︷︷ ︸

<∞a.s.

= 0

Where the first expectation is 0 because by definition Ẑ(Ŵ l+1)
⊺
dhl+1

0 is a Gaussian with 0
mean and an easy induction (from l = L to l = 1) shows that, as for the forward pass,

E[(Zdxl
0)2] < ∞ and E[(Zdhl

0)2] < ∞, which implies that Ẑ(Ŵ l+1)
⊺
dhl+1

0 has finite variance.

The second expectation is finite because
◦
ωl ∈ {0, 1}, ẐŴ lxl−1

0 is a Gaussian with 0 mean by
definition and finite variance, and because σ′′ is polynomially bounded since σ′ is pseudo-
Lipschitz.

C.3 Gaussian output in the infinite-width limit

Lemma C.3 (Gaussian output). For every m ∈ N∗, let xm and wm be independent random
vectors in Rm such that{

1
m ||x

m||2 a.s.−−−−→
m→∞

σ2∞

wm
j ∼ N (0, 1/m) i.i.d. over j = 1, . . . ,m.

Then

(wm)⊺xm
law−−−−→

m→∞
N (0, σ2∞)

Proof. Consider two sequences of independent vectors of growing dimension (wm)m and
(xm)m as in Lemma C.3. Conditionally on xm, the random variable (wm)⊺xm follows a
Gaussian N (0, ||xm||2/m) distribution. Since ||xm||2/m converges to σ2∞ almost surely, the
conditional distribution of (wm)⊺xm given xm converges to a Gaussian N (0, σ2∞) distribution.
The lemma follows.

39

C.4 Convergence of the coordinates to the limiting distribution Z

Lemma C.4 (Convergence to the limit distribution). For any vector h in the Tensor Pro-
gram we have for any α ∈ N∗,

hα
law−−−−→

m→∞
Zh

Remark C.2.

1. Let h1, . . . , hk be k vectors in the program, let θ1, . . . , θp be p scalars in the program, and
let ϕ : Rk+p → R be a pseudo-Lipschitz function. Then applying the previous Lemma C.4
to h := ϕ(h1, . . . , hk; θ1, . . . , θp) (which is in the program by NonLin), shows that for any

α, ϕ(h1α, . . . , h
k
α; θ1, . . . , θp) converges in law to Zh = ϕ(Zh1

, . . . , Zhk
;
◦
θ1, . . . ,

◦
θp).

2. A stronger form of convergence can occur depending on the parameterization we look at
and the context. Indeed, if for example Zh turns out to be a constant, then we already
get convergence in probability instead of in law. If in addition the convergence is “fast
enough”, it can occur almost surely.

Proof. Let h be a vector in the program, and consider the corresponding random variable
Zh. All we need is to prove that for any α ∈ N∗ and any bounded 1-Lipschitz function ϕ, we
have E[ϕ(hα)]→ E[ϕ(Zh)], as m goes to infinity. We first observe that the Master Theorem
B.1 ensures the convergence

1

m

m∑
β=1

ϕ(hβ)
a.s.−−−−→

m→∞
E[ϕ(Zh)].

Secondly, for any m, the distribution of h1, . . . , hm is exchangeable by symmetry, so that we
get

E[ϕ(hα)] = E

 1

m

m∑
β=1

ϕ(hβ)

 −−−−→
m→∞

E[ϕ(Zh)],

where the convergence is obtained by dominated convergence, which concludes the proof.

D Proof of the triviality of IPs: Proposition 3.1

Proof. Fix a time t ≥ 0 and an input ξ ∈ Rd for the whole proof. We first show that
the coordinates of the (pre-)activations of any layer l ≥ 2 converge to 0 almost surely at
initialization. To that end, we prove that the corresponding Z’s are equal to 0. Then we
show a similar result for the backward pass, and finally conclude the proof by an induction.

D.1 Proof at t = 0

D.1.1 First forward pass

Tensor program setup: We consider a Tensor Program as defined in
Ŵ l+1 = UL+1,

U1ξ0, . . . , U
1ξt, U

1ξ,

v1, . . . , vL,

40

and the initial scalars 
χ0, . . . , χt,

ω := m−1/2, ν := m−1, τ := m−2,

m−1vL+1;

and with initial weight matrices

Ŵ 2, . . . , ŴL.

Recall that the Ŵ l are defined in Equation (A.1) of Appendix A. Note that for any m ∈ N∗

and j ∈ [m], we have

(
UL+1
j , (U1ξ0)j , . . . , (U

1ξt)j , (U
1ξ)j , v

1
j , . . . , v

L
j

)
∼ N

0,

1 0 0
0 M 0
0 0 IL

 ,

where M := Gram(ξ0, . . . , ξt, ξ) = (ξ⊺r ξs)0≤r,s≤t+1 and IL is the identity matrix of size L×L.
where we have set ξt+1 := ξ.

Convergence of the initial scalars: ω, ν, τ as well as m−1vL+1 all converge almost surely
towards 0. For the χs we will show below in the proof that they all converge to constants
almost surely, thereby meeting the requirements of the Tensor Program. It is important to
note that there is no circular logic to prove the χs converge almost surely. Indeed, each
time we apply the master theorem to prove the convergence of fs(ξs) to a constant almost
surely and thus that of χs, we apply it to a restricted Tensor Program where only the scalars
(χr)0≤r<s appear (and there is no such scalar needed to prove the convergence of χ0 as shown
below) which will already have been proved to converge almost surely.

1st forward pass: We drop the dependency of the forward and backward passes on ξ
for brevity. h10 = U1ξ + v1 is th sum of two initial vectors in the program and has iid

Gaussian coordinates N (0, ||ξ||2+1). By definition, Ẑh1
0 = ẐU1ξ + Ẑv1 ∼ N (0, ||ξ||2+1) since

the two Gaussians appearing in the sum are independent. By NonLin, we have that since
x10 = σ(h10), Z

x1
0 = σ(Zh1

0). Note that E[σ(Zh1
0)2] < ∞ since Zh1

0 is Gaussian with finite
variance and σ is pseudo-Lipschitz and thus polynomially bounded.

Since L ≥ 2, we can write h20 = m−1/2Ŵ 2x10 + m−1v2 (otherwise there is no h20 and we

simply have f0(ξ0) = m−1(U2)
⊺
x10), which implies by NonLin that Zh2

0 =
◦
ωZŴ 2x1

0 +
◦
νZv2

with
◦
ω =

◦
ν = 0 and

ZŴ 2x1
0 = ẐŴ 2x1

0 +
.
Z Ŵ 2x1

0 .

.
Z Ŵ 2x1

0 = 0 by Lemma C.2, and ẐŴ 2x1
0 ∼ N (0,E[(Zx1

0)2]) and 0 ≤ E[(Zx1
0)2] < ∞. We

thus have Zh2
0 =

◦
ωẐŴ 2(0)x1

0 = 0. Similarly, we also get that
◦
nuZv2 = 0. We then have by

ZNonLin Zx2
0 = σ(Zh2

0) = σ(0) = 0.

Let l ∈ [2, L − 1] and assume Zhl
0 = 0. Then, Zxl

0 = σ(Zhl
0) = 0, and since hl+1

0 =

ωŴ l+1xl0 + νvl+1, by ZNonLin, Zhl+1
0 =

◦
ωZŴ l+1xl

0 +
◦
νZvl+1

where by ZMatMul,

ZŴ l+1xl
0 = ẐŴ l+1xl

0 +
.
Z Ŵ l+1xl

0 ,

41

and
.
Z Ŵ l+1xl

0 = 0 by Lemma C.2. By ZHat, ẐŴ l+1xl
0 ∼ N (0,E[(Zxl

0)2]), and since
◦
ω = 0,

◦
ωẐŴ l+1xl

0 = 0. Similarly,
◦
νZvl+1

= 0. Then, by ZNonLin Zxl+1
0 = σ(Zhl+1

0) = σ(0) = 0,
which concludes the induction.

We thus have only to deal with the last layer L+1 to finish the first forward pass. We have
f0(ξ) = m−1((UL+1(0))

⊺
xL0 + vL+1) = (1/m)

∑m
i=1 U

L+1
i xL0,i+m−1vL+1. Since UL+1 and xL0

are vectors in the program, (1/m)
∑m

i=1 U
L+1
i xL0,i is a scalar in the program by the Moment

rule, and it therefore converges almost surely to E[ZUL+1
ZxL

0] by the Master Theorem. Now

because UL+1 is an initial vector in the program, by definition, ZUL+1
= ẐUL+1 ∼ N (0, 1) is

independent of ZxL
0 . We thus get E[ZUL+1

ZxL
0] = E[ZUL+1

]E[ZxL
0] = 0. On the other hand,

m−1vL is an initial scalar in the program which converges to 0 almost surely, so that f0(ξ)
converges almost surely to 0.

D.1.2 First backward pass

1st backward pass: We can apply the previous reasoning of the forward pass with ξ0
instead of ξ and we get that f0(ξ0)→ 0 almost surely. Therefore, since χ0 = ∂2ℓ(y0, f0(ξ0))
and ∂2ℓ(y0, ·) is continuous by assumption, χ0 → ∂2ℓ(y0, 0) =:

◦
χ0 almost surely. We have

dxL0 = m−1UL+1 which makes it a vector in the program by NonLin, and ZdxL
0 =

◦
νZUL+1

.

Since ZUL+1 ∼ N (0, 1) has finite variance and
◦
ν = 0, we have ZdxL

0 = 0. dhL0 = dxL0 ⊙σ′(hL0)
implies by ZNonLin ZdhL

0 = ZdxL
0 σ′(ZhL

0) = 0× σ′(0) = 0.

One has:

ZmdxL−1
0 =

◦
ω(Ẑ(ŴL)

⊺
(mdhL

0) +
.
Z (ŴL)

⊺
(mdhL

0)),

where mdhL0 = UL+1 ⊙ σ′(hL0). By Lemma C.2,
.
Z (ŴL)

⊺
(mdhL

0) = 0 (essentially, Ŵ l never

appears in the computation of dhL0), and by ZHat, Ẑ(ŴL)
⊺
(mdhL

0) ∼ N (0,E[(ZmdhL
0)2]), and

by independence of ZUL+1
and ZhL

0 ,

E[(ZmdhL
0)2]) = E[(ZUL+1

)2])E[σ′(ZhL
0)2]) = σ′(0)2

which is finite. Since
◦
ω = 0 we get ZmdxL−1

0 = 0. dhL−1
0 = dxL−1

0 ⊙ σ′(hL−1
0) implies by

ZNonLin ZmdhL−1
0 = ZmdxL−1

0 σ′(ZhL−1
0) = 0× σ′(ZhL−1

0) = 0.

Let l ∈ [2, L] (which is non-empty since L ≥ 2) and assume Zmdxl
0 = Zmdhl

0 = 0. mdxl−1
0 =

ω(Ŵ l)
⊺
(mdhl0) implies by ZMatMul

Zmdxl−1
0 =

◦
ω(Ẑ(Ŵ l)

⊺
(mdhl

0) +
.
Z (Ŵ l)

⊺
(mdhl

0)).

By Lemma C.2,
.
Z (Ŵ l)

⊺
(mdhl

0) = 0, and by ZHat, Ẑ(Ŵ l)
⊺
(mdhl

0) ∼ N (0,E[(Zmdhl
0)2]). By

the assumption above, E[(Zmdhl
0)2]) = 0, and since

◦
ω = 0 we get Zmdxl−1

0 = 0. dhl−1
0 =

dxl−1
0 ⊙ σ′(hl−1

0) implies by ZNonLin Zmdhl−1
0 = Zmdxl−1

0 σ′(Zhl−1
0) = 0 × σ′(Zhl−1

0). Zhl−1
0 is

not 0 if l = 2, but since it is Gaussian with finite variance, and σ′ is pseudo-Lipschitz by

assumption, σ′(Zhl−1
0) is finite almost surely, and Zmdhl−1

0 = 0 almost surely, which concludes
the induction.

D.2 Induction step

Induction: Since we proved the result of the theorem for t = 0 in the first forward pass,
we might as well assume t ≥ 1. Let s ∈ [0, t − 1] be an integer. In all that follows, for

42

any r ∈ [0, s], for z ∈ {hlr, xlr, dhlr, dxlr}, we use z to denote z(ξr). We make the following
induction hypothesis: for any r ∈ [0, s]

Zh1
r = ZU1ξr+v1 ∼ N (0, ||ξr||2+1)

Zhl
r = 0 almost surely, l ∈ [2, L]

fr(ξr), fr(ξ)→ 0 almost surely

χr →
◦
χr := ∂2ℓ(yr, 0) almost surely

Zmdxl
r = Zmdhl

r = 0 almost surely, l ∈ [1, L− 1],

ZmdxL
r = UL+1.

The aim is then to prove the same claims for r = s+1. Let us first start with the expressions
of ∆W l(s + 1) and ∆Bl(s + 1). We will use Equation (A.3) and the fact that cl + 2 ≥ 0 if
l ∈ [2, L], and cl + 1 ≥ 0 for l = 1, and l = L+ 1. We have by Equations (A.3) and (A.6)

∆W 1(s+ 1) = −ηm−cl

s∑
r=0

χrdh
1
rξ

⊺
r ,

∆W l(s+ 1) = −ηm−(2+cl)
s∑

r=0

χrdh
l
r(x

l−1
r)

⊺
, l ∈ [2, L],

∆WL+1(s+ 1) = −ηm−(1+cL+1)
s∑

r=0

χrx
L
r /m,

and by Equations (A.4) and (A.7)

∆B1(s+ 1) = −ηm−cl

s∑
r=0

χrdh
1
r ,

∆Bl(s+ 1) = −ηm−(2+cl)
s∑

r=0

χrdh
l
r, l ∈ [2, L],

∆BL+1(s+ 1) = −ηm−(1+cL+1)
s∑

r=0

χr/m.

In the following, we use for z ∈ {hls+1, x
l
s+1, dh

l
s+1, dx

l
s+1}, we use z to denote z(ξ) (and not

z(ξs+1) for now). Using that in the Naive-IP, c1 = cL+1 = −1, and cl = −2 for l ∈ [2, L], we
have

∆W 1(s+ 1)ξ +∆B1(s+ 1) = −η
s∑

r=0

(ξ⊺s ξ + 1)χr(mdh
1
r),

∆W l(s+ 1)xl−1
s+1 +∆Bl(s+ 1) = −η

s∑
r=0

χr
((xl−1

r)
⊺
xl−1
s+1) + 1

m
(mdhlr), l ∈ [2, L],

(∆WL+1(s+ 1))
⊺
xLs+1 +∆BL+1(s+ 1) = −η

s∑
r=0

χr
(xLr)

⊺
xLs+1 + 1

m
.

To prove the claims above for r = s + 1, we will first induct from l = 1 to l = L for the
forward pass and then induct from l = L to l = 1 for the backward pass.

43

D.2.1 Forward pass at step s+ 1

Forward pass at step (s+1): h1s+1 = U1ξ+v1+∆W 1(s+1)ξ+∆b1(s+1) and by ZNonLin

Zh1
s+1 = ẐU1ξ − η

s∑
r=0

(ξ⊺s ξ + 1)
◦
χr Z

mdh1
r︸ ︷︷ ︸

0 a.s.

= ẐU1ξ = Zh1
0(ξ) almost surely.

Note that the scalars (χr)0≤r≤s are now valid scalars in the program by the induction hypoth-
esis which allows applying the Tensor Program rules with those scalars as well as the master
theorem. This gives Zh1

s+1 ∼ N (0, ||ξ||2+1), and we then have Zx1
s+1 = σ(Ẑh1

0(ξ)) = Zx1
0(ξ)

for which we have already proven E[(Zx1
0(ξ))2] <∞.

h2s+1 = ωŴ 2x1s+1 + τv2 − η
s∑

r=0

χr
(x1r)

⊺
x1s+1 + 1

m
(mdh2r).

Because x1s+1 is a vector in the program, by ZMatMul

ZŴ 2x1
s+1 = ẐŴ 2x1

s+1 +
.
Z Ŵ 2x1

s+1 ,

and because Zx1
s+1 = σ(ẐU1ξ+v1) is only a function of the initial vectors U1ξ and v1, and not

of any vector computed used (Ŵ 2)
⊺
,
.
Z Ŵ 2x1

s+1 = 0 by ZDot, and ẐŴ 2x1
s+1 ∼ N (0,E[(Zx1

s+1)2])
is a Gaussian with finite variance by ZHat. (x1r)

⊺
x1s+1/m is a valid scalar in the program by

the moment rule, and by the Master theorem,

((x1r)
⊺
x1s+1 + 1)/m

a.s.−−−−→
m→∞

E[Zx1
rZx1

s+1] = E[σ(ZU1ξr+v1)σ(ZU1ξ+v1)],

and because U1ξr, v
1 and U1ξ are initial vectors in the program, (ZU1ξr+v1 , ZU1ξ+v1) is

jointly Gaussian by definition with finite covariance matrix(
||ξr||2+1 ξ⊺r ξ + 1
ξ⊺ξr + 1 ||ξ||2+1

)
,

which ensures the expectation above is finite because σ is polynomially bounded since it is
pseudo-Lipschitz. We thus habe

Zh2
s+1 = 0× ẐŴ 2x1

s+1︸ ︷︷ ︸
<∞

+0× Zv2 − η
s∑

r=0

◦
χr︸︷︷︸
<∞

E[Zx1
rZx1

s+1]︸ ︷︷ ︸
<∞

Zmdh2
r︸ ︷︷ ︸

0

Zh2
s+1 = 0.

We then get Zx2
s+1 = σ(0) = 0 and thus E[(Zx2

s+1)2] = 0.

Let l ∈ [2, L− 1] and assume Zhl
s+1 = 0.

hl+1
s+1 = ωŴ l+1 + τvl+1 + xls+1 − η

s∑
r=0

χr
(xlr)

⊺
xls+1 + 1

m
(mdhl+1

r).

Now, since xls+1 is a vector in the program, ((xlr)
⊺
xls+1 +1)/m is a scalar in the program by

the Moment operation, which converges almost surely, by the Master Theorem, to

E[Zxl
rZxl

s+1] = E[σ(Zhl
r)σ(Zhl

s+1)] = σ(0)2 = 0.

44

By ZNonLin,

Zhl+1
s+1 =

◦
ωZŴ l+1xl

s+1 +
◦
τZvl+1 − η

s∑
r=0

◦
χr︸︷︷︸
<∞

E[Zxl
rZxl

s+1]︸ ︷︷ ︸
<∞

Zmdhl+1
r︸ ︷︷ ︸

0

.

On the other hand,

ZŴ l+1xl
s+1 = ẐŴ l+1xl

s+1 +
.
Z Ŵ l+1xl

s+1 ,

and since Zxl
s+1 = σ(Zhl

s+1) = σ(0) = 0 is a constant almost surely, the derivatives defining
.
Z are equal to 0 (its expression as a function of the previous Ẑ is a constant because any

Ẑ gets multiplied by 0) so that
.
Z Ŵ l+1xl

s+1 = 0, and ẐŴ l+1xl
s+1 ∼ N (0,E[(Zxl

s+1)2]) = 0.

With
◦
ωl+1 = 0 and

◦
τ = 0, this yields Zhl+1

s+1 = 0, and therefore E[(Zxl+1
s+1)2] = E[σ(Zhl+1

s+1)2] =
σ(0)2 = 0.

We now deal with the last layer l = L+ 1 in the forward pass.

fs+1(ξ) = m−1(UL+1)
⊺
xLs+1 − η

s∑
r=0

χr
(xLr)

⊺
xLs+1 + 1

m
.

Since UL+1, xLs+1, x
L
r are vectors in the program, by the Master Theorem, we have:

m−1(UL+1)
⊺
xLs+1

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

s+1] = σ(0)E[ZUL+1
]︸ ︷︷ ︸

0

= 0,

and

(xLr)
⊺
xLs+1 + 1

m

a.s.−−−−→
m→∞

E[ZxL
r ZxL

s+1] = σ(0)2 = 0.

We thus get

s∑
r=0

χr
(xLr)

⊺
xLs+1 + 1

m

a.s.−−−−→
m→∞

s∑
r=0

◦
χr︸︷︷︸
<∞

×0 = 0.

This shows that

fs+1(ξ)
a.s.−−−−→

m→∞
0.

Doing the exact same reasoning as above with ξs+1 instead of ξ for r = s + 1 gives us the
first 3 claims of the induction hypothesis for r = s+ 1.

D.2.2 Backward pass at step s+ 1

Backward pass at step (s + 1): the fourth claim χs+1 →
◦
χs+1 = ∂2ℓ(ys+1, 0) is a

consequence of the fact that fs+1(ξs+1) → 0 almost surely, combined with the facts that
χs+1 = ∂2ℓ(ys+1, fs+1(ξs+1)) and that ∂2ℓ(ys+1, ·) is continuous by assumption. In all the
rest of this proof, for z ∈ {hls+1, x

l
s+1, dh

l
s+1, dx

l
s+1} we now use z to denote z(ξs+1) and not

z(ξ) anymore.

45

mdxLs+1 = wL+1(s+ 1) = UL+1 − η
∑s

r=0 χrx
L
r yields by ZNonLin

ZmdxL
s+1 = ZUL+1 − η

s∑
r=0

◦
χr Z

xL
r︸︷︷︸

0

ZdxL
s+1 = ZUL+1

.

We thus have ZdxL
s+1 =

◦
τZmdxL

s+1 = 0, and ZdhL
s+1 = ZdxL

s+1σ′(ZhL
s+1) = 0× σ′(0) = 0 almost

surely.

One has:

mdxL−1
s+1 = ω(ŴL)

⊺
(mdhLs+1)− η

s∑
r=0

χr
(mdhlr)

⊺
mdhLs+1

m
xL−1
r ,

so that

ZmdxL−1
s+1 =

◦
ωZ(ŴL)

⊺
(mdhL

s+1) − η
s∑

r=0

◦
χrE[Zmdhl

rZmdhl
s+1]ZxL−1

r .

Now, we have E[Zmdhl
rZmdhl

s+1] = E[(ZUL+1
)2]σ′(0)2 = σ′(0)2 which is finite. On the other

hand, because ZmdhL
s+1 = ZUL+1

does not depend on ZŴL
, we get that

.
Z (ŴL)

⊺
(mdhL

s+1) = 0

and Ẑ(ŴL)
⊺
(mdhL

s+1) ∼ N (0, 1) so that
◦
ωZ(ŴL)

⊺
(mdhL

s+1) = 0. It follows that ZmdxL−1
s+1 = 0,

and since ZmdhL−1
s+1 = ZmdxL−1

s+1 σ′(ZhL−1
0) we also get ZmdhL−1

s+1 = 0.

Let l ∈ [2, L] and assume Zmdxl
s+1 = Zmdhl

s+1 = 0. Then

mdxl−1
s+1 = ω(Ŵ l)

⊺
(mdhls+1)− η

s∑
r=0

χr
(mdhlr)

⊺
mdhls+1

m
xl−1
r .

Since (mdhlr)
⊺
and mdhls+1 are vectors in the program, (mdhlr)

⊺
mdhls+1/m is a scalar in the

program which converges almost surely, by the Master Theorem, to E[Zmdhl
rZmdhl

s+1] = 0.

On the other hand
.
Z (Ŵ l)

⊺
(mdhl

s+1) = 0 because Zmdhl
s+1 is a constant (its expression in

function of the previous Ẑ is constant equal to 0), and Ẑ(Ŵ l)
⊺
(mdhl

0) ∼ N (0,E[(Zmdhl
0)2]) is

almost surely 0 because E[(Zmdhl
0)2]) = 0. By ZNonLin we have

Zdxl−1
s+1 =

◦
ω︸︷︷︸
0

Ẑ(Ŵ l)
⊺
dhl

0︸ ︷︷ ︸
0

−η
s∑

r=0

◦
χr︸︷︷︸
<∞

E[Zdhl
rZdhl

s+1]︸ ︷︷ ︸
0

Zxl−1
r︸ ︷︷ ︸
0

Zdxl−1
s+1 = 0.

Finally, Zdhl−1
s+1 = Zdxl−1

s+1σ′(Zhl−1
s+1) yields Zdhl−1

s+1 = 0 because Zhl−1
s+1 = 0. This proves the

last claim of the induction hypothesis for r = s + 1 and thus concludes the induction and
therefore the proof.

E Preliminaries on positively homogeneous functions

In this section we give a description of activation functions σ satisfying Assumption 3. The
fact that σ is positively p-homogeneous translates as

σ(z) =

{
αzp if z ≥ 0

β|z|p if z < 0.

46

Additionally, one has

σ′(z) =

{
αpzp−1 if z ≥ 0

−βp|z|p−1 if z < 0,

so that σ′ is positively (p − 1)-homogeneous with σ′(0) = 0. Since p ≥ 2, both σ and σ′

are continuous and σ′ is differentiable everywhere except at 0 if p = 2. It is immediate to
check that both σ and σ′ are pseudo-Lipschitz and that σ, σ′ and σ′′ are also polynomially
bounded functions. The non-negativity assumption on σ gives α ≥ 0, β ≥ 0, the fact that
σ is not identically 0 leads to α > 0 or β > 0, and finally the fact that σ has faster growth
on the positive part of the real line yields α > β ≥ 0. One notices that the faster growth
assumption is stronger than the assumption that σ is not identically zero, and the latter
could thus be gotten rid of. The conditions on α and β can thus simply be summarized as

α > β ≥ 0 (E.1)

With these conditions, we have that σ(z) > 0 for z > 0, and σ′(z)z ≥ 0 for z ̸= 0, that is
sign(σ′(z)) = sign(z).

F Preliminaries for Theorem 3.2 and Theorem 4.1

In all this section since we assume positive homogeneity of the activation function, we also
consider parameterizations with no bias terms except at the first layer.

F.1 Tilde variables

Definition F.1 (Scaleless variables at initialization). Let ξ ∈ Rd be an input vector. In-
dependently of any parameterization, we consider the following variables “without scale” at
initialization :{

h̃10(ξ) := U1ξ + v1

x̃10(ξ) := σ(h̃10(ξ))
∀l ∈ [2, L],

{
h̃l0(ξ) := Ŵ lx̃l−1

0 (ξ)

x̃l0(ξ) := σ(h̃l0(ξ))

and define f̃0(ξ) := (ŴL+1)
⊺
x̃L0 , as well as{

dx̃L0 (ξ) := UL+1

dh̃L0 (ξ) := dx̃L0 (ξ)⊙ σ′(h̃L0 (ξ))
∀l ∈ [L− 1],

{
dx̃l0(ξ) := (Ŵ l+1)

⊺
dh̃l+1

0 (ξ)

dh̃l0(ξ) := dx̃l0(ξ)⊙ σ′(h̃l0(ξ))

where the Ŵ l are defined in Equation (A.1).

Remark F.1. The tilde variables are independent of the choice of parameterization because,
independently of the parameterization, Ŵ l

pq = m−1/2U l
pq ∼ N (0, 1/m) for l ∈ [2, L + 1]

and Ŵ 1
pq = U1

pq ∼ N (0, 1). Those variables essentially reproduce the computations that
take place in the forward (without any bias terms except at the first layer) and backward
passes of any ac-parameterization but the magnitudes (the multiplying scalars ωl) have been
set to 1, essentially removing the additional scales which lead to explosion or vanishing as
m → ∞. The tilde variables of the forward pass at initialization correspond to the NTK
parameterization. However this is not the case for the backward pass as the backward pass of
NTK vanishes at initialization whereas the corresponding tilde variables have positive (> 0)
variance as shown in Lemma F.1 below.

47

Lemma F.1 (Scaleless variables have positive and finite second moment). Let ξ ∈ Rd be
an input vector, and consider a non-linearity σ satisfying Assumption 2. Then, dropping
the dependency of the tilde variables on ξ, one has that for any l ∈ [1, L], and for any
z ∈ {h̃l0, x̃l0, dh̃l0, dx̃l0}, the second moment is positive and finite: 0 < E[(Zz)2] < ∞. More
precisely, one has:

Z h̃1
0 ∼ N (0, ||ξ||2+1), 0 < E[(Z x̃1

0)2] <∞

Z h̃l
0 ∼ N (0, V 2

h,l), 0 < V 2
h,l := E[(Z x̃l−1

0)2] <∞, l ∈ [2, L],

0 < E[(Z x̃l
0)2] <∞, l ∈ [2, L],

f̃0(ξ)
law−−−−→

m→∞
N (0, V 2

f), 0 < V 2
f := E[(Z x̃L

0)2] <∞,

Zdx̃L
0 ∼ N (0, 1)

Zdx̃l
0 ∼ N (0, V 2

dx,l), 0 < V 2
dx,l := E[(Zdh̃l+1

0)2] <∞, l ∈ [1, L− 1],

0 < E[(Zdh̃l
0)2] <∞, l ∈ [1, L].

Remark F.2. As shown in Appendix M, those expectations, as well as the means (first
and second moment) are tractable with σ = ReLU and have simple expressions (for the first
forward and backward passes). As shown in Appendices M.3 and M.5, the recursive formulas
for the variances of the forward and backward passes can be unrolled, and to avoid explosion
or vanishing with the depth L, one must initialize the i.i.d. Gaussian entries with a standard
deviation of

√
2 to preserve the norm of the input signal.

Proof. Let ξ ∈ Rd be an input vector. We omit the dependency of the forward and backward
passes on ξ for simplicity. We first induct from l = 1 to l = L for the forward pass and then
from l = L to l = 1 for the backward pass. h̃10 = U1ξ+ v1 is the sum of two initial vectors in
the program, which follows two independent Gaussian laws by definition: ZU1ξ ∼ N (0, ||ξ||2),
and Zv1 ∼ N (0, 1) independently of ZU1ξ. We thus have Z h̃1

0 ∼ N (0, ||ξ||2+1), which shows

its variance is finite and > 0, and by Lemma C.1, 0 < E[(Z x̃1
0)2] <∞ since Z x̃1

0 = σ(Z h̃1
0).

Now let l ∈ [1, L−1] and assume Z h̃l
0 ∼ N (0, V 2

h,l) with 0 < V 2
h,l <∞, and 0 < E[(Z x̃l

0)2] <∞.

By ZMatMul, Z h̃l+1
0 = ZŴ l+1xl

0 which is equal to ẐŴ l+1xl
0 by Lemma C.2. now by definition,

ẐŴ l+1x̃l
0 ∼ N (0,E[(Z x̃l

0)2]), and the variance is > 0 and finite by the induction hypothesis,

so that 0 < E[(Z h̃l+1
0)2] <∞. Now by Lemma C.1 again, since Z x̃l+1

0 = σ(Z h̃l+1
0), we also get

that 0 < E[(Z x̃l+1
0)2] <∞ which concludes the induction for the first L layers of the forward

pass.

f̃0(ξ) = (Ŵ l+1)
⊺
x̃L0 and ŴL+1

j ∼ N (0, 1/m) for every m, and by the Master Theorem,

since ||x̃L0 ||2/m is a scalar in the program defined by the moment operation, it converges

almost surely to E[(Z x̃L
0)2]. Finally, since x̃L0 is computed using only the Ŵ l for l ≤ L, x̃L0 is

independent of Ŵ l+1. By Lemma C.3, f̃0(ξ) converges in law towards N (0,E[(Z x̃L
0)2]), and

0 < E[(Z x̃L
0)2] <∞ by the previous induction.

Zdx̃L
0 = ZUL+1

and since UL+1 is an initial vector in the program whose coordinates are
iid following N (0, 1), we have by definition ZUL+1 ∼ N (0, 1). Zdh̃L

0 = Zdx̃L
0 σ′(Z h̃L

0) =

ẐU l+1
σ′(ẐŴLx̃L−1

0). Now by definition in ZHat, ẐŴLx̃L−1
0 is independent of ẐU l+1

since UL+1

48

is an initial vector in the program. This yields

E[(Zdh̃L
0)2] = E

[
(ẐUL+1

)2
]
E
[
σ′(Z h̃L

0)2
]

= 1× E
[
σ′(Z h̃L

0)2
]
.

By assumption, σ′ is pseudo-Lipschitz and thus polynomially bounded, and is not almost

everywhere 0. By the induction above, Z h̃L
0 ∼ N (0,E[(Z x̃L−1

0)2]) with 0 < E[(Z x̃L−1
0)2] <∞.

By Lemma C.1 we thus have 0 < E[σ′(Z h̃L
0)2] <∞, which shows 0 < E[(Zdh̃L

0)2] <∞.

Now let l ∈ [2, L] and assume Zdx̃l
0 ∼ N (0, V 2

dx,l) with 0 < V 2
dx,l < ∞, and assume

0 < E[(Zdh̃l
0)2] < ∞. Zdx̃l−1

0 = Z(Ŵ l)
⊺
dh̃l

0 and Z(Ŵ l)
⊺
dh̃l

0 = Ẑ(Ŵ l)
⊺
dh̃l

0 by Lemma C.2.

By definition, Ẑ(Ŵ l)
⊺
dh̃l

0 ∼ N (0,E[(Zdh̃l
0)2]), so that E[(Zdx̃l−1

0)2] = E[(Zdh̃l
0)2] and thus

0 < E[(Zdx̃l−1
0)2] <∞ by the induction hypothesis. We have

Zdh̃l−1
0 = Zdx̃l−1

0 σ′(Z h̃l−1
0) = Ẑ(Ŵ l)

⊺
dh̃l

0σ′(ẐŴ l−1x̃l−2
0)

if l ≥ 3, and

Zdh̃1
0 = Zdx̃1

0σ′(Z h̃1
0) = Ẑ(Ŵ 2)

⊺
dh̃2

0σ′(ẐŴ 1ξ0+v1)

if l = 2. In any case, the random variable inside σ′ is independent of the other variable in
the product. We thus get

E[(Zdh̃l−1
0)2] = E

[
(Zdx̃l−1

0)2
]

︸ ︷︷ ︸
>0, <∞

E
[
σ′(Z h̃l−1

0)2
]

︸ ︷︷ ︸
>0, <∞

where the bounds on the second expectation are obtained using Lemma C.1. This concludes
the induction for the backward pass and thus the proof.

F.2 Expression of the forward and backward passes of ac-parameterizations
in function of the tilde variables with homogeneity

Lemma F.2 (Forward pass with homogeneity at t = 0). Consider any ac-parameterization
of an L-hidden layer neural network with a p-homogeneous activation function, and p ≥ 1.
Let ξ ∈ Rd be an input to the network. Then, omitting the dependency of the forward pass
and the tilde variables on ξ, one has:

hl0 = γf,lh̃
l
0, l ∈ [1, L], (F.1)

xl0 = (γf,l)
px̃l0, l ∈ [1, L], (F.2)

f0(ξ) = γf,L+1f̃0(ξ), (F.3)

where, for any l ∈ [1, L+ 1]

γf,l :=

(
l∏

k=1

ωpl−k

k

)
.

Remark F.3.

1. (γf,l)
p =

(∏l
k=1 ω

pl−k+1

k

)
.

49

2. When p = 1, γf,l and (γf,l)
p simply reduce to ωl . . . ω1.

3. For integrable parameterizations, for any l ∈ [1, L+ 1], γf,l = m−
∑l−2

k=0 p
k/2. The latter

term is 1 when l = 1, and otherwise m−(l−1)/2 if p = 1 and m−(pl−1−1)/2(p−1) if p > 1.
For µP, γf,l = 1 for any l ∈ [1, L] because ωl = 1 for µP if l ∈ [1, L].

4. Instead of homogeneity, assume σ is differentiable, has non-zero derivative in 0 and
σ(0) = 0. Also assume that ω1 = 1 (i.e., a1 = 0) and ωl → 0 (i.e., al > 1/2) for
l ∈ [2, L], which is the case in integrable parameterizations. Then, we have h10 = h̃10,
and h20 = ω2h̃

2
0, so that x20 = σ(ω2h̃

2
0) and as m→∞, x20 ≃ ω2σ

′(0)h̃20. Then similarly,

we have for h30 ≃ ω3ω2σ
′(0)Ŵ 3h̃20 and x30 ≃ ω3ω2σ

′(0)2Ŵ 3h̃20. An easy induction

then gives hl0 = σ′(0)l−2(ωl . . . ω2)Ŵ
l . . . Ŵ 2h̃20. This thus resembles the case of a

p = 1 positively homogeneous function, except that the first forward pass is effectively
linearized after layer 1, but the magnitude of the forward pass at different layers is
also well understood in this case so that the learning rates for the first update can be
chosen appropriately (e.g., for integrable parameterizations). In particular, the initial
learning rates of IP-LLR for p = 1 will also produce non-trivial weight updates at t = 0
in this setting, which will in turn induce learning. Finally, setting the initial standard
deviations of the weight matrices equal to |σ′(0)|−1 instead of 1 for the intermediate
layers avoids problems with the depth L.

Proof. h10 = m−a1 implies that h10 = ω1(U
1ξ + v1) = ω1h̃

1
0, which entails x10 = ωp

1x̃
1
0 be-

cause σ is positively p-homogeneous and ω1 ≥ 0. Now let l ∈ [1, L − 1] and assume

hl0 = (
∏l

k=1 ω
pl−k

k)h̃l0, and x
l
0 = (

∏l
k=1 ω

pl−k+1

k)x̃l0. Then

hl+1
0 = ωl+1Ŵ

l+1(0)xl0

= ωl+1

(
l∏

k=1

ωpl−k+1

k

)
Ŵ l+1(0)x̃l0

=

(
l+1∏
k=1

ωpl+1−k

k

)
h̃l+1
0

Since σ is positively homogeneous, we have

xl+1
0 = σ(hl+1

0)

=

(
l+1∏
k=1

ωpl+1−k

k)pσ(h̃l+1
0

)

=

(
l+1∏
k=1

ωpl+2−k

k

)
σ(h̃l+1

0)

This concludes the induction and gives the result for any l ∈ [1, L]. To conclude, we com-

pute the expression of f0(ξ) = ωL+1(Ŵ
L+1(0))

⊺
xL0 = ωL+1(

∏L
k=1 ω

pL−k+1

k)(ŴL+1(0))
⊺
x̃L0 =

(
∏L+1

k=1 ω
pL+1−k

k)f̃0(ξ).

Lemma F.3 (Backward pass with homogeneity at t = 0). Consider any ac-parameterization
of an L-hidden layer neural network with a positively p-homogeneous activation function, and
p ≥ 1. Let ξ0 ∈ Rd be the first training input. Then, omitting the dependency of the forward

50

and backward passes, as well as that of the tilde variables on ξ0, one has for any l ∈ [1, L]:

dxl0 = m−aL+1γb,l

(
L∏

k=l+1

γf,k

)p−1

dx̃l0, (F.4)

dhl0 = m−aL+1γb,l

(
L∏

k=l

γf,k

)p−1

dh̃l0, (F.5)

where, for any l ∈ [1, L],

γb,l =
L∏

k=l+1

ωk.

Remark F.4.

1. By swapping the products, one has that

L∏
k=l+1

γf,k =

L∏
k=1

ω

∑L
r=max(k,l+1) p

r−k

k .

2. When p = 1,
(∏L

k=l γf,k

)p−1
= 1 for any l ∈ [1, L+ 1].

3. For integrable parameterizations, γb,l = m−(L−l)/2 for any l ∈ [1, L]. For µP, γb,l = 1
for any l ∈ [1, L].

4. For l = L, γb,L = 1,
∏L

k=l+1 γf,k = 1,
∏L

k=l γf,k = γf,L.

Proof. dxL0 =WL(0) = m−aL+1UL+1 = m−aL+1dx̃L0 ,

dhL0 = dxL0 ⊙ σ′(hL0)
= m−aL+1dx̃L0 ⊙ σ′(γf,Lh̃L0)
= m−aL+1(γf,L)

p−1dx̃L0 ⊙ σ′(h̃L0)

where the second equality stems from Lemma F.2 and the last equality stems from ωL . . . ω1 >
0 and the positive (p − 1)-homogeneity of σ′. Let l ∈ [2, L] and assume that dxl0 satisfies
Equation (F.4) and dhl0 satisfies Equation (F.5). Then

dxl−1
0 = ωl(Ŵ

l)
⊺
dhl0

= m−aL+1ωlγb,l

(
L∏

k=l

γf,k

)p−1

(Ŵ l)
⊺
dh̃l0

= m−aL+1γb,l−1

 L∏
k=(l−1)+1

γf,k

p−1

dx̃l−1
0 ,

51

and

dhl−1
0 = dxl0 ⊙ σ′(hl0)

= m−aL+1γb,l−1

(
L∏

k=l

γf,k

)p−1

dx̃l−1
0 ⊙ σ′(γf,lh̃l−1

0)

= m−aL+1γb,l−1

(
L∏

k=l

γf,k

)p−1

(γf,l−1)
p−1dx̃l0 ⊙ σ′(h̃l0)

= m−aL+1γb,l−1

(
L∏

k=l−1

γf,k

)p−1

dh̃l−1
0 ,

where we have used Lemma F.2 in the second equality, the positive (p − 1)-homogeneity of
σ′ combined with ωl . . . ω1 > 0 in the third equality and the definition of dh̃l−1

0 in the last.
This thus concludes the proof by induction.

Lemma F.4 (Weight updates with homogeneity at t = 0). Consider any ac-parameterization
of an L-hidden layer neural network with a positively p-homogeneous activation function, and
p ≥ 1. Let ξ0 ∈ Rd be the first training input. Then, omitting the dependency of the forward
and backward passes, as well as that of the tilde variables on ξ0, one has:

∆W 1(1) = −ηχ0m
−(aL+1+2a1+c1)ωpL−1

1

(
L∏

k=2

ωpL−k+1

k

)
dh̃10ξ

⊺
0 ,

∆B1(1) = −ηχ0m
−(aL+1+2a1+c1)ωpL−1

1

(
L∏

k=2

ωpL−k+1

k

)
dh̃10,

∆W l(1) = −ηχ0m
−(aL+1+2al+cl−1)

(
L∏

k=1

ωpL−k+1

k

)
ω−1
l

dh̃l0(x̃
l−1
0)

⊺

m
, l ∈ [2, L],

∆WL+1(1) = −ηχ0m
−(2aL+1+cL+1−1)

(
L∏

k=1

ωpL−k+1

k

)
x̃L0 /m.

Remark F.5. For p = 1, we have

ωpL−1
1

(
L∏

k=2

ωpL−k+1

k

)
= ω1 . . . ωL(

L∏
k=1

ωpL−k+1

k

)
ω−1
l = ω1 . . . ωl−1ωl+1 . . . ωL

L∏
k=1

ωpL−k+1

k = ω1 . . . ωL

Proof. Before we begin with the proof, we start with a first basic result which will be used
repeatedly in the proof. Let N ∈ N∗. By Equation (A.3), we have

(p− 1)
N∑
r=0

pr =
N+1∑
r=1

pr −
N∑
r=0

pr = pN+1 − 1.

52

Now that this is established, let us look at the update for the first layer. We have

∆W 1(1) = −ηm−(2a1+c1)χ0dh
1
0ξ

⊺
0

= −ηm−(2a1+c1+aL+1)γb,1

(
L∏

k=1

γf,k

)p−1

χ0dh̃
1
0ξ

⊺
0 ,

where we have used Lemmas F.2 and F.3 in the second equality. Now, we have

γb,1 =
L∏

k=2

ωk,

and by the first point in Remark F.4, we have (with l = 1)(
L∏

k=1

γf,k

)p−1

=

L∏
k=1

ω
(p−1)

∑L
r=k pr−k

k

=
L∏

k=1

ω
(p−1)

∑L−k
r=0 pr

k

=

L∏
k=1

ωpL−k+1−1
k .

It follows that

γb,1

(
L∏

k=1

γf,k

)p−1

= ωpL−1
1

L∏
k=2

ωpL−k+1

k

The formula for ∆B1(1) follows from the expression of dh10 in function of dh̃10 and from
Equation (A.4).

Let l ∈ [2, L]

∆W l(1) = −ηm−(2al+cl)χ0dh
l
0(x

l−1
0)

⊺

= −ηm−(2al+cl+aL+1−1)χ0 γb,l (γf,l−1)
p

(
L∏

k=l

γf,k

)p−1
dh̃l0(x̃

l−1
0)

⊺

m

Now, we have

γb,l =
L∏

k=l+1

ωk.

In addition, by the first point of Remark F.3, we have

(γf,l−1)
p =

(
l−1∏
k=1

ωpl−k

k

)
,

53

and by the first point in Remark F.4(
L∏

k=l

γf,k

)p−1

=

(
l−1∏
k=1

ω
(p−1)

∑L
r=l p

r−k

k

)
×

(
L∏

k=l

ω
(p−1)

∑L
r=k pr−k

k

)

=

(
l−1∏
k=1

ω
(p−1)pl−k

∑L
r=l p

r−l

k

)
×

(
L∏

k=l

ω
(p−1)

∑L−k
r=0 pr

k

)

=

(
l−1∏
k=1

ω
(p−1)pl−k

∑L−l
r=0 pr

k

)
×

(
L∏

k=l

ω
(p−1)

∑L−k
r=0 pr

k

)
.

Let us now look, for each k ∈ [1, L], at the power of ωk which appears in the product

γb,l(γf,l−1)
p
(∏L

k=l γf,k

)p−1
. If k ∈ [1, l − 1], the exponent for ωk is equal to

pl−k + (p− 1)pl−k
L−l∑
r=0

pr = pl−k

(
(p− 1)

L−l∑
r=0

pr + 1

)
= pl−k

(
pL−l+1 − 1 + 1

)
= pL−k+1.

If k = l, the exponent for ωl is equal to

(p− 1)

L−l∑
r=0

pr = pL−l+1 − 1.

If k ∈ [l + 1, L], the exponent for ωk is equal to

1 + (p− 1)

L−k∑
r=0

pr = 1 + pL−k+1 − 1 = pL−k+1.

Thus, for every k ̸= l, the exponent for ωk is equal to pL−k+1, and for k = l, the exponent
for ωl is equal to p

L−l+1 − 1. It follows that

γb,l(γf,l−1)
p

(
L∏

k=l

γf,k

)p−1

=

(
L∏

k=1

ωpL−k+1

k

)
w−1
l .

Finally,

∆WL+1(1) = −ηm−(2aL+1+cL+1)χ0x
L
0

= −ηm−(2aL+1+cL+1−1)χ0(γf,L)
px̃L0 /m,

where we have used Lemma F.2 in the second equality. From the first point of Remark F.3,
we get that

(γf,L)
p =

L∏
k=1

ωpL−k+1
k ,

which concludes the proof.

54

Corollary F.4.1 (Weight updates of IP with homogeneity at t = 0). Consider an integrable
parameterization of an L-hidden layer neural network with no bias terms except at the first
layer, and a positively p-homogeneous activation function, and p ≥ 1. Let ξ0 ∈ Rd be the
first training input. Then, omitting the dependency of the forward and backward passes, as
well as that of the tilde variables on ξ0, one has:

∆W 1(1) = −ηχ0m
−(c1−γ1(p))dh̃10ξ

⊺
0 ,

∆B1(1) = −ηχ0m
−(c1−γ1(p))dh̃10,

∆W l(1) = −ηχ0m
−(cl−γl(p))

dh̃l0(x̃
l−1
0)

⊺

m
, l ∈ [2, L],

∆WL+1(1) = −ηχ0m
−(cL+1−γL+1(p))x̃L0 /m,

where the γl(p) are given in Definition 3.2.

Proof. For integrable parameterizations, ω1 = 1, ωl = m−1/2 for l ∈ [2, L], and aL+1 = 1.
For the first layer, we have aL+1 + 2a1 + c1 = 1. On the other hand,

ωpL−1
1

(
L∏

k=2

ωpL−k+1

k

)
=

L∏
k=2

m−pL−k+1/2

= m−
∑L

k=2 p
L−k+1/2

= m−
∑L−1

k=1 pk/2

= m−1/2(
∑L−1

k=0 pk−1),

so that

m−(aL+1+2a1+c1)ωpL−1
1

(
L∏

k=2

ωpL−k+1

k

)
= m−c1m−1/2(

∑L−1
k=0 pk−1)m−1

= m−c1m−1/2(
∑L−1

k=0 pk+1)

= m−c1mγ1(p),

by Definition 3.2, which gives the result for the first layer’s update (∆W 1(1) and ∆B1(1)).
Let l ∈ [2, L]. aL+1 + 2al − 1 = 1 + 2− 1 = 2. On the other hand,(

L∏
k=1

ωpL−k+1

k

)
ω−1
l = m−1/2(

∑L−1
k=0 pk−1)m1/2

= m−1/2
∑L−1

k=0 pk+1,

so that

m−(aL+1+2al+cl)

(
L∏

k=1

ωpL−k+1

k

)
ω−1
l = m−clm−1/2

∑L−1
k=0 pk+1m−2

= m−clm−1/2
∑L−1

k=0 pk−1

= m−clmγl(p),

by Definition 3.2, which proves the result for the updates of the intermediate layers. Finally,
we have 2aL+1−1 = 2−1 = 1, and on the other hand, because ω1 = 1, as in the first update,
we find

L∏
k=1

ωpL−k+1

k = m−1/2(
∑L−1

k=0 pk−1),

55

so that

m−(2aL+1+cL+1−1)
L∏

k=1

ωpL−k+1

k = m−cL+1m−1/2(
∑L−1

k=0 pk−1)m−1

= m−cL+1m−1/2(
∑L−1

k=0 pk+1)

= m−cL+1mγL+1(p),

by Definition 3.2, which gives the result for the last layer’s update and therefore concludes
the proof.

Corollary F.4.2 (Weight updates of IP-LLR at t = 0). Consider an IP-LLR parameteri-
zation of an L-hidden layer neural network with a p-homogeneous activation function, and
p ≥ 1. Let ξ0 ∈ Rd be the first training input. Then, omitting the dependency of the forward
and backward passes of IP-LLR, as well as that of the tilde variables on ξ0, one has:

∆W 1(1) = −ηχ0dh̃
1
0ξ

⊺
0 ,

∆B1(1) = −ηχ0dh̃
1
0,

∆W l(1) = −ηχ0
dh̃l0(x̃

l−1
0)

⊺

m
, l ∈ [2, L],

∆WL+1(1) = −ηχ0x̃
L
0 /m.

Proof. This is a simple consequence of Corollary F.4.1 and the fact that for IP-LLR cl = γl(p)
at t = 0 by definition (see Definition 4.1) for any l ∈ [1, L+ 1].

Lemma F.5 (Weight updates of µP at t = 0). Consider the µP parameterization given in
Definition B.3 with a differentiable activation function σ. Let ξ0 ∈ Rd be the first training
input. Then, omitting the dependency of the forward and backward passes of µP, as well as
that of the tilde variables on ξ0, one has:

∆W 1(1) = −ηχ0dh̃
1
0ξ

⊺
0

∆B1(1) = −ηχ0dh̃
1
0

∆W l(1) = −ηχ0
dh̃l0(x̃

l−1
0)

⊺

m
, l ∈ [2, L]

∆WL+1(1) = −ηχ0x̃
L
0 /m

Remark F.6.

1. Although the formulas are identical with those for IP-LLR when the activation func-
tion is positively p-homogeneous, this does not mean that the weight updates are
exactly equal. Indeed, although the tilde variables do not depend on the choice of
parameterization and will thus be the same in µP as in IP-LLR, the variable χ0 which
appears in the formulas is parameterization-dependent as it depends on f0(ξ) which
itself depends on the choice of parameterization.

2. There is no strong assumption on the activation function here (e.g., homogeneity) as
µP is designed to have such updates which induce feature learning at all layers.

3. Note that the coordinates of ∆W l(1) are in Θ(m−1) whereas that of W l(0) are in
Θ(m−1/2) for l ∈ [2, L], so that paradoxically, even though µP is designed to produce
“maximal updates” (in a certain sense), we have that ∆W l

jq(1)/W
l
jq(0) = Θ(m−1/2)→

0 as m → ∞: the relative displacement of the weights is zero in the infinite-width

56

limit. More generally, we have that for µP (W l
jq(t)−W l

jq(0))/W
l
jq(0)→ 0 as m→∞ if

t ≥ 1, which means that weights of the intermediate layers do not move away from their
initialization in the infinite-width limit for µP, even if the (pre-)activations of every
layer are maximally updated. This is in stark contrast with IP-LLR for which both
W l(0) and ∆W l(1) are in Θ(m−1) for the intermediate layers l ∈ [2, L]: the weights do
move relatively to their initialization in the infinite-width limit.

Proof. µP is designed so that its forward pass has hl0 = h̃l0 for any l ∈ [1, L]. Indeed, the
choice of pre-factors for the weights with µP lead to the same recursive equations for the
forward pass as the tilde variables, except for f0(ξ) which is equal to m−1/2f̃0(ξ). For the
backward pass, one has that for µP, dxL0 =WL+1(0) = m−1UL+1 = m−1dx̃L0 . We then have

dhL0 = dxL0 ⊙ σ′(hL0)
= m−1dx̃L0 ⊙ σ′(h̃L0)
= m−1dh̃L0 .

Let l ∈ [1, L − 1], and assume that dxl+1
0 = m−1dx̃l+1

0 and dhl+1
0 = m−1dh̃l+1

0 . Then, we
have

dxl0 = (W l+1(0))
⊺
dhl+1

0

= m−1(Ŵ l+1)
⊺
dh̃l+1

0

= m−1dx̃l0.

Similarly, we have

dhl0 = dxl0 ⊙ σ′(hl0)
= m−1dx̃l0 ⊙ σ′(h̃l0)
= m−1dh̃l0,

which proves by induction that for any l ∈ [1, L], dxl0 = m−1dx̃l0 and dhl0 = m−1dh̃l0 for
µP. Recall that for µP, a1 = 0, al = 1/2 for l ∈ [2, L] and aL+1 = 1, and cl = −1 for any
l ∈ [1, L+ 1]. Now by Equations (A.3) and (A.4), the first weight updates give:

∆W 1(1) = −ηχ0m
−c1m−1dh̃10ξ

⊺
0

= −ηχ0dh̃
1
0ξ

⊺
0 ,

and

∆B1(1) = −ηχ0m
−c1m−1dh̃10

= −ηχ0dh̃
1
0,

For l ∈ [2, L], we have

∆W l(1) = −ηχ0m
−(1+cl)m−1dh̃l0(x

l−1
0)

⊺

= −ηχ0
dh̃l0(x̃

l−1
0)

⊺

m
.

Finally,

∆WL+1(1) = −ηχ0m
−(2+cL+1)xL0

= −ηχ0x̃
L
0 /m,

which concludes the proof.

57

G Dynamics of the infinite-width limit of IP-LLR

Lemma G.1 (IP-LLR is zero at initialization). Consider the IP-LLR parameterization with
a positively p-homogeneous activation function, and p ≥ 2. Then, for any input vector
ξ ∈ Rd, one has that h̃l0(ξ), x̃

l
0(ξ), dx̃

l
0, dh̃

l
0 are vectors in the Tensor Program program for

any l ∈ [2, L], and additionally:

f0(ξ)
a.s.−−−−→

m→∞
0

χ0
a.s.−−−−→

m→∞
◦
χ0 := ∂2ℓ(y0, 0)

Remark G.1. The result on the almost sure convergence of χ0 ensures that the latter is
a valid initial scalar in the Tensor Program defining the computations associated with the
IP-LLR parameterization.

Proof. Because σ and σ′ are pseudo-Lipschitz (since p ≥ 2, see Appendix E), the tilde
variables of the first forward and backward passes (h̃l0, x̃

l
0, dx̃

l
0, dx̃

l
1) are vectors in the program

given Definition F.1 by the ZNonLin and ZMatMul rules. Additionally, by Lemma F.2,

f0(ξ0) = m−
∑L−1

k=0 pk/2m−1/2(UL+1)
⊺
x̃l0

= m1/2m−
∑L−1

k=0 pk/2m−1(UL+1)
⊺
x̃L0

= m−
∑L−1

k=1 pk/2m−1(UL+1)
⊺
x̃L0

Now, m−1(UL+1)
⊺
x̃L0 → E[ZUL+1

Z x̃L
0] almost surely by the master theorem, and Z x̃L

0 =

σ(ZŴLx̃L−1
0). By the Lemma C.2, ZŴLh̃L−1

0 = ẐŴLh̃L−1
0 , and by the ZHat rule, the latter

variable is independent of ZUL+1
since ZUL+1

is an initial vector in the program. This
gives E[ZUL+1

Z x̃L
0] = E[ZUL+1

]E[Z x̃L
0] = 0 × E[Z x̃L

0]. By Lemma F.1, and Lemma C.1,

E[Z x̃L
0] < ∞ because σ is polynomially bounded. We thus get E[ZUL+1

Z x̃L
0] = 0, and since

m−
∑L−1

k=1 pk/2 ∈ (0, 1], f0(ξ0) → 0 almost surely. Recall that by definition (see Appendix A)
χ0 = ∂2ℓ(y0, f0(ξ0)). Since f0(ξ0) → 0 almost surely, and since ∂2ℓ(y0, ·) is continuous by
assumption, we have that χ0 → ∂2ℓ(y0, 0) =:

◦
χ0, which concludes the proof.

Definition G.1 (Tilde variables in the backward pass after initialization). For any ac-
parameterization with aL+1 = 1, define for any t ≥ 1,

dx̃Lt = mdxLt , dh̃
L
t = dx̃Lt ⊙ σ′(hLt),

dx̃lt = (W l+1(t))
⊺
dh̃l+1

t , l ∈ [1, L− 1],

dh̃lt = dx̃lt ⊙ σ′(hlt), l ∈ [1, L− 1].

Remark G.2.

1. One could in general define dx̃lt to be equal tom
aL+1dxlt but since all the ac-parameterizations

we study in this paper, i.e., integrable parameterizations, µP, or hybrid versions thereof
have aL+1 = 1, we limit the formulas to this case. The tilde variables are the right
quantity to look at because of the term m−aL+1 which appears in the gradient w.r.t to
xLt and then propagate to all the other variables of the backward pass by the equations
of backpropagation.

2. Recall that in the definition above, it is implicitly assumed that the computations of
the forward and backward passes at any time step s are done with the input ξ = ξs.

58

Lemma G.2 (Relationship between tilde and non-tilde variables). For any ac-parameterization
with aL+1 = 1, for any t ≥ 1, and for any ξ, dropping the dependency of the forward and
backward passes on ξ at time t, one has:

∀l ∈ [1, L+ 1], dxlt = m−1dx̃lt, dh
l
t = m−1dh̃lt.

Proof. dxLt = m−1dx̃Lt . dh
L
t = dxLt ⊙σ′(hLt) = m−1dx̃Lt ⊙σ′(hLt) = m−1dh̃Lt . Now let l ∈ [2, L]

and assume dxlt = m−1dx̃lt, dh
l
t = m−1dh̃lt. Then dx

l−1
t = (W l(t))

⊺
dhlt = m−1(W l(t))

⊺
dh̃lt =

m−1dx̃l−1
t , and dhl−1

t = dxl−1
t σ(hl−1

t) = m−1dx̃l−1
t σ(hl−1

t) = m−1dh̃l−1
t which concludes the

proof by induction.

Lemma G.3 (Weight updates for IP-LLR at any time step). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p ≥ 1, and let t ≥ 1.
Then, dropping the dependency of the forward and backward passes on ξt at time t, one has:

∆WL+1(t+ 1) = −ηχtx
L
t /m,

∆W l(t+ 1) = −ηχt
dh̃lt(x

l−1
t)

⊺

m
, l ∈ [2, L],

∆W 1(t+ 1) = −ηχtdh̃
1
t ξ

⊺
t ,

∆B1(t+ 1) = −ηχtdh̃
1
t .

Proof. Using Equation (A.3), we have ∆WL+1(t) = −ηχtm
−(2aL+1+cL+1)xLt = −ηχtx

L
t /m

because 2aL+1 + cL+1 = 2− 1 = 1 in IP-LLR since t ≥ 1. For l ∈ [2, L]

∆W l(t) = −ηχtm
−(2al+cl)dhlt(x

l−1)
⊺

= −ηχt
dh̃lt(x

l−1
t)

⊺

m
,

by Lemma G.2 and because 2al + cl = 2 − 2 = 0 for t ≥ 1 in IP-LLR. ∆W 1(t) =
−ηχtm

−(2a1+c1)dh1t ξt = −ηχtdh̃
1
t ξ

⊺
t by Lemma G.2 and because 2a1 + c1 = 0 − 1 = −1

for t ≥ 1 in IP-LLR. Finally, by Equation (A.4), we have ∆B1(t) = −ηχtm
−(2a1+c1)dh1t =

−ηχtdh̃
1
t by Lemma G.2 and because 2a1 + c1 = −1.

Theorem G.4 (Weights in IP-LLR at time t). Consider the IP-LLR parameterization with
a positively p-homogeneous activation function, and p ≥ 1. Then, for any t ≥ 1, one has:

(i) W 1(t) = U1 − ηχ0dh̃
1
0ξ

⊺
0 − η

(∑t−1
s=1 χsdh̃

1
sξ

⊺
s

)
,

(ii) B1(t) = v1 − ηχ0dh̃
1
0 − η

(∑t−1
s=1 χsdh̃

1
s

)
,

(iii) W l(t) = ωlŴ
l − ηχ0

dh̃l
0(x̃

l−1
0)

⊺

m − η
(∑t−1

s=1 χs
dh̃l

s(x
l−1
s)

⊺

m

)
, l ∈ [2, L],

(iv) WL+1(t) = UL+1/m− ηχ0x̃
L
0 /m− η

(∑t−1
s=1 χsx

L
s /m

)
.

Proof. We have already seen the formulas are correct for t = 1 by Corollary F.4.2. Then, by
Lemma G.3, an easy induction immediately yields the result.

Lemma G.5 (Backward pass of IP-LLR at time t). Consider the IP-LLR parameterization
with a positively p-homogeneous activation function, and p ≥ 1. Then, for any t ≥ 1,
dropping the dependency of the forward pass at time t on ξt, and of the previous forward and
backward passes on the corresponding ξs, one has:

59

(i) dx̃Lt = wL+1(t) = UL+1 − ηχ0x̃
L
0 − η

∑t−1
s=1 χsx

L
s ,

(ii) dx̃l−1
t = ωl(Ŵ

l)
⊺
dh̃lt − ηχ0

(dh̃l
0)

⊺
dh̃l

t
m x̃l−1

0 − η
∑t−1

s=1 χs
(dh̃l

s)
⊺
dh̃l

t
m xl−1

s , l ∈ [2, L].

Proof. By definition, we have

dx̃Lt = mdxLt

= mWL+1(t)

= UL+1 − ηχ0x̃
L
0 − η

t−1∑
s=1

χsx
L
s

where the last equality stems from Theorem G.4.

Let l ∈ [2, L], we have:

dx̃l−1
t = (W l(t))

⊺
dh̃lt

= ωl(Ŵ
l)
⊺
dh̃lt − ηχ0

(dh̃l0)
⊺
dh̃lt

m
x̃l−1
0 − η

t−1∑
s=1

χs
(dh̃ls)

⊺
dh̃lt

m
xl−1
s

where the second equality stems from Theorem G.4.

Lemma G.6 (Z for the forward pass of IP-LLR at time t = 1). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p ≥ 2. Let ξ ∈ Rd

be an input to the network. Then, for any l ∈ [1, L], hl1(ξ), x
l
1(ξ), dx̃

l
1, dh̃

l
1 are vectors in the

program, f1(ξ) is a scalar in the program, and χ1 is a valid initial scalar in the program.
Additionally, dropping the dependency of the forward pass at time t = 1 on ξ, and of the first
forward and backward passes on ξ0, one has:

(i) Zh1
1 = ZW 1(1)ξ+B1(1) = ZU1ξ + Zv1 − η ◦

χ0(ξ
⊺
0ξ + 1)Zdh̃1

0,

(ii) Zhl
1 = ZW l(1)xl−1

1 =
◦
ωlZ

Ŵ lxl−1
1 − η ◦

χ0E[Z x̃l−1
0 Zxl−1

1]Zdh̃l
0, l ∈ [2, L],

(iii) f1(ξ) = (WL+1(1))
⊺
xL1

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

1]− η ◦
χ0E[Z x̃L

0 ZxL
1].

Proof. By Theorem G.4, with t = 1, one has that h11 = U1ξ + v1 − ηχ0(ξ
⊺
0ξ + 1)dh̃10. By

Lemma G.1, dh̃10 is a vector in the Tensor Program and χ0 is a valid initial scalar in the

program which has an almost sure limit
◦
χ0 := ∂2ℓ(y0, 0) as m → ∞. In addition, U1ξ

and v1 are initial vectors in the program, which thus shows that h11 is a vector in the
program by the NonLin operation. This also gives that x11 = σ(h11) is a vector in the
program since σ is pseudo-Lipschitz (see Appendix E). Moreover, by ZNonLin, we have

Zh1
1 = ZU1ξ + Zv1 − η ◦

χ0(ξ
⊺
0ξ + 1)Zdh̃1

0 . Let l ∈ [2, L] and assume that hl−1
1 , xl−1

1 are vectors
in the program. Then, by Theorem G.4 with t = 1, we get

hl1 = ωlŴ
lxl−1

1 − ηχ0
(x̃l−1

0)
⊺
xl−1
1

m
dh̃l0.

(x̃l−1
0)

⊺
xl−1
1 /m is a scalar in the program by the Moment operation, and thus by the MatMul

and NonLin operations, hl1 is a vector in the program and thus so is xl1 = σ(hl1), which proves
by induction that this is the case for any l ∈ [2, L]. By ZNonLin we thus have

Zhl
1 =

◦
ωlZ

Ŵ lxl−1
1 − η ◦

χ0E[Z x̃l−1
0 Zxl−1

1]Zdh̃l
0 .

60

We then have by Theorem G.4 with t = 1,

f1(ξ) = m−1(UL+1)
⊺
xL1 − ηχ0

(x̃L0)
⊺
xL1

m

UL+1 − ηχ0x̃
L
0 is a vector in the program by the NonLin operation, and the quantity

m−1(UL+1 − ηχ0x̃
L
0)

⊺
xL1 is thus a scalar in the program by the Moment operation, and by

the master theorem, we get f1(ξ)→ E[ZUL+1
ZxL

1]− η ◦
χ0E[Z x̃L

0 ZxL
1] almost surely, since both

expectations are finite by Lemma L.1. Since we did the previous reasoning with an arbitrary
ξ, we also get that hl1(ξ1), x

l
1(ξ1) are vectors in the program for any l ∈ [1, L] and that the

formulas in (i), (ii), and (iii) hold when the input is ξ1. In particular, f1(ξ1) converges to a

finite almost sure limit
◦
f1(ξ1), and thus the continuity of ∂2ℓ(y1, ·) ensures the almost sure

convergence of χ1 towards
◦
χ1 := ∂2ℓ(y1,

◦
f1(ξ1)), which means χ1 is a valid initial scalar in

the Tensor Program. Then, dropping the dependency of the second forward pass (at t = 1)
on ξ1, we get by Lemma G.5 with t = 1:

dx̃L1 = UL+1 − ηχ0x̃
L
0

which is a vector in the program by NonLin. Then dh̃L1 = dx̃L1 ⊙ σ′(hL1) is also a vector in
the program since σ′ is pseudo-Lipschitz. Let l ∈ [2, L− 1] and assume that dx̃l+1

1 and dh̃l+1
1

are vectors in the program. Then by Lemma G.5 with t = 1, we have

dx̃l1 = ωl+1(Ŵ
l+1)

⊺
dh̃l+1

1 − ηχ0
(dh̃l+1

0)
⊺
dh̃l+1

1

m
x̃l0

(dh̃l+1
0)

⊺
dh̃l+1

1 /m is a scalar in the program by the Moment operation and by MatMul and
NonLin we thus get that dx̃l1 is a vector in the program. Then dh̃l1 = dx̃l1 ⊙ σ′(hl1) is also a
vector in the program since σ′ is pseudo-Lipschitz, which concludes the induction and with
it the proof.

Theorem G.7 (Z for the forward pass of IP-LLR at time t). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p ≥ 2. Let ξ ∈ Rd be
an input to the network. Then, for any l ∈ [1, L], hls(ξ), x

l
s(ξ), dx̃

l
s, dh̃

l
s are vectors in the

program, fs(ξ) is a scalar in the program, and χs is a valid initial scalar in the program.
Additionally, dropping the dependency of the forward pass at time t on ξ, and of the previous
forward and backward passes on the corresponding ξs, one has:

(i) Zh1
t = ZW 1(t)ξ+B1(t) = ZU1ξ + Zv1 − η ◦

χ0(ξ
⊺
0ξ + 1)Zdh̃1

0 − η
(∑t−1

s=1

◦
χs(ξ

⊺
s ξ + 1)Zdh̃1

s

)
,

(ii) for any l ∈ [2, L],

Zhl
t = ZW l(t)xl−1

t =
◦
ωlZ

Ŵ lxl−1
t − η ◦

χ0E[Z x̃l−1
0 Zxl−1

t]Zdh̃l
0 − η

(
t−1∑
s=1

◦
χsE[Zxl−1

s Zxl−1
t]Zdh̃l

s

)
,

(iii) ft(ξ) = (WL+1(t))
⊺
xLt

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

t]−η ◦
χ0E[Z x̃L

0 ZxL
t]−η

(∑t−1
s=1

◦
χsE[ZxL

s ZxL
t]
)
.

Proof. We prove that the vectors and scalars in the claim of the theorem are part of the
program by induction. Then the formulas of (i), (ii), and (iii) are a simple consequence
of the ZNonLin operation. The case t = 1 has been treated in Lemma G.6. Let t ≥ 1 and
assume that the vectors and scalars in the claim of the theorem are part of the program for
any s ∈ [1, t]. By Theorem G.4, one has that

h1t+1 =W 1(t+ 1)ξ +B1(t+ 1)

= U1ξ + v1 − ηχ0(ξ
⊺
0ξ + 1)dh̃10 − η

(
t∑

s=1

χs(ξ
⊺
s ξ + 1)dh̃1s

)

61

By the induction hypothesis and NonLin, we thus get that h1t+1 is a vector in the program
and thus so is x1t+1 = σ(h1t+1) since σ is polynomially bounded. Let l ∈ [2, L] and assume

that hl−1
t+1, x

l−1
t+1 are vectors in the program. Then, by Theorem G.4, we get

hlt+1 = ωlŴ
lxl−1

t+1 − ηχ0
(x̃l−1

0)
⊺
xl−1
t+1

m
dh̃l0 − η

(
t∑

s=1

χs
(xl−1

s)
⊺
xl−1
t+1

m
dh̃ls

)
.

For any s ∈ [1, t], (xl−1
s)

⊺
xl−1
1 /m and (x̃l−1

0)
⊺
xl−1
1 /m are scalars in the program by the

induction hypothesis and the Moment operation. Thus by the MatMul and NonLin operations,
hlt+1 is a vector in the program and thus so is xlt+1 = σ(hlt+1), which proves by induction
that this is the case for any l ∈ [2, L]. We then have by Theorem G.4,

ft+1(ξ) = m−1

(
UL+1 − ηχ0x̃

L
0 − η

t∑
s=1

χsx
L
s

)⊺

xLt+1

UL+1−ηχ0x̃
L
0 −η

∑t
s=1 χsx

L
s is a vector in the program by the induction hypothesis and the

NonLin operation. Then, by the Moment operation, ft+1(ξ) is a scalar in the program since
xLt+1 is also a vector in the program, and by the master theorem, we have

ft+1(ξ)
a.s.−−−−→

m→∞
E[ZUL+1

ZxL
t+1]− η ◦

χ0E[Z x̃L
0 ZxL

t+1]− η
t∑

s=1

◦
χsE[ZxL

s ZxL
t+1].

The limit is finite by Lemma L.1 since by an easy induction any Z which appears is a
polynomially bounded function of a Gaussian vector with finite covariance matrix. Since we
did the previous reasoning with an arbitrary ξ, we also get that hlt+1(ξt+1), x

l
t+1(ξt+1) are

vectors in the program for any l ∈ [1, L]. In particular, ft+1(ξt+1) converges to an almost sure

limit
◦
f t+1(ξt+1), and thus the continuity of ∂2ℓ(yt+1, ·) ensures the almost sure convergence

of χt+1 towards
◦
χt+1 := ∂2ℓ(yt+1,

◦
f t+1(ξt+1)), which means χt+1 is a valid initial scalar in

the Tensor Program. Then, dropping the dependency of the forward pass at t + 1 on ξt+1,
we get by Lemma G.5:

dx̃Lt+1 = UL+1 − ηχ0x̃
L
0 − η

t∑
s=1

χsx
L
s

which is a vector in the program by NonLin. Then dh̃Lt+1 = dx̃Lt+1 ⊙ σ′(hLt+1) is also a vector

in the program since σ′ is pseudo-Lipschitz. Let l ∈ [2, L − 1] and assume that dx̃l+1
t+1 and

dh̃l+1
t+1 are vectors in the program. Then by Lemma G.5, we have

dx̃lt+1 = ωl+1(Ŵ
l+1)

⊺
dh̃l+1

t+1 − ηχ0
(dh̃l+1

0)
⊺
dh̃l+1

t+1

m
x̃l0 − η

t∑
s=1

χs
(dh̃l+1

s)
⊺
dh̃l+1

t+1

m
xls

(dh̃l+1
s)

⊺
dh̃l+1

t+1/m is a scalar in the program for any s ∈ [0, t] by the Moment operation and

by MatMul and NonLin we thus get that dx̃lt+1 is a vector in the program. Then dh̃lt+1 =
dx̃lt+1⊙σ′(hlt+1) is also a vector in the program since σ′ is pseudo-Lipschitz, which concludes
the induction. Then we get the claims of (i), (ii) and (iii) simply by applying the ZNonLin

rule to the formulas derived above for the pre-activations hlt+1.

Corollary G.7.1 (Z for the forward pass of IP-LLR at time t). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p ≥ 2. Then, for
any t ≥ 1, and for any input ξ ∈ Rd, dropping the dependency of the forward pass at time t
on ξ, and of the previous forward and backward passes on the corresponding ξs, one has:

62

(i) Zh1
t = ZW 1(t)ξ+B1(t) = ZU1ξ + Zv1 − η ◦

χ0(ξ
⊺
0ξ + 1)Zdh̃1

0 − η
(∑t−1

s=1

◦
χs(ξ

⊺
s ξ + 1)Zdh̃1

s

)
(ii) for any l ∈ [2, L],

Zhl
t = ZW l(t)xl−1

t = −η ◦
χ0E[Z x̃l−1

0 Zxl−1
t]Zdh̃l

0 − η

(
t−1∑
s=1

◦
χsE[Zxl−1

s Zxl−1
t]Zdh̃l

s

)
,

(iii) ft(ξ) = (WL+1(t))
⊺
xLt

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

t]−η ◦
χ0E[Z x̃L

0 ZxL
t]−η

(∑t−1
s=1

◦
χsE[ZxL

s ZxL
t]
)
.

Proof. The formulas are readily obtained by Theorem G.7 coupled with the fact that we

have
◦
ωlZ

Ŵ lxl−1
t = 0 for any l ∈ [2, L], and t ≥ 1, which stems from Theorem L.9.

Remark G.3. Note that there is no circular logic here since only Theorem G.7 is used to
prove the results of Appendix L.1 (and in particular Theorem L.9), so that using Theorem L.9
for Corollary G.7.1 does not lead to any issue.

Theorem G.8 (Zs of backward pass of IP-LLR at time t). Consider the IP-LLR parameter-
ization with a positively p-homogeneous activation function, and p ≥ 2. Then, for any t ≥ 1,
dropping the dependency of the forward pass at time t on ξt, and of the previous forward and
backward passes on the corresponding ξs, one has:

(i) Zdx̃L
t = ZwL+1(t) = ZUL+1 − η ◦

χ0Z
x̃L
0 − η

∑t−1
s=1

◦
χsZ

xL
s ,

(ii) Zdx̃l−1
t =

◦
ωlZ

(Ŵ l)
⊺
dh̃l

t−η ◦
χ0E[Zdh̃l

0Zdh̃l
t]Z x̃l−1

0 −η
∑t−1

s=1

◦
χsE[Zdh̃l

sZdh̃l
t]Zxl−1

s , l ∈ [2, L].

Proof. We have already proved in Theorem G.7 that for any s ∈ [1, t] the vectors of the
forward (hls, x

l
s for l ∈ [1, L]) and the backward pass (dx̃ls, dh̃

l
s for l ∈ [1, L]) at time s are

part of the program and similarly at t = 0 by Lemma G.1. Then, claims (i) and (ii) readily
follow from applying the ZNonLin rule to the formulas of Lemma G.5.

Corollary G.8.1 (Zs of backward pass of IP-LLR at time t). Consider the IP-LLR pa-
rameterization with a positively p-homogeneous activation function, and p ≥ 2. Then, for
any t ≥ 1, dropping the dependency of the forward pass at time t on ξt, and of the previous
forward and backward passes on the corresponding ξs, one has:

(i) Zdx̃L
t = ZwL+1(t) = ZUL+1 − η ◦

χ0Z
x̃L
0 − η

∑t−1
s=1

◦
χsZ

xL
s

(ii) Zdx̃l−1
t = −η ◦

χ0E[Zdh̃l
0Zdh̃l

t]Z x̃l−1
0 − η

∑t−1
s=1

◦
χsE[Zdh̃l

sZdh̃l
t]Zxl−1

s , l ∈ [2, L].

Proof. The formulas are readily obtained by Theorem G.8 and the fact that Z(Ŵ l)
⊺
dh̃l

t = 0
for any l ∈ [2, L] and t ≥ 1, which stems from Theorem L.9.

Remark G.4. Note that a similar statement can be made as in Remark G.3 regarding
circular logic since only Theorem G.8 is used to prove the results of Appendix L.1.

G.1 Second forward pass of IP-LLR (t = 1)

In this section, we prove that for IP-LLR, we have 0 < E[Z x̃l
0Zxl

1] <∞ for any l ∈ [1, L] un-
der the assumption that

◦
χ0 := limm→∞ χ0 ̸= 0. To obtain those results, we use the formulas

from Corollary G.7.1 for t = 1, which are obtained using the main result from Appendix L,
namely Theorem L.9. We choose to put Appendix L towards the end of the Appendix section
as its main result is quite intuitive: any multiplication by matrices with pre-factors in m−1

result in a vector whose coordinates (the corresponding Z) converge to 0 almost surely at
any time step. The proof however requires a long and cumbersome induction and we thus
leave it for the later stages of the Appendix so as not to break the narrative of the Appendix.

63

The finiteness of the expectations E[Z x̃l
0Zxl

1] is a simple consequence of Lemma L.1, but
the fact that they are > 0 requires more work as we will see below. Since we work with
IP-LLR, recall that we consider a bias term at the first layer only.

Lemma G.9 (1st layer of forward pass of IP-LLR at t = 1). Consider the IP-LLR param-
eterization with an activation function σ satisfying Assumption 3. Let ξ be an input to the
network, and assume

◦
χ0 ̸= 0. Then, dropping the dependency of the first forward-backward

pass on ξ0, and that of the second forward pass on ξ, one has:

(i) Zh1
1 = Z h̃1

0(ξ) − η ◦
χ0(ξ

⊺
0ξ + 1)Zdh̃1

0 = Z h̃1
0(ξ) − η ◦

χ0(ξ
⊺
0ξ + 1)Zdx̃1

0σ′(Z h̃1
0),

(ii) (Z h̃1
0 , Z h̃1

0(ξ), Zdx̃1
0) ∼ N

0,

||ξ0||2+1 ξ⊺0ξ + 1 0
ξ⊺ξ0 + 1 ||ξ||2+1 0

0 0 E[(Zdh̃2
0)2]

,

(iii) 0 < E[Z x̃1
0Zx1

1] <∞.

Proof. We have by Corollary G.7.1 at time t = 1

Zx1
1 = σ

(
Zh1

1(ξ)
)

= σ
(
Z h̃1

0(ξ) − η ◦
χ0(ξ

⊺
0ξ + 1)Zdh̃1

0

)
.

Moreover, since dh̃10 = dx̃10⊙ σ′(h̃10), since all the vectors are part of the Tensor Program, by

ZNonLin we have Zdh̃1
0 = Zdx̃1

0σ′(Z h̃1
0), so that

Zx1
1 = σ

(
Z h̃1

0(ξ) − η ◦
χ0(ξ

⊺
0ξ + 1)Zdx̃1

0σ′(Z h̃1
0)
)
.

Finally, we have

Z x̃1
0 = σ(Z h̃1

0).

From the rules of ZInit and ZHat, we have that

(Z h̃1
0 , Z h̃1

0(ξ), Zdx̃1
0) ∼ N

(
0,

(
S 0

0 E[(Zdh̃2
0)2]

))
,

with

S :=

(
||ξ0||2+1 ξ⊺0ξ + 1
ξ⊺0ξ + 1 ||ξ||2+1

)
.

By Lemma F.1, E[(Zdh̃2
0)2] < ∞, so that the covariance matrix is finite and thus Z x̃1

0Zx1
1

is a polynomially bounded function of a Gaussian vector which shows that the expectation
is finite by Lemma L.1. It is also non-negative since σ is non-negative. To prove that it is
positive, one needs only prove that the integrand is not almost everywhere 0. By Lemma F.1,
E[(Zdh̃2

0)2] > 0 so that the covariance matrix is invertible if and only if S is invertible. We
have

det(S) =
(
||ξ0||2||ξ||2−(ξ⊺0ξ)

2
)
+ ||ξ0 − ξ||2,

which is the sum of two non-negative terms by Cauchy-Schwarz’s inequality, and is thus 0 if
and only if both terms are zero. The first term is zero only when ξ and ξ0 are proportional,

64

and if in addition the second term is zero than ξ = ξ0. The distribution of the Gaussian
vector appearing in Z x̃1

0Zx1
1 thus depends on whether or not ξ0 and ξ are equal.

Case when ξ = ξ0. Then, calling λ := −η ◦
χ0(ξ

⊺
0ξ + 1), we have

E[Z x̃1
0Zx1

1] =

∫
σ(z)σ

(
z − λuσ′(z)

)
pz(z)pu(u)dzdu,

where pz and pu are the densities of the two Gaussians N (0, ||ξ0||2+1) and N (0,E[(Zdh̃2
0)2])

respectively, which are not degenerate, so that pz(z) > 0 for any z and similarly for pu(u).

Since Zdx̃1
0 and −Zdx̃1

0 have the same distribution and since it is independent of Z h̃1
0 , we

can assume λ ≥ 0 W.L.O.G (if λ ≤ 0 we can always do the change of variable u ← −u
in the integral above since pu(−u) = pu(u)). Consider the point (z∗, u∗) := (1,−1), at
which the integrand in the integral above is > 0, because σ and σ′ are > 0 on the posi-
tive part of the real line (see Appendix E) and λ ≥ 0. The integral is then positive, because
the integrand is a continuous function, since σ and σ′ are continuous (see again Appendix E).

Case when ξ ̸= ξ0. Then, we have

E[Z x̃1
0Zx1

1] =

∫
σ(u)σ

(
v − λzσ′(u)

)
pu,v(u, v)pz(z)dudvdz,

where pu,v and and pz are the densities of non-degenerate Gaussians and are thus well-
defined and positive everywhere. Again, we can assume λ ≥ 0 W.L.O.G. We consider the
point (u∗, v∗, z∗) = (1, 1,−1) at which the integrand is > 0 since σ and σ′ are positive on the
positive part of the real line. Hence, the integral is > 0 because the integrand is a continuous
function, since σ and σ′ are continuous, which concludes the proof.

Lemma G.10 (Intermediate layer of forward pass of IP-LLR at t = 1). Consider the IP-
LLR parameterization with an activation function σ satisfying Assumption 3. Let ξ be an
input to the network, let l ∈ [2, L], and assume

◦
χ0 ̸= 0. Then, dropping the dependency of

the first forward-backward pass on ξ0, and that of the second forward pass on ξ, one has:

(i) Zhl
1 = −η ◦

χ0E[Z x̃l−1
0 Zxl−1

1]Zdh̃l
0 = −η ◦

χ0E[Z x̃l−1
0 Zxl−1

1]Ẑdx̃l
0σ′(Ẑ h̃l

0),

(ii) Z h̃l
0 and Zdx̃l

0 are independent,

(iii) 0 < E[Z x̃l
0Zxl

1] <∞.

Proof. We prove the result by induction on l, the case of l = 1 has already been dealt with in
Lemma G.9. Let l ∈ [1, L−1], and assume 0 < E[Z x̃l

0Zxl
1] <∞. Calling λ := −η ◦

χ0E[Z x̃l
0Zxl

1],
we have λ ̸= 0 by assumption and by the induction hypothesis. Then, by Corollary G.7.1
with t = 1, we have

Zhl+1
1 = −λZdh̃l+1

0 .

Moreover, dh̃l+1
0 = dx̃l+1

0 ⊙σ′(h̃l+1
0), and since all the vectors are part of the Tensor Program,

we have by ZNonLin Zdh̃l+1
0 = Zdx̃l+1

0 σ′(Z h̃l+1
0). On the other hand, by Lemma C.2, we have

Zdh̃l+1
0 = Ẑdh̃l+1

0 and Z h̃l+1
0 = Ẑ h̃l+1

0 , and finally by the ZHat rule, since h̃l+1
0 = Ŵ l+1x̃l1 and

dx̃l+1
0 = UL+1 if l = L − 1 and (Ŵ l+2)

⊺
dh̃l+2 otherwise, we get that Ẑ h̃l+1

0 and Ẑdh̃l+1
0 are

independent. In addition, we have

E[Z x̃l+1
0 Zxl+1

1] = E[σ(Z h̃l+1
0)σ(−λZdx̃l+1

0 σ′(Z h̃l+1
0))].

65

The expectation is non-negative because σ is and it is finite by Lemma L.1 because the

integrand is a polynomially bounded function of the Gaussian vector (Z h̃l+1
0 , Zdx̃l+1

0) (and
thus of Z0, see Definition L.1). Using the positive p-homogeneity of σ and the fact that
sign(σ′(z)) = sign(z) (see Appendix E), and calling ϵ = sign(λ) ∈ {−1, 1}, we have

E[Z x̃l+1
0 Zxl+1

1] = E
[
E
[
Z x̃l+1

0 Zxl+1
1

∣∣∣Z h̃l+1
0

]]
= |λ|p E

[
σ(Z h̃l+1

0)|σ′(Z h̃l+1
0)|pE

[
σ(−ϵ sign(Z h̃l+1

0)Zdx̃l+1
0)
∣∣∣Z h̃l+1

0

]]
,

Now since ϵ sign(Z h̃l+1
0) ∈ {−1, 1}, Zdx̃l+1

0 and ϵ sign(Z h̃l+1
0)Zdx̃l+1

0 have the same distribution

conditionally on Z h̃l+1
0 , so that

E
[
σ(−ϵ sign(Z h̃l+1

0)Zdx̃l+1
0)
∣∣∣Z h̃l+1

0

]
= E

[
σ(Zdx̃l+1

0)
∣∣∣Z h̃l+1

0

]
= E

[
σ(Zdx̃l+1

0)
]
.

We thus get

E[Z x̃l+1
0 Zxl+1

1] = |λ|pE[σ(Z h̃l+1
0)|σ′(Z h̃l+1

0)|p] E[σ(Zdx̃l+1
0)],

and both expectations are positive because they are non-negative and their integrands are
> 0 on the positive part of the real line and the Gaussians involved have non-zero density on

this subset of R as they are not degenerate by Lemma F.1. This proves E[Z x̃l+1
0 Zxl+1

1] > 0
and concludes the proof by induction.

Lemma G.11 (Last layer of forward pass of IP-LLR at t = 1). Consider the IP-LLR
parameterization with an activation function σ satisfying Assumption 3. Let ξ be an input
to the network, and assume

◦
χ0 ̸= 0. Then, dropping the dependency of the first forward-

backward pass on ξ0, and that of the second forward pass on ξ, one has:

(i) f1(ξ) = (WL+1(1))
⊺
xL1

a.s.−−−−→
m→∞

◦
f1(ξ) := E[ZUL+1

ZxL
1]− η ◦

χ0E[Z x̃L
0 ZxL

1],

(ii) ZUL+1
and Z h̃L

0 are independent,

(ii) 0 <
◦
f1(ξ) <∞.

Proof. Claim (i) comes from Lemma G.6, in which we have already proved that the limit
◦
f1(ξ) is finite as a result of Lemma L.1 and the fact that the integrands are polynomially

bounded functions of the Gaussian vector (Z h̃L
0 , ZUL+1

) which has finite (and diagonal as we

will see shortly) covariance matrix. In addition, by Lemma C.2, we have Z h̃L
0 = Ẑ h̃L

0 and

by definition in ZInit ZUL+1
= ẐUL+1

. Finally, by the ZHat rule, the latter two random
variables are independent since h̃L0 = ŴLx̃L−1

0 . Let ϵ := sign(
◦
χ0) and λl := E[Z x̃l

0Zxl
1]

for l ∈ {L − 1, L}. We have λL−1, λL > 0 by Lemma G.10, and using again the fact that
sign(σ′(z)) = sign(z) and the positive p-homogeneity of σ, we have

E[ZUL+1
ZxL

1] = E
[
E
[
ZUL+1

ZxL
1

∣∣∣Z h̃L
0

]]
= E

[
E
[
ZUL+1

σ(−η ◦
χ0λL−1Z

UL+1
σ′(Z h̃L

0))
∣∣∣Z h̃L

0

]]
= |ηλL−1

◦
χ0|p E

[
|σ′(Z h̃L

0)|pE
[
ZUL+1

σ(−ϵ sign(Z h̃L
0)ZUL+1

)
∣∣∣Z h̃L

0

]]
.

66

Since ZUL+1
and −ZUL+1

have the same distribution, and it is independent of Z h̃L
0 , and since

ϵ sign(Z h̃L
0) ∈ {−1, 1}, we have

E
[
−ϵ sign(Z h̃L

0)ZUL+1
σ(−ϵ sign(Z h̃L

0)ZUL+1
)
∣∣∣Z h̃L

0

]
= E

[
ZUL+1

σ(ZUL+1
)
∣∣∣Z h̃L

0

]
= E

[
ZUL+1

σ(ZUL+1
)
]
,

so that

E
[
|σ′(Z h̃L

0)|pE
[
ZUL+1

σ(−ϵ sign(Z h̃L
0)ZUL+1

)
∣∣∣Z h̃L

0

]]
=

− ϵE
[
sign(Z h̃L

0)|σ′(Z h̃L
0)|p

]
E
[
ZUL+1

σ(ZUL+1
)
]
.

We thus get

E[ZUL+1
ZxL

1] = −ϵ |ηλL−1
◦
χ0|p E

[
sign(Z h̃L

0)|σ′(Z h̃L
0)|p

]
E
[
ZUL+1

σ(ZUL+1
)
]

We now prove that both expectations are positive. This is where the assumption that α > β
(see Appendix E) appears to be crucial. We start with the first one. Since Z h̃L

0 has a zero-
mean Gaussian distribution with positive variance (by Lemma F.1), its density pz is positive
everywhere and symmetric, and we have

E
[
sign(Z h̃L

0)|σ′(Z h̃L
0)|p

]
=

∫ +∞

z=0
(αp)pzp(p−1)pz(z)dz +

∫ 0

z=−∞
−(βp)p(−z)p(p−1)pz(z)dz

= (αp)p
∫ +∞

z=0
zp(p−1)pz(z)dz − (βp)p

∫ +∞

z=0
zp(p−1)dz

= (αp − βp)pp
∫ +∞

z=0
zp(p−1)pz(z)dz.

The second equality stems from the change of variable z ← −z in the second integral and
from the symmetry of pz with respect to z = 0. The last integral is > 0 because its integrand
is > 0 on the corresponding domain, and αp− βp > 0 since α > β by assumption and p > 0.
For the second expectation, we get with a similar reasoning that

E
[
ZUL+1

σ(ZUL+1
)
]
=

∫ +∞

u=0
uαuppu(u)du+

∫ 0

u=−∞
uβ(−u)ppu(u)du

= (α− β)
∫ +∞

u=0
up+1pu(u)du,

which shows the expectation is > 0.

We now look at the second term in
◦
f1(ξ): −η

◦
χ0E[Z x̃L

0 ZxL
1] = −ϵη| ◦χ0|λL. Summing this

up with the first term, we get

◦
f1(ξ) = −ϵ

|ηλL−1
◦
χ0|p E

[
sign(Z h̃L

0)|σ′(Z h̃L
0)|p

]
E
[
ZUL+1

σ(ZUL+1
)
]
+ η| ◦χ0|λL︸ ︷︷ ︸

>0


which concludes the proof.

Theorem G.12 (Non-trivial learning of IP-LLR at t = 1). Consider an IP-LLR param-
eterization of an L-hidden layer neural network with an activation function σ satisfying

67

Assumption 3. Let ξ ∈ Rd be an input to the network, and assume ξ0, ξ,
◦
χ0 ̸= 0. Then, one

has:

(i) f0(ξ)
a.s.−−−−→

m→∞
0

(ii) f1(ξ)
a.s.−−−−→

m→∞

◦
f1(ξ) ̸= 0

Proof. Claim (i) has already been proved in Lemma G.1, and claim (ii) has been proved in
Lemma G.11 above.

Remark G.5. Note that since only quantities of the first (t = 0) forward and backward
passes and second (t = 1) forward pass appear in Lemmas G.9, G.10, G.11, and Theorem G.12
we only need to assume we have an integrable parameterization with cl = γl(p) for any
l ∈ [1, L+ 1] at t = 0.

H Proof that no constant learning rate is possible: Theo-
rem 3.2

In this section we prove the result of Theorem 3.2 by splitting the proof in two steps.
First we show in Lemma H.1 that to have stable and non-vanishing updates for integrable
parameterizations at t = 1, one must use the learning rate exponents cl = γl(p) for any
l ∈ [1, L+ 1] at t = 0. Then we show some preliminary results on the second backward pass
(at t = 1) for integrable parameterizations when cl = γl(p) for any l ∈ [1, L+1] at t = 0, and
some other preliminary results on the third forward pass (at t = 2) when additionally one
uses c1 = −1, cl = −2 for l ∈ [2, L] and cL+1 = −1 at t = 1. Then we show in Lemma H.4,
using those preliminary results, that assuming we have cl = γl(p) for any l ∈ [1, L + 1] at
t = 0, to have stable and non-vanishing updates at t = 2 for integrable parameterizations,
one must use the learning rate exponents c1 = −1, cl = −2 for l ∈ [2, L] and cL+1 = −1 at
t = 1.

H.1 Proof of the first implication for the learning rates at t = 0

Lemma H.1 (Learning rates for stable learning with IP at t = 0). Consider an L-hidden
layer fully-connected neural network with L ≥ 3 in the integrable parameterization, and with
no bias terms, except for the first layer. Assume that the activation function σ satisfies
Assumption 3, and that limm→∞ ∂2ℓ(y0, f0(ξ0)) ̸= 0. Assume further that ξ⊺0ξ1 ̸= 0. Finally
assume that Equation (3.1) holds:{

1
m ||∆W

l(1)xl−1
1 ||2= Θ(1), l ∈ [1, L]

(∆WL+1(1))
⊺
xL1 = Θ(1)

Then, one necessarily has that at t = 0, cl = γl(p) for any l ∈ [1, L+1] (see Definition 3.2).

Proof. With the notations introduced in Appendix A, the assumptions on the limit of the
loss terms at t = 0 imply

◦
χ0 ̸= 0. Let us consider the updates at t = 0. By Corollary F.4.1,

we have

∆W 1(1)ξ1 = −m−(c1−γ1(p))ηχ0(ξ
⊺
0ξ)dh̃

1
0,

so that

1

m
||∆W 1(1)ξ1||2= m−2(c1−γ1(p)) [ηχ0(ξ

⊺
0ξ1)]

2 1

m

m∑
q=1

(
dh̃10,q

)2
.

68

From the master theorem, we get that
∑m

q=1(dh̃
1
0,q)

2/m converges almost surely towards

E[(Zdh̃1
0)2] which is > 0 and finite by Lemma F.1. On the other hand, [ηχ0(ξ

⊺
0ξ1)]

2
converges

almost surely to
[
η

◦
χ0(ξ

⊺
0ξ1)

]2
, which is > 0 by assumption, and finite.

If c1 > γ1(p), then c1 − γ1(p) > 0, and ||∆W 1(1)ξ1||2/m → 0 almost surely, which is
impossible since by assumption, almost surely, there exits A > 0 such that for large enough
m, A ≤ ||∆W 1(1)ξ1||2/m.

If c1 < γ1(p), then c1 − γ1(p) < 0, and ||∆W 1(1)ξ1||2/m → ∞ almost surely, which is
impossible since by assumption, almost surely, there exits B > 0 such that for large enough
m, ||∆W 1(1)ξ1||2/m ≤ B.

We thus have that c1 = γ1(p). Let l ∈ [1, L − 1] and assume that ck = γk(p) for k ∈ [1, l].

Then by Lemmas G.9 and G.10, we have 0 < E[Z x̃k
0Zxk

1] <∞ for any k ∈ [1, l]. We have

1

m
||∆W l+1(1)xl1||2= m−2(cl+1−γl+1(p))

[
ηχ0

(x̃l0)
⊺
xl1

m

]2
1

m

m∑
q=1

(
dh̃l+1

0,q

)2
.

From the master theorem, we get that
∑m

q=1(dh̃
l+1
0,q)

2/m converges almost surely towards

E[(Zdh̃l+1
0)2] which is > 0 and finite by Lemma F.1. On the other hand,

[
ηχ0(x̃

l
0)

⊺
xl1/m

]2
converges almost surely to

[
η

◦
χ0E[Z x̃l

0Zxl
1]
]2
, which is > 0 and finite.

If cl+1 > γl+1(p), then cl+1 − γl+1(p) > 0, and ||∆W l+1(1)xl1||2/m → 0 almost surely,
which is impossible since by assumption, almost surely, there exits A > 0 such that for large
enough m, A ≤ ||∆W l+1(1)xl1||2/m.

If cl+1 < γl+1(p), then cl+1−γ1(p) < 0, and ||∆W l+1(1)xl1||2/m→∞ almost surely, which is
impossible since by assumption, almost surely, there exits B > 0 such that for large enough
m, ||∆W l+1(1)xl1||2/m ≤ B.

Therefore, we have cl+1 = γl+1(p). By induction, we thus get that cl = γl(p) for any

l ∈ [1, L], which means in particular that 0 < E[Z x̃L
0 ZxL

1] <∞ by Lemma G.10. Finally, we
have

(∆WL+1(1))
⊺
xL1 = −m−(cL+1−γL+1(p))ηχ0

(x̃L0)
⊺xL1
m

.

The term ηχ0(x̃
L
0)

⊺xL1 /m converges almost surely towards η
◦
χ0E[Z x̃L

0 ZxL
1], whose absolute

value is > 0 and finite. Therefore, if cL+1 > γL+1(p) then cL+1 − γL+1(p) > 0 so that
(∆WL+1(1))

⊺
xL1 → 0 almost surely, which is impossible since by assumption, almost surely,

there exits A > 0 such that for large enough m, A ≤ |(∆WL+1(1))
⊺
xL1 |. If cL+1 < γL+1(p)

then cL+1 − γL+1(p) < 0 so that (∆WL+1(1))
⊺
xL1 → ∞ almost surely, which is impossi-

ble since by assumption, almost surely, there exits B > 0 such that for large enough m,
|(∆WL+1(1))

⊺
xL1 |≤ B. Thus, we must have cL+1 = γL+1(p), which concludes the proof for

the first part.

H.2 Preliminaries on the second backward pass (t = 1)

Before we move on to the proof of the second part of the claim of Theorem 3.2, we stop and
prove some preliminary results on the second backward pass (at t = 1) which will come in

69

handy later on. Similarly to what we did for E[Z x̃l
0Zxl

1], we wish to prove that the quantity

0 < E[Zdh̃l
0Zdh̃l

1] <∞ for any l ∈ [2, L].

Lemma H.2 (Backward pass of IP-LLR at t = 1). Consider the IP-LLR parameterization of
an L hidden-layer network, and assume that the activation function σ satisfies Assumption 3,
and that limm→∞ ∂2ℓ(y0, f0(ξ0)) ̸= 0. Then, one has that for any l ∈ [2, L],

0 < E[Zdh̃l
0Zdh̃l

1] <∞

Remark H.1. Note that since only quantities of the first (t = 0) and second (t = 1) forward
and backward passes appear, we only need to assume we have an integrable parameterization
with cl = γl(p) for any l ∈ [1, L+ 1] at t = 0.

Proof. We start with l = L, and then induct over l from l = L to l = 2, and we recall
that limm→∞ ∂2ℓ(y0, f0(ξ0)) =:

◦
χ0 by definition (see Appendix A), which is thus ̸= 0 by

assumption.

The case l = L. By Corollary G.8.1, we have Zdh̃L
0 = ZUL+1

σ′(Z h̃L
0) and Zdh̃L

1 =

(ZUL+1 − η ◦
χ0σ(Z

h̃L
0))σ′(ZhL

1). We thus have

E[Zdh̃L
0 Zdh̃L

1] = E[(ZUL+1
)2σ′(Z h̃L

0)σ′(ZhL
1)]︸ ︷︷ ︸

:=A

+η| ◦χ0|E[−ϵZUL+1
σ′(Z h̃L

0)σ(Z h̃L
0)σ′(ZhL

1)]︸ ︷︷ ︸
:=B

,

with ϵ := sign(
◦
χ0) and we deal with both terms separately. First, by Corollary G.7.1 we

re-write ZhL
1 as

ZhL
1 = −η| ◦χ0|ϵλZUL+1

σ′(Z h̃L
0),

where λ := E[Z x̃L−1
0 ZxL−1

1] > 0 by Lemma G.10. Using the fact that sign(σ′(z)) = sign(z)
and the positive (p− 1)-homogeneity of σ′, we have

σ′(ZhL
1) = (η| ◦χ0|λ)p−1|σ′(Z h̃L

0)|p−1σ′(−ϵsign(Z h̃L
0)ZUL+1

).

The first term in E[Zdh̃L
0 Zdh̃L

1] is thus equal to

A = (η| ◦χ0|λ)p−1E
[
E
[
(ZUL+1

)2σ′(Z h̃L
0)|σ′(Z h̃L

0)|p−1σ′(−ϵsign(Z h̃L
0)ZUL+1

)
∣∣∣Z h̃L

0

]]
= (η| ◦χ0|λ)p−1E

[
σ′(Z h̃L

0)|σ′(Z h̃L
0)|p−1E

[
(ZUL+1

)2σ′(−ϵsign(Z h̃L
0)ZUL+1

)
∣∣∣Z h̃L

0

]]
= (η| ◦χ0|λ)p−1E

[
σ′(Z h̃L

0)|σ′(Z h̃L
0)|p−1

]
E
[
(ZUL+1

)2σ′(ZUL+1
)
]
.

The third equality stems from the fact that −ϵsign(Z h̃L
0)ZUL+1

and ZUL+1
have the same

distribution conditionally on Z h̃L
0 , and from the fact that (ZUL+1

)2 = (−ϵsign(Z h̃L
0)ZUL+1

)2.

We now show that both expectations are > 0. Calling pz the density of the Gaussian Z h̃L
0

which is symmetric and positive everywhere since Z h̃L
0 is not degenerate, the first term is

equal to

E
[
σ′(Z h̃L

0)|σ′(Z h̃L
0)|p−1

]
= (αp)p

∫ +∞

z=0
zp(p−1)pz(z)dz − (βp)p

∫ 0

z=−∞
(−z)p(p−1)pz(z)dz

= (αp − βp)pp
∫ +∞

z=0
zp(p−1)pz(z)dz,

70

where we have used the change of variable z ← −z in the second equality, and the last
quantity is > 0 since α > β. With similar calculations, we get

E
[
(ZUL+1

)2σ′(ZUL+1
)
]
= (α− β)p

∫ +∞

u=0
up+1pu(u)du > 0,

where pu is the density of the standard Gaussian ZUL+1
. This thus shows that A > 0.

We now turn to the second term B. We have:

B = (η| ◦χ0|λ)p−1× E
[
σ′(Z h̃L

0)σ(Z h̃L
0)|σ′(Z h̃L

0)|p−1sign(Z h̃L
0)×

E
[
(−ϵsign(Z h̃L

0)ZUL+1
)σ′(−ϵsign(Z h̃L

0)ZUL+1
)
∣∣∣Z h̃L

0

]]
= (η| ◦χ0|λ)p−1× E

[
σ′(Z h̃L

0)σ(Z h̃L
0)|σ′(Z h̃L

0)|p−1sign(Z h̃L
0)
]
E
[
ZUL+1

σ′(ZUL+1
)
]

= (η| ◦χ0|λ)p−1× E
[
σ(Z h̃L

0)|σ′(Z h̃L
0)|p

]
E
[
ZUL+1

σ′(ZUL+1
)
]
.

We now prove again that both expectations are > 0. The first integrand is non-negative
everywhere and positive on the positive part of the real line where the Gaussian Z h̃L

0 has
non-zero density, which shows the first expectation is > 0. The same argument holds for the
second expectation since ZUL+1

and σ′(ZUL+1
) are of the same sign, which also leads to a

positive expectation, which finally gives B > 0, thereby concluding the proof.

The case l ∈ [2, L− 1].

Let l ∈ [2, L − 1] and assume 0 < ν := E[Zdh̃l+1
0 Zdh̃l+1

1] < ∞. Calling ϵ := sign(
◦
χ0), on the

one hand, we have by Corollary G.8.1

Zdx̃l
1 = −η| ◦χ0|νϵσ(Z h̃l

0),

and on the other hand, with λ := E[Z x̃l−1
0 Zxl−1

1], which is > 0 by Lemmas G.10 and G.9 (if
l = 2)

σ′(Zhl
1) = (η| ◦χ0|λ)p−1|σ′(Z h̃l

0)|p−1σ′(−ϵsign(Z h̃l
0)Zdx̃l

0).

Recalling that Zdh̃l
0 = Zdx̃l

0σ′(Z h̃l
0) and Zdh̃l

1 = Zdx̃l
1σ′(Zhl

1), this leads to

E[Zdh̃l
0Zdh̃l

1] = η| ◦χ0|ν(η|
◦
χ0|λ)p−1E[(−ϵsign(Z h̃l

0)Zdx̃l
0)σ′(−ϵsign(Z h̃l

0)Zdx̃l
0)

sign(Z h̃l
0)σ′(Z h̃l

0)|σ′(Z h̃l
0)|p−1σ(Z h̃l

0)],

which, by conditioning on Z h̃l
0 and since −ϵsign(Z h̃l

0)Zdx̃l
0 and Zdx̃l

0 have the same distribu-

tion conditionally on Z h̃l
0 , and since sign(σ′(z)) = sign(z), gives

E[Zdh̃l
0Zdh̃l

1] = η| ◦χ0|ν(η|
◦
χ0|λ)p−1E

[
Zdx̃l

0σ′(Zdx̃l
0)
]
E
[
|σ′(Z h̃l

0)|pσ(Z h̃l
0)
]
.

The term in front of the expectations is positive by assumption, and both expectations are
positive because their integrands are both non-negative and positive on the positive part of
the real line where the Gaussians Zdx̃l

0 and Z h̃l
0 have non-zero density. The expectations are

also finite by Lemma L.1 because their integrands are polynomially bounded functions of
some Gaussian vector with finite covariance variance matrix. By induction, we thus get that
0 < E[Zdh̃l

0Zdh̃l
1] <∞ for any l ∈ [2, L], which concludes the proof.

71

H.3 Preliminaries on the third forward pass (t = 2)

In this section we wish to prove that similarly to the second forward pass, the quantities the
quantities E[Zxl

1Zxl
2] and E[Z x̃l

0Zxl
2] (which appear in the third forward pass at t = 2) are

> 0 for any l ∈ [1, L] when using the IP-LLR learning rates at t = 0 and t = 1. We assume
here that the training samples ξ0, ξ1, ξ2 are all distinct, which is probably not necessary for
the result to hold but simplifies somewhat some parts of the proof and is in any case a very
natural assumption.

Lemma H.3 (Forward pass of IP-LLR at t = 2). Consider the IP-LLR parameterization of
an L hidden-layer network, and assume that the activation function σ satisfies Assumption 3,
and that limm→∞ ∂2ℓ(y0, f0(ξ0)) ̸= 0 and limm→∞ ∂2ℓ(y1, f1(ξ1)) ̸= 0. Assume further that
the first three training samples ξ0, ξ1, ξ2 are all distinct. Then, one has that for any l ∈ [1, L],

0 <E[Zxl
1Zxl

2] <∞

0 <E[Z x̃l
0Zxl

2] <∞

Proof. We start with the case l = 1 and then induct over l from l = 1 to l = L for both
expectations simultaneously as the derivations are very similar.

The case l = 1.
Let us first unwind the expressions of Zh1

1 and Zh1
2 . We have

Zh1
1 = Z h̃1

0(ξ1) − η ◦
χ0(ξ

⊺
0ξ1 + 1)Zdx̃1

0σ′(Z h̃1
0),

and

Zh1
2 = Z h̃1

0(ξ2) − η ◦
χ0(ξ

⊺
0ξ2 + 1)Zdx̃1

0σ′(Z h̃1
0)− η ◦

χ1(ξ
⊺
1ξ2 + 1)Zdx̃1

1σ′(Zh1
1).

The case of E[Zx1
1Zx1

2].

Recalling that Zdx̃1
1 = −η ◦

χ0νσ(Z
h̃1
0) where ν := E[Zdh̃2

0Zdh̃2
1]. With the assumption that

ξ0, ξ1, ξ2 are all distinct, the vector (Z h̃1
0 , Z h̃1

0(ξ1), Z h̃1
0(ξ2), Zdx̃1

0) has a non-degenerate Gaus-
sian distribution, and we thus get

E[Zx1
1Zx1

2] =

∫
σ
(
u1 − µ0zσ′(u0)

)
σ
(
u2 − µ1zσ′(u0) + µ2σ(u0)σ

′ (u1 − µ0zσ′(u0)))×
q(u0, u1, u2)pz(z)d(u0, u1, u2)dz,

where µ0 := η
◦
χ0(ξ

⊺
0ξ1 + 1), µ1 := η

◦
χ0(ξ

⊺
0ξ2 + 1) and µ2 := η2

◦
χ0

◦
χ1ν(ξ

⊺
1ξ2 + 1), and q and pz

are the densities of non-degenerate Gaussians and are thus positive everywhere. Now the
integrand is non-negative everywhere and we wish to show that it is positive at some given
point of R4, and it is also a polynomially bounded function of (Z h̃1

0 , Z h̃1
0(ξ1), Z h̃1

0(ξ2), Zdx̃1
0)

which shows that the expectation is finite. Since Zdx̃1
0 and −Zdx̃1

0 have the same distribution
and it is independent of (Z h̃1

0 , Z h̃1
0(ξ1), Z h̃1

0(ξ2)), we can assume that µ0 ≥ 0 W.L.O.G. Consider
the point (u∗0, u

∗
1, u

∗
2, z

∗) defined as u∗0 = u∗1 = 1, z∗ = −1 and

u∗2 := |µ1|σ′(1) + |µ2|σ(1)σ′
(
1 + µ0σ

′(1)
)
+ 1.

We show below that the integrand is > 0 at (u∗0, u
∗
1, u

∗
2, z

∗). Since it is also a continuous
function of (u0, u1, u2, z), we get that the expectation is positive.

72

Let us now show that the integrand is > 0 at (u∗0, u
∗
1, u

∗
2, z

∗). We have

u∗1 − µ0z∗σ′(u∗0) = 1 + µ0σ
′(1) ≥ 1 > 0,

and

−µ1z∗σ′(u∗0) = µ1σ
′(1) ≥ −|µ1|σ′(1),

and finally

µ2σ(u
∗
0)σ

′ (u∗1 − µ0z∗σ′(u∗0)) = µ2σ(1)σ
′ (1 + µ0σ

′(1)
)
≥ −|µ2|σ(1)σ′

(
1 + µ0σ

′(1)
)
.

With the choice for u∗2, one has that u∗2 − µ1zσ′(u∗0) + µ2σ(u
∗
0)σ

′ (u∗1 − µ0z∗σ′(u∗0)) ≥ 1 > 0,
which concludes the proof because σ is positive on the positive part of the real line.

The case of E[Z x̃1
0Zx1

2].
We have

E[Z x̃1
0Zx1

2] =

∫
σ (u0)σ

(
u2 − µ1zσ′(u0) + µ2σ(u0)σ

′ (u1 − µ0zσ′(u0)))×
q(u0, u1, u2)pz(z)d(u0, u1, u2)dz,

As for the case of E[Zx1
1Zx1

2], we show that the integrand is> 0 at the same point (u∗0, u
∗
1, u

∗
2, z

∗)
as above, and since it is also a continuous function of (u0, u1, u2, z), we get that the expec-
tation is positive. It is also finite by Lemma L.1 because its integrand is a polynomially
bounded function of (Z h̃1

0 , Z h̃1
0(ξ1), Z h̃1

0(ξ2), Zdx̃1
0).

The case l ∈ [2, L− 1].

Let l ∈ [2, L − 1] and assume τ := E[Zxl−1
1 Zxl−1

2] > 0 and ρ := E[Z x̃l−1
0 Zxl−1

2] > 0. Calling

λ := E[Z x̃l−1
0 Zxl−1

1] which is > 0 by Lemma G.10, and ν := E[Zdh̃l+1
0 Zdh̃l+1

1] which is also > 0
by Lemma H.2, we have

Zhl
1 = −η ◦

χ0λZ
dx̃l

0σ′(Z h̃l
0),

and

Zhl
2 = −η ◦

χ0ρZ
dx̃l

0σ′(Z h̃l
0)− η ◦

χ1τZ
dx̃l

1σ′(Zhl
1).

Finally recall that Zdx̃l
1 = −η ◦

χ0νσ(Z
h̃l
0), and let us call µ0 := η

◦
χ0λ, µ1 := η

◦
χ0ρ and

µ2 := η2
◦
χ0

◦
χ1τν. µ0 is ̸= 0 because of the assumption on

◦
χ0. Since Z

dx̃l
0 and −Zdx̃l

0 have the

same distribution and it is independent of Z h̃l
0 , we can assume µ0 > 0 W.L.O.G. Note then

that since µ1 is of the same sign as µ0 (λρ > 0), this also implies µ1 > 0, and µ2 has the sign of
◦
χ1. By assumption,

◦
χ1 ̸= 0, and by the induction hypothesis and Lemma H.2 we have µ2 ̸= 0.

The case of E[Zxl
1Zxl

2].
We have

E[Zxl
1Zxl

2] =

∫
σ
(
−µ0zσ′(u)

)
σ
(
−µ1zσ′(u) + µ2σ(u)σ

′ (−µ0zσ′(u))) pu(u)pz(z)dudz,
where pu and pz are the densities of non-degenerate Gaussians (Z h̃l

0 and Zdx̃l
0 respectively)

and are thus positive everywhere. Now the integrand is non-negative everywhere and we wish

73

to show that it is positive at some given point of R2. The integrand is also a polynomially
bounded function of (Z h̃l

0 , Zdx̃l
0) which shows that the expectation is finite by Lemma L.1.

Let z∗ = −1 and u > 0. Then, −µ0z∗σ′(u) = µ0σ
′(u) > 0 so that σ(−µ0z∗σ′(u)) > 0. On

the other hand, −µ1z∗σ′(u) = µ1αpu
p−1, and

µ2σ(u)σ
′(−µ0z∗σ′(u)) = µ2αu

pαp(µ0αp)
p−1u(p−1)2

≥ −(αp)|µ2|α(µ0αp)p−1up−1u(p−1)2+1.

This leads to

−µ1z∗σ′(u) + µ2σ(u)σ
′(−µ0z∗σ′(u)) ≥ αpup−1

[
µ1 − |µ2|α(µ0αp)p−1u(p−1)2+1

]
.

The quantity in the bracket is > 0 as soon as

u <

[
µ1

|µ2|α(µ0αp)p−1

] 1
(p−1)2+1

=: ε

Calling u∗ := ϵ/2, we thus get that the integrand is > 0 at (u∗, z∗), and since it is a contin-
uous function of (u, z), the integral is positive.

The case of E[Z x̃l
0Zxl

2].
We have

E[Z x̃l
0Zxl

2] =

∫
σ (u)σ

(
−µ1zσ′(u) + µ2σ(u)σ

′ (−µ0zσ′(u))) pu(u)pz(z)dudz,
The integrand is non-negative everywhere and with z∗ = −1 and u∗ = ε/2 as above, one
shows that the integrand is > 0 at (u∗, z∗) which in turn implies that the expectation is pos-

itive. It is also finite for the same reasons as E[Zxl
1Zxl

2]. This now concludes the induction

over l ∈ [1, L − 1] which thus shows that E[Zxl
1Zxl

2] and E[Z x̃l
0Zxl

2] are > 0 and finite for
any l ∈ [1, L − 1]. Those expectations are also finite as their integrands are polynomially
bounded functions of Gaussian vectors which have finite covariance matrices.

The case l = L.
Let τ := E[ZxL−1

1 ZxL−1
2] > 0 and ρ := E[Z x̃L−1

0 ZxL−1
2] > 0 by the previous induction. Calling

λ := E[Z x̃L−1
0 ZxL−1

1] which is > 0 by Lemma G.10, we have

ZhL
1 = −η ◦

χ0λZ
UL+1

σ′(Z h̃L
0),

and

ZhL
2 = −η ◦

χ0ρZ
UL+1

σ′(Z h̃L
0)− η ◦

χ1τZ
dx̃L

1 σ′(ZhL
1).

Finally recall that Zdx̃L
1 = ZUL+1 − η

◦
χ0σ(Z

h̃L
0), and let us call µ0 := η

◦
χ0λ, µ1 := η

◦
χ0ρ,

µ2 := η
◦
χ1τ , and finally µ3 := η2

◦
χ0

◦
χ1τ . Since Zdx̃l

0 and −Zdx̃l
0 have the same distribution

and it is independent of Z h̃l
0 , we can assume µ0 > 0 W.L.O.G. Note then that since µ1 is of

the same sign as µ0, this also implies µ1 > 0, and µ2 has the sign of
◦
χ1. In addition, with

the assumptions and previous results, we have µ2 ̸= 0 and µ3 ̸= 0.

The case of E[ZxL
1 ZxL

2].
We have

E[ZxL
1 ZxL

2] =

∫
σ
(
−µ0zσ′(u)

)
σ
(
−µ1zσ′(u) + (−µ2z + µ3σ(u))σ

′ (−µ0zσ′(u)))×
pu(u)pz(z)dudz,

74

where pu and pz are the densities of non-degenerate Gaussians (Z h̃L
0 and ZUL+1

respectively)
and are thus positive everywhere. Now the integrand is non-negative everywhere and we
wish to show that it is positive at some point of R2. The integrand is also a polynomially
bounded function of (Z h̃L

0 , ZUL+1
) and the expectation is thus finite by Lemma L.1. We first

take a closer look at the second term inside σ. Let z ≤ 0, u ≥ 0. We have

−µ1zσ′(u) = µ1|z|αpup−1,

as well as

−µ2z + µ3σ(u) = −µ2z + µ3αu
p,

and

σ′(−µ0zσ′(u)) = αp(µ0αp)
p−1|z|p−1u(p−1)2 .

We thus get that

− µ1zσ′(u) + (−µ2z + µ3σ(u))σ
′ (−µ0zσ′(u)) =

αp|z|up−1

µ1 + (−µ2z + µ3α|u|p)(µ0αp)p−1|z|p−2|u|(p−1)(p−2)︸ ︷︷ ︸
F (u,z)


Because p − 2 ≥ 0, the function F is continuous over R2, and we have F (0, 0) = µ1 > 0.
Therefore, there exists u∗ > 0 and z∗ < 0 such that F (u∗, z∗) > 0. With such a pair (u∗, z∗)
we get that the integrand is > 0 at (u∗, z∗), and since it is a continuous function of (u, z), it
follows that the expectation is positive.

The case of E[Z x̃L
0 ZxL

2].

A similar argument to the case of E[ZxL
1 ZxL

2] applies and we get that the expectation is
positive, which concludes the proof.

H.4 Proof of the second implication

Lemma H.4 (Learning rates for stable learning with IP at t = 1). Consider an L-hidden
layer fully-connected neural network with L ≥ 3 in the integrable parameterization, and
with no bias terms, except at the first layer. Assume that the activation function σ satisfies
Assumption 3, and that limm→∞ ∂2ℓ(y0, f0(ξ0)) ̸= 0 and limm→∞ ∂2ℓ(y1, f0(ξ1)) ̸= 0. Assume
further that ξ⊺1ξ2 ̸= 0, that the first three training samples ξ0, ξ1, ξ2 are all distinct, and that
at t = 0 (i.e., to compute ∆W l(1)) cl = γl(p) (see Definition 3.2) for any l ∈ [1, L + 1].
Finally assume that Equation (3.2) holds:{

1
m ||∆W

l(2)xl−1
2 ||2= Θ(1), l ∈ [1, L]

(∆WL+1(2))
⊺
xL2 = Θ(1)

Then, one necessarily has that at t = 1, c1 = cl+1 = −1 and cl = −2 for any l ∈ [2, L].

Proof. We first treat the case l = 1 and then induct over l from l = 2 to l = L and conclude
by the case l = L + 1. Note that because of the assumptions, Lemma H.2 holds and the
claim of Lemma H.3 will hold at layer l as soon as we show c1 = −1 and ck = −2 for k ∈ [2, L].

75

The case l = 1.
We have

∆W 1(2)ξ2 = −ηm−(1+c1)χ1(ξ1
⊺ξ2)dx̃

1
1 ⊙ σ′(h11),

so that

1

m
||∆W 1(2)ξ2||2= m−2(1+c1)(ηχ1(ξ1

⊺ξ2))
2 1

m
||dx̃11 ⊙ σ′(h11)||2.

Recall that dx̃11 = −ηχ0((dh̃
2
0)

⊺
dh̃21)/mσ(h̃10), so that by the Master Theorem,

1

m
||dx̃11 ⊙ σ′(h11)||2

a.s.−−−−→
m→∞

(η
◦
χ0ν)

2E[σ(Z h̃1
0)2σ′(Zh1

1)2],

where ν := E[Zdh̃2
0Zdh̃2

1] > 0 by Lemma H.2. The term in front of the expectation is > 0 with
the assumptions. On the other hand, the term (ηχ1(ξ1

⊺ξ2))
2 converges almost surely towards

(η
◦
χ1(ξ1

⊺ξ2))
2 which is also > 0 with the assumptions. We show below that the expectation

is > 0, which proves that c1 must be equal to 1 since by assumption 1
m ||∆W

1(2)ξ2||2= Θ(1).
Recall that

Zh1
1 = Z h̃1

0(ξ1) − η ◦
χ0(ξ

⊺
0ξ1 + 1)Zdx̃1

0σ′(Z h̃1
0).

The integrand in the expectation is non-negative, and it simply remains to show that is
not almost surely zero. Because Zdx̃1

0 and −Zdx̃1
0 have the same distribution, and since it

is independent of (Z h̃1
0 , Z h̃1

0(ξ1)), we can assume W.L.O.G. that µ := η
◦
χ0(ξ

⊺
0ξ1 + 1) ≥ 0.

As usual, the vector (Z h̃1
0 , Z h̃1

0(ξ1)) has a Gaussian distribution which is degenerate only if
ξ1 = ξ0, which is precluded by the assumptions. Note that in any case, the expectation is
finite by Lemma L.1 since its integrand is a polynomially bounded function of a Gaussian
vector with finite covariance matrix. Since ξ ̸= ξ0 by assumption, we have

E[σ(Z h̃1
0)2σ′(Zh1

1)2] =

∫
σ(u)2σ′

(
v − µzσ′(u)

)2
pu,v(u, v)pz(z)dudvdz,

where pu,v and and pz are the densities of non-degenerate Gaussians ((Z h̃1
0 , Z h̃1

0(ξ1)) and Zdx̃1
0

respectively) and are thus well-defined and positive everywhere. Again, one sees that at
point (u∗, v∗, z∗) = (1, 1,−1) the integrand is > 0, and since it is a continuous function,
this proves that the expectation is positive. It is also finite by Lemma L.1 since the inte-
grand is a polynomially bounded function of a Gaussian vector with finite covariance matrix.

The case l ∈ [1, L− 1]
Let l ∈ [2, L − 1]. We have already shown that c1 = −1. Assume now that ck = −2 for
k ∈ [2, l − 1] (note that if l = 2 this means no additional assumption). Then we have

∆W l(2)xl−1
2 = −ηm−(2+cl)χ1

(xl−1
1)

⊺
xl−1
2

m
dx̃l1 ⊙ σ′(hl1),

so that

1

m
||∆W l(2)xl−1

2 ||
2= m−2(2+cl)

(
ηχ1

(xl−1
1)

⊺
xl−1
2

m

)2
1

m
||dx̃l1 ⊙ σ′(hl1)||2.

In addition, we have dx̃l1 = −ηχ0((dh̃
l+1
0)

⊺
dh̃l+1

1)/mσ(h̃l0), so that by the Master Theorem,

1

m
||dx̃11 ⊙ σ′(h11)||2

a.s.−−−−→
m→∞

(η
◦
χ0ν)

2E[σ(Z h̃l
0)2σ′(Zhl

1)2],

76

where ν := E[Zdh̃l+1
0 Zdh̃l+1

1] is such that 0 < ν <∞ by Lemma H.2. Recall that

Zhl
1 = −η ◦

χ0λZ
dx̃l

0σ′(Z h̃l
0),

with λ := E[Z x̃l−1
0 Zxl−1

1] such that 0 < λ <∞ by Lemmas G.9 and G.10, which leads to

E[σ(Z h̃l
0)2σ′(Zhl

1)2] =

∫
σ(u)2σ′(−µzσ′(u))2pu(u)pz(z)dudz,

where µ := η
◦
χ0λ which is ̸= 0 with the assumptions, and pu and pz are the densities

of two non-degenerate Gaussians (Z h̃l
0 and Zdx̃l

0 respectively) and are thus positive every-

where. Since Zdx̃l
0 and −Zdx̃l

0 have the same distribution and it is independent of Z h̃l
0 we

can assume µ > 0 W.L.O.G. Then, we see that at point (u∗, z∗) = (1,−1) the integrand
is > 0, and since it is a continuous function, this proves that the expectation is positive.
It is also finite by Lemma L.1 since the integrand is a polynomially bounded function of a
Gaussian vector with finite covariance matrix. The term (η

◦
χ0ν)

2 in front of the expectation
is > 0 and finite with the assumptions. Finally the term (ηχ1((x

l−1
1)

⊺
xl−1
2)/m)2 converges

almost surely towards (η
◦
χ1τ)

2 by the Master Theorem, where τ := E[Zxl−1
1 Zxl−1

2] is > 0
and finite by Lemma H.3, which shows that (η

◦
χ1τ)

2 is > 0 and finite with the assumptions.
Since ||dx̃11 ⊙ σ′(h11)||2/m = Θ(1) by assumption, then cl must be equal to −2 otherwise
||dx̃11 ⊙ σ′(h11)||2/m would either converge towards 0 or diver towards ∞ almost surely.

The case l = L. We have already proved that at t = 1, c1 = −1 and cl = −2 for
l ∈ [2, L]. We have

|(∆WL+1(2))
⊺
xL2 |= ηm−(1+cL+1)|χ1|

∣∣∣∣(xL1)⊺xL2m

∣∣∣∣ .
By the Master Theorem, ∣∣∣∣(xL1)⊺xL2m

∣∣∣∣ a.s.−−−−→
m→∞

E[ZxL
1 ZxL

2]

which is > 0 and finite by Lemma H.3. On the other hand, η|χ1| converges almost surely
towards η| ◦χ1| which is also > 0 and finite. This shows that since |(∆WL+1(2))

⊺
xL2 |= Θ(1)

then we must have cL+1 = −1 to avoid vanishing towards 0 or explosion towards +∞ as
m→∞, which concludes the proof.

I Proof of the non-triviality of IP-LLR: Theorem 4.1

Proof. Claims (i) and (ii) of Theorem 4.1 have already been shown in Theorem G.12. Claim
(iii) simply stems from Corollary G.7.1 with t = 2 and the fact that all the variables Z which
appear are polynomially bounded functions of the vector Z0 (see Definition L.1) by a simple
induction.

J Proof of the equivalence between IP-LLR and µP: Propo-
sition 4.1 and Theorem 4.2

In this section, we present the proofs of the equivalence between IP-LLR and hybrid versions
of µP both at finite-width and in the large-width limit. Because we need to use the homo-
geneity property, we consider a positively p-homogeneous activation function σ and no bias
terms except at the first layer for all the parameterizations we consider. We assume p ≥ 1
for the finite-width case, which includes ReLU, and p ≥ 2 in the infinite-width case as we
use the Tensor Program framework for the proof and thus require some smoothness.

77

J.1 Finite-width equivalence: Proposition 4.1

We start with a preliminary Lemma showing the equivalence at t = 1 and then do the proof
of Proposition 4.1 by induction.

J.1.1 Equivalence at t = 1

Lemma J.1 (First weight updates of HP). Consider the IP-LLR and HP parameterizations
with a positively p-homogeneous activation function, and p ≥ 1, and no bias terms except
at the first layer, and let us sub/super-script the variables of each models with IP and HP
respectively. Assume the first training sample (ξ0, y0) and the loss ℓ are the same for both
parameterizations. Assume further that χHP

0 ̸= 0, and simply denote by η the base learn-
ing rate of the IP-LLR parameterization. Finally consider for HP the initial learning rate:
ηHP(0) = (χIP

0 /χ
HP
0)η, and let ξ ∈ Rd be an input to both networks. Then, dropping the

dependency of the weights at t = 1 on η and ηHP, one has:

∀l ∈ [1, L+ 1], W l
HP(1) =W l

IP(1)

B1
HP(1) = B1

IP(1)

fHP
1 (ξ) = f IP1 (ξ)

Proof. By definition (see Section 4.2.1), we have

W 1
HP(1) =W 1

IP(0) + ∆W 1
µP(1)

B1
HP(1) = B1

IP(0) + ∆B1
µP(1)

W l
HP(1) =W l

IP(0) + ∆W l
µP(1), l ∈ [2, L]

WL+1
HP (1) =WL+1

IP (0) + ∆WL+1
µP (1)

Using Corollaries F.4.2, and Lemma F.5, and the fact that ηHP(0)χ
µP
0 = ηχIP

0 we have:

∆W 1
µP(1) = −ηHP(0)χ

µP
0 dh̃10ξ

⊺
0

= −ηχIP
0 dh̃

1
0ξ

⊺
0

= ∆W 1
IP(1),

∆B1
µP(1) = −ηHP(0)χ

µP
0 dh̃10

= −ηχIP
0 dh̃

1
0

= ∆B1
IP(1),

and, for l ∈ [2, L]

∆W l
µP(1) = −ηHPχ

µP
0

dh̃l0(x̃
l−1
0)

⊺

m

= −ηχIP
0

dh̃l0(x̃
l−1
0)

⊺

m

= ∆W l
IP(1),

and finally

∆WL+1
µP (1) = −ηHPχ

µP
0 x̃L0 /m

= −ηχIP
0 x̃

L
0 /m

= ∆WL+1
IP (1),

where the ∆W l
IP(1) and ∆B1(1) are computed with the base learning rate η. We then get

W l
HP(1) =W l

IP(1) for all l, and it follows that for any input ξ, fHP
1 (ξ) = f IP1 (ξ).

78

J.1.2 Proof of Proposition 4.1

Proof. We first show by induction that the effective weight matrices and the effective biases
of the first layer are the same for both parameterizations at any time step ≥ 1, which will
then immediately yield the result. We have already shown in Lemma J.1 that with the choice
of initial learning rate for HP, W l

HP(1) = W l
IP(1) for all l ∈ [1, L+ 1], and Bl

HP(1) = Bl
IP(1)

as well as fHP
1 (ξ) = f IP1 (ξ).

Now let s ≥ 1, and assume that for all l ∈ [1, L+1],W l
HP(s) =W l

IP(s), and B
1
HP(s) = B1

HP(s).
We want to show that this also holds true for the next time step s + 1. An easy induction
shows that since the effective weights of all layers are equal, and since by assumption the
s-th training sample (ξs, ys) is the same for both parameterization, we get that for any
l ∈ [1, L + 1], xls,HP = xls,IP, h

l
s,HP = hls,IP, as well as fHP

s (ξs) = f IPs (ξs), and therefore

χHP
s = χIP

s since by assumption both parameterization use the same loss. This in turn will
give by another easy induction that for any l ∈ [1, L + 1], dxls,HP = dxls,IP, dh

l
s,HP = dhls,IP.

Now, by Equation (A.3) we have, on the one hand (recall that s + 1 ≥ 2 so that the base
learning for both models for the (s+ 1)-th SGD step is η)

∆W 1
HP(s+ 1) = −ηm−(2aµP1 +cµP

1)dh1s,HPξ
⊺
s

and for l ∈ [2, L]

∆W l
HP(s) = −ηm−(2aµPl +cµPl)dhls,HPx

l−1
s,HP

and finally

∆WL+1
HP (s) = −ηm−(2aµPL+1+cµPL+1)xLs,HP

On the other hand, we have

∆W 1
IP(s) = −ηm−(2aIP1 +cIP1)dh1s,IPξ

⊺
s

and for l ∈ [2, L]

∆W l
IP(s) = −ηm−(2aIPl +cIPl)dhls,IPx

l−1
s,HP

and finally

∆WL+1
IP (s) = −ηm−(2aIPL+1+cIPL+1)xLs,IP

To see that the quantities are equal, we only need to observe that since s+ 1 ≥ 1

2aµP1 + cµP1 = −1 = 2aIP1 + cIP1

2aµPl + cµPl =0 = 2aIPl + cIPl

2aµPL+1 + cµPL+1 =1 = 2aIPL+1 + cIPL+1

(recall that for s ≥ 1, cIP1 = cIPL+1 = −1, and cIPl = −2 for l ∈ [2, L]). We thus find ∆W l
HP(s) =

∆W l
IP(s) for all l, and sinceW l

HP(s) =W l
IP(s) by assumption, we getW l

HP(s+1) =W l
IP(s+1)

for all l which concludes the induction.

The effective weights being equal in both parameterizations for all time steps ≥ 1, we get
that at time step t ≥ 1, for any input ξ ∈ Rd, the outputs fHP

t (ξ) and f IPt (ξ) are the same,
which concludes the proof.

79

J.2 Infinite-width equivalence: Theorem 4.2

In this section we prove Theorem 4.2 which states the equivalence between IP-LLR (see
Definition 4.1) and HPZ (see Section 4.2.2). We start by a couple of preliminary results
on the dynamics of HPZ, then proceed to prove the main induction step over t, and finally
conclude by putting the results together to prove the theorem.

J.2.1 Preliminary results

Lemma J.2 (µP is zero at initialization). Consider the µP parameterization with an acti-
vation function satisfying Assumption 2 and a loss function ℓ satisfying Assumption 1, and
no bias terms except at the first layer. Let ξ ∈ Rd be an input to the network. One has:

f0(ξ)
a.s.−−−−→

m→∞
0

χ0
a.s.−−−−→

m→∞
◦
χ0 := ∂2ℓ(y0, 0)

Remark J.1. The result on the almost sure convergence of χ0 ensures that the latter is a
valid initial scalar in the Tensor Program defining the computations associated with µP (and
thus and HPZ). Also note that the limit of χ0 is the same as for IP-LLR (see Lemma G.1).

Proof. µP is designed so that hl0 = h̃l0 and xl0 = x̃l0 for any l ∈ [2, L], and as already
proved in Lemma G.1, the tilde variables are vectors in the Tensor Program. Since f0(ξ) =
m−1(UL+1)

⊺
x̃L0 we get by the master theorem that f0(ξ) converges almost surely towards

E[ZUL+1
Z x̃L

0]. By Lemma L.2, Z h̃L
0 = Ẑ h̃L

0 and ZUL+1
= ẐUL+1

by definition, and by the

ZHat rule, Ẑ h̃L
0 and ẐUL+1

are independent, and since E[ZUL+1
] = 0 and E[(Z x̃L

0)2] < ∞
we get that f0(ξ) converges almost surely towards 0. The result on the limit of χ0 is then
simply a consequence of the fact that ∂2ℓ(y0, ·) is continuous by assumption.

Lemma J.3 (Weight updates for µP at any time step). Consider the µP parameterization
with a differentiable activation function σ and no bias terms except at the first layer, and let
t ≥ 1. Then, dropping the dependency of the forward and backward passes on ξt at time t,
one has:

∆WL+1(t+ 1) = −ηχtx
L
t /m,

∆W l(t+ 1) = −ηχt
dh̃lt(x

l−1
t)

⊺

m
, l ∈ [2, L],

∆W 1(t+ 1) = −ηχtdh̃
1
t ξ

⊺
t ,

∆B1(t+ 1) = −ηχtdh̃
1
t .

Remark J.2. Because HPZ and µP have the same parameterization for t ≥ 1 (see Sec-
tion 4.2.2), the formulas above for the updates are the same for HPZ, the only differ-
ence is that, at finite width, the xlt and dh̃lt differ from HPZ to µP because W l

HPZ(t) =
W l

µP(t) − W l
µP(0). Note that the formulas are also exactly the same as for IP-LLR (see

Lemma G.3) but again the quantities xlt and dh̃lt differ for µP and IP-LLR because of the
initial weight contribution in W l(t) which is different for the intermediate layers of both
parameterizations.

Proof. By Equation (A.6), we have

∆WL+1(t+ 1) = −ηm−(2aL+1+cL+1)χtx
L
t

= −ηχtx
L
t /m,

80

because 2aL+1 + cL+1 = 2− 1 = 1 for µP. For l ∈ [2, L], we have by Equation (A.3)

∆W l(t+ 1) = −ηχtm
−(2al+cl)dhlt(x

l−1
t)

⊺

= −ηχt
dh̃lt(x

l−1
t)

⊺

m
,

because dhlt = m−1dh̃lt and 2al + cl = 1− 1 = 0 for µP. Finally, for l = 1 we have again by
Equation (A.3)

∆W 1(t+ 1) = −ηχtm
−(2a1+c1)dh1t ξ

⊺
t

= −ηχtdh̃
1
t ξ

⊺
t ,

because 2a1 + c1 = −1 for µP and dh1t = dh̃1t . A similar argument holds for ∆B1(t + 1),
which concludes the proof.

Theorem J.4 (Weights in HPZ at time t). Consider the HPZ parameterization with a
differentiable activation function σ and no bias terms except at the first layer. Then, for any
t ≥ 1, one has:

(i) W 1(t) = U1 − ηχ0dh̃
1
0ξ

⊺
0 − η

(∑t−1
s=1 χsdh̃

1
sξ

⊺
s

)
,

(ii) B1(t) = v1 − ηχ0dh̃
1
0 − η

(∑t−1
s=1 χsdh̃

1
s

)
,

(iii) W l(t) = −ηχ0
dh̃l

0(x̃
l−1
0)

⊺

m − η
(∑t−1

s=1 χs
dh̃l

s(x
l−1
s)

⊺

m

)
, l ∈ [2, L],

(iv) WL+1(t) = UL+1/m− ηχ0x̃
L
0 /m− η

(∑t−1
s=1 χsx

L
s /m

)
.

Proof. The formulas are correct at t = 1 by definition of HPZ and by Lemma F.5 which
gives the first weight updates for µP. Then, an easy induction using Lemma J.3 yields the
result.

Lemma J.5 (Backward pass of HPZ at time t). Consider the HPZ parameterization with
a differentiable activation function σ and no bias terms except at the first layer. Then, for
any t ≥ 1, dropping the dependency of the forward pass at time t on ξt, and of the previous
forward and backward passes on the corresponding ξs, one has:

(i) dx̃Lt = wL+1(t) = UL+1 − ηχ0x̃
L
0 − η

∑t−1
s=1 χsx

L
s ,

(ii) dx̃l−1
t = −ηχ0

(dh̃l
0)

⊺
dh̃l

t
m x̃l−1

0 − η
∑t−1

s=1 χs
(dh̃l

s)
⊺
dh̃l

t
m xl−1

s , l ∈ [2, L].

Proof. By definition, we have

dx̃Lt = mdxLt

= mWL+1(t)

= UL+1 − ηχ0x̃
L
0 − η

t−1∑
s=1

χsx
L
s

where the last equality stems from Theorem J.4.

Let l ∈ [2, L], we have:

dx̃l−1
t = (W l(t))

⊺
dh̃lt

= −ηχ0
(dh̃l0)

⊺
dh̃lt

m
x̃l−1
0 − η

t−1∑
s=1

χs
(dh̃ls)

⊺
dh̃lt

m
xl−1
s

where the second equality stems from Theorem J.4.

81

Lemma J.6 (Z for the forward pass of HPZ at time t = 1). Consider the HPZ param-
eterization with an activation function σ satisfying Assumption 2 and no bias terms ex-
cept at the first layer. Let ξ ∈ Rd be an input to the network. Then, for any l ∈ [1, L],
hl1(ξ), x

l
1(ξ), dx̃

l
1, dh̃

l
1 are vectors in the program, f1(ξ) is a scalar in the program, and χ1 is

a valid initial scalar in the program. Additionally, dropping the dependency of the forward
pass at time t = 1 on ξ, and of the first forward and backward passes on ξ0, one has:

(i) Zh1
1 = ZW 1(1)ξ+B1(1) = ZU1ξ + Zv1 − η ◦

χ0(ξ
⊺
0ξ + 1)Zdh̃1

0,

(ii) Zhl
1 = ZW l(1)xl−1

1 = −η ◦
χ0E[Z x̃l−1

0 Zxl−1
1]Zdh̃l

0, l ∈ [2, L],

(iii) f1(ξ) = (WL+1(1))
⊺
xL1

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

1]− η ◦
χ0E[Z x̃L

0 ZxL
1].

Proof. By Theorem J.4, with t = 1, one has that h11 = U1ξ + v1 − ηχ0(ξ
⊺
0ξ + 1)dh̃10. By

Lemma G.1, dh̃10 is a vector in the Tensor Program (recall that the tilde variables at initial-
ization do not depend on the choice of parameterization) and by Lemma J.2 χ0 is a valid
initial scalar in the program which has an almost sure limit

◦
χ0 := ∂2ℓ(y0, 0) as m→∞ (see

Remark J.1). In addition, U1ξ and v1 are initial vectors in the program, which thus shows
that h11 is a vector in the program by the NonLin operation. This also gives that x11 = σ(h11)
is a vector in the program since σ is pseudo-Lipschitz by assumption. Moreover, by ZNonLin,
we have Zh1

1 = ZU1ξ +Zv1 − η ◦
χ0(ξ

⊺
0ξ+1)Zdh̃1

0 . Let l ∈ [2, L] and assume that hl−1
1 , xl−1

1 are
vectors in the program. Then, by Theorem J.4 with t = 1, we get

hl1 = −ηχ0
(x̃l−1

0)
⊺
xl−1
1

m
dh̃l0.

(x̃l−1
0)

⊺
xl−1
1 /m is a scalar in the program by the Moment operation, and thus by the MatMul

and NonLin operations, hl1 is a vector in the program and thus so is xl1 = σ(hl1), which proves
by induction that this is the case for any l ∈ [2, L]. By ZNonLin we thus have

Zhl
1 = −η ◦

χ0E[Z x̃l−1
0 Zxl−1

1]Zdh̃l
0 .

We then have by Theorem J.4 with t = 1,

f1(ξ) = m−1(UL+1)
⊺
xL1 − ηχ0

(x̃L0)
⊺
xL1

m

UL+1 − ηχ0x̃
L
0 is a vector in the program by the NonLin operation, and the quantity

m−1(UL+1 − ηχ0x̃
L
0)

⊺
xL1 is thus a scalar in the program by the Moment operation, and by

the master theorem, we get f1(ξ)→ E[ZUL+1
ZxL

1]− η ◦
χ0E[Z x̃L

0 ZxL
1] almost surely, since both

expectations are finite by Lemma L.1. Since we did the previous reasoning with an arbitrary
ξ, we also get that hl1(ξ1), x

l
1(ξ1) are vectors in the program for any l ∈ [1, L] and that the

formulas in (i), (ii), and (iii) hold when the input is ξ1. In particular, f1(ξ1) converges to a

finite almost sure limit
◦
f1(ξ1), and thus the continuity of ∂2ℓ(y1, ·) ensures the almost sure

convergence of χ1 towards
◦
χ1 := ∂2ℓ(y1,

◦
f1(ξ1)), which means χ1 is a valid initial scalar in

the Tensor Program. Then, dropping the dependency of the second forward pass (at t = 1)
on ξ1, we get by Theorem J.5 with t = 1:

dx̃L1 = UL+1 − ηχ0x̃
L
0

which is a vector in the program by NonLin. Then dh̃L1 = dx̃L1 ⊙ σ′(hL1) is also a vector in
the program by NonLin since σ′ is pseudo-Lipschitz. Let l ∈ [2, L−1] and assume that dx̃l+1

1

and dh̃l+1
1 are vectors in the program. Then by Theorem J.5 with t = 1, we have

dx̃l1 = −ηχ0
(dh̃l+1

0)
⊺
dh̃l+1

1

m
x̃l0

82

(dh̃l+1
0)

⊺
dh̃l+1

1 /m is a scalar in the program by the Moment operation and by MatMul and
NonLin we thus get that dx̃l1 is a vector in the program. Then dh̃l1 = dx̃l1 ⊙ σ′(hl1) is also a
vector in the program since σ′ is pseudo-Lipschitz, which concludes the induction and with
it the proof.

Lemma J.7 (Zs of HPZ and IP-LLR are equal at t = 1). Consider the HPZ and IP-LLR
parameterization with an activation function σ satisfying Assumption 3, and no bias terms
except at the first layer, and let us sub/super-script the variables of each models with HPZ
and IP respectively. Let ξ ∈ Rd be an input to the networks, and assume that HPZ and
IP-LLR share the same training samples (ξ0, y0) and (ξ1, y1) at t = 0 and t = 1, the same
loss function ℓ satisfying Assumption 1, and the same base learning rate η. Then dropping
the dependency of the first forward and backward passes on ξ0 and that of the second forward
passes on ξ, we have:

(i) Zhl
1,HPZ = Zhl

1,IP, Zxl
1,HPZ = Zxl

1,IP, l ∈ [1, L],

(ii) limm→∞ fHPZ
1 (ξ) = limm→∞ f IP1 (ξ),

(iii)
◦
χ
HPZ

1 =
◦
χ
IP

1 ,

(iv) Zdx̃l
1,HPZ = Zdx̃l

1,IP, Zdh̃l
1,HPZ = Zdh̃l

1,IP, l ∈ [1, L].

Proof. By Lemmas G.1 and G.1 we have
◦
χ
IP

0 =
◦
χ
µP

0 =
◦
χ
HPZ

0 = ∂2ℓ(y0, 0), which we simply
call

◦
χ0 in the remainder of this proof for simplicity. By Corollary G.6 and Lemma J.6 we

have

Zh1
1,IP = ZU1ξ + Zv1 − η ◦

χ0(ξ0
⊺ξ + 1)Zdh̃1

0 ,

and

Zh1
1,HPZ = ZU1ξ + Zv1 − η ◦

χ0(ξ0
⊺ξ + 1)Zdh̃1

0 ,

and since the tilde variables are computed independently of any parameterization, we have

Zh1
1,HPZ = Zh1

1,IP . Because IP and HPZ share the same activation function we also get

Zx1
1,HPZ = Zx1

1,IP . Now let l ∈ [2, L] and assume Zhl−1
1,HPZ = Zhl−1

1,IP as well as Zxl−1
1,HPZ = Zxl−1

1,IP .
By Corollary G.6 and Lemma J.6 we have

Zhl
1,IP = −η ◦

χ0E[Z x̃l−1
0 Zxl−1

1,IP]Zdh̃l
0 ,

and

Zhl
1,HPZ = −η ◦

χ0E[Z x̃l−1
0 Zxl−1

1,HPZ]Zdh̃l
0 ,

which shows Zhl
1,IP = Zhl

1,HPZ since the tilde variables are independent of any choice of
parameterization. Since the activation function σ is the same for both models we also get

Zxl
1,IP = Zxl

1,HPZ which concludes the induction. For the output of the networks, we have by
Corollary G.6 and Lemma J.6

f IP1 (ξ)
a.s.−−−−→

m→∞
E[ZUL+1

ZxL
1,IP]− η ◦

χ0E[Z x̃L
0 ZxL

1,IP],

and

fHPZ
1 (ξ)

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

HPZ]− η ◦
χ0E[Z x̃L

0 ZxL
1,HPZ],

83

and since ZxL
1,IP = ZxL

1,HPZ by the previous induction and the tilde variables are indepen-

dent of the parameterization, we get limm→∞ fHPZ
1 (ξ) = limm→∞ f IP1 (ξ) =:

◦
f1(ξ). Since

χIP
1 = ∂2(y1, f

IP
1 (ξ)) and χHPZ

1 = ∂2(y1, f
HPZ
1 (ξ)), by continuity of ∂2ℓ(y1, ·) we get that

◦
χ
HPZ

1 = ∂2ℓ(y1,
◦
f1(ξ)) =

◦
χ
IP

1 .

For the backward pass, we have by Lemma J.5 that dx̃L1,HPZ = UL+1 − ηχ0,HPZx̃
L
0 which

gives by NonLin Zdx̃L
1,HPZ = ZUL+1 − η ◦

χ0Z
x̃L
0 which is also equal to Zdx̃L

1,IP by Lemma G.5
since the tilde variables are independent of the choice of parameterization. Then, we also

get Zdh̃L
1,HPZ = Zdx̃L

1,HPZσ′(ZhL
1,HPZ) and Zdh̃L

1,IP = Zdx̃L
1,HPZσ′(ZhL

1,IP) which shows Zdh̃L
1,HPZ =

Zdh̃L
1,IP . Let l ∈ [1, L − 1] and assume Zdx̃l+1

1,HPZ = Zdx̃l+1
1,IP as well as Zdh̃l+1

1,HPZ = Zdh̃l+1
1,IP . By

Lemma J.5, we have

dx̃l1,HPZ = −ηχ0

(dh̃l+1
0)

⊺
dh̃l+1

1,HPZ

m
x̃l0

which gives by the master theorem and the ZNonLin

Zdx̃l
1,HPZ = −η ◦

χ0E[Zdh̃l+1
0 Zdh̃l+1

1,HPZ]Z x̃l
0

which is the same expression as Zdx̃l
1,IP by Lemma G.5. It then follows that Zdh̃l

1,HPZ =

Zdh̃l
1,IP , which concludes the induction and with it the proof.

Theorem J.8 (Z for the forward pass of HPZ at time t). Consider the HPZ parameterization
with an activation function σ satisfying Assumption 2 and no bias terms except at the first
layer. Let ξ ∈ Rd be an input to the network. Then, for any l ∈ [1, L], hls(ξ), x

l
s(ξ), dx̃

l
s, dh̃

l
s

are vectors in the program, fs(ξ) is a scalar in the program, and χs is a valid initial scalar
in the program. Additionally, dropping the dependency of the forward pass at time t on ξ,
and of the previous forward and backward passes on the corresponding ξs, one has:

(i) Zh1
t = ZW 1(t)ξ+B1(t) = ZU1ξ + Zv1 − η ◦

χ0(ξ
⊺
0ξ + 1)Zdh̃1

0 − η
(∑t−1

s=1

◦
χs(ξ

⊺
s ξ + 1)Zdh̃1

s

)
,

(ii) Zhl
t = ZW l(t)xl−1

t = −η ◦
χ0E[Z x̃l−1

0 Zxl−1
t]Zdh̃l

0 − η
(∑t−1

s=1

◦
χsE[Zxl−1

s Zxl−1
t]Zdh̃l

s

)
, l ∈

[2, L],

(iii) ft(ξ) = (WL+1(t))
⊺
xLt

a.s.−−−−→
m→∞

E[ZUL+1
ZxL

t]−η ◦
χ0E[Z x̃L

0 ZxL
t]−η

(∑t−1
s=1

◦
χsE[ZxL

s ZxL
t]
)
.

Proof. The proof is exactly the same as for Theorem G.7 except that whenever a multiplica-
tion by W l(0) appears with l ∈ [2, L], it is now replaced by 0, but the reasoning and all the
arguments are the same, which in summary uses an induction over t as well as the master
theorem and the ZNonLin rule from the Tensor Program.

Theorem J.9 (Zs of backward pass of HPZ at time t). Consider the HPZ parameterization
with an activation function σ satisfying Assumption 2 and no bias terms except at the first
layer. Then, for any t ≥ 1, dropping the dependency of the forward pass at time t on ξt, and
of the previous forward and backward passes on the corresponding ξs, one has:

(i) Zdx̃L
t = ZwL+1(t) = ZUL+1 − η ◦

χ0Z
x̃L
0 − η

∑t−1
s=1

◦
χsZ

xL
s ,

(ii) Zdx̃l−1
t = −η ◦

χ0E[Zdh̃l
0Zdh̃l

t]Z x̃l−1
0 − η

∑t−1
s=1

◦
χsE[Zdh̃l

sZdh̃l
t]Zxl−1

s , l ∈ [2, L].

Proof. As for Theorem J.8, the proof follows exactly the same pattern as for Theorem J.9
except that whenever a multiplication by W l(0) appears with l ∈ [2, L], it is now replaced
by 0.

84

J.2.2 Induction on t

Lemma J.10 (Induction step on the Zs of the forward pass). Consider the IP-LLR and
HPZ parameterizations with an activation function σ satisfying Assumption 3 and no bias
terms except at the first layer, and let us sub/super-script the variables of each models with
IP and HP respectively. Let s ≥ 1, ξ ∈ Rd be an input to the networks, and assume that
the training routine (see Definition 2.2) is the same for both models with a loss satisfying
Assumption 1. Assume further that, dropping the dependency of the forward and backward
passes at time t = r on ξr, for all r ∈ [1, s], we have:

(i) Zhl
HPZ,r = Zhl

IP,r , Zxl
HPZ,r = Zxl

IP,r , l ∈ [1, L],

(ii) limm→∞ fHPZ
r (ξ) = limm→∞ f IPr (ξ),

(iii)
◦
χ
HPZ

r =
◦
χ
IP

r ,

(iv) Zdh̃l
HPZ,r = Zdh̃l

IP,r , Zdx̃l
HPZ,r = Zdx̃l

IP,r , l ∈ [1, L].

Then, dropping the dependency of the forward pass at time t = s+ 1 on ξ, one has:

(v) Zhl
HPZ,s+1 = Zhl

IP,s+1 , Zxl
HPZ,s+1 = Zxl

IP,s+1 , l ∈ [1, L],

(vi) limm→∞ fHPZ
s+1 (ξ) = limm→∞ f IPs+1(ξ),

(vii)
◦
χ
HPZ

s+1 =
◦
χ
IP

s+1,

(viii) Zdh̃l
HPZ,r = Zdh̃l

IP,s+1 , Zdx̃l
HPZ,s+1 = Zdx̃l

IP,s+1 , l ∈ [1, L].

Proof. Since by assumption, for any r ∈ [1, s], the Zs of the forward and backward passes are
equal for both parameterizations, we drop the dependency of those quantities on the model,
and for z ∈ {hlr, xlr, dh̃lr, dx̃lr}, we simply call ZzHPZ = ZzIP = Zz. Similarly we simply call
◦
χ
HPZ

r =
◦
χ
IP

r =
◦
χr. We have G.7

Zh1
HPZ,s+1 = ZU1ξs+1 − η ◦

χ0(ξ
⊺
0ξs+1 + 1)Zdh̃1

0 − η
s∑

r=1

◦
χr(ξ

⊺
r ξs+1 + 1)Zdh̃1

r

= Zh1
IP,s+1

where the first equality stems from Theorem J.8 and the second one from Theorem G.7.

Since both parameterizations use the same linearity σ, we get Zx1
HPZ,s+1 = σ(Zh1

HPZ,s+1) =

σ(Zh1
IP,s+1) = Zx1

IP,s+1 .

Let l ∈ [2, L] and assume Zhl−1
HPZ,s+1 = Zhl−1

IP,s+1 , Zxl−1
HPZ,s+1 = Zxl−1

IP,s+1 . By Theorem J.8,
we have

Zhl
HPZ,s+1 = −η ◦

χ0E[Z x̃l−1
0 Zxl−1

HPZ,s+1]Zdh̃l
0 − η

s∑
r=1

◦
χrE[Zxl−1

r Zxl−1
HPZ,s+1]Zdh̃l

r

= −η ◦
χ0E[Z x̃l−1

0 Zxl−1
IP,s+1]Zdh̃l

0 − η
s∑

r=1

◦
χrE[Zxl−1

r Zxl−1
IP,s+1]Zdh̃l

r

= Zhl
HPZ,s+1

where the last equality stems from Theorem G.7. Since both parameterizations used the

same non-linearity σ, we get Zxl+1
HPZ,s+1 = Zxl+1

IP,s+1 .

85

By induction, we thus get that for any l ∈ [1, L], Zhl
HPZ,s+1 = Zhl

IP,s+1 , and Zxl
HPZ,s+1 =

Zxl
IP,s+1 , which proves (v). We can thus drop the dependency of hls+1 and xls+1 on the model

HPZ or IP. Now, we thus have by Theorem J.8

lim
m→∞

fHPZ
s+1 (ξ) = E[ZUL+1

ZxL
s+1]− η ◦

χ0E[Z x̃L
0 ZxL

s+1]− η

(
s∑

r=1

◦
χrE[ZxL

r ZxL
s+1]

)
= lim

m→∞
f IPs+1(ξ)

where the last equality stems from Theorem G.7, which proves (vi). Then (vi) combined

with the continuity of ∂2ℓ(ys+1, ·) proves (vii), and we can thus imply denote
◦
χ
IP

s+1 =
◦
χ
HPZ

s+1 =
◦
χs+1. By Theorems J.9 and G.8 we get Zdx̃L

s+1,HPZ = Zdx̃L
s+1,IP , from which it follows that

Zdh̃L
s+1,HPZ = Zdh̃L

s+1,IP by (v) and since both models share the same activation function.
Finally, given the previous result, with (i), (iii), (iv), (v) and (vii), an easy induction gives
(viii) with the formulas of Theorems J.9 and G.8, which concludes the proof.

J.2.3 Proof of Theorem 4.2

Proof. The claim has already been proved at t = 0 by Lemmas G.1 and J.2, and at t = 1 by
Lemma J.7. Then, by Lemma J.10, we get the result at any time step t ≥ 1 by induction.

K Formal versions of the results for the alternative methods
to escape the initial stationary point

K.1 Formal version of Theorem 5.2

Theorem K.1 (Formal). Consider the IP-bias parameterization as in Equations (5.2), with
the initial learning rates as in Equations (5.4) and (5.5). Assume the activation function σ
satisfies Assumption 2 and the loss ℓ satisfies Assumption 1. Then, for any input ξ ∈ Rd to
the network, Zhl

0(ξ), Zxl
0(ξ) for l ≥ 2, and limm→∞ f0(ξ) do not depend on ξ. In addition, for

any vector x in the program such that Zx does not depend on on the first training input ξ0,
Z∆W l(1)x for l ∈ [3, L], and limm→∞ (∆WL+1(1))

⊺
x do not depend on ξ0.

Proof. We have h10 = U1ξ + v1 so that Zh1
0 = ẐU1ξ + Ẑv1 ∼ N (0, ||ξ||2+1), and Zx1

0 =

σ(Zh1
0). At the second layer l = 2, we have h20 = m−1/2Ŵ 2x10 + v2 so that by ZNonLin

Zh2
0 = 0× ẐŴ 2x1

0 + Zv2 , and ẐŴ 2x1
0 ∼ N (0,E[(Zx1

0)2]). Because σ is pseudo-Lipschitz, it is
also polynomially bounded, and the variance of the Gaussian is finite by Lemma C.1, so that
Zh2

0 = Zv2 ∼ N (0, 1) which does not depend on ξ. Therefore, Zx2
0 = σ(Zh2

0) also does not

depend on ξ. Let l ∈ [3, L] and assume that Zhl−1
0 = Zvl−1

and Zxl−1
0 = σ(Zvl−1

). Then, we

have Zhl
0 = 0× ẐŴ lxl−1

0 +Zvl , and ẐŴ lxl−1
0 ∼ N (0,E[(Zxl−1

0)2]), and the variance is again fi-

nite by the same arguments as for l = 2. We thus get Zhl
0 = Zvl and Zxl

0 = σ(Zhl
0) = σ(Zvl)

which concludes the induction and shows that Zhl
0 and Zxl

0 do not depend on ξ for all inter-
mediate layers l.

For the output of the network, we have by the master theorem thatm−1(UL+1)
⊺
xL0 converges

almost surely to E[ZUL+1
σ(ZvL)] = 0 since ZUL+1

has mean 0 and is independent of ZvL .
Since f0(ξ) = m−1(UL+1)

⊺
xL0 + vL+1 where vL+1 ∼ N (0, 1), we have that f0(ξ) converges

almost surely to the Gaussian variable vL+1 which does not depend on ξ. For the backward
pass, recall that we call dx̃l0 := m−1m−(L−l)/2∇xlf0(ξ0) and dh̃

l
0 := m−1m−(L−l)/2∇hlf0(ξ0).

86

Then, we have dx̃L0 = UL+1, dh̃L0 = UL+1 ⊙ σ′(hL0), and a simple induction shows that for

any l ∈ [1, L − 1], dx̃l0 = (Ŵ l+1)
⊺
dh̃l+1

0 , dh̃l0 = dx̃l0 ⊙ σ′(hl0). We thus have Zdx̃L
0 = ZUL+1

and Zdh̃L
0 = ZUL+1

σ′(ZvL) which does not depend on the first training input ξ0. With the

recursive formulas above, and since Zhl
0 = Zvl for l ∈ [2, L], it is clear that Zdx̃l

0 and Zdh̃l
0

do not depend on ξ0 for l ∈ [2, L].

Finally, let x be a vector in the program for which Zx does not depend on ξ, and let
l ∈ [3, L]. Then, by design, with the initial learning rates of Equation (5.4) for the weights
with IP-bias, we have

∆W l(1)x = −ηχ0
(xl−1

0)
⊺
x

m
dh̃l0,

so that by ZNonLin

Z∆W l(1)x = −η ◦
χ0E[Zxl−1

1 Zx]Zdh̃l
0 ,

where
◦
χ0 := ∂2ℓ(y0, v

L+1). Since vL+1, Zxl−1
0 , Zx and Zdh̃l

0 do not depend on ξ0 (l − 1

and l are both in [2, L]), Z∆W l(1)x also does not depend on the first training input ξ0.
To conclude, we have by the master theorem that (∆WL+1(1))

⊺
x converges almost surely

towards −η ◦
χ0E[ZxL

0 Zx] which is does not depend on ξ0 since this is the case for vL+1, ZxL
0

and Zx, which concludes the proof.

K.2 Formal version of Theorem 5.1

Theorem K.2 (Formal). Consider IP-non-centered with the Naive-IP learning rates at every
time step. Assume the activation function σ satisfies Assumption 2 and the loss ℓ satisfies
Assumption 1, and let t ≥ 0 and ξ ∈ Rd be an input to the network. Then, calling dx̃ls :=
m∇xlfs(ξs) and dh̃

l
s := m∇hlfs(ξs), one has that:

(i) for any l ∈ [2, L− 1], Zhl
t and Zxl

t are deterministic constants,

(ii) for any l ∈ [2, L− 1], Zdx̃l
t and Zdh̃l

t deterministic constants,

(iii) for any l ∈ [3, L− 1], and for any vector x in the program, we have that

Z(W l(t+1)−W l(0))x =
(
−η
∑t

s=0

◦
χsZ

dh̃l
sZxl−1

s

)
E[Zx].

Remark K.1. Point (iii) highlights the fact that in the infinite-width limit the (random)
matrix operator (wl(t)−wl(0)) acts on a vector x as if all the entries of the matrix operator

were equal to a single deterministic constant
(
−η
∑t−1

s=0

◦
χsZ

dh̃l
sZxl−1

s

)
, because then the

averages over the coordinates of x involved in (W l(t) −W l(0))x would simply yield E[Zx]
by the master theorem of the Tensor Program.

The proof Theorem K.2 can be found in Appendix K.2.2. The proof is done by inducting
over t, and we present the case t = 0 and the induction step first in Appendix K.2.1.

K.2.1 Preliminaries

Lemma K.3 (First forward-backward pass and weight updates). Claims (i), (ii) and (iii)
of Theorem K.2 hold at t = 0.

87

Proof. h10 and x10 = σ(h10) are vectors in the program by the MatMul and NonLin rules since
σ is pseudo-Lipschitz by assumption, and Zh1

0 = ZU1ξ + Zv1 ∼ N (0, ||ξ||2+1), and finally
Zx1

0 = σ(Zh1
0). Now, we have (recall that as defined in Section 5.1 J is the matrix full of

ones)

h20 = m−1/2Ŵ 2x10 +m−1v2 + u2m
−1Jx10.

m−1/2Ŵ 2x10 +m−1v2 is a valid vector in the program by MatMul and NonLin because the

initial scalars m−1/2 and m−1 converge to 0 almost surely, and Zm−1/2Ŵ 2x1
0+m−1v2 = 0 ×

ẐŴ 2x1
0 +0× Ẑv2 . By the ZHat rule we get that ẐŴ 2x1

0 ∼ N (0,E[(Zx1
0)2]), with finite variance

by Lemma C.1 since σ is pseudo-Lipschitz and thus polynomially bounded, and Ẑv2 ∼
N (0, 1). We thus get Zm−1/2(Ŵ 2x1

0+v2) = 0. On the other hand, θ := (1/m)
∑m

q=1 x
1
0,q is a

valid scalar in the program by the Moment rule and it converges almost surely to
◦
θ = E[Zx1

0] by
the master theorem. The coordinates of u2m

−1Jx10 are thus all equal to u2θ, and the vector
u2m

−1Jx10 is thus equal to ψ(x10; θ) coordinate-wise where the function ψ(·; ·) : R × R → R
is pseudo-Lipschitz and depends only on the second variable with ψ(x;α) = u2α. By
the NonLin rule u2m

−1Jx10 is thus a vector in the program and by ZNonLin we thus get

Zu2m−1Jx1
0 = ψ(Zx1

0 ;
◦
θ) = u2E[Zx1

0]. We thus finally get

Zh2
0 = u2E[Zx1

0],

which is a (finite) deterministic constant. Then the same statement holds for Zx2
0 =

σ(u2E[Zx1
0]). Let l ∈ [3, L] and assume that hl−1

0 and xl−1
0 are vectors in the program

and that Zhl−1
0 and Zxl−1

0 are deterministic constants. Then, we have

hl0 = m−1/2Ŵ lxl−1
0 +m−1vl + ulm

−1Jxl−1
0

As for the case l = 2, we get that m−1/2Ŵ lxl−1
0 + m−1vl is a vector in the program with

Zm−1/2Ŵ lxl−1
0 +m−1vl = 0, and ulm

−1Jxl−1
0 = ψ(xl−1

0 ; θ) is a vector in the program with
ψ(z;α) = ulα (recall that ψ is taken coordinate-wise) depending only on the second variable
and θ := (1/m)

∑m
q=1 x

l−1
0,q is a valid scalar in the program by the Moment rule, which, by

the master theorem, converges almost surely towards
◦
θ = E[Zxl−1

0] = Zxl−1
0 since the latter

is a deterministic constant by the induction hypothesis. By NonLin hl0 is a vector in the

program and by ZNonLin Zhl
0 = ψ(Zxl−1

0 ;
◦
θ) = ulZ

xl−1
0 which is a deterministic constant.

The same claim holds for Zxl
0 = σ(ulZ

xl−1
0), which concludes the induction for the forward

pass. For the backward pass we get dx̃L0 = wL+1(0) = UL+1 + uL+11 so that by ZNonLin

Zdx̃L
0 = ZUL+1

+ uL+1 ∼ N (uL+1, 1) since uL+1 is a valid initial scalar in the program as it

converges almost surely to uL+1. We then have Zdh̃L
0 = Zdx̃L

0 σ′(ZhL
0). Note that both Zdx̃L

0

and Zdh̃L
0 are not deterministic constants because UL+1 is Gaussian with variance 1. We

then have:

dx̃L−1
0 = m−1/2(ŴL)

⊺
dh̃L0 + uLm

−1J⊺dh̃L0

As usual the first term m−1/2(ŴL)
⊺
dh̃L0 is a vector in the program by MatMul and NonLin

and Zm−1/2(ŴL)
⊺
dh̃L

0 = 0. For the second term, since J⊺ = J , m−1J⊺dh̃L0 is also a vector in

the program and Zm−1J⊺dh̃L
0 = uLE[Zdh̃L

0]. We thus get that dx̃L−1
0 is a vector in the program

with Zdx̃L−1
0 = uLE[Zdh̃L

0] which is a deterministic constant. Then, dh̃l−1
0 is also a vector in

the program and by ZNonLin Zdh̃L−1
0 = Zdx̃L−1

0 σ′(ZhL
0) is a deterministic constant. Repeating

88

the reasoning above at any layer l ∈ [2, L − 1], an easy induction (as in the forward pass)

shows that dx̃l0 and dh̃l0 are vectors in the program and that Zdx̃l
0 and Zdh̃l

0 are deterministic

constants. Note that Zdx̃1
0 = u2E[Zdh̃2

0] = u2Z
dh̃2

0 is also a deterministic constant but that

Zdh̃1
0 = Zdx̃1

0σ′(Zh1
0) is not because Zh1

0 ∼ N (0, ||ξ||2+1). Let l ∈ [3, L − 1], and let x be a
vector in the program. With the Naive-IP learning rates, we have

∆W l(1) = −ηχ0
dh̃l0(x

l−1
0)

⊺

m

Since l ∈ [3, L− 1], Zdh̃l
0 is a deterministic constant, and since l− 1 ∈ [2, L− 2], Zxl−1

0 is also
a deterministic constant. By ZNonLin and ZMomentwe get

Z∆W l(1)x = −η ◦
χ0E[Zxl−1

0 Zx]Zdh̃l
0

= −η ◦
χ0Z

dh̃l
0Zxl−1

0 E[Zx]

which concludes the proof. Note that χ0 is a valid initial scalar in the program because
f0(ξ0) = m−1(UL+1)

⊺
xL0 +uL+1m

−11⊺xL0 converges almost surely, by the master theorem, to

E[ZUL+1
ZxL

0] + uL+1E[ZxL
0] = uL+1Z

xL
0 since ZxL

0 is a deterministic constant and ZUL+1 ∼
N (0, 1) has mean zero. Since ∂2ℓ(y0, ·) is continuous by assumption, χ0 converges almost

surely towards
◦
χ0 := ∂2ℓ(y0, uL+1Z

xL
0).

Lemma K.4 (Induction step at time t ≥ 1). Let t ≥ 1 and assume claims (i), (ii) and (iii)
of Theorem K.2 hold at all time steps s ∈ [0, t− 1]. Then claims (i), (ii) and (iii) also hold
at time step t.

Proof. With the Naive-IP learning rate exponents, we get that for any t ≥ 1,

W 1(t) = U1 − η
t−1∑
s=0

χsdh̃
1
sξ

⊺
s ,

B1(t) = v1 − η
t−1∑
s=0

χsdh̃
1
s,

W l(t) = m−1(U l + ulJ)− η
t−1∑
s=0

χs
dh̃ls(x

l−1
s)

⊺

m
, l ∈ [2, L],

Bl(t) = m−1vl − ηm−1
t−1∑
s=0

χsdh̃
l
s, l ∈ [2, L],

WL+1(t) = m−1(UL+1 + uL+1)− η
t−1∑
s=0

χs
xLs
m
,

BL+1(t) = m−1vL+1 − ηm−1
t−1∑
s=0

χs.

By a simple induction, all the hls, x
l
s and dx̃ls, dh̃

l
s are part of and the scalars χs are valid

scalars in the program which have a constant almost sure limit, and by ZNonLin we get:

Zh1
t = ZU1ξ + Zv1 − η

t−1∑
s=0

◦
χs(ξ

⊺
s ξ + 1)Zdh̃1

s

89

and Zx1
t = σ(Zh1

t) is not a deterministic constant because ZU1ξ + Zv1 ∼ N (0, ||ξ||2+1). Let
l ∈ [2, L− 1]. We have

Zhl
t = 0× ZŴ lxl−1

t + 0× Zvl + ulE[Zxl−1
t]− η

t−1∑
s=0

◦
χsE[Zxl−1

s Zxl−1
t]Zdh̃l

s

= ulE[Zxl−1
t]− η

t−1∑
s=0

◦
χsE[Zxl−1

s Zxl−1
t]Zdh̃l

s ,

which is a deterministic constant with the assumption on the Zdh̃l
s since l ∈ [2, L − 1].

Note that if l ∈ [3, L − 1], we even have that the expectations simplify and we get Zhl
t =

(ul − η
∑t−1

s=0

◦
χsZ

xl−1
s Zdh̃l

s)Zxl−1
t . In any case, Zxl

t = σ(Zhl
t) is also a deterministic constant.

For the output of the network, we have

ft(ξ) =
(UL+1)

⊺
xLt

m
+ uL+1

1⊺xLt
m

+m−1(vL+1 − η
t−1∑
s=0

χs)− η
t−1∑
s=0

χs
(xLs)

⊺
xLt

m

so that even if the xLs are not deterministic, ft(ξ) still converges almost surely, by the master

theorem, to E[(ZUL+1
+uL+1)Z

xL
t]−η

∑t−1
s=0

◦
χsE[ZxL

s ZxL
t], and since ∂2ℓ(yt, ·) is continuous by

assumption, χt converges almost surely towards the constant ∂2ℓ(yt,E[(ZUL+1
+uL+1)Z

xL
t]−

η
∑t−1

s=0

◦
χsE[ZxL

s ZxL
t]). For the backward pass, we get:

Zdx̃L
t = ZwL+1(t) = ZUL+1

+ uL+1 − η
t−1∑
s=0

◦
χsZ

xL
s

and Zdh̃L
t = Zdx̃L

t σ′(ZhL
t). Let l ∈ [2, L− 1], we have

dx̃lt = (W l+1(t))
⊺
dh̃l+1

t

= m−1/2(Ŵ l+1)
⊺
dh̃l+1

t +m−1ul+1Jdh̃
l+1
t − η

t−1∑
s=0

χs
(dh̃l+1

s)
⊺
dh̃l+1

t

m
xls,

so that by ZNonLin we get

Zdx̃l
t = ul+1E[Zdh̃l+1

t]− η
t−1∑
s=0

◦
χsE[Zdh̃l+1

s Zdh̃l+1
t]Zxl

s ,

and since l ∈ [2, L − 1], Zxl
s is a deterministic constant and thus so is Zdx̃l

t . Then, Zdh̃l
t =

Zdx̃l
tσ′(Zhl

t) and since l ∈ [2, L−1], Zhl
t is a deterministic constant. Finally, let l ∈ [3, L−1],

and let x be a vector in the program. We have

(W l(t+ 1)−W l(0))x = −η
t∑

s=0

χs
(xl−1

s)
⊺
x

m
dh̃ls,

and by ZNonLin

Z(W l(t+1)−W l(0))x = −η
t∑

s=0

◦
χsE[Zxl−1

s Zx]Zdh̃l
s

=

(
−η

t∑
s=0

◦
χsZ

dh̃l
sZxl−1

s

)
E[Zx],

where the last equality stems from the fact that since l ∈ [3, L − 1], l − 1 ∈ [2, L − 2]

and Zxl−1
s is a deterministic constant for any s ∈ [0, t]. Since l ∈ [2, L − 1], Zdh̃l

s is also

a deterministic constant, so that −η
∑t

s=0

◦
χsZ

dh̃l
sZxl−1

s is a deterministic constant, which
concludes the proof.

90

K.2.2 Proof of Theorem K.2

Proof. The result simply comes by induction over t using Lemmas K.3 and K.4.

L The variables associated with the initial weights vanish in
IP-LLR

In this section we wish to study more precisely the evolution and the expression of the
variables Z in the dynamics of IP-LLR at any time step t. To this end, we will show that the

Zs of all the forward and backward variables in IP-LLR are functions only of the ẐŴ lx̃l−1
0

and Ẑ(Ŵ l)
⊺
dh̃l

0 , as well as the initial vectors U1ξ0, . . . , U
1ξt, v

1, UL+1. We will thus write

Zz = ψ
((
ẐŴ lx̃l−1

0

)
l
,
(
Ẑ(Ŵk)

⊺
dh̃k

0

)
k
,
(
U1ξs

)
s
, v1, UL+1

)
to generically denote that the variable Zz is a function only of the variables which appear

in the arguments: ẐŴ lx̃l−1
0 , Ẑ(Ŵk)

⊺
dh̃k

0 , U1ξs, v
1, and UL+1, (where multiple values of l, k

and s might actually appear in the argument). This function ψ (we will sometimes also
use ϕ) will of course depend on the z under consideration, and we might denote it by ψz

(or ϕz,) but most of the time we will omit this dependency and simply use the symbol ψ
for different variables to express that the variable Zz is a function of the arguments of ψ only.

We will see that the function ψ appearing will always be polynomially bounded by some
form of composition or product of polynomially bounded functions, which will allow us to
prove that the corresponding Zz is finite almost surely since its arguments, considered as a
vector, follow a Gaussian distribution with finite variance (and thus finite moments of any
order). Note that in the proofs, we will use extensively (without explicitly saying so) that if
ϕ and ψ are polynomially bounded then ϕ × ψ is also polynomially bounded, and if φ is a
polynomially bounded function of a single variable then φ ◦ψ is also polynomially bounded.
We introduce the following definition and lemma which we will use extensively in the proof
by induction:

Definition L.1 (Vector of initial vectors and first forward-backward). Let t ≥ 1. Then,
dropping the dependency on t, we define the random vector:

Z0 = Z0,t :=
(
ẐU1ξ0 , . . . , ẐU1ξt , Zv1 , ẐUL+1

,

ẐŴ 2x̃1
0 , . . . , ẐŴLx̃L−1

0 ,

Ẑ(Ŵ 2)
⊺
dh̃2

0 , . . . , Ẑ(ŴL)
⊺
dh̃L

0

)
Remark L.1.

1. Note that any function of Z0,s will also be a function of Z0,t for t ≥ s, which is also
why we suppress the dependency on t as we can always take the largest possible t when
we make a specific claim which involves Z0.

2. Also note that by the ZDot rule of the Tensor Program, for any vector z in the Tensor
Program such that Zz is a function only of Z0, then for any l ∈ [2, L]:

.
Z Ŵ lz = E

[
∂Zz

∂Ẑ(Ŵ l)
⊺
dh̃l0

]
Zdh̃l

0

.
Z (Ŵ l)

⊺
z = E

[
∂Zz

∂ẐŴ lx̃l−1
0

]
Z x̃l−1

0

91

Lemma L.1 (Distribution of Z0 and moments). One has

(i) Z0 ∼ N

0,

S 0 0
0 Df 0
0 0 Db

 with

S :=

Σ 0 0
0 1 0
0 0 1

 ∈ R(t+3)×(t+3), Σrs = ξ⊺r ξs,

Df :=

E[(Z
x̃1
0)2]

. . .

E[(Z x̃L−1
0)2]

 ∈ R(L−1)×(L−1),

Db :=

E[(Z
dh̃2

0)2]
. . .

E[(Zdh̃L
0)2]

 ∈ R(L−1)×(L−1).

(ii) |E[ψ(Z0)]|< ∞, and |ψ(Z0)|< ∞ almost surely for any polynomially bounded function
ψ : Rt+2L −→ R.

Remark L.2. Note that the lemma stays valid even if ψ does not depend on the whole list
of variables inside Z0 but only on a couple of them, which will be the case in the Tensor
Program. Point (ii) will be used repeatedly in different proofs to show that the expectations
appearing in the forward and backward passes are finite.

Proof. Claim (i) simply comes from the definition of the initial vectors U1ξ0, . . ., U
1ξt, U

L+1

and from the ZHat rule in a Tensor Program. Claim (ii) then follows because all entries in
the covariance matrix are finite by Lemma F.1, and since ψ is polynomially bounded and
the moments of a Gaussian with finite variance are finite, |E[ψ(Z0)]|≤ E[|ψ(Z0)|] < ∞ and
thus |ψ(Z0)|<∞ almost surely.

Note that by Lemmas F.2 and F.3, the first forward and backward passes of IP-LLR easily
express in function of the entries of Z0. Let us now take care of the forward and backward
passes at t = 1. As the dynamics evolve with time, the expression of the forward and
backward passes of IP-LLR in function of Z0 (or rather of some of the entries of Z0) get
more intricate. They are still easy to develop explicitly for t = 1 but we choose to simply
express what variables appear in the expression of the forward and backward passes instead
of giving the expression explicitly.

Lemma L.2 (Multiplications by initial weight matrices vanish with polynomially bounded
variables). Consider the IP-LLR parameterization and let z be a vector in the program such
that Zz = ψ(Z0) with ψ polynomially bounded. Then, one has that for any l ∈ [2, L]:

(i) if ∂Zz

∂Ẑ(Ŵ l)
⊺
dh̃l0

= ϕ(Z0) with ϕ polynomially bounded, then ZW l(0)z = 0.

(ii) if ∂Zz

∂ẐŴ lx̃l−1
0

= ϕ(Z0) with ϕ polynomially bounded, then Z(W l(0))
⊺
z = 0.

Proof. Let l ∈ [2, L]. We simply write

ZW l(0)z =
◦
ωlẐ

Ŵ lz +
◦
ωl

.
Z Ŵ lz

where ẐW l(0)z ∼ N (0,E[(Zz)2]) and the variance is finite by Lemma L.1 because (Zz)2 is

a polynomially bounded function of Z0 since Zz is. This shows that |ẐW l(0)z|< ∞ almost

92

surely and thus that
◦
ωlẐ

Ŵ lz = 0 since
◦
ωl = 0 in IPs. On the other hand,

.
Z Ŵ lz = E

[
∂Zz

∂Ẑ(Ŵ l)
⊺
dh̃l

0

]
Zdh̃l

0

and the expectation is finite by Lemma L.1 since ∂Zz/∂Ẑ(Ŵ l)
⊺

= ϕ(Z0) with ϕ polynomially
bounded, and

Zdh̃l
0 =

{
Ẑ(Ŵ l+1)

⊺
dh̃l+10σ′(ẐŴ lx̃l−1

0) if l ∈ [2, L− 1]

ẐUL+1
σ′(ẐŴ lx̃L−1

0) if l = L

In any case, Zdh̃l
0 is a polynomially bounded function of Z0 and is thus finite almost surely,

which entails
◦
ωlẐ

Ŵ lz = 0, and therefore ẐW l(0)z = 0 which gives (i).

The same reasoning with W l(0)
⊺
gives (ii) if ∂Zz/∂ẐŴ lx̃l−1

0 = ϕ(Z0) with ϕ polynomially
bounded.

L.0.1 The case t = 1

Lemma L.3 (Z0 in the forward pass of IP-LLR at t = 1). Consider the IP-LLR parameter-
ization with a positively p-homogeneous activation function, and p ≥ 2. Then, dropping the
dependency of the forward pass on ξ1, one has:

(i) Zh1
1 = ψ

(
ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)⊺dh̃2

0

)
(ii) Zhl

1 = ψ
(
ẐŴ lx̃l−1

0 , Ẑ(Ŵ l+1)⊺dh̃l+1
0

)
, l ∈ [2, L− 1]

(iii) ZhL
1 = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
and

(iv) ∂Zhl−1
1

Ẑ(Ŵ l)
⊺
dh̃l0

= ψ (Z0), l ∈ [2, L]

(v) ∂Zhl1

ẐŴ lx̃l−1
0

= ψ (Z0), l ∈ [2, L]

and all the different ψ that appear are polynomially bounded.

Remark L.3.

1. Recall that we simply use ψ or ϕ to mean that the variable is a function of the
arguments of ψ (or ϕ) only, and that the different ψ and ϕ which appear in the different
claims (i) to (v) are not actually the same.

2. For the partial derivatives we chose not to make a precise statement on which variables
exactly appear in the expression as this will not matter and would only over-complicate
things for close to none added-value.

3. Note that with the claims above, one can prove that
◦
ωlZ

Ŵ lxl−1
1 = 0 because both of

the terms Ẑ and
.
Z defining ZŴ lxl−1

1 are polynomially bounded functions of Gaussians
which has finite covariance matrices, and

◦
ωl = 0 in IPs.

93

Proof. Using Theorem G.7 with ξ = ξ1 and t = 1 we have claim (i) because, first Ẑdx̃1
0 =

Ẑ(Ŵ 2)
⊺
dh̃2

0 , and second σ′ is polynomially bounded (see Appendix E). Claim (ii) also stems

from Theorem G.7 since Ẑdx̃l
0 = Ẑ(Ŵ l+1)

⊺
dh̃l+1

0 , Ẑ h̃l
0 = ẐŴ lx̃l−1

0 , and σ′ is polynomially
bounded. Finally, claim (iii) also stems from Theorem G.7 since Ẑdx̃L

0 = ZUL+1
, Ẑ h̃L

0 =

ẐŴ lx̃L−1
0 , and σ′ is polynomially bounded.

From Theorem G.7, we get:

∂Zh1
1

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

= −η ◦
χ0(ξ

⊺
0ξ1)σ

′(ẐU1ξ0)

For l ∈ [3, L], from Theorem G.7, we get

∂Zhl−1
1

Z(Ŵ l)
⊺
dh̃l

0

= −η ◦
χ0E[Z x̃l−2

0 Z x̃l−2
1]σ′(ẐŴ lx̃l−1

0)

which immediately gives claim (iv) since σ′ is polynomially bounded and with claim (ii) and

Lemma L.1, we also have |E[Z x̃l−2
0 Z x̃l−2

1]|< ∞. Similarly, for l ∈ [2, L], from Theorem G.7,
we get

∂Zhl
1

∂ẐŴ lx̃l
0

= −η ◦
χ0E[Z x̃l−1

0 Z x̃l−1
1]Zdx̃l

0σ′′(ẐŴ lx̃l−1
0)

and Zdx̃l−1
0 = Ẑ(Ŵ l+1)

⊺
dh̃l+1

0 if l ∈ [2, L − 1], and Zdx̃l−1
0 = ẐUL+1

if l = L. Since the
expectation is finite by claim (ii) and Lemma L.1, and since σ′′ is polynomially bounded, we
get claim (v).

Lemma L.4 (Z0 in the backward pass of IP-LLR at t = 1). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p ≥ 2. Then, dropping
the dependency of the forward and backward passes on ξ1, one has:

(i) Zdx̃L
1 = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
,

Zdh̃L
1 = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
(ii) Zdx̃l−1

1 = ψ
(
ẐŴ l−1x̃l−2

)
,

Zdh̃l−1
1 = ψ

(
ẐŴ l−1x̃l−2

, Ẑ(Ŵ l)
⊺
dh̃l

0

)
, l ∈ [3, L]

(iii) Zdx̃1
1 = ψ

(
ẐU1ξ0

)
,

Zdh̃1
1 = ψ

(
ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)⊺dh̃2

0

)
and

(iv) ∂Zdh̃l1

∂ẐŴ lx̃l−1
0

= ψ(Z0), l ∈ [1, L]

(v) ∂Zdh̃l1

∂Ẑ(Ŵ l+1)
⊺
dh̃l+1

0

= ψ(Z0), l ∈ [1, L− 1]

and all the different ψ that appear are polynomially bounded.

94

Proof. For the backward pass, we have by definition of the tilde variables for t ≥ 1, dx̃L1 =
wL+1(1) = UL+1 − ηχ0x̃

L
1 by Lemma F.4.2, and thus

Zdx̃L
1 = ẐUL+1 − η ◦

χ0σ(Ẑ
Ŵ lx̃L−1

0)

Then,

Zdh̃L
1 = Zdx̃L

1 σ′(ZhL
1)

which gives claim (i) since σ and σ′ are polynomially bounded, and ZhL
1 = ψ(ẐUL+1

, ẐŴLx̃L−1
0)

and ψ is polynomially bounded by Lemma L.3.

For l = L− 1, we have

dx̃L−1
1 = (WL(1))

⊺
dh̃L1

= ωL(Ŵ
l)
⊺
dh̃L1 − ηχ0

(dh̃L0)
⊺
dh̃L1

m
x̃L−1
0

which gives

Zdx̃L−1
1 =

◦
ωLZ

(Ŵ l)
⊺
dh̃L

1 − η ◦
χ0E[Zdh̃L

0 Zdh̃L
1]Z x̃L−1

0

Now, by the previous expression of Zdh̃L
1 and by Lemma L.3, we get

∂Zdh̃L
1

∂Ŵ lx̃L−1
0

=− η ◦
χ0σ

′(ẐŴ lx̃L−1
0)σ′(ZhL

1) + Zdx̃L
1

∂ZhL
1

Ŵ lx̃L−1
0

σ′′(ZhL
1)

and by claim (i) and Lemma L.3 we get

∂Zdh̃L
1

∂Ŵ lx̃L−1
0

= ψ(Z0)

with ψ polynomially bounded since σ′ and σ′′ are polynomially bounded. Therefore, by

Lemma L.2, we get
◦
ωLZ

(Ŵ l)
⊺
dh̃L

1 = 0.

We thus simply get

Zdx̃L−1
1 = −η ◦

χ0E[Zdh̃L
0 Zdh̃L

1]Z x̃L−1
0

Zdh̃L
0 and Zdh̃L

1 are polynomially bounded functions of Z0 and thus so is Zdh̃L
0 Zdh̃L

1 , and by

Lemma L.1, |E[Zdh̃L
0 Zdh̃L

1]|< ∞. Since Zdx̃L−1
1 = ψ(Z x̃L−1

0) with ψ polynomially bounded,

we thus get Zdx̃L−1
1 = ψ(ẐŴ l−1x̃L−2

0) and ψ is polynomially bounded (indeed: ψ(z) =

−η ◦
χ0E[Zdh̃L

0 Zdh̃L
1]σ(z)).

We have

Zdh̃L−1
1 = Zdx̃L−1

1 σ′(ZhL−1
1)

and since by Lemma L.3, ZhL−1
1 = ψ(ẐŴ l−1x̃L−2

0 , Ẑ(Ŵ l)
⊺
dh̃L

0) with ψ polynomially bounded,

by the previous result for Zdx̃L−1
1 and since σ′ is polynomially bounded we get

Zdh̃L−1
1 = ψ(ẐŴ l−1x̃L−2

0 , Ẑ(Ŵ l)
⊺
dh̃L

0)

95

with ψ polynomially bounded.

We have

∂Zdh̃L−1
1

∂ẐŴ l−1x̃L−2
0

=
∂Zdx̃L−1

1

∂ẐŴ l−1x̃L−2
0

σ′(ZhL−1
1) + Zdx̃L−1

1
∂ZhL−1

1

∂ẐŴ l−1x̃L−2
0

σ′′(ZhL−1
1)

=− η ◦
χ0E[Zdh̃L

0 Zdh̃L
1]σ′(ẐŴ l−1x̃L−2

0)σ′(ZhL−1
1) +

Zdx̃L−1
1

∂ZhL−1
1

∂ẐŴ l−1x̃L−2
0

σ′′(ZhL−1
1)

By Lemma L.3 and since σ′ and σ′′ are polynomially bounded, and we have already proven

that Zdx̃L−1
1 = ψ(Z0) with ψ polynomially bounded, as well as |E[Zdh̃L

0 Zdh̃L
1]|<∞, we get

∂Zdh̃L−1
1

∂ẐŴ l−1x̃L−2
0

= ψ(Z0)

with ψ polynomially bounded.

Similarly, we have

∂Zdh̃L−1
1

∂Ẑ(ŴL)
⊺
dh̃L

0

=
∂Zdx̃L−1

1

∂Z(ŴL)
⊺
dh̃L

0

σ′(ZhL−1
1) + Zdx̃L−1

1
∂ZhL−1

1

∂Z(ŴL)
⊺
dh̃L

0

σ′′(ZhL−1
1)

=Zdx̃L−1
1

∂ZhL−1
1

∂Z(ŴL)
⊺
dh̃L

0

σ′′(ZhL−1
1)

Now, we have shown above that Zdx̃L−1
1 = ψ(Z0) with ψ polynomially bounded, and by

Lemma L.3 we have that both ∂ZhL−1
1 /∂Z(ŴL)

⊺
dh̃L

0 and ZhL−1
1 are polynomially bounded

functions of Z0, which gives

∂Zdh̃L−1
1

∂Ẑ(ŴL)
⊺
dh̃L

0

= ψ(Z0)

with ψ polynomially bounded.

Let l ∈ [2, L− 1] and assume claims (ii), (iv) and (v) are true for layer l. We have

Zdx̃l−1
1 =

◦
ωlZ

(Ŵ l)
⊺
dh̃l

1 − η ◦
χ0E[Zdh̃l

0Zdh̃l
1]Z x̃l−1

0

Since by the induction hypothesis ∂Zdh̃l
1/∂ẐŴ lx̃l−1

0 = ψ(Z0) with ψ polynomially bounded,

and Zdh̃l
1 is a polynomially bounded function of Z0, by Lemma L.2 we get

◦
ωlZ

(Ŵ l)
⊺
dh̃l

1 = 0.
Then, we simply get

Zdx̃l−1
1 = −η ◦

χ0E[Zdh̃l
0Zdh̃l

1]Z x̃l−1
0

Again here, since both Zdh̃l
0 and Zdh̃l

1 are polynomially bounded functions of Z0, then so

is Zdh̃l
0Zdh̃l

1 , which shows by Lemma L.1 that |E[Zdh̃l
0Zdh̃l

1]|< ∞. If l ≥ 3, since Z x̃l−1
0 =

σ(ẐŴ l−1x̃l−2
0) and σ is polynomially bounded, we get that

Zdx̃l−1
1 = ψ(ẐŴ l−1x̃l−2

0)

96

If l = 2, since Z x̃1
0 = σ(ZU1ξ0) and σ is polynomially bounded we get:

Zdx̃l−1
1 = ψ(ZU1ξ0)

with ψ polynomially bounded.

We then have

Zdh̃l−1
1 = Zdx̃l−1

1 σ′(Zhl−1
1)

and thus

∂Zdh̃l−1
1

∂ẐŴ l−1x̃l−2
0

=
∂Zdx̃l−1

1

∂ẐŴ l−1(0)x̃l−2
0

σ′(Zhl−1
1) + Zdx̃l−1

1
∂Zhl−1

1

∂ẐŴ l−1x̃l−2
0

σ′′(Zhl−1
1)

=− η ◦
χ0E[Zdh̃l

0Zdh̃l
1]σ′(ẐŴ l−1x̃l−2

0)σ′(Zhl−1
1) +

Zdx̃l−1
1

∂Zhl−1
1

∂ẐŴ l−1x̃l−2
0

σ′′(Zhl−1
1)

By Lemma L.3 as well as the previous result on Zdx̃l−1
1 , and since |E[Zdh̃l

0Zdh̃l
1]|<∞, and σ′

and σ′′ are polynomially bounded, we get that

∂Zdh̃l−1
1

∂ẐŴ l−1x̃l−2
0

= ψ(Z0)

with ψ polynomially bounded.

Similarly

∂Zdh̃l−1
1

∂Ẑ(ŴL)
⊺
dh̃l

0

=
∂Zdx̃l−1

1

∂Ẑ(Ŵ l+1)
⊺
dh̃l

0

σ′(Zhl−1
1) + Zdx̃l−1

1
∂Zhl−1

1

∂Ẑ(ŴL)
⊺
dh̃l

0

σ′′(Zhl−1
1)

=Zdx̃l−1
1

∂Zhl−1
1

∂Ẑ(ŴL)
⊺
dh̃l

0

σ′′(Zhl−1
1)

and the three quantities in the product are polynomially bounded functions of Z0 (shown
above for the first term and by Lemma L.3 for the two other terms). We thus get

∂Zdh̃l−1
1

∂Ẑ(ŴL)
⊺
dh̃l

0

= ψ(Z0)

with ψ polynomially bounded. This concludes the induction and thus proves claims (ii),
(iii), (iv) and (v) by induction.

Corollary L.4.1 (Multiplications by the initial weight matrices vanish in IP-LLR at t = 1).
Consider the IP-LLR parameterization with a positively p-homogeneous activation function,
and p ≥ 2. Then for any l ∈ [2, L], one has:{

ZW l(0)xl−1
1 =

◦
ωlZ

Ŵ lxl−1
1 = 0

Z(W l(0))
⊺
dh̃l

1 =
◦
ωlZ

(Ŵ l)
⊺
dh̃l

1 = 0

Proof. Those results are actually hidden in the proof of Lemma L.4 and come from Lemma L.2.

97

L.0.2 The case t = 2

Lemma L.5 (Z0 in the forward pass of IP-LLR at t = 2). Consider the IP-LLR parameter-
ization with a positively p-homogeneous activation function, and p ≥ 2. Then, dropping the
dependency of the forward pass on ξ2, one has:

(i) Zh1
2 = ψ

(
ẐU1ξ0 , ẐU1ξ1 , ẐU1ξ2 , Ẑ(Ŵ 2)⊺dh̃2

0

)
(ii) Zhl

2 = ψ
(
ẐŴ lx̃l−1

0 , Ẑ(Ŵ l+1)⊺dh̃l+1
0

)
, l ∈ [2, L− 1]

(iii) ZhL
2 = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
and

(iv) ∂Zhl−1
2

Ẑ(Ŵ l)
⊺
dh̃l0

= ψ (Z0), l ∈ [2, L]

(v) ∂Zhl2

ẐŴ lx̃l−1
0

= ψ (Z0), l ∈ [2, L]

and

(vi) ZW l(0)xl−1
2 = 0, l ∈ [2, L]

and all the different ψ that appear are polynomially bounded.

Proof. We have

h12 = U1ξ2 − ηχ0(ξ
⊺
0ξ2)dh̃

1
0 − ηχ1(ξ

⊺
1ξ2)dh̃

1
1

which gives

Zh1
2 = ZU1ξ2 − η ◦

χ0(ξ
⊺
0ξ2)Z

dh̃1
0 − η ◦

χ1(ξ
⊺
1ξ2)Z

dh̃1
1

By Lemma L.4 Zdh̃1
1 = ψ(ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)⊺dh̃2

0) and we also have Zdh̃1
0 = ψ(ZU1ξ0 , Ẑ(Ŵ 2)⊺dh̃2

0)
where the different ψ are polynomially bounded, which gives claim (i).

We have

∂Zh1
2

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

= −η ◦
χ0(ξ

⊺
0ξ2)

∂Zdh̃1
0

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

− η ◦
χ1(ξ

⊺
1ξ2)

∂Zdh̃1
1

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

with

∂Zdh̃1
0

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

= σ′(ZU1ξ0)

which is a polynomially bounded function of Z0 and so is ∂Zdh̃1
1/∂Ẑ(Ŵ 2)

⊺
dh̃2

0 by Lemma L.4.
We thus get claim (iv) for l = 2.

We have

Zh2
2 =

◦
ω2Z

Ŵ 2x1
2 − η ◦

χ0E[Z x̃1
0Zx1

2]Zdh̃2
0 − η ◦

χ1E[Zx1
1Zx1

2]Zdh̃2
1

98

Now Zx1
2 = σ(Zh1

2) is a polynomially bounded function of Z0 because Zh1
2 is and σ is

polynomially bounded. Secondly, we have

∂Zx1
2

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

=
∂Zh1

2

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

σ′(Zh1
2)

which is a polynomially bounded function of Z0 by the previous results. By Lemma L.2 we

get that
◦
ω2Z

Ŵ 2x1
2 = 0 which gives claim (vi) for l = 2. In addition, this yields

Zh2
2 = −η ◦

χ0E[Z x̃1
0Zx1

2]Zdh̃2
0 − η ◦

χ1E[Zx1
1Zx1

2]Zdh̃2
1

which gives claim (ii) for l = 2 by the results for the backward passes at time t = 0
and t = 1 and because the expectations are finite since the integrands are polynomially
bounded functions of Z0, as they are products of such variables by the induction hypothesis.
Additionally, we have

∂Zh2
2

∂Ẑ(Ŵ 3(0))
⊺
dh̃3

0

= −η ◦
χ0E[Z x̃1

0Zx1
2]

∂Zdh̃2
0

∂Ẑ(Ŵ 3(0))
⊺
dh̃3

0

− η ◦
χ1E[Zx1

1Zx1
2]

∂Zdh̃2
1

∂Ẑ(Ŵ 3(0))
⊺
dh̃3

0

and we have

∂Zdh̃2
0

∂Ẑ(Ŵ 3(0))
⊺
dh̃3

0

= σ′(ẐŴ 2x̃1
0)

and ∂Zdh̃2
1/∂Ẑ(Ŵ 3(0))

⊺
dh̃3

0 is a polynomially bounded function of Z0 by Lemma L.4. Once
again, since the expectations are finite, we thus get that

∂Zh2
2

∂Ẑ(Ŵ 3(0))
⊺
dh̃3

0

= ψ(Z0)

with ψ polynomially bounded. A similar reasoning would prove that

∂Zh2
2

∂ẐŴ 3(0)x̃2
0

= ψ(Z0)

with ψ polynomially bounded because

∂Zdh̃1
0

∂ẐŴ 3(0)x̃2
0

= Ẑ(Ŵ 3(0))
⊺
dh̃3

0σ′′(ẐŴ 2x̃1
0)

and ∂Zdh̃1
1/∂ẐŴ 3(0)x̃2

0 = ψ(Z0) with ψ polynomially bounded by Lemma L.4.

Let l ∈ [2, L− 1] and assume claims (ii), (iv), (v), and (vi) for layer l. Then, we have:

Zhl+1
2 =

◦
ωl+1Z

Ŵ l+1xl
2 − η ◦

χ0E[Z x̃l
0Zxl

2]Zdh̃l+1
0 − η ◦

χ1E[Zxl
1Zxl

2]Zdh̃l+1
1

Now Zxl
2 = σ(Zhl

2) is a polynomially bounded function of Z0 because Z
hl
2 is by the induction

hypothesis and σ is polynomially bounded. Secondly, we have

∂Zxl
2

∂Ẑ(Ŵ l+1)
⊺
dh̃l+1

0

=
∂Zhl

2

∂Ẑ(Ŵ l+1)
⊺
dh̃l+1

0

σ′(Zhl
2)

99

which is a polynomially bounded function of Z0 by the induction hypothesis. By Lemma L.2

we get that
◦

ωl+1Z
Ŵ l+1xl

2 = 0 which gives claim (vi) for layer l + 1. In addition, this yields

Zhl+1
2 = −η ◦

χ0E[Z x̃l
0Zxl

2]Zdh̃l+1
0 − η ◦

χ1E[Zx1
1Zx1

2]Zdh̃l+1
1

which gives claim (ii) for layer l+1 by the results for the backward passes at time t = 0 and
t = 1 and because the expectations are finite since the integrands are polynomially bounded
functions of Z0, as they are products of such variables. The only thing that one has to be care-

ful with is that if l+1 = L, then Z h̃l+1
0 = ψ(ZUL+1

, ẐŴ lx̃L−1
0) and Z h̃l+1

1 = ψ(ZUL+1
, ẐŴ lx̃L−1

0)
with both ψ polynomially bounded, which gives claim (iii). Otherwise, if l + 1 ≤ L − 1,

Z h̃l+1
0 = ψ(ẐŴ l+1x̃l

0 , Ẑ(Ŵ l+2(0))
⊺
dh̃l+2)

and Z h̃l+1
1 = ψ(ẐŴ l+1x̃l

0 , Ẑ(Ŵ l+2(0))
⊺
dh̃l+2)

with both ψ
polynomially bounded, which gives claim (ii) for layer l + 1.

Now, if l + 1 ≤ L− 1,

∂Zhl+1
2

∂Ẑ(Ŵ l+2(0))
⊺
dh̃l+2

0

= −η ◦
χ0E[Z x̃l

0Zxl
2]

∂Zdh̃l+1
0

∂Ẑ(Ŵ l+2(0))
⊺
dh̃l+2

0

− η ◦
χ1E[Zxl

1Zxl
2]

∂Zdh̃l+1
1

∂Ẑ(Ŵ l+2(0))
⊺
dh̃l+2

0

and we have

∂Zdh̃l+1
0

∂Ẑ(Ŵ l+2(0))
⊺
dh̃l+2

0

= σ′(ẐŴ l+1x̃l
0)

and ∂Zdh̃l+1
1 /∂Ẑ(Ŵ l+2(0))

⊺
dh̃l+2

0 is a polynomially bounded function of Z0 by Lemma L.4. Once
again, since the expectations are finite, we thus get that

∂Zhl+1
2

∂Ẑ(Ŵ l+2(0))
⊺
dh̃l+2

0

= ψ(Z0)

with ψ polynomially bounded, which proves claim (iv) for layer l + 1. A similar reasoning
would prove that

∂Zhl+1
2

∂ẐŴ l+1x̃l
0

= ψ(Z0)

with ψ polynomially bounded because

∂Zdh̃l+1
0

∂ẐŴ l+2(0)x̃l
0

=

{
Ẑ(Ŵ l+2(0))

⊺
dh̃l+2

0 σ′′(ẐŴ l+1x̃l
0) if l + 1 ≤ L− 1

ẐUL+1
σ′′(ẐŴLx̃L−1

0) if l + 1 = L

and ∂Zdh̃l+1
1 /∂ẐŴ l+1x̃l

0 = ψ(Z0) with ψ polynomially bounded by Lemma L.4. This proves
claim (v) and thus concludes the induction and with it the proof.

Lemma L.6 (Z0 in the backward pass of IP-LLR at t = 2). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p ≥ 2. Then, dropping
the dependency of the forward and backward passes on ξ2, one has:

(i) Zdx̃L
2 = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
,

Zdh̃L
2 = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
(ii) Zdx̃l−1

2 = ψ
(
ẐŴ l−1x̃l−2

, Ẑ(Ŵ l)
⊺
dh̃l

0

)
,

Zdh̃l−1
2 = ψ

(
ẐŴ l−1x̃l−2

, Ẑ(Ŵ l)
⊺
dh̃l

0

)
, l ∈ [3, L]

100

(iii) Zdx̃1
2 = ψ

(
ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)⊺dh̃2

0

)
,

Zdh̃1
2 = ψ

(
ẐU1ξ0 , ẐU1ξ1 , ẐU1ξ2 , Ẑ(Ŵ 2)⊺dh̃2

0

)
and

(iv) ∂Zdh̃l2

∂ẐŴ lx̃l−1
0

= ψ(Z0), l ∈ [2, L]

(v) ∂Zdh̃l−1
2

∂Ẑ(ŴL)
⊺
dh̃l0

= ψ(Z0), l ∈ [2, L]

and

(vi) Z(W l(0))
⊺
dh̃l

2 = 0, l ∈ [2, L]

and all the different ψ that appear are polynomially bounded.

Proof. We have:

Zdx̃L
2 = ẐUL+1 − η ◦

χ0Z
x̃L
0 − η ◦

χ1Z
xL
1

where Z x̃L
0 = σ(ẐŴ lx̃L−1

0) and ZxL
1 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0) with ψ polynomially bounded by

Lemma L.3. Combining all this gives

Zdx̃L
2 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0)

with ψ polynomially bounded since σ is also polynomially bounded. Then

Zdh̃L
2 = Zdx̃L

2 σ′(ZhL
2)

and since ZhL
2 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0) with ψ polynomially bounded by Lemma L.5, we get

Zdh̃L
2 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0)

with ψ polynomially bounded since σ′ is also polynomially bounded. This thus proves claim
(i). Now, we have

∂Zdh̃L
2

∂ẐŴ lx̃L−1
0

=
∂Zdx̃L

2

∂ẐŴ lx̃L−1
0

σ′(ZhL
2) + Zdx̃L

2
∂ZhL

2

∂ẐŴ lx̃L−1
0

σ′′(ZhL
2)

where ZhL
2 , ∂ZhL

2 /∂ẐŴ lx̃L−1
0 , and Zdx̃L

2 are polynomially bounded functions of Z0 by the
previous result and by Lemma L.5. We have

∂Zdx̃L
2

∂ẐŴ lx̃L−1
0

=− η ◦
χ0σ

′(ẐŴ lx̃L−1
0)− η ◦

χ1

∂ZhL
1

∂ẐŴ lx̃L−1
0

σ′(ZhL
1)

which is a polynomially bounded function of Z0 since σ′ is polynomially bounded and by
Lemma L.3. We thus get

∂Zdh̃L
2

∂ẐŴ lx̃L−1
0

= ψ(Z0)

with ψ polynomially bounded since σ′ and σ′′ are polynomially bounded. This proves (iv)
for l = L.

101

We have:

Zdx̃L−1
2 =

◦
ωLẐ

(Ŵ l)
⊺
dh̃L

2 − η ◦
χ0E[Zdh̃L

0 Zdh̃L
2]Z x̃L−1

0 − η ◦
χ1E[Zdh̃L

1 Zdh̃L
2]ZxL−1

1

From the previous step we have that both Zdh̃L
2 and ∂Zdh̃L

2 /∂ẐŴ lx̃L−1
0 are polynomially

bounded functions of Z0. By Lemma L.2, this first shows that
◦
ωLẐ

(Ŵ l)
⊺
dh̃L

2 = 0, and thus
gives (vi) for l = L, leading to:

Zdx̃L−1
2 = −η ◦

χ0E[Zdh̃L
0 Zdh̃L

2]Z x̃L−1
0 − η ◦

χ1E[Zdh̃L
1 Zdh̃L

2]ZxL−1
1

Now Z x̃L−1
0 = σ(ẐŴ l−1x̃L−2

0) and by Lemma L.3, we also have that ZxL−1
1 = ψ(ẐŴ l−1x̃L−2

0 , Ẑ(ŴL)
⊺
dh̃L

0)
with ψ polynomially bounded. As always the expectations are finite by Lemma L.1 because
the integrands are polynomially bounded functions of Z0 as products of such variables. Since
σ is also polynomially bounded, this gives

Zdx̃L−1
2 = ψ(ẐŴ l−1x̃L−1

0 , Ẑ(ŴL)
⊺
dh̃L

0)

Then, we have

Zdh̃L−1
2 = Zdx̃L−1

2 σ′(ZhL−1
2)

and since ZhL−1
2 = ψ(ẐŴ l−1x̃L−1

0 , Ẑ(ŴL)
⊺
dh̃L

0) with ψ polynomially bounded by Lemma L.5,
we get

Zdh̃L−1
2 = ψ(ẐŴ l−1x̃L−1

0 , Ẑ(ŴL)
⊺
dh̃L

0)

with ψ polynomially bounded since σ′ is also polynomially bounded. This thus proves claim

(ii) for l = L− 1. Now, let Z ∈ {ẐŴ l−1x̃L−1
0 , Ẑ(ŴL)

⊺
dh̃L

0 }. We have

∂Zdh̃L−1
2

∂Z
=
∂Zdx̃L−1

2

∂Z
σ′(ZhL−1

2) + Zdx̃L−1
2

∂ZhL−1
2

∂Z
σ′′(ZhL−1

2)

where ZhL−1
2 , ∂ZhL−1

2 /∂Z, and Zdx̃L−1
2 are polynomially bounded functions of Z0 by the

previous result and by Lemma L.5. We have

∂Zdx̃L−1
2

∂Z
=− η ◦

χ0E[Zdh̃L
0 Zdh̃L

2]
∂Z h̃L−1

0

∂Z
σ′(Z h̃L−1

0)− η ◦
χ1E[Zdh̃L

1 Zdh̃L
2]
∂ZhL−1

1

∂Z
σ′(ZhL−1

1)

which is a polynomially bounded function of Z0 since σ′ is polynomially bounded and by
Lemma L.3.

For both possible values of Z, the expression of ∂Z h̃L−1
0 /∂Z is easy to obtain and is a

polynomially bounded function of Z0 (this has actually already been shown for the proofs

at time t = 1), and ZhL−1
1 /∂Z = ψ(Z0) with ψ polynomially bounded by Lemma L.3. Since

the expectations are finite and σ′ is polynomially bounded, we get

∂Zdx̃L−1
2

∂Z
= ψ(Z0)

with ψ polynomially bounded and thus

∂Zdh̃L−1
2

∂Z
= ψ(Z0)

102

with ψ polynomially bounded. This proves (iv) and (v) for l = L− 1.

Let l ∈ [2, L − 1], and assume claims (ii), (iv), (v), are true at layer l and claim (vi) is
true at layer l + 1. We have:

Zdx̃l−1
2 =

◦
ωlẐ

(Ŵ l)
⊺
dh̃l

2 − η ◦
χ0E[Zdh̃l

0Zdh̃l
2]Z x̃l−1

0 − η ◦
χ1E[Zdh̃l

1Zdh̃l
2]Zxl−1

1

From the induction hypothesis we have that both Zdh̃l
2 and ∂Zdh̃l

2/∂ẐŴ lx̃l−1
0 are polynomially

bounded functions of Z0. By Lemma L.2, this first shows that
◦
ωlẐ

(Ŵ l)
⊺
dh̃l

2 = 0, and thus
gives (vi) for layer l, leading to:

Zdx̃l−1
2 = −η ◦

χ0E[Zdh̃l
0Zdh̃l

2]Z x̃l−1
0 − η ◦

χ1E[Zdh̃l
1Zdh̃l

2]Zxl−1
1

Now, if l − 1 ≥ 2, Z x̃l−1
0 = σ(ẐŴ l−1x̃l−2

0) and by Lemma L.3, we also have that Zxl−1
1 =

ψ(ẐŴ l−1x̃l−2
0 , Ẑ(ŴL)

⊺
dh̃l

0) with ψ polynomially bounded. On the other hand, if l − 1 = 1,

we have Z x̃l−1
0 = σ(ẐU1ξ0) and we also have that Zxl−1

1 = ψ(ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)
⊺
dh̃2

0) by
Lemma L.3. As always the expectations are finite by Lemma L.1 because the integrands
are polynomially bounded functions of Z0 as products of such variables. Since σ is also
polynomially bounded, this gives

Zdx̃l−1
2 =

{
ψ(ẐŴ l−1x̃l−2

0 , Ẑ(ŴL)
⊺
dh̃l

0) if l − 1 ≥ 2

ψ(ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)
⊺
dh̃2

0) if l − 1 = 1

Since Zdh̃l−1
2 = Zdx̃l−1

2 σ′(Zhl−1
2), by Lemma L.3 we get

Zdh̃l−1
2 =

{
ψ(ẐŴ l−1x̃l−2

0 , Ẑ(ŴL)
⊺
dh̃l

0) if l − 1 ≥ 2

ψ(ẐU1ξ0 , ẐU1ξ1 , ẐU1ξ2 , Ẑ(Ŵ 2)
⊺
dh̃2

0) if l − 1 = 1

This gives claim (ii) for layer l − 1 and claim (iii) for the case when l − 1 = 1. Now, let

Z ∈ {ẐŴ l−1x̃l−2
0 , Ẑ(ŴL)

⊺
dh̃l

0}. We have

∂Zdh̃l−1
2

∂Z
=
∂Zdx̃l−1

2

∂Z
σ′(Zhl−1

2) + Zdx̃l−1
2
∂Zhl−1

2

∂Z
σ′′(Zhl−1

2)

where Zhl−1
2 and Zdx̃l−1

2 are polynomially bounded functions of Z0 by the previous result and
by Lemma L.5. Also by Lemma L.5, we have

∂Zhl−1
2

∂Z
=

{
0 if l − 1 = 1 and Z = ẐŴ 2x̃1

0

ψ(Z0) otherwise

with ψ polynomially bounded. In any case, ∂Zhl−1
2 /∂Z is a polynomially bounded function

of Z0. On the other hand, we have

∂Zdx̃l−1
2

∂Z
=− η ◦

χ0E[Zdh̃l
0Zdh̃l

2]
∂Z h̃l−1

0

∂Z
σ′(Z h̃l−1

0)− η ◦
χ1E[Zdh̃l

1Zdh̃l
2]
∂Zhl−1

1

∂Z
σ′(Zhl−1

1)

For both possible values of Z, ∂Z h̃l−1
0 /∂Z has an easy expression and is a polynomially

bounded function of Z0 (essentially because σ and its derivatives are polynomially bounded).

On the other hand, ∂Z h̃l−1
1 /∂Z is a polynomially bounded function of Z0 by Lemma L.4. σ′ is

polynomially bounded, and the expectations are finite by Lemma L.1 since the integrands are

103

polynomially bounded functions of Z0 as they are products of such functions by Lemma L.4
and by the induction hypothesis. We thus get that

∂Zdx̃l−1
2

∂Z
= ψ(Z0)

with ψ polynomially bounded. We thus have that:

∂Zdh̃l−1
2

∂Z
= ψ(Z0)

with ψ polynomially bounded, which proves claims (iv) and (v) at layer l − 1. This thus
concludes the induction, and with it the proof.

L.0.3 The case t ≥ 2

We have now treated the base case t = 2 and are thus equipped to do the induction for t ≥ 2.
To make things easier we first introduce some equations. Let t ≥ 2, we define the following
assertions, where the different ψ appearing are assumed to be polynomially bounded:
Forward pass at time t:

(i) Zh1
t = ψ

(
ẐU1ξ0 , . . . , ẐU1ξt , Ẑ(Ŵ 2)⊺dh̃2

0

)
(L.1)

For l ∈ [2, L],

(i) Zhl
t = ψ

(
ẐŴ lx̃l−1

0 , Ẑ(Ŵ l+1)⊺dh̃l+1
0

)
(L.2)

(iii) ZhL
t = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
(L.3)

For l ∈ [2, L],

(iv)
∂Zhl−1

t

Ẑ(Ŵ l)
⊺
dh̃l

0

= ψ (Z0) (L.4)

(v)
∂Zhl

t

ẐŴ lx̃l−1
0

= ψ (Z0) (L.5)

(vi) ZW l(0)xl−1
t = 0 (L.6)

Backward pass at time t:

(i1) Zdx̃L
t = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
(L.7)

(i2) Zdh̃L
t = ψ

(
ẐUL+1

, ẐŴLx̃L−1
0

)
(L.8)

For l ∈ [3, L],

(ii1) Zdx̃l−1
t = ψ

(
ẐŴ l−1x̃l−2

, Ẑ(Ŵ l)
⊺
dh̃l

0

)
(L.9)

(ii2) Zdh̃l−1
t = ψ

(
ẐŴ l−1x̃l−2

, Ẑ(Ŵ l)
⊺
dh̃l

0

)
(L.10)

104

(iii1) Zdx̃1
t = ψ

(
ẐU1ξ0 , . . . , ẐU1ξt−1 , Ẑ(Ŵ 2)⊺dh̃2

0

)
(L.11)

(iii2) Zdh̃1
t = ψ

(
ẐU1ξ0 , . . . , ẐU1ξt , Ẑ(Ŵ 2)⊺dh̃2

0

)
(L.12)

For l ∈ [2, L],

(iv)
∂Zdh̃l

t

∂ẐŴ lx̃l−1
0

= ψ(Z0) (L.13)

(v)
∂Zdh̃l−1

t

∂Ẑ(ŴL)
⊺
dh̃l

0

= ψ(Z0) (L.14)

(vi) Z(W l(0))
⊺
dh̃l

t = 0 (L.15)

Note that we have proved in Appendix L.0.2 that all the assertions above hold for t = 2.
Our goal is now to show by induction that they hold for any t ≥ 2. For this we prove
the following two lemmas. The proofs will essentially follow exactly the same pattern as
for t = 2, the only difference is that the formulas will involve more terms, but since any
finite sum of polynomially bounded functions is polynomially bounded, we will get the same
results. Before proving the lemmas, we introduce the following quantities for 0 ≤ s < t:
For l ∈ [2, L]

γfs,t,l :=

{
E[Z x̃l−1

0 Zxl−1
t] if s = 0

E[Zxl−1
s Zxl−1

t] otherwise
(L.16)

For l ∈ [1, L− 1]

γbs,t,l := E[Zdh̃l+1
s Zdh̃l+1

t] (L.17)

γfs,t,l (resp. γbs,t,l) will appear when expressing the variables of the l-th layer at time t in
the forward (resp. backward) pass. We will show in the proofs that as for t = 1 and t = 2,
those expectations are finite by Lemma L.1 because the integrands are polynomially bounded
functions of Z0 as they are products of such variables.

Lemma L.7 (Induction step in IP-LLR, forward pass). Consider the IP-LLR parameteriza-
tion with a positively p-homogeneous activation function, and p ≥ 2. Let t ≥ 2, and assume
that all of the assertions of Equation (L.1) up until Equation (L.15) hold for every time
step s ∈ [2, t]. Then, the assertions of the forward pass, i.e., from Equation (L.1) up until
Equation (L.6), hold at time t+ 1.

Proof. We follow the proof of Lemma L.5. By Theorem G.7, we have

Zh1
t+1 = ZU1ξt+1 − η

t∑
s=0

◦
χs(ξ

⊺
s ξt+1)Z

dh̃1
s

By Lemma L.4 Zdh̃1
1 = ψ(ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)⊺dh̃2

0) and and by assumption we also have

Zdh̃1
s = ψ(ZU1ξ0 , . . . , ZU1ξs , Ẑ(Ŵ 2)⊺dh̃2

0) where the different ψ are polynomially bounded,
which gives claim (i) at time t+ 1.

105

We have

∂Zh1
t+1

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

= −η
t∑

s=0

◦
χs(ξ

⊺
s ξt+1)

∂Zdh̃1
s

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

with

∂Zdh̃1
0

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

= σ′(ZU1ξ0)

which is a polynomially bounded function of Z0 and so is ∂Zdh̃1
1/∂Ẑ(Ŵ 2)

⊺
dh̃2

0 by Lemma L.4.

In addition, by assumption, for s ∈ [2, t], ∂Zdh̃1
s/∂Ẑ(Ŵ 2)

⊺
dh̃2

0 = ψ(Z0) with ψ polynomially
bounded. We thus get claim (iv) for l = 2 at time t+ 1.

We have by Theorem G.7

Zh2
t+1 =

◦
ω2Z

Ŵ 2x1
t+1 − η

t∑
s=0

◦
χsγ

f
s,t+1,2Z

dh̃2
s

Now Zx1
t+1 = σ(Z

h1
t+1) is a polynomially bounded function of Z0 because Zh1

t+1 is and σ is
polynomially bounded. Secondly, we have

∂Zx1
t+1

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

=
∂Zh1

t+1

∂Ẑ(Ŵ 2)
⊺
dh̃2

0

σ′(Z
h1
t+1)

which is a polynomially bounded function of Z0 by the previous results and because σ′ is

polynomially bounded. By Lemma L.2 we get that
◦
ω2Z

Ŵ 2x1
t+1 = 0 which gives claim (vi)

for l = 2 at time t+ 1. In addition, this yields

Zh2
t+1 = −η ◦

χ0γ
f
0,t+1,2Z

dh̃2
0 − η

t∑
s=0

◦
χsγ

f
s,t+1,2Z

dh̃2
s

The expectations defining the γf are finite by Lemma L.1 since the integrands are polynomi-
ally bounded functions of Z0, as they are products of such variables by the previous result on
Zx1

t+1 and by the assumption. This gives claim (ii) for l = 2 by the results for the backward

passes at time t = 0 and t = 1 and by the assumptions. Let Z ∈ {ẐŴ 2x̃1
0 , Ẑ(Ŵ 3)

⊺
dh̃3

0}. We
have

∂Zh2
t+1

∂Z
= −η

t∑
s=0

◦
χsγ

f
s,t+1,2

∂Zdh̃2
s

∂Z

∂Zdh̃2
0/∂Z has a simple expression and is a polynomially bounded function of Z0. Addi-

tionally, by the results of the backward pass for t = 1, and by assumption, for s ∈ [1, t],

∂Zdh̃2
s/∂Z = ψ(Z0) with ψ polynomially bounded. Since the γf are finite, we thus get

∂Zh2
t+1

∂Z
= ψ(Z0)

with ψ polynomially bounded. This gives claims (iv) and (v) at time t+ 1.

106

Let l ∈ [2, L − 1] and assume claims (ii), (iv), (v), and (vi) for layer l at time t + 1.
Then, by Theorem G.7 we have:

Zhl+1
t+1 =

◦
ωl+1Z

Ŵ l+1xl
t+1 − η

t∑
s=0

◦
χsγ

f
s,t+1,l+1Z

dh̃l+1
s

Now Zxl
t+1 = σ(Zhl

t+1) is a polynomially bounded function of Z0 because Zhl
t+1 is by the

induction hypothesis and σ is polynomially bounded. Secondly, we have

∂Zxl
t+1

∂Ẑ(Ŵ l+1)
⊺
dh̃l+1

0

=
∂Zhl

t+1

∂Ẑ(Ŵ l+1)
⊺
dh̃l+1

0

σ′(Zhl
t+1)

which is a polynomially bounded function of Z0 by the induction hypothesis. By Lemma L.2

we get that
◦

ωl+1Z
Ŵ 2xl

t+1 = 0 which gives claim (vi) for layer l+1 at time t+1. In addition,
this yields

Zhl+1
t+1 = −η

t∑
s=0

◦
χsγ

f
s,t+1,l+1Z

dh̃l+1
s

The expectations defining the γf are finite by Lemma L.1 since the integrands are polynomi-
ally bounded functions of Z0, as they are products of such variables by the assumption and by

the induction hypothesis. If l+1 = L, we have, for any s ∈ [0, s], Zdh̃l+1
s = ψ(ẐUL+1

, ẐŴ lx̃L−1
0)

with ψ polynomially bounded, which shows

Zhl+1
t+1 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0)

with ψ polynomially bounded, which gives claim (iii). If l + 1 ≤ L − 1, for any s ∈ [0, s],

Zdh̃l+1
s = ψ(ẐŴ l+1x̃l

0 , Ẑ(Ŵ l+2()
⊺
dh̃l+2

0) with ψ polynomially bounded, which shows

Zhl+1
t+1 = ψ(ẐŴ l+1x̃l

0 , Ẑ(Ŵ l+2)
⊺
dh̃l+2

0)

ψ polynomially bounded, which shows claim (ii) at layer l + 1 for time t + 1. Let Z ∈
{ẐŴ l+1x̃l

0 , Ẑ(Ŵ l+2)
⊺
dh̃l+2

0 }. Note that the second value is only valid if l+1 ≤ L−1. Whenever
Z is well-defined, we have

∂Zhl+1
t+1

∂Z
= −η

t∑
s=0

◦
χsγ

f
s,t+1,l+1

∂Zdh̃l+1
s

∂Z

For both possible values of Z, ∂Zdh̃l+1
0 /∂Z has a simple expression and is a polynomially

bounded function of Z0. Z
dh̃l+1

1 /∂Z is a polynomially bounded function of Z0 by the results

of the backward pass at time t = 1 (Lemma L.4), and finally for s ∈ [2, t], Zdh̃l+1
1 /∂Z = ψ(Z0)

with ψ polynomially bounded by assumption. Since the γf are finite, this gives

∂Zhl+1
t+1

∂Z
= ψ(Z0)

with ψ polynomially bounded. This proves claim (iv) and (v) for layer l + 1 at time t + 1,
and thus concludes the induction on l and with it the proof.

Lemma L.8 (Induction step in IP-LLR, backward pass). Consider the IP-LLR parame-
terization with a positively p-homogeneous activation function, and p ≥ 2. Let t ≥ 2, and
assume that all of the assertions of Equation (L.1) up until Equation (L.15) for every time
step s ∈ [2, t]. Additionally assume that the assertions of the forward pass, i.e., from Equa-
tion (L.1) up until Equation (L.6), hold at time t+ 1. Then, the assertions of the backward
pass, i.e., from Equation (L.7) up until Equation (L.15), hold at time t+ 1.

107

Proof. We follow the proof of Lemma L.6. We have:

Zdx̃L
t+1 = ẐUL+1 − η ◦

χ0Z
x̃L
0 − η

t∑
s=1

◦
χsZ

xL
t

where Z x̃L
0 = σ(ẐŴ lx̃L−1

0), ZxL
1 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0) with ψ polynomially bounded by

Lemma L.3 and for s ∈ [2, t], ZxL
s = ψ(ẐUL+1

, ẐŴ lx̃L−1
0) with ψ polynomially bounded by

assumption. Combining all this gives

Zdx̃L
t+1 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0)

with ψ polynomially bounded since σ is also polynomially bounded. Then

Zdh̃L
t+1 = Zdx̃L

t+1σ′(ZhL
t+1)

and since ZhL
t+1 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0) with ψ polynomially bounded by assumption, we get

Zdh̃L
t+1 = ψ(ẐUL+1

, ẐŴ lx̃L−1
0)

with ψ polynomially bounded since σ′ is also polynomially bounded. This thus proves claim
(i). Now, we have

∂Zdh̃L
t+1

∂ẐŴ lx̃L−1
0

=
∂Zdx̃L

t+1

∂ẐŴ lx̃L−1
0

σ′(ZhL
t+1) + Zdx̃L

t+1
∂ZhL

t+1

∂ẐŴ lx̃L−1
0

σ′′(ZhL
t+1)

where ZhL
t+1 , ∂ZhL

t+1/∂ẐŴ lx̃L−1
0 , and Zdx̃L

t+1 are polynomially bounded functions of Z0 by

assumption and by the previous result on Zdx̃L
t+1 . Additionally, we have

∂Zdx̃L
t+1

∂ẐŴ lx̃L−1
0

=− η ◦
χ0σ

′(ẐŴ lx̃L−1
0)− η

t∑
s=1

◦
χs

∂ZhL
s

∂ẐŴ lx̃L−1
0

σ′(ZhL
s)

σ′ is polynomially bounded and by the results of the forward pass at t = 1 (Lemma L.3)

∂ZhL
1 /∂ẐŴ lx̃L−1

0 = ψ(Z0) with ψ polynomially bounded. In addition, by assumption, for

any s ∈ [2, t], ∂ZhL
s /∂ẐŴ lx̃L−1

0 = ψ(Z0) with ψ polynomially bounded. This thus gives

∂Zdx̃L
t+1

∂ẐŴ lx̃L−1
0

= ψ(Z0)

with ψ polynomially bounded, and thus

∂Zdh̃L
t+1

∂ẐŴ lx̃L−1
0

= ψ(Z0)

with ψ polynomially bounded since σ′ and σ′′ are polynomially bounded. This proves (iv)
for l = L at time t+ 1.

We have:

Zdx̃L−1
t+1 =

◦
ωLẐ

(Ŵ l)
⊺
dh̃L

t+1 − η ◦
χ0γ

b
0,t+1,L−1Z

x̃L−1
0 − η

t∑
s=1

◦
χsγ

b
s,t+1,L−1Z

xL−1
s

108

From the previous step we have that both Zdh̃L
t+1 and ∂Zdh̃L

t+1/∂ẐŴ lx̃L−1
0 are polynomially

bounded functions of Z0. By Lemma L.2, this first shows that
◦
ωLẐ

(Ŵ l)
⊺
dh̃L

t+1 = 0, and thus
gives (vi) for l = L, leading to:

Zdx̃L−1
t+1 = −η ◦

χ0γ
b
0,t+1,LZ

x̃L−1
0 − η

t∑
s=1

◦
χsγ

b
s,t+1,LZ

xL−1
s

Now Z x̃L−1
0 = σ(ẐŴ l−1x̃L−2

0) and we also have that ZxL−1
1 = ψ(ẐŴ l−1x̃L−2

0 , Ẑ(ŴL)
⊺
dh̃L

0) with
ψ polynomially bounded by Lemma L.3. In addition, we have or any s ∈ [2, t], we get

ZxL−1
s = ψ(ẐŴ l−1x̃L−2

0 , Ẑ(ŴL)
⊺
dh̃L

0) with ψ polynomially bounded by assumption since it is

the case for ZhL−1
s and σ is polynomially bounded. As always the expectations defining the

γb are finite by Lemma L.1 because the integrands are polynomially bounded functions of
Z0 as products of such variables by the results for the backward pass at times t = 0 and

t = 1, by the assumptions and by the previous result on Zdh̃L
t+1 . Since σ is also polynomially

bounded, this gives

Zdx̃L−1
t+1 = ψ(ẐŴ l−1x̃L−1

0 , Ẑ(ŴL)
⊺
dh̃L

0)

Then, we have

Zdh̃L−1
t+1 = Zdx̃L−1

t+1 σ′(Z
hL−1
t+1)

and since ZhL−1
t+1 = ψ(ẐŴ l−1x̃L−1

0 , Ẑ(ŴL)
⊺
dh̃L

0) with ψ polynomially bounded by assumption

Zdh̃L−1
2 = ψ(ẐŴ l−1x̃L−1

0 , Ẑ(ŴL)
⊺
dh̃L

0)

with ψ polynomially bounded since σ′ is also polynomially bounded. This thus proves claim

(ii) for l = L− 1. Now, let Z ∈ {ẐŴ l−1x̃L−1
0 , Ẑ(ŴL)

⊺
dh̃L

0 }. We have

∂Zdh̃L−1
t+1

∂Z
=
∂Zdx̃L−1

t+1

∂Z
σ′(Z

hL−1
t+1) + Zdx̃L−1

t+1
∂ZhL−1

t+1

∂Z
σ′′(Z

hL−1
t+1)

where ZhL−1
t+1 , ∂ZhL−1

t+1 /∂Z, and Zdx̃L−1
t+1 are polynomially bounded functions of Z0 by assump-

tion and by the previous result. We have

∂Zdx̃L−1
t+1

∂Z
=− η ◦

χ0γ
b
0,t+1,L−1

∂Z h̃L−1
0

∂Z
σ′(Z h̃L−1

0)− η
t∑

s=1

◦
χsγ

b
s,t+1,L−1

∂ZhL−1
s

∂Z
σ′(ZhL−1

s)

For both possible values of Z, ∂Z h̃L−1
0 /∂Z has a simple expression and is a polynomially

bounded function of Z0, as is h̃L−1
0 . In addition, ZhL−1

1 and ∂ZhL−1
1 /∂Z are polynomially

bounded functions of Z0 by the results of the forward pass at t = 1, and finally, for s ∈ [2, t],

ZhL−1
1 and ∂ZhL−1

1 /∂Z are polynomially bounded functions of Z0 by assumption. Since the
γb are finite and σ′ is polynomially bounded, we get

∂Zdx̃L−1
t+1

∂Z
= ψ(Z0)

with ψ polynomially bounded and thus

∂Zdh̃L−1
t+1

∂Z
= ψ(Z0)

109

with ψ polynomially bounded since σ′ and σ′′ are polynomially bounded. This proves (iv)
and (v) for l = L− 1.

Let l ∈ [2, L − 1], and assume claims (ii), (iv), (v), are true at layer l and claim (vi) is
true at layer l + 1. We have:

Zdx̃l−1
t+1 =

◦
ωlẐ

(Ŵ l)
⊺
dh̃l

t+1 − η ◦
χ0γ

b
0,t+1,l−1Z

x̃l−1
0 − η

t∑
s=1

◦
χsγ

b
s,t+1,l−1Z

xl−1
s

From the induction hypothesis we have that both Zdh̃l
t+1 and ∂Zdh̃l

t+1/∂ẐŴ lx̃l−1
0 are polyno-

mially bounded functions of Z0. By Lemma L.2, this first shows that
◦
ωlẐ

(Ŵ l)
⊺
dh̃l

t+1 = 0, and
thus gives (vi) for layer l, leading to:

Zdx̃l−1
t+1 = −η ◦

χ0γ
b
0,t+1,l−1Z

x̃l−1
0 − η

t∑
s=1

◦
χsγ

b
s,t+1,l−1Z

xl−1
s

Now, if l − 1 ≥ 2, Z x̃l−1
0 = σ(ẐŴ l−1x̃l−2

0) and by Lemma L.3, we also have that Zxl−1
1 =

ψ(ẐŴ l−1x̃l−2
0 , Ẑ(ŴL)

⊺
dh̃l

0) with ψ polynomially bounded because it is the case for Zhl−1
1

and σ is polynomially bounded. In addition, by assumption, we have for any s ∈ [2, t],

Zxl−1
s = ψ(ẐŴ l−1x̃l−2

0 , Ẑ(ŴL)
⊺
dh̃l

0) with ψ polynomially bounded since it is the case for Zhl−1
s

and σ is polynomially bounded. As always the expectations defining the γb are finite by
Lemma L.1 because the integrands are polynomially bounded functions of Z0 as products of
such variables by the results of the backward passes at times t = 0 and t = 1 and by the
induction hypothesis. We thus get

Zdx̃l−1
t+1 = ψ(ẐŴ l−1x̃l−2

0 , Ẑ(ŴL)
⊺
dh̃l

0)

with ψ polynomially bounded. On the other hand, if l− 1 = 1, we have Z x̃1
0 = σ(ẐU1ξ0) and

by Lemma L.3, we have Zx1
1 = ψ(ẐU1ξ0 , ẐU1ξ1 , Ẑ(Ŵ 2)

⊺
dh̃2

0) with ψ polynomially bounded. In

addition, by assumption we have for s ∈ [2, t], Zx1
s = ψ(ẐU1ξ0 , . . . , ẐU1ξs , Ẑ(Ŵ 2)

⊺
dh̃2

0) with ψ
polynomially bounded. Since σ is also polynomially bounded, this gives

Zdx̃1
t+1 = ψ(ẐU1ξ0 , . . . , ẐU1ξt , Ẑ(Ŵ 2)

⊺
dh̃2

0)

ψ polynomially bounded. Since Zdh̃l−1
t+1 = Zdx̃l−1

t+1σ′(Zhl−1
t+1), and by assumption Zhl−1

t+1 =

ψ(ẐŴ l−1x̃l−2
0 , Ẑ(ŴL)

⊺
dh̃l

0) if l−1 ≥ 2, and otherwise Zh1
t+1 = ψ(ẐU1ξ0 , . . . , ẐU1ξt+1 , Ẑ(Ŵ 2)

⊺
dh̃2

0),
we get

Zdh̃l−1
t+1 =

{
ψ(ẐŴ l−1x̃l−2

0 , Ẑ(ŴL)
⊺
dh̃l

0) if l − 1 ≥ 2

ψ(ẐU1ξ0 , ẐU1ξ1 , . . . , ẐU1ξt+1 , Ẑ(Ŵ 2)
⊺
dh̃2

0) if l − 1 = 1

This gives claim (ii) for layer l − 1 and claim (iii) for the case when l − 1 = 1. Now, let

Z ∈ {ẐŴ l−1x̃l−2
0 , Ẑ(ŴL)

⊺
dh̃l

0}. We have

∂Zdh̃l−1
t+1

∂Z
=
∂Zdx̃l−1

t+1

∂Z
σ′(Zhl−1

t+1) + Zdx̃l−1
t+1

∂Zhl−1
t+1

∂Z
σ′′(Zhl−1

t+1)

where Zhl−1
t+1 and Zdx̃l−1

t+1 are polynomially bounded functions of Z0 by assumption and by the

previous result on Zdx̃l−1
t+1 . Also by assumption, we have

∂Zhl−1
t+1

∂Z
=

{
0 if l − 1 = 1 and Z = ẐŴ 2x̃1

0

ψ(Z0) otherwise

110

with ψ polynomially bounded. In any case, ∂Zhl−1
t+1/∂Z is a polynomially bounded function

of Z0. On the other hand, we have

∂Zdx̃l−1
2

∂Z
=− η ◦

χ0γ
b
0,t+1,l−1

∂Z h̃l−1
0

∂Z
σ′(Z h̃l−1

0)− η
t∑

s=1

◦
χtγ

b
s,t+1,l−1

∂Zhl−1
s

∂Z
σ′(Zhl−1

s)

For both possible values of Z, ∂Z h̃l−1
0 /∂Z has an easy expression and is a polynomially

bounded function of Z0 (essentially because σ and its derivatives are polynomially bounded).

On the other hand, ∂Z h̃l−1
s /∂Z is a polynomially bounded function of Z0 by assumption. σ′

is polynomially bounded, and the γb are finite. We thus get that

∂Zdx̃l−1
t+1

∂Z
= ψ(Z0)

with ψ polynomially bounded, and thus:

∂Zdh̃l−1
t+1

∂Z
= ψ(Z0)

with ψ polynomially bounded, which proves claims (iv) and (v) at layer l− 1 for time t+ 1.
This thus concludes the induction on l, and with it the proof.

L.1 Main result

Theorem L.9 (Multiplications by the initial weight matrices vanish in IP-LLR for t ≥ 1).
Consider the IP-LLR parameterization with a positively p-homogeneous activation function,
and p ≥ 2. Then, for any t ≥ 1, and for any l ∈ [2, L], one has:{

ZW l(0)xl−1
t =

◦
ωlZ

Ŵ lxl−1
t = 0

Z(W l(0))
⊺
dh̃l

t =
◦
ωlZ

(Ŵ l)
⊺
dh̃l

t = 0

Proof. The result for t = 1 has essentially been proved already early on in Corollary L.4.1
(which stems from Lemmas L.3 and L.4). For t = 2, the result has been proved in Lemmas L.5
and L.6. Then we can prove the result for any t ≥ 2 by induction using Lemmas L.7
and L.8.

M Expectations with ReLU

In all this section, we consider Z ∼ N (0, σ2), so that Z = σU where U ∼ N (0, 1).

M.1 First moment

For ϕ(z) = max(0, z) and Z ∼ N (0, σ2), we have

E[ϕ(Z)] = E[ϕ(σU)] =
σ√
2π

∫ ∞

0
ue−u2/2du =

σ√
2π
.

M.2 Second moment

For ϕ(z) = max(0, z) and Z ∼ N (0, σ2), we have

E[ϕ(Z)2] =
1

2
E[Z2] =

σ2

2
.

111

M.3 First forward pass moments

We have, for any l ∈ [1, L], with σ0 :=
√
||ξ0||2+1,

E[Ẑ h̃l
0] = 0, E[(Ẑ h̃l

0)2] =
σ20
2l−1

E[Z x̃l
0] =

σ0√
2lπ

, E[(Z x̃l
0)2] =

σ20
2l

M.4 First derivative moments

For ϕ(z) = max(0, z), we have ϕ′(z) = 1z≥0 almost everywhere, so for Z ∼ N (0, σ2), we
have

E[ϕ′(Z)] = P(Z ≥ 0) = 1/2.

Note that since ϕ′(z)p = ϕ′(z) for any p > 0, all the moments of ϕ′(Z) are equal to the first
moment.

M.5 First backward pass moments

We have, for any l ∈ [1, L], with,

E[Ẑdx̃l
0] = 0, E[(Ẑdx̃l

0)2] =
1

2L−l

E[Zdh̃l
0] = 0, E[(Zdh̃l

0)2] =
1

2L−l+1

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparam-
eterized neural networks, going beyond two layers. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pages 6158–6169, 2019.

Dyego Araújo, Roberto I. Oliveira, and Daniel Yukimura. A mean-field limit for certain deep
neural networks, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In
International Conference on Machine Learning, pages 322–332. PMLR, 2019.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research, 18(1):629–681, 2017.

Andrew Barron. Barron, a.e.: Universal approximation bounds for superpositions of a sig-
moidal function. ieee trans. on information theory 39, 930-945. Information Theory, IEEE
Transactions on, 39:930 – 945, 06 1993. doi: 10.1109/18.256500.

Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs,
with applications to compressed sensing. IEEE Transactions on Information Theory, 57
(2):764–785, 2011.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Con-
vex neural networks. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems, volume 18. MIT Press, 2006. URL https://proceedi

ngs.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf.

112

https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf

Erwin Bolthausen. An iterative construction of solutions of the TAP equations for the
Sherrington–Kirkpatrick model. Communications in Mathematical Physics, 325(1):333–
366, 2014.

Lénäıc Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 3040–3050, 2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–
1338. PMLR, 2020.

Lénäıc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable pro-
gramming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file

/ae614c557843b1df326cb29c57225459-Paper.pdf.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun,
editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.

org/abs/1511.07289.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi.
Batch normalization provably avoids ranks collapse for randomly initialised deep networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 18387–18398. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/d5ade38a2c9f6

f073d69e1bc6b6e64c1-Paper.pdf.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In International Conference on Machine Learning,
pages 1675–1685. PMLR, 2019.

Cong Fang, Jason D. Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a
mean-field framework for over-parameterized deep neural networks, 2020.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stephane
d’Ascoli, Giulio Biroli, Clement Hongler, and Matthieu Wyart. Scaling description of gen-
eralization with number of parameters in deep learning. Journal Of Statistical Mechanics-
Theory And Experiment, 2020(ARTICLE):023401, 2020a.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, 2020b.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, 2020c.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of

113

https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://proceedings.neurips.cc/paper/2020/file/d5ade38a2c9f6f073d69e1bc6b6e64c1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d5ade38a2c9f6f073d69e1bc6b6e64c1-Paper.pdf

Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/glorot10a.h

tml.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel.
In International Conference on Learning Representations, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with
gaussian error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/

1606.08415.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. CoRR, abs/1806.07572, 2018. URL http://arxi

v.org/abs/1806.07572.

Arthur Jacot, Franck Gabriel, François Ged, and Clément Hongler. Order and chaos:
Ntk views on dnn normalization, checkerboard and boundary artifacts. arXiv preprint
arXiv:1907.05715, 2019.

Vera Kurková and Marcello Sanguineti. Bounds on rates of variable-basis and neural-network
approximation. Information Theory, IEEE Transactions on, 47:2659 – 2665, 10 2001. doi:
10.1109/18.945285.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):
E7665–E7671, 2018.

Hrushikesh Mhaskar. On the tractability of multivariate integration and approximation by
neural networks. J. Complexity, 20:561–590, 08 2004. doi: 10.1016/j.jco.2003.11.004.

Radford M Neal. BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis,
University of Toronto, 1995.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
pages 29–53. Springer, 1996.

Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean field limit of
multilayer neural networks. CoRR, abs/2001.11443, 2020. URL https://arxiv.org/ab

s/2001.11443.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles.
arXiv preprint arXiv:1712.05438, 2017.

Huy Tuan Pham and Phan-Minh Nguyen. A note on the global convergence of multilayer
neural networks in the mean field regime. CoRR, abs/2006.09355, 2020. URL https:

//arxiv.org/abs/2006.09355.

Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: long time
convergence and asymptotic error scaling of neural networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31, 2018.

114

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572
https://arxiv.org/abs/2001.11443
https://arxiv.org/abs/2001.11443
https://arxiv.org/abs/2006.09355
https://arxiv.org/abs/2006.09355

Grant M. Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural networks:
An interacting particle system approach, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A
law of large numbers. SIAM Journal on Applied Mathematics, 80(2):725–752, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural networks.
Mathematics of Operations Research, 2021.

E. Weinan and Stephan Wojtowytsch. On the banach spaces associated with multi-layer relu
networks: Function representation, approximation theory and gradient descent dynamics.
ArXiv, abs/2007.15623, 2020.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian
processes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file

/5e69fda38cda2060819766569fd93aa5-Paper.pdf.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. ArXiv,
abs/2006.14548, 2020a.

Greg Yang. Tensor programs III: neural matrix laws. CoRR, abs/2009.10685, 2020b. URL
https://arxiv.org/abs/2009.10685.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 11727–11737. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.

press/v139/yang21c.html.

115

https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://arxiv.org/abs/2009.10685
https://proceedings.mlr.press/v139/yang21c.html
https://proceedings.mlr.press/v139/yang21c.html

	Introduction
	Contributions
	Related Work
	Organisation of the Paper and Notations

	General Setting
	Network and Data
	Parameterizations of Neural Networks

	Deep Networks with Naive Integrable Parameterization are Trivial
	No learning in Deep Networks with Naive Integrable Parameterization
	No stable learning with learning rates constant over time

	Large Initial Learning Rates Induce Learning
	Non-trivial and Stable Learning for Integrable Parameterizations
	IP-LLR is a Modified P
	Finite-Width Equivalence
	Infinite-Width Equivalence

	Alternative Methods for Escaping the Initial Stationary Point
	Using Non-Centered i.i.d. Initialization
	First forward Pass
	First Backward Pass
	First parameter updates
	Collapse to Deterministic Dynamics

	Not Scaling the Bias Terms

	Numerical Experiments
	Experimental Setup
	Naive-IP is Trivial but Large Initial Learning Rates Induce Learning
	IP-LLR vs. P
	Learning is Degenerate for IP-bias and IP-non-centered

	Conclusion
	Notations
	An overview of the Tensor Program technique
	Intuition behind the technique
	Multiplication by i.i.d. Gaussian matrices

	Mathematical formalism
	The maximal update parameterization P

	Useful preliminary results
	Positive finite moments of pseudo-Lipschitz functions of Gaussians
	The Z dots are 0 in the first forward-backward pass
	Gaussian output in the infinite-width limit
	Convergence of the coordinates to the limiting distribution Z

	Proof of the triviality of IPs: Proposition 3.1
	Proof at t=0
	First forward pass
	First backward pass

	Induction step
	Forward pass at step s+1
	Backward pass at step s+1

	Preliminaries on positively homogeneous functions
	Preliminaries for Theorem 3.2 and Theorem 4.1
	Tilde variables
	Expression of the forward and backward passes of ac-parameterizations in function of the tilde variables with homogeneity

	Dynamics of the infinite-width limit of IP-LLR
	Second forward pass of IP-LLR (t=1)

	Proof that no constant learning rate is possible: Theorem 3.2
	Proof of the first implication for the learning rates at t=0
	Preliminaries on the second backward pass (t=1)
	Preliminaries on the third forward pass (t=2)
	Proof of the second implication

	Proof of the non-triviality of IP-LLR: Theorem 4.1
	Proof of the equivalence between IP-LLR and P: Proposition 4.1 and Theorem 4.2
	Finite-width equivalence: Proposition 4.1
	Equivalence at t=1
	Proof of Proposition 4.1

	Infinite-width equivalence: Theorem 4.2
	Preliminary results
	Induction on t
	Proof of Theorem 4.2

	Formal versions of the results for the alternative methods to escape the initial stationary point
	Formal version of Theorem 5.2
	Formal version of Theorem 5.1
	Preliminaries
	Proof of Theorem K.2

	The variables associated with the initial weights vanish in IP-LLR
	The case t=1
	The case t=2
	The case t 2

	Main result

	Expectations with ReLU
	First moment
	Second moment
	First forward pass moments
	First derivative moments
	First backward pass moments

