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Abstract In many real world situations, the design of social rankings over
agents or items from a given raking over groups or coalitions, to which these
agents or items belong to, is of big interest. With this aim, we revise the lexico-
graphic excellence solution and introduce two novel solutions which, moreover,
take into account the size of the groups. We present some desirable axioms
which are interpreted in this context. Next, a comparable axiomatization of
these three solutions is established, revealing the main differences among the
two new social rankings and the lexicographic excellence solution. Finally, we
apply the three social rankings under study to a real scenario. Specifically, the
performance of some football players of Paris Saint-Germain during the UEFA
Champions League according to these three rules is analyzed.

Keywords Social ranking solution · preference relation · lexicographic
excellence solution

1 Introduction

One of the main issues in situations where people work in teams is to evaluate
the marginal productivity of teams members. Nevertheless, any practical at-
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tempt to measure the individual contribution of teams members clashes against
the complex and multi-attribute nature of the problem to compare groups. As
a relevant example, consider ranking of sportsmen [31]. While the problem of
how to rank players or teams in tournament situations is of primary impor-
tance for sport competitions, and it has received a lot of attention in the game
theoretic literature – for instance, focusing on the strategic behavior of com-
petitors who want to manipulate the outcome of a tournament [12,13,14,15,
16,27,32], or providing some impossibility results for rankings in generalized
tournaments [10,11] – there have been only few attempts to compare each
player’s contributions to the success of their own team [31]. Recently, some
approaches using coalitional games and power indices have been applied to
assess the performance of sportsmen based on outcomes of their team ([21,
22]). Classical power indices, like the Shapley value/index [30], are computed
from such coalitional games to convert the performance of coalitions into an
individual attribution representing each player’s role in the team during the
championship. Unfortunately, the high number of coalitions compared to the
number of squads in a team actually playing matches, as well as the relatively
low number of points (or goals) scored and conceded in each match, make
the results obtained by the application of the Shapley value [30] very sensible
to small fluctuations of team’s outcome and very limited to the quantitative
information provided by points and goals [31]. We argue that an ordinal ap-
proach based on rankings over coalitions is more effective in order to take
hardly quantifiable attributes of performance (e.g. the ability to make a differ-
ence against strong teams, the leadership attitude during a match, or several
other productivity dimensions related to the number of supporters, attraction
of sponsors, etc.) into account and, at the same time, make the results about
each player’s contributions more robust to small fluctuations in the data.Of
course, this kind of considerations about the robustness of the results hold in
general for other sports and extend the discussion to other arguments in favor
of more appropriate score-rates in relation to outcome uncertainty in sport
competitions [28].

As far as we know, a notion of social ranking solution, defined as a mapping
assigning to each ranking over subsets or coalitions of a set N a ranking over
the single elements of N , has been introduced only recently in [25] using a clas-
sical solution concept for cooperative games: the Banzhaf index [6]. However,
in order to preserve the same ranking over N for all the characteristic functions
representing the same ranking over the coalitions, the solution based on the
Banzhaf index in [25] must be applied to a very restricted domain. Differently,
in [26], the authors analyze the individual ranking problem given a ranking
over coalitions using a property-driven approach, showing that no social rank-
ing solution satisfies a given set of attractive axioms. Following this approach,
some social ranking solutions have been recently introduced in the literature.
In [20], a social ranking solution has been proposed where two individuals
are compared using information from subsets under a ceteris paribus principle
(i.e., comparing coalitions which only differ for one single member). Another
social ranking solution based on the idea of ordinal marginal contributions has
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been recently introduced and axiomatically characterized in [24]. For a recent
application of social ranking solutions as a qualitative approach to formalize
the process to infer a norm system from the agents’ preferences see [29].

A very relevant social ranking solution for our analysis is the lexicographic
excellence (lex-cel) solution introduced in [8] which is based on a lexicographic
comparison of vectors representing the “positions” of single elements over a
ranking of non-empty coalitions, and taking care to reward single elements that
appear more frequently in the highest positions in the coalitional ranking.

In [8] the authors show that the lex-cel solution is the unique social ranking
solution that satisfies four appealing properties. The first one is Neutrality
(N), a classical anonymity condition affirming that a social ranking solution
should not depend on the individuals’ identities. A second property, called
Coalitional Anonymity (CA), requires that the relative ranking of two agents
i and j should only depend on the relative positions of groups containing either
i or j but not both. The third property is a tie-breaking condition based on a
Monotonicity (M) principle saying that increasing the ranking of a coalition
should break ties in favour of the members of the coalition. Finally, the fourth
property, called Independence from the Worst Class (IWC), states that the
relative position of elements of coalitions not in the lowest positions is more
crucial.

In this paper we study new properties based on the idea of Coalitional
Anonymity and Monotonicity that, in combination with Neutrality and Inde-
pendence from the Worst Set axioms, axiomatically characterize new social
ranking solutions more suitable for specific applications.

More precisely, on the one hand we provide a weaker version of the CA
axiom with the objective to define a new axiom, called Weak Coalitional
Anonymity (WCA), that restricts the invariance of the relative ranking of
two agents i and j to coalitional rankings where the two agents appear in the
same positions independently on whether they appear together or not. We
argue that such a weaker property allows to focus on specific pieces of infor-
mation about groups interaction that are more relevant in practice. We also
weaken the WCA axiom focusing on the invariance with respect to permuta-
tions of coalitions containing the two agents that maintain the same position
and the same size too. This axiom is called Super Weak Coalitional Anonymity
(SWCA).

On the other hand, we strengthen the Monotonicity axiom with the ob-
jective to focus on more pertinent improvements of coalitions that should be
considered to break ties. In one case, captured in the Improving Path Mono-
tonicity (IPM) axiom, ties between two agents i and j are broken in favour of
i when the number of coalitions containing i but not j improving their posi-
tion is larger than the corresponding number of coalitions deteriorating their
position. We argue that the IPM condition is useful to break ties when a his-
tory of improving and deteriorating contributions of individuals to coalitions
is available. Alternatively, we strengthen the Monotonicity axiom adopting a
tie-breaking criterion based on the size of the smallest improving coalition, a
principle that leads to the axiom of Path Monotonicity with Priority to the
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Smallest Coalition (PMPSC) (or to it’s weaker version also considering the
number of improving and deteriorating coalitions, called Weak Path Mono-
tonicity with Priority to the Smallest Coalition (WPMPSC)).

As main theoretical contributions, we first provide two alternative ax-
iomatic characterizations of the lex-cel solution. The first one uses N, IWC,
WCA and M. The second one consists of keeping N and WCA, removing M
and IWC and adding IPM. Therefore, in the presence of N and WCA, IPM
implies M and IWC. Then, we introduce and characterize two novel social
ranking solutions, both incorporating the effect of the size of coalitions within
the notion of lex-cel comparisons. The first solution (namely, L(1); see Defini-
tion 3) is uniquely identified by the combination of axioms N, IWC, SWCA
and PMPSC, whereas the second one (namely, L(2); see Definition 4) is char-
acterized by the combination of axioms N, IWC, SWCA, IPM and WPMPSC.
Both solutions, L(1) and L(2), embody the lexicographic principle of the lex-cel
solution aimed at rewarding the excellence of coalitions, but they also con-
sider their size, promoting smaller coalitions. More precisely, both solutions
are based on a double lexicographic comparison of single elements’ positions
over the equivalence classes of a coalitional ranking: first, considering the fre-
quency of single elements from the best equivalence class to the worst one;
second, within an equivalence class, counting the number of coalitions of each
size and taking care to reward the smaller ones. So, to determine the ranking
of two single elements, the L(1) solution applies the lexicographic comparison
with respect to the coalitional size in the best equivalence class presenting a
difference in the number of coalitions of equal size containing one or the other
element. Differently, the L(2) solution determines the ranking of two single
elements based on either their respective frequency in the best equivalence
class presenting a difference in the total number of coalitions containing one
or the other element, or, their lexicographic comparison with respect to the
coalitional size in the best equivalence class presenting the same number of
coalitions containing one or the other element.

The roadmap of the paper is as follows. We start in the next section with
some preliminary notation and notions. Then, in Section 3, we introduce the
main properties used in this study and we discuss their possible interpretation
and some logical dependencies. In Section 4, we derive some preliminary re-
sults about the combination of some of the axioms that will be useful for the
following property-driven analysis of social ranking solutions. Section 5 is de-
voted to the main results of the paper in terms of axiomatic characterizations
of the social ranking solutions. Section 6 is dedicated to the logical indepen-
dence of the axioms used in the characterization results. Section 7 provides an
illustration of the solutions applied to the comparison of football players in a
real scenario. Section 8 concludes.
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2 Notation and preliminaries

Let A be a finite set. The notation |A| stands for the cardinality of A. Let
R ⊆ A × A be a binary relation on A (iRj meaning that i is in relation R
with j, for i, j ∈ A such that (i, j) ∈ R). A binary relation R on A is said
to be: reflexive, if for each i ∈ A, iRi; transitive, if for each i, j, z ∈ A,
[iRj ∧ jRz] ⇒ [iRz]; total, if for each i, j ∈ A, i 6= j, it holds that iRj or
jRi; symmetric, if for each i, j ∈ A, [iRj]⇒ [jRi]; asymmetric, if for each
i, j ∈ A, [iRj] ⇒ [¬(jRi)]. A preorder on A is a reflexive and transitive
binary relation on A. A preorder that is also total is a total preorder.

Let N be a fixed and finite set of n agents. A coalition of agents is any
subset of N . Denote by ΩN the collection of the 2n−1 nonempty coalitions of
N . A coalitional ranking on N is a total preorder % on ΩN . For any pair of
coalitions S and T of ΩN , S % T means that S is at least as highly ranked as
coalition T . We denote by � the asymmetric part of % and by ∼ its symmetric
part.

The quotient set is the set of all equivalence classes E
%
1 , . . . , E

%
k , k ∈

{1, . . . , 2n − 1}, of %. It is denoted by ΩN/ ∼ and is totally ordered by the
induced quotient relation �∗. Without loss of generality, assume that:

E
%
1 �∗ E

%
2 �∗ · · · �∗ E

%
k .

Let RΩN be the set of coalitional rankings that one can construct from the
set of nonempty coalitions ΩN , and let RN be the set of total preorders or
rankings on N .

A social ranking solution on RΩN is a function f : RΩN −→ RN which
assigns to each coalitional ranking %∈ RΩN a unique ranking/total preorder
f(%) ∈ RN . We denote by �f(%) the asymmetric part of f(%) and by ∼f(%)

its symmetric part.

3 Axioms for social ranking solutions

In this section, we introduce a set of properties that a solution should satisfy,
and we discuss their interpretation along the lines of their possible application
to the problem of ranking football players.

Bernardi et al. [8] introduce an axiom of coalitional anonymity. Let π :
ΩN −→ ΩN be a permutation on the elements of ΩN ; π−1 stands for its in-
verse, and ΠΩN denotes the set of such permutations. For each pair {i, j} of
distinct agents in N , Bernardi et al. (see [8]) consider permutations π on the
subsets of coalitions containing neither i nor j. Denote by ΠΩN\{i,j} this set
of permutations.

Coalitional Anonymity (CA) A social ranking solution f on RΩN satisfies
Coalitional Anonymity if for each pair {i, j} of distinct agents in N , each
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%∈ RΩN , each permutation π ∈ ΠΩN\{i,j} and each alternative coalitional
ranking %′∈ RΩN such that

∀S, T ⊆ N \ {i, j},
[
S ∪ {i} % T ∪ {j}

]
⇐⇒

[
π(S) ∪ {i} %′ T ∪ {j}

]
,

it holds that

∀i, j ∈ N,
[
if(%)j

]
⇐⇒

[
if(%′)j

]
.

The CA axiom says that the ranking between two agents i and j should
be independent of the position in the ranking of coalitions containing both i
and j, or neither i nor j, and invariant under a rearrangement preserving the
relative comparisons of coalitions containing only one element between i and j.
For the sake of the example of ranking football players, the CA property says
that the relative ranking between two players i and j should be computed
looking exclusively to the performance of coalitions containing either i or j
(but not both), i.e. those coalitions where the pivotal role of the two players is
evident from the score of the teams, and only the average team performance
counts, no matter with whom the outcome is reached. For instance, if we want
to compare i and j within two distinct championships where, once extracted
the ranking of such relevant coalitions containing only i or j, we observe that
the two players appear in the same position but in different coalitions, then the
ranking of the two players should be preserved over the two championships.
For more examples and interpretations related to this property see [8].

One can argue that demanding the independence from the position of coali-
tions containing both i and j, or neither i nor j, is too strong. In this direction,
one can weaken this condition imposing that the ranking between two players
i and j is the same over two coalitional rankings if all positions of i and j are
maintained over the two coalitional rankings.

Therefore we introduce two new axioms of coalitional anonymity which are
weaker than the CA one. To this end, we need some definitions.

Given a permutation π ∈ ΠΩN and a coalitional ranking %∈ RΩN , we
define the coalitional ranking %π∈ RΩN as follows:

∀S, T ∈ ΩN ,
[
S %π T

]
⇐⇒

[
π−1(S) % π−1(T )

]
.

Pick any agent i ∈ N . A permutation π ∈ ΠΩN is agent i invariant if:

∀S ∈ ΩN , [i ∈ S] =⇒ [i ∈ π(S)].

A permutation π ∈ ΠΩN is size invariant if the following holds:

∀S ∈ ΩN , |π(S)| = |S|.

Denote by Π∗ΩN the subset of size invariant permutations in ΠΩN .

Weak Coalitional Anonymity (WCA) A social ranking solution f onRΩN
satisfies Weak Coalitional Anonymity if for each pair {i, j} of distinct agents
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in N , each %∈ RΩN and each permutation π ∈ ΠΩN which is agent i and
agent j invariant, it holds that:

∀i, j ∈ N,
[
if(%)j

]
⇐⇒

[
if(%π)j

]
.

To contextualize the WCA axiom, suppose we want to compare two football
attackers 1 and 2 based on their performance together and with a third at-
tacker 3 under two alternative attacking game-patterns. Based on the outcome
of matches when the team adopts a defensive tactic aimed at not conceding
goals, a plausible coalitional ranking should consider low-size combinations of
attackers more important, e.g.1, 1 � 2 � 12 � 23 � 13 � 123 � 3, whereas a
more offensive pattern could end-up in a coalitional ranking where larger com-
binations of attackers should be rewarded, e.g., 13 �′ 23 �′ 123 �′ 2 �′ 1 �′
12 �′ 3 (note that �′=�π where π(1) = 13, π(2) = 23, π(12) = 123, π(13) =
1, π(23) = 2, π(3) = 3, so that �π is agent 1 and agent 2 invariant). Never-
theless, the two players 1 and 2 cover the same positions over two coalitional
rankings, the only change being the team-mates (so, over both coalitional rank-
ings, player 1 results to be in the top-coalition, 2 is in the second-best one,
both 1 and 2 in the third one and so on). As a consequence, there is no signifi-
cant reason to expect a different ranking of 1 and 2 under two game-patterns,
and the WCA axiom states that 1 and 2 should be ranked in the same way
over the two coalitional rankings corresponding to the two tactics.

Next, we further weaken the WCA property by imposing that the invari-
ance of the ranking of two players only occurs when the size of coalitions
remain the same, other than the position of the two players in the coalitional
ranking as for the WCA property.

Super Weak Coalitional Anonymity (SWCA) A social ranking solution
f on RΩN satisfies Super Weak Coalitional Anonymity if for each pair {i, j}
of distinct agents in N , each %∈ RΩN and each size invariant permutation
π ∈ Π∗ΩN which is also agent i and agent j invariant, it holds that:

∀i, j ∈ N,
[
if(%)j

]
⇐⇒

[
if(%π)j

]
.

So, following the contextualizing example used for the WCA axiom, the
SWCA axiom says that the invariance requested by WCA actually should be
required only over permutations of coalitions that are also size invariant: this
is particularly meaningful to compare football players when we are assuming
that an equivalence of performance of individuals i and j may occur, under
the same game-pattern tactic, when also the size of coalitions in the ranking
is preserved, other than their positions with respect to i and j.

It must be clear that:

[
Weak Coalitional Anonymity

]
=⇒

[
Super Weak Coalitional Anonymity

]
.

1 To avoid cumbersome notations, commas and brackets are omitted for sets; so, for
instance, 12 means {1, 2}.
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But the implication in the other direction does not hold true, as shown by
the following example.

Example 1 Consider the social ranking solution f defined as:

1. ∀i ≥ 3, 1 �f(%) i and 2 �f(%) i;
2. ∀i, j > 3, i ∼f(%) j;
3. (a) if N � N \ {1, 2}, then 1 �f(%) 2;

(b) if N \ {1, 2} � N , then 2 �f(%) 1;
(c) if N \ {1, 2} ∼ N , then 2 ∼f(%) 1.

On the one hand, for each permutation π ∈ ΠΩN which is size invariant,
agent 1 invariant and agent 2 invariant, we necessarily have π(N) = N and
π(N \ {1, 2}) = N \ {1, 2}. From this observation, we easily conclude that f
satisfies Super Weak Coalitional Anonymity. On the other hand, if we consider
a coalitional ranking % such that

{3} � N � N \ {i, j},

and the permutation π ∈ ΠΩN such that π(N \ {1, 2}) = {3}, π({3}) =
N \ {1, 2} and π(S) = S otherwise. Then, by 3.(a),

1 �f(%) 2,

and, by 3.(b),

2 �f(%π) 1.

Because π is agent 1 invariant and agent 2 invariant, we conclude that f
violates Weak Coalitional Anonymity.

It may be less immediate to see that Weak Coalitional Anonymity is a
weaker axiom than Coalitional Anonymity, that is:

[Coalitional Anonymity] =⇒ [Weak Coalitional Anonymity].

To show the above implication, it is convenient to reformulate the axiom
of Coalitional Anonymity.

Lemma 1 A social ranking solution f on RΩN satisfies Coalitional Anonymity
if and only if, for each pair {i, j} of distinct agents in N , each %∈ RΩN , each
pair of permutations {π(1), π(2)} ⊆ ΠΩN\{i,j} and each alternative coalitional
ranking %′∈ RΩN such that

∀S, T ⊆ N \ {i, j},
[
S ∪{i} % T ∪{j}

]
⇐⇒

[
π(1)(S)∪{i} %′ π(2)(T )∪{j}

]
,

it holds that

∀i, j ∈ N,
[
if(%)j

]
⇐⇒

[
if(%′)j

]
.
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Proof. Assume first that f satisfies the statement of Lemma 1. To see that f
satisfies Coalitional Anonymity, it suffices to define π(2) as the identity permu-
tation. Reciprocally, assume that f satisfies Coalitional Anonymity. Consider
any pair {i, j} of distinct agents in N , any coalitional ranking %∈ RΩN , any
pair of permutations {π(1), π(2)} ⊆ Π2N\{i,j} and any alternative coalitional
ranking %′∈ RΩN such that:

∀S, T ⊆ N \ {i, j},
[
S ∪ {i} % T ∪ {j}

]
⇐⇒

[
π(1)(S) ∪ {i} %′ π(2)(T ) ∪ {j}

]
(1)

Next, consider another coalitional ranking %′′ satisfying the condition of Coali-
tional Anonymity with respect to π(1), that is2:

∀S, T ⊆ N \ {i, j},
[
S ∪ {i} % T ∪ {j}

]
⇐⇒

[
π(1)(S)∪ {i} %′′ T ∪ {j}

]
(2)

By Coalitional Anonymity,

[if(%)j]⇐⇒ [if(%′′)j] (3)

On the other hand, (2) is rewritten as:

∀S, T ⊆ N\{i, j},
[
S∪{i} %′′ T∪{j}

]
⇐⇒

[
(π(1))−1(S)∪{i} % T∪{j}

]
(4)

By (1), we have: ∀S, T ⊆ N \ {i, j},[
(π(1))−1(S) ∪ {i} % T ∪ {j}

]
⇐⇒

[
π(1)

(
(π(1))−1(S)

)
∪ {i} %′ π(2)(T ) ∪ {j}

]
(5)

By (4) and (5) and the fact that π(1)
(
(π(1))−1(S)

)
= S, we obtain:

∀S, T ⊆ N \ {i, j},
[
S ∪ {i} %′′ T ∪ {j}

]
⇐⇒

[
S ∪ {i} %′ π(2)(T ) ∪ {j}

]
.

Thus, by Coalitional Anonymity,

[if(%′′)j]⇐⇒ [if(%′)j].

Combining the above equivalence with (3), we obtain:

[if(%)j]⇐⇒ [if(%′)j],

showing that Coalitional Anonymity implies the statement of Lemma 1. This
completes the proof of Lemma 1. �

We are now prepared to prove that Weak Coalitional Anonymity is a weaker
axiom than Coalitional Anonymity.

Proposition 1 Coalitional Anonymity implies Weak Coalitional Anonymity.

2 Such a coalitional ranking %′′ exists. To see this, consider the permutation π ∈ ΠΩN
such that, for each S ∩ {i, j} = {i}, π(S) = π(1)(S \ {i}) ∪ {i}, and π(S) = S otherwise.
Then, take %′′=%π and we are done.
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Proof. Consider any social ranking solution f on RΩN satisfying Coalitional
Anonymity. Consider any social ranking %∈ RΩN , any pair of distinct agents
{i, j} ⊆ N and any permutation π ∈ ΠΩN which is agent i and agent j
invariant. To show: [

if(%)j
]
⇐⇒

[
if(%π)j

]
.

From π, construct two permutations π(1) and π(2) in ΠΩN\{i,j} as follows:

∀S ∈ N \ {i, j}, π(1)(S) = π(S ∪ {i}) \ {i} and π(2)(S) = π(S ∪ {j}) \ {j}.

By definition of %π, we have:

∀S, T ⊆ N \ {i, j},
[
S ∪ {i} % T ∪ {j}

]
⇐⇒

[
π(S ∪ {i}) %π π(T ∪ {j})

]
.

Because

π(S ∪ {i}) = π(1)(S) ∪ {i} and π(S ∪ {j}) = π(2)(S) ∪ {j},

we obtain:

∀S, T ⊆ N \ {i, j},
[
S ∪{i} % T ∪{j}

]
⇐⇒

[
π(1)(S)∪{i} %π π(2)(S)∪{j}

]
.

Because f satisfies Coalitional Anonymity, by Lemma 1 we conclude that:

[if(%)j]⇐⇒ [if(%π)j],

which completes the proof of Proposition 1. �

Instead, it is possible to find a social ranking solution that satisfies WCA
but not CA, as shown in the following example.

Example 2 Consider the social ranking solution f defined as:

1. ∀i ≥ 3, 1 �f(%) i and 2 �f(%) i;
2. ∀i, j > 3, i ∼f(%) j;
3. (a) if, for each S ⊇ {1, 2}, S 6= {1, 2}, and each T such that T ∩{1, 2} = ∅,

we have S � T , then 1 �f(%) 2;
(b) if, for each S ⊇ {1, 2}, S 6= {1, 2}, and each T such that T ∩{1, 2} = ∅,

we have T � S, then 2 �f(%) 1;
(c) otherwise, 1 ∼f(%) 2;

On the one hand, for each permutation π ∈ ΠΩN which is agent 1 invariant
and agent 2 invariant, we have:[
S ⊇ {1, 2}

]
⇐⇒

[
π(S) ⊇ {1, 2}

]
and

[
T∩{1, 2} = ∅

]
⇐⇒

[
π(T )∩{1, 2} = ∅

]
.

From this and from the definition of f , we conclude that the latter satisfies
Weak Coalitional Anonymity. On the other hand, take the permutation π ∈
ΠΩN such that:

– π(S) = S whenever S ∩ {1, 2} is a singleton;
– π({1, 2}) = {1, 2};
– π(S) = S \ {1, 2} whenever S ⊇ {1, 2} and S 6= {1, 2}.
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– π(S) = S ∪ {1, 2} whenever S ∩ {1, 2} = ∅.

Pick any coalitional ranking % satisfying 3(a). By definition, we have

1 �f(%) 2.

By 3(a), for each S ⊇ {1, 2}, S 6= {1, 2}, and each T such that T ∩ {1, 2} = ∅,
we have S � T . And, by definition of π, we have:[

S � T
]
⇐⇒

[
π(S) �π π(T )

]
⇐⇒

[
S \ {1, 2} �π T ∪ {1, 2}

]
.

If we set T ′ = S \ {1, 2} and S′ = T ∪ {1, 2}, we easily conclude that %π
satisfies 3(b). By definition of f we get:

2 �f(%π) 1 (6)

By definition of π, π(S) = S whenever S ∩ {1, 2} is a singleton, so that

∀S, T ⊆ N \ {1, 2}, S ∪ {i} % T ∪ {i} ⇐⇒ S ∪ {i} %π T ∪ {i}.

If we take the identity permutation id ∈ Π2N\{1,2} , the above equivalence can
be rewritten as:

∀S, T ⊆ N \ {1, 2}, S ∪ {i} % T ∪ {i} ⇐⇒ id(S) ∪ {i} %π T ∪ {i}.

It follows that id and %π satisfy the conditions of Coalitional Anonymity. By
Coalitional Anonymity, we obtain:

1f(%π)2,

which contradicts (6).

Let σ : N −→ N be a permutation of the elements of N , σ−1 stands
for its inverse, and ΠN denotes the set of such permutations. For each S ∈ ΩN ,
σ(S) denotes the subset of agents {σ(i) : i ∈ S}.

Given a permutation σ ∈ ΠN and a coalitional ranking %∈ RΩN , we define
the coalitional ranking %σ∈ RΩN in the following way:

∀S, T ∈ ΩN ,
[
S %σ T

]
⇐⇒

[
σ−1(S) % σ−1(T )

]
.

Neutrality (N) A social ranking solution f on RΩN satisfies Neutrality if for
each %∈ RΩN and each σ ∈ ΠN , it holds that:

∀i, j ∈ N,
[
if(%)j

]
⇐⇒

[
σ(i)f(%σ)σ(j)

]
.

The interpretation of the Neutrality axiom is trivial: any assessment of
individual contributions should not depend on the name of football players
(or on other personal attributes like the squad number, or the bank account).

Remark 1 1. A permutation σ can be viewed as a particular size invariant
permutation in Π∗ΩN by considering the sets σ(S), S ∈ ΩN . With this
convention, we have %σ=%σ.
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2. As a consequence of the previous point, if we consider the composition
σ ◦ π, this means that σ is viewed as a permutation in Π∗ΩN .

3. For two permutations π and π′ ∈ ΠΩN , it holds that (%π′)π =%π◦π′ .
Indeed,

S(%π′)πT ⇐⇒ π−1(S)(%π′)π
−1(T )⇐⇒ π′−1(π−1(S)) % π′−1(π−1(T )).

On the other hand,

π′−1(π−1(·)) = (π′−1 ◦ π−1)(·) = (π ◦ π′)−1(·).

Thus,

S(%π′)πT ⇐⇒ (π ◦ π′)−1(S) % (π ◦ π′)−1(T )⇐⇒ S %π◦π′ T,

as asserted.
4. Assume that

E
%
1 �∗ E

%
2 �∗ · · · �∗ E

%
k ,

and pick any π ∈ ΠΩN . We have:

E
%π
1 �∗π E

%π
2 �∗π · · · �∗π E

%π
k ,

where, for q ∈ {1, 2, . . . , k}, E%π
q = π(E

%
q ).

For the next axiom, already introduced by Bernardi et al. in [8], we need a
definition. Consider any coalitional ranking %∈ RΩN . We say that the coali-
tional ranking %′∈ RΩN is a refinement of % if %′ is a subrelation of %, that
is, if %′⊆%. Because % is a total preorder this is equivalent to say that:

∀S, T ∈ ΩN ,
[
S � T

]
=⇒

[
S �′ T

]
.

Recall that the induced quotient relation�∗ of coalitional ranking%∈ RΩN
is such that:

E
%
1 �∗ E

%
2 �∗ · · · �∗ E

%
k .

A refinement %k∈ RΩN of % is obtained from the last equivalence class

E
%
k of % if:

∀S, T ∈ ΩN ,
[
S ∼ T ∧ S �k T

]
=⇒

[
S, T ∈ E%

k

]
.

Independence from the Worst Class (IWC) A social ranking solution f
on RΩN satisfies Independence from the Worst Class if for each %∈ RΩN and

each refinement %k∈ RΩN of % obtained from the last equivalence class E
%
k

of %, it holds that:

∀i, j ∈ N,
[
i �f(%) j

]
=⇒

[
i �f(%k) j

]
.

The IWC axiom states that the performance of agents in coalitions placed
in the highest positions is more important. So, if a decision about the (strict)
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ranking between two agents is taken, changing the relative ranking of coalitions
in the lowest equivalence class should not affect the decision.

This axiom is very interesting in the context of football players where, in
general, the performance of a consistent number of coalitions of a squad cannot
be really evaluated due to a lack of information (players of certain groups
rarely play together or for very small fractions of time, or simply because the
game-patterns implemented by the team management does not allow for such
combinations of players; see Example 7 in this respect). In these cases, one
possibility is to place coalitions missing an evaluation in the last equivalence
class of the coalitional ranking. Then, the IWC property states that such
coalitions do not count if a decision concerning the comparison between two
players has been already taken based on the performance of coalitions in higher
positions.

Ranking solutions should apply to different coalitional rankings in a co-
herent way. In this respect, moving from a coalitional ranking to a slightly
different one, next axioms impose a restriction on how the individual rank-
ing should change according to alternative notions of monotonicity. The next
notation is central to construct a monotonicity principle.

Let % and %′ be two coalitional rankings in RΩN and a coalition S0 ∈ ΩN .
We say that %′ is obtained from % through S0, if:

∀S, T ∈ ΩN \ S0,
[
S %′ T

]
⇐⇒

[
S % T

]
.

If, moreover,

∀T ∈ ΩN \ S0, [S0 % T ] =⇒ [S0 �′ T ],

we say that %′ is S0 improving with respect to %. Reciprocally, we say that
%′ is S0 deteriorating if:

∀T ∈ ΩN \ S0,
[
T % S0

]
=⇒

[
T �′ S0

]
.

The next notion of monotonicity is a standard assumption that can be
resumed in the very general principle that improving the performance of a
coalition of individuals S ⊆ N should advocate in favour of the individuals in
S to break ties among individuals (see [8] for more details).

Monotonicity (M) A social ranking solution f on RΩN satisfies Monotonic-
ity if for each pair {i, j} ⊆ N of distinct agents, each coalition S0 containing i
but not j, each pair {%,%′} of coalitional rankings such that%′ is S0 improving
with respect to %, it holds that:

[if(%)j] =⇒ [i �f(%′) j].

However, in more dynamic frameworks where the interactions and the per-
formance of coalitions evolve rapidly in time, it could be meaningful to look at
a sequence of modifications of the position of coalitions applying in favour or to
the detriment of a single individual i and without affecting another individual
j.
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Consider two coalitional rankings % and %′ in RΩN and two distinct agents
i and j. An ij-path between % and %′ is a sequence (%`)t`=−r of coalitional
rankings in RΩN such that:

1. %−r=% and %t=%′;
2. there is an associated sequence (S`)t−1

`=−r of coalitions in ΩN such that, for

each ` ∈ {−r, . . . , t− 1}, S` ∩ {i, j} = {i};
3. for each ` ∈ {−r, . . . ,−1}, %`+1 is S` improving with respect to %`;
4. for each ` ∈ {0, . . . , t− 1}, %`+1 is S` deteriorating with respect to %`;
5. each coalition S`, ` ∈ {−r, . . . , t−1}, belongs to the same equivalence class

of %0;

Example 3 Consider the coalition ranking % on N = {1, 2, 3} such that:

{1, 2, 3} ∼ {1, 2} � {1, 3} � {2, 3} ∼ {1} � {2} ∼ {3}.

We construct the 23-path (%−1,%0,%1,%2), where %−1=%, S−1 = {2}, S0 =
{1, 2}, S1 = {2}, and

{1, 2, 3} ∼0 {1, 2} ∼0 {2} �0 {1, 3} �0 {2, 3} ∼0 {1} �0 {3},

{1, 2, 3} ∼1 {2} �1 {1, 3} ∼1 {1, 2} �1 {2, 3} ∼1 {1} �1 {3},
{1, 2, 3} �2 {1, 3} ∼2 {1, 2} �2 {2, 3} ∼2 {2} ∼2 {1} �2 {3}.

Therefore, the coalitional ranking%0 is S−1 improving with respect to%−1=%,
the coalitional ranking %1 is S0 deteriorating with respect to %0, and the
coalitional ranking %2 is S1 deteriorating with respect to %1. Finally, note
that the coalitions involved in the 23-path belong to the same equivalence

class of %0, namely E
%0

1 .

The next three axioms are based on the notion of ij-paths. The first axiom,
called Improving path monotonicity, reflects the following principle. Suppose
that an ij-path exists between two coalitional rankings % and %

′
such that

there are more improving moves than deteriorating ones. So, the number of
improving moves prevails over the number of deteriorating moves. The princi-
ple says that if agent i is at least highly ranked than agent j in f(%), then i
should be strictly better ranked than j in f(%′).

Improving Path Monotonicity (IPM) A social ranking solution f onRΩN
satisfies Improving path monotonicity if for each pair {i, j} ⊆ N of distinct
agents and each ij-path (%`)t`=−r ⊆ RΩN such that r > t, it holds that:[

if(%)j
]

=⇒
[
i �f(%′ ) j

]
.

Remark 2 It must be noted that for IPM and for the two following axioms
of path monotonicity, the order on which the coalitions are used to construct
the path does not matter, provided that, along the path, the index of each
improving coalition is lower than the index of each deteriorating coalition.
So, the only relevant parameters are the set of improving coalitions and the
set of deteriorating coalitions, with a priority in the path for the improving
coalitions.
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Consider for instance a football team management that must update the
information about groups’ performance after each match of championship.
Suppose that, at the original time t0 (beginning of the championship season),
a player i is at least as strong as another individual j based on a given social
ranking solution applied to the current coalitional ranking. Now, based on the
new evaluation after the new match, the team management recognizes that
a coalition containing individual i (but not j) improves the position in the
coalitional ranking. Match after match, the team management take a record
of all the improvements of coalitions containing i (but not j), as well as the
record of coalitions that eventually deteriorate their position, with respect to
an original coalitional ranking used as a reference. It’s then extremely tempting
to take into account this history of improvement or deteriorations to end up
with an individual comparison keeping into account players pivotal role along
the championship season. One simple way to do it is to look at the number
of improvements r and deteriorations t of a player i and, at the end of the
season, break an eventual tie between i and j in the original ranking (the
previous season) according to the comparison between r and t (in favour of i
if r > t), provided that all improvements and deteriorations are performed on
a comparable ordinal scale, i.e. all improvements of coalitions end up in the
same equivalence class of some benchmark ranking %0; and all deteriorations
of coalitions start from this equivalence class of %0 as well (see point 5 in the
definition of ij-path). This intuition brings to the above IPM axiom.

Note that Improving Path Monotonicity is a stronger axiom than Mono-
tonicity, that is,

[Improving Path Monotonicity] =⇒ [Monotonicity].

To see this, it suffices to set r = 1 and t = 0 in the ij-path.
Of course IPM is not the only way to break possible ties in the original

coalitonal ranking. Under some dominant game-pattern tactic adopted by the
team, the team management could argue that it is not the number of improving
or deteriorating moves that makes the difference between two equivalent play-
ers, but actually the size of the smallest coalition generating an improvement
(leading to definition of the PMPSC axiom below), or that such a size-based
criterion to break ties should apply only if the number of improving moves
equals the number of deteriorating ones (leading to the WPMPSC axiom be-
low).

More precisely, the next axiom focuses on the size of the coalitions we use
in an ij-path and not on the number of improving moves compared to the
deteriorating moves. Assume that two coalitional rankings % and %

′
are con-

nected through an ij-path. Assume further that among the coalitions we use
in the improving moves, one of them, say the first one S−r, contains strictly
less elements than the coalitions we use in the deteriorating moves. The prin-
ciple indicates that if agent i is at least highly ranked than agent j in f(%),
then i becomes strictly better ranked than j in f(%′). Reciprocally, assume
that St−1 contains strictly less elements than each coalition we use in the im-
proving moves. The principle indicates that if agent j is at least highly ranked
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than agent i in f(%), then j becomes strictly better ranked than i in f(%′). In
this sense, this principle gives priority to the smallest coalition whatever the
number of improving moves and deteriorating moves along the ij-path.

Path Monotonicity with Priority to the Smallest Coalition (PMPSC)
A social ranking solution f on RΩN satisfies Path Monotonicity with Priority
to the Smallest Coalition if for each pair {i, j} ⊆ N of distinct agents and each
ij-path (%`)t`=−r ⊆ RΩN such that, for each ` ∈ {0, . . . , t − 1}, |S`| > |S−r|,
then it holds that: [

if(%)j
]

=⇒
[
i �f(%′) j

]
.

Note that Path Monotonicity with Priority to the Smallest Coalition is
stronger than Monotonicity,[
Path Monotonicity with Priority to the Smallest Coalition

]
=⇒

[
Monotonicity

]
.

To see this, it suffices to set r = 1 and t = 0 in the definition of an ij-
path. Note also that neither Path Monotonicity with Priority to the Smallest
Coalition implies Improving Path Monotonicity nor it is implied by Improving
Path Monotonicity.

The last axiom is a weak version of Path Monotonicity with Priority to the
Smallest Coalition. It only says something when an ij-path contains an equal
number of improving and deteriorating moves. In such a case, a priority is still
given to the smallest coalition.

Weak Path Monotonicity with Priority to the Smallest Coalition
(WPMPSC) A social ranking solution f on RΩN satisfies Weak Path Mono-
tonicity with Priority to the Smallest Coalition if for each pair {i, j} ⊆ N of
distinct agents and each ij-path (%`)t`=−r ⊆ RΩN such that r = t and for each

` ∈ {0, . . . , t− 1}, |S`| > |S−r|, then it holds that[
if(%)j

]
=⇒

[
i �f(%′) j

]
.

Path Monotonicity with Priority to the Smallest Coalition implies Weak
Path Monotonicity with Priority to the Smallest Coalition. Indeed, in Path
Monotonicity with Priority to the Smallest Coalition, no condition on the
number of improving and deteriorating moves on an ij-path is needed to give
priority to the smallest coalition.

4 Preliminary results

Given a coalitional ranking %∈ RΩN and an agent i ∈ N , we construct the ma-
trix M%,i of size (n, k) where each entry M�,ipq denotes the number of coalitions

of size p ∈ {1, . . . , n} containing i in the equivalence class E
%
q , q ∈ {1, . . . , k}.

For each p, it holds that:

k∑
q=1

M
%,i
pq =

(
n− 1

p− 1

)
, and so

n∑
p=1

k∑
q=1

M
%,i
pq = 2n−1. (7)
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For each pair {i, j} ⊆ N , each equivalence class E
%
q and each size p ∈ {1, . . . , n},

define the subsets of coalitions:

Ei,j,pq = E
%
q ∩
{
S : S 3 i, S 3 j, |S| = p

}
and Ei,j̄,pq = E

%
q ∩
{
S : S 3 i, S 63 j, |S| = p

}
.

We have:

M
%,i
pq = |Ei,j,pq |+ |Ei,j̄,pq | and M

%,j
pq = |Ei,j,pq |+ |Ej,̄i,pq |.

In case M%,i = M%,j , the above equalities imply that, for each equivalence

class E
%
q , q ∈ {1, . . . k} and each size p ∈ {1, . . . , n}, |Ei,j̄,pq | = |E ī,j,pq |. There-

fore, for each equivalence class and each size, there exists a bijection

bij,pq : Ei,j̄,pq −→ Ej,̄i,pq (8)

Definition 1 For any %∈ RΩN and any pair {i, j} ⊆ N of distinct agents
such that M%,i = M%,j , define the following subset of size invariant, agent i
invariant and agent j invariant permutations π%,ij ∈ Π∗ΩN :

1. for each S ⊆ N \ {i, j} and each S ⊇ {i, j}, π%,ij(S) = S;
2. for each q ∈ {1, . . . , k}, each size p ∈ {1, . . . , n} and each coalition S ∈
Ei,j̄,pq ,

π%,ij(S) =
(
bij,pq (S) \ {j}

)
∪ {i},

where bij,pq is given by (8);
3. for each q ∈ {1, . . . , k}, each size p ∈ {1, . . . , n} and each coalition T ∈
Ej,̄i,pq ,

π%,ij(T ) =
(
(bij,pq )−1(T ) \ {i}

)
∪ {j}.

Lemma 2 Consider any coalitional ranking %∈ RΩN such that M%,i = M%,j

for some pair {i, j} ⊆ N of distinct agents, the permutation σ ∈ ΠN such that
σ(i) = j, σ(j) = i, and σ(`) = ` for each ` ∈ N \ {i, j}, and any permutation
π%,ij ∈ Π∗ΩN as in Definition 1. Then, (%π%,ij )σ =%.

Proof. By points 2 and 3 of Remark 1, (%π%,ij )σ =%σ◦π%,ij , and by point 4
it suffices to show that the equivalence classes of (%π%,ij )σ coincides with the

equivalence classes of %. Therefore, consider the composition σ ◦ π%,ij . Pick
any S ∈ ΩN . Several cases arise.
Case 1 Either S ⊇ {i, j} or S ⊆ N \ {i, j}. In such a case, we have (σ ◦
π%,ij)(S) = S, and so trivially (σ ◦ π%,ij)(S) ∼ S.
Case 2 S ∈ Ei,j̄,pq . By point 2 of Definition 1 and definition of σ, we have:

(σ ◦ π%,ij)(S) = σ
(
(bij,pq (S) \ {j}) ∪ {i}

)
= bij,pq (S),

where bij,pq (S) ∈ Ei,j̄,pq . This implies that S ∼ (σ ◦ π%,ij)(S).

Case 3 S ∈ Ej,̄i,pq . This case is similar to the previous case.
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From the above three cases, we deduce that

(σ ◦ π%,ij)(E
%
q ) ⊆ E%

q .

By the fact that (σ ◦ π%,ij) is a bijective function as a composition of two
bijective functions, we obtain the desired result:

(σ ◦ π%,ij)(E
%
q ) = E

%
q .

By point 4 of Remark 1,

E
%
1 �∗σ◦π%,ij E

%
2 �∗σ◦π%,ij · · · �∗σ◦π%,ij E

%
k ,

which proves that the quotient order �∗
σ◦π%,ij coincides with the quotient order

�∗. Thus, we obtain the desired result (%π%,ij )σ =%. �

Proposition 2 Let f be a social ranking solution on RΩN satisfying Neutral-
ity (N) and Super Weak Coalitional Anonymity (SWCA). For each %∈ RΩN ,
it holds that:

∀i, j ∈ N,
[
M%,i = M%,j

]
=⇒

[
i ∼f(%) j

]
.

Proof. Let f be as hypothesized. Pick any coalitional ranking %∈ RΩN and
any two distinct agents i and j in N such that M%,i = M%,j . First, consider
the permutation σ ∈ ΠN such that σ(i) = j, σ(j) = i and σ(`) = ` for each
` ∈ N \ {i, j}. Next, consider a size invariant permutation π%,ij ∈ Π∗ΩN as in
Definition 1. By Super Weak Coalitional Anonymity,[

if(%)j
]
⇐⇒

[
if(%π%,ij )j

]
.

By Neutrality,

[if(%π%,ij )j
]
⇐⇒ [σ(i)f((%π%,ij )σ)σ(j)],

and so, by definition of σ, jf((%π%,ij )σ)i. By Lemma 2, (%π%,ij )σ =%. There-
fore, we conclude that

[if(%)j] =⇒ [jf(%)i],

and so i ∼f(%) j, which completes the proof of Proposition 2. �

Bernardi et al. in [8] obtain a connected result (see the Per-class equal-
ity property in Step 2 of the proof of Theorem 1) by using Neutrality and
Coalitional Anonymity.

Proposition 3 (Bernardi et al. [8]) Let f be a social ranking solution RΩN
satisfying Neutrality and Coalitional Anonymity. For each %∈ RΩN , it holds
that:

∀i, j ∈ N,
[
∀q ∈ {1, . . . , k},

n∑
p=1

M
%,i
pq =

n∑
p=1

M
%,j
pq

]
=⇒

[
i ∼f(%) j

]
.
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To understand the differences between both results, recall that Coalitional
Anonymity is a stronger axiom than Super Weak Coalitional Anonymity. As
a consequence, Bernardi et al. [8] can assume a weaker condition on M%,i and
M%,j than ours to obtain the indifference between i and j. In the present case,
the condition

∀q ∈ {1, . . . , k},
n∑
p=1

M
%,i
pq =

n∑
p=1

M
%,j
pq

is weaker than the condition M
%,i
pq = M

%,j
pq . On the other hand, because our

axiom of Super Weak Coalitional Anonymity is weaker than the axiom of
Coalitional Anonymity, we need to assume a stronger condition on M%,i and
M%,j to obtain the indifference between i and j. Nevertheless, it turns out
that Coalitional Anonymity can be replaced by the weaker axiom of Weak
Coalitional Anonymity in the statement of Proposition 3.

Proposition 4 Let f be a social ranking solution RΩN satisfying Neutrality
(N) and Weak Coalitional Anonymity (WCA). For each %∈ RΩN , it holds
that:

∀i, j ∈ N,
[
∀q ∈ {1, . . . , k},

n∑
p=1

M
%,i
pq =

n∑
p=1

M
%,j
pq

]
=⇒

[
i ∼f(%) j

]
.

The proof of Proposition 4 follows similar steps as the proofs of Lemma 2
and Proposition 2, and so is omitted. The main difference is that we have to
consider bijections of the following form:

bijq : Ei,j̄q −→ Ej,̄iq ,

where

Ej,̄iq = E
%
q ∩

{
S : S 63 i, S 3 j

}
and Ei,j̄q = E

%
q ∩

{
S : S 3 i, S 63 j

}
These bijections exist since, by hypothesis,

|Ei,j̄q | =
n∑
p=1

M
%,i
pq − |Ei,jq | =

n∑
p=1

M
%,j
pq − |Ei,jq | = |Ej,̄iq |,

where, similarly as before,

Ej,iq = E
%
q ∩

{
S : S 3 i, S 3 j

}
.

Therefore, Proposition 4 is stronger than Proposition 3 obtained in Bernardi
et al. in [8].
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5 Comparable axiomatizations of three social ranking solutions

We introduce three social ranking solutions for coalitional rankings. One of
them is the Lexicographic excellence solution studied by Bernardi et al. in [8],
the two other are new.

In the sequel, for each q ∈ {1, . . . , k}, the notation M
%,i
q stands for the

sum of the elements M
%,i
pq , p ∈ {1, . . . , n}, that is

M
%,i
q :=

n∑
p=1

M
%,i
pq .

Definition 2 The Lexicographic excellence solution L on RΩN is defined as:

i �L(%) j ⇐⇒
[
∃q0 ∈ {1, . . . , k−1} :

(
∀q < q0,M

%,i
q = M

%,j
q

)
∧
(
M

%,i
q0 > M

%,j
q0

)]
.

In words, agent i has a strictly better ranking than agent j in a coalitional

ranking % if, starting from the best equivalence class E
%
1 , one can find an

equivalence class E
%
q0 where the number of coalitions containing i is strictly

greater than the number of coalitions containing j. Otherwise, if for each

equivalence class E
%
q , q ∈ {1, . . . , k}, the number of coalitions containing i

is equal to the number of coalitions containing j, then both agents have the
same rank under L. The Lexicographic excellence solution does not take into
account the size of the coalitions to which an agent is a member. The next
two solutions incorporate a size effect.

Definition 3 The solution L(1) on RΩN is defined as follows: i �L(1)(%) j if

there is (p0, q0) ∈ {1, . . . , n} × {1, . . . , k − 1} such that:

1. ∀p ∈ {1, . . . , n},∀q < q0, M
%,i
pq = M

%,j
pq ;

2. ∀p < p0, M
%,i
pq0 = M

%,j
pq0 ;

3. M
%,i
p0q0 > M

%,j
p0q0 .

In words, for any two distinct agents i and j, we explore the first equivalence

class E
%
1 . If, for each coalition of size p ∈ {1, . . . , n}, the number of coalitions

containing i is equal to the number of coalitions containing j, then we move

to the next equivalence class E
%
2 . We repeat the exploration until we reach an

equivalence class E
%
q0 and a coalition size p0 ∈ {1, . . . , n} such that the number

M
%,i
p0q0 of coalitions of size p0 containing i is different from the number M

%,j
p0q0 of

coalitions of size p0 containing j. If there are several such coalition sizes p0, we

consider the smallest one. If M
%,i
p0q0 > M

%,j
p0q0 , agent i has a strictly better rank

than agent j in the coalitional ranking %. Otherwise, if for each equivalence

class E
%
q , q ∈ {1, . . . , k}, and each coalition size p ∈ {1, . . . , n}, the number of

coalitions containing i is equal to the number of coalitions containing j, then
L(1) indicates that both agents have the same rank in the coalitional ranking
%.
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Definition 4 The solution L(2) on RΩN is defined as follows: i �L(2)(%) j if

there is (p0, q0) ∈ {1, . . . , n} × {1, . . . , k − 1} such that:

1. ∀p ∈ {1, . . . , n},∀q < q0, M
%,i
pq = M

%,j
pq ;

2. either (2.1) M
%,i
q0 > M

%,j
q0 or (2.2) M

%,i
q0 = M

%,j
q0 , ∀p < p0, M

%,i
pq0 =

M
%,j
pq0 , and M

%,i
p0q0 > M

%,j
p0q0 .

In words, for any two distinct agents i and j, we explore the first equivalence

class E
%
1 . If, for each coalition size p ∈ {1, . . . , n}, the number of coalitions

containing i is equal to the number of coalitions containing j, then we move

to the next equivalence class E
%
2 . We repeat the exploration until we reach an

equivalence class E
%
q0 and a coalition size p0 ∈ {1, . . . , n} such that the number

M
%,i
p0q0 of coalitions of size p0 containing i is different from the number M

%,j
p0q0

of coalitions of size p0 containing j. At this step (which corresponds to point
2 of the definition), two cases can be distinguished:

(2.1) the number M
%,i
q0 of coalitions containing i is different from the num-

ber of coalitions M
%,j
q0 containing j. If M

%,i
q0 > M

%,j
q0 , then agent i has a strictly

better rank than agent j in the coalitional ranking %;

(2.2) M
%,i
q0 = M

%,j
q0 . Then, we consider the smallest size p0 such that M

%,i
p0q0

is different from M
%,j
p0q0 . If M

%,i
p0q0 > M

%,i
p0q0 , agent i has a strictly better rank

than agent j in the coalitional ranking %.
Otherwise, that is, if such a pair (p0, q0) does not exist in %, the two

matrices M%,i and M%,j are identical, and L(2) indicates that i and j are
equivalent agents in the coalitional ranking %.

To fix the ideas, the next example shows a coalitional ranking where the
three solutions L, L(1) and L(2) generate different rankings on the elements of
N .

Example 4 Consider the coalitional ranking %∈ RΩN with N = {1, 2, 3, 4}
such that

{1} ∼ {2, 3} ∼ {2, 4} � {2} ∼ {3} ∼ {1, 3} ∼ {1, 4} � S

for any other S ⊆ N not previously listed in the ranking and such that

E
%
1 = {{1}, {2, 3}, {2, 4}}, E%

2 = {{2}, {3}, {1, 3}, {1, 4}},

and
E

%
3 = {{4}, {1, 2}, {3, 4}, {1, 2, 3, 4}} ∪ {S ⊆ N : |S| = 3}.

Then,

M%,1 =


1 0 0
0 2 1
0 0 3
0 0 1

 , M%,2 =


0 1 0
2 0 1
0 0 3
0 0 1

 , M%,3 =


0 1 0
1 1 1
0 0 3
0 0 1

 , M%,4 =


0 0 0
1 1 2
0 0 3
0 0 1

 .
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By Definition 2, we have that 2 �L(%) 1 ∼L(%) 3 �L(%) 4, whereas, by Defini-
tion 3, we have 1 �L(1)(%) 2 �L(1)(%) 3 �L(1)(%) 4 and, finally, by Definition 4,
2 �L(2)(%) 1 �L(2)(%) 3 �L(2)(%) 4.

The main result of the paper provides comparable axiomatizations of the
above three social ranking solutions. In particular, point 1(a) in Theorem 1
below provides a stronger axiomatic characterization of the lex-cel solution L
than the one contained in Theorem 1 in Bernardi et al. [8].

Theorem 1 1. The social ranking solution L is the unique solution on RΩN
satisfying Neutrality, Weak Coalitional Anonymity (WCA), and one of the
following set of axioms:

(a) Independence from the Worst Class (IWC) and Monotonicity (M);
(b) Improving Path Monotonicity (IPM).

2. The social ranking solution L(1) is the unique solution on RΩN satisfy-
ing Neutrality (N), Super Weak Coalitional Anonymity (SWCA), Indepen-
dence from the Worst Class (IWC) and Path Monotonicity with Priority
to the Smallest Coalition (PMPSC).

3. The social ranking solution L(2) is the unique solution on RΩN satisfying
Neutrality, Super Weak Coalitional Anonymity (SWCA), Independence
from the Worst Class (IWC), Improving Path Monotonicity (IPM) and
Weak Path Monotonicity with Priority to the Smallest Coalition (WPMPSC).

Proof. Point 1.a. The proof is similar to step 3 in Theorem 1 in Bernardi et al.
[8] except that Proposition 4 is used instead of Proposition 3. So, the details
of the proof are omitted.

Point 1.b. Obviously, the solution L also satisfies Improving Path Mono-
tonicity. Conversely, consider a solution f on RΩN that satisfies Neutrality,
Weak Coalitional Anonymity, and Improving Path Monotonicity. Pick any
two distinct agents i and j in N and a coalitional ranking %∈ RΩN such that
i �L(%) j. For the rest of the proof, recall that the sets of coalitions Ej,̄iq and

Ej,̄iq are defined as follows:

Ej,̄iq = E
%
q ∩

{
S : S 63 i, S 3 j

}
and Ei,j̄q = E

%
q ∩

{
S : S 3 i, S 63 j

}
.

Because i �L(%) j, there exists an integer q0 such that, for each q < q0, it

holds that M
%,i
q = M

%,j
q , and M

%,i
q0 > M

%,j
q0 . This implies the following facts:

(a)
∑
q≥q0 M

%,i
q =

∑
q≥q0 M

%,j
q ;

(b)
∑
q≥q0 |E

i,j̄
q | =

∑
q≥q0 |E

j,̄i
q |;

(c) |Ei,j̄q0 | > |E
j,̄i
q0 |.

Next, consider an ij-path (%`)t`=−r satisfying the following conditions:

1. %−r =%;
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2. for each coalition S ∈
⋃
q>q0

Ei,j̄q , there exists a unique ` ∈ {−r, . . . ,−1}
such that S = S`, the coalitional ranking %`+1 is S` improving with respect

to %` and S` ∈ E%0

q0 ;
3. to complete the ij-path, note that:∣∣ ⋃

q>q0

Ej,̄iq
∣∣ =

∑
q>q0

|Ej,̄iq | ≤
∑
q≥q0

|Ej,̄iq | =
∑
q≥q0

|Ei,j̄q | =
∣∣{S ∈ E%0

q0 : S 3 i, S 63 j
}∣∣,

where the last equality follows from the above point 2. of the ij-path.
Therefore, there is a one-to-one mapping

µ :
⋃
q>q0

Ej,̄iq −→
{
S ∈ E%0

q0 : S 3 i, S 63 j
}
,

from which one can define the deteriorating moves. Precisely, for each coali-
tion S = µ(T ), there exists an integer ` ∈ {0, . . . , t− 1} such that S` = S
and
%`+1 is S` deteriorating with respect to %`. Furthermore, thanks to the
existence of µ, one can force that S∼`+1 T .

We have r =
∑
q>q0
|Ei,j̄q | and t =

∑
q>q0
|Ej,̄iq |. From facts (b) and (c), we get

r < t. By construction, the last coalitional ranking %t of the ij-path satisfies:

∀q ∈ {1, . . . , k}, M
%t,i
q = M

%t,j
q .

Thus, by Proposition 4, we have i ∼f(%t) j.

By considering the reverse ij-path, i.e., the ij-path from %t to %−r=%,
we get an improving path since t > r. By Improving Path Monotonicity, it
follows that i �f(%−r) j, i.e., i �f(%) j. All in all, we have shown that:

(i �L(%) j) =⇒ (i �f(%) j).

Finally, if i ∼L(%) j, then, by Proposition 4, it holds that i ∼f(%) j. Conclude
that f coincides with L, the desired result.

To prove point 2 and point 3, we will use another procedure that we detail
below. First, we need a definition. Define the following lexicographic order
≤L on the pairs (p, q) ∈ {1, . . . , n} × {1, . . . , k − 1}: (p, q) <L (p′, q′) if either
(q < q′) or (q = q′ ∧ p < p′), where n is the number of agents and k is the
number of equivalence classes in a coalition ranking %∈ RΩ .

Procedure. Consider any coalitional ranking %∈ RΩ and any two distinct
agents i and j in N . Assume that M%,i 6= M%,j . Pick the least pair (p0, q0)

with respect to ≤L such that M
%,i
p0,q0 6= M

%,j
p0,q0 . any two distinct agents i and

j in N . Assume that M%,i 6= M%,j . Pick the least pair (p0, q0) with respect

to ≤L such that M
%,i
p0,q0 6= M

%,j
p0,q0 . Without loss of generality, assume that
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M
%,i
p0,q0 > M

%,j
p0,q0 . From %, construct another coalitional ranking %′ containing

q0 + 1 equivalence classes with the following induced quotient order �′:

E
%′

1 �′∗ · · · �′∗ E
%′

q0+1,

where

∀q ≤ q0, E
%′
q = E

%
q and E

%′

q0+1 =

k⋃
q=q0+1

E
%
q .

By construction, for each q ≤ q0, the q-th column of M%′,i is equal to the q-th
column of M%′,j . Thus, by (7), it holds that:

∀p ∈ {1, . . . , n}, M
%′,i
p,q0 +M

%′,i
p,q0+1 = M

%′,j
p,q0 +M

%′,j
p,q0+1 (9)

In particular, by construction and definition of (p0, q0),

∀p < p0, M
%′,i
p,q0 = M

%′,j
p,q0 , and M

%′,i
p0,q0 > M

%′,j
p0,q0 .

From the equivalence classes E
%′
q0 and E

%′

q0+1 of %′, we construct another coali-

tional ranking %′′ in the following way. For each size p ∈ {p0, . . . , n},
(a) ifM

%′,i
p,q0 > M

%′,j
p,q0 , then that there are at leastM

%′,i
p,q0−M

%′,j
p,q0 coalitions of

size p in E
%′

q0 containing i and not j. Let’s move these M
%′,i
p,q0 −M

%′,j
p,q0 coalitions

in the equivalence class E
%′

q0+1;

(b) if M
%′,i
p,q0 < M

%′,j
p,q0 , then, by (9), there are at least M

%′,i
p,q0+1 −M

%′,j
p,q0+1

coalitions of size p in E
%′

q0+1 containing i but not j. Let’s move these M
%′,i
p,q0+1−

M
%′,j
p,q0+1 coalitions in the equivalence class E

%′

q0 . From (a) and (b), we obtain

a new coalitional ranking %′′ such that M%′′,i = M%′′,j . In particular, recall

that M
%′,i
p0,q0 > M

%′,j
p0,q0 . End of the procedure.

We have the material to prove point 2 and point 3.

Point 2. The fact that L(1) satisfies Neutrality, Super Weak Coalitional Anony-
mity, Path Monotonicity with Priority to the Smallest Coalition, and Indepen-
dence from the Worst Class follows from the definition of L(1). Regarding the
uniqueness part, consider any solution f on RΩ satisfying Neutrality, Super
Weak Coalitional Anonymity, Path Monotonicity with Priority to the Small-
est Coalition, and Independence from the Worst Class. Pick any coalitional
ranking %∈ RΩ . To show: f(%) = L(1)(%). Consider any two distinct agents
i and j in N . Several cases arise.
Case 2.1 M%,i = M%,j . By Proposition 2, i ∼f(%) j and i ∼L(1)(%) j.

Case 2.2M%,i 6= M%,j . Without loss of generality, assume first that i �L(1)(%)

j and let the pair (p0, q0) ∈ {1, . . . , n} × {1, . . . , k − 1} as given in Defini-
tion 3. Note that the choice of (p0, q0) in Definition 3 is unique and corre-
sponds to the choice of the least pair (p0, q0) with respect to ≤L such that
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M
%,i
p0,q0 6= M

%,j
p0,q0 in the Procedure. By definition of the rule L(1), i �L(1)(%) j

means M
%,i
p0,q0 > M

%,j
p0,q0 . From %, we construct %′ and %′′ as indicated in the

Procedure. Because the coalitional ranking %′′ is such that M%′′,i = M%′′,j ,
apply Proposition 2 to conclude that i ∼f(%′′) j. Next, note that there exists

an ij-path (%`)t`=−r from %′′ to %′ satisfying the condition of Path mono-
tonicity with priority to the smallest coalition. Indeed, from %′′, first use the
set of coalitions involved in point (a) of the Procedure to define improving
moves. Set %−r=%′′. The first successor of %′′ along the path is a coalitional

ranking %−r+1 obtained by moving one of the M
%′,i
p0,q0 −M

%′,j
p0,q0 coalitions of

size p0 from the equivalence class E
%′′

q0+1 to the equivalence class E
%′′

q0 . This

constitutes the first improving move along the path. From %−r+1, continue in
this manner for each coalition of size p0, and then for each coalition of size
p > p0 involved in point (a). We reach a coalitional ranking %0 where all coali-
tions involved in improving moves (the coalitions considered in point (a)) now

belong to the same equivalence class E
%0

q0 . Along this part of the sequence,

coalitions involved in point (b) of the Procedure have not be moved and so

also belong to E
%0

q0 . The successor %1 of %0 along the ij-path is obtained by a

deteriorating move: a coalition as in point (b) is moved from the equivalence

class E
%0

q0 to the equivalence class E
%0

q0+1. From %1, continue in this way until

all coalitions in point (b) have been exhausted. At this step, %′ is reached.
Because there is no coalition of size strictly less than p0 involved in the ij-
path, the latter satisfies the condition of Path Monotonicity with Priority to
the Smallest Coalition. By Path Monotonicity with Priority to the Smallest
Coalition, we have: [

i ∼f(%′′) j
]

=⇒
[
i �f(%′) j

]
.

By construction, % is a refinement of %′ obtained from the last equivalence

class E
%′

q0+1 that we divide into the equivalence classes E
%
q0+1, . . . , E

%
k . Thus,

by Independence from the Worst Class,[
i �f(%′) j

]
=⇒

[
i �f(%) j

]
.

In short, we have shown the following implication:[
i �L(1)(%) j

]
=⇒

[
i �f(%) j

]
.

Reciprocally, consider the case i �f(%) j. For the sake of contradiction,

assume first that i ∼L(1)(%) j. By Definition 3 of L(1), M%,i = M%,j . By
Proposition 2, we obtain i ∼f(%) j, which contradicts the fact that i �f(%) j.
The relation j �L(1)(%) i is also impossible since we have just seen above that
j �L(1)(%) i implies j �f(%) i. The only possibility is thus i �L(1)(%) j, so that

[i �f(%) j] =⇒ [i �L(1)(%) j].

We conclude that f(%) = L(1)(%). This completes the proof of point 2.
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Point 3. The fact the L(2) satisfies Neutrality, Super Weak Coalitional Anony-
mity, Independence from the Worst Class, Improving Path Monotonicity and
Weak Path Monotonicity with Priority to the Smallest Coalition follows di-
rectly from the definition of L(2). Regarding the uniqueness part, consider any
solution f on RΩ satisfying Neutrality, Super Weak Coalitional Anonymity,
Independence from the Worst Class, Improving Path Monotonicity and Weak
Path Monotonicity with Priority to the Smallest Coalition. Pick any coali-
tional ranking %∈ RΩ . To show: f(%) = L(2)(%). Consider any two distinct
agents i and j in N . In a similar way as in point 2., if M%,i = M%,j , then,
by Proposition 2, i ∼f(%) j and i ∼L(2)(%) j. So, assume that M%,i 6= M%,j .
Without loss of generality, assume first that i �L(2)(%) j and let the pair

(p0, q0) ∈ {1, . . . , n} × {1, . . . , k − 1} as given in the Procedure. From %, we
construct %′ and %′′ as in the Procedure. Again, because the coalitional
ranking %′′ is such that M%′′,i = M%′′,j , apply Proposition 2 to conclude that
i ∼f(%′′) j. At this step, by Definition 4 of the rule L(2), two cases arise.

Case 3.1 M
%,i
q0 > M

%,j
q0 as in point 2.1 of Definition 4. By construction, the

q0th column of M%′,i coincides with the q0th column of M%,i and the q0th

column of M%′,j coincides with the q0th column of M%,j , and so M
%′,i
q0 >

M
%′,j
q0 . From this observation, we deduce that there is an ij-path from %′′

to %′ satisfying the conditions of Improving Path Monotonicity, that is an
ij-path (%`)t`=−r such that the number of improving moves is strictly greater
than the number of deteriorating moves. Indeed, and as in point 2., start from
%′′ and use the set of coalitions involved in point (a) to define improving moves
up to the coalitional ranking %0. In the coalitional ranking %0, all coalitions
involved in improving moves (the coalitions considered in point (a)) now belong

to the same equivalence class E
%0

q0 . Along this part of the sequence, coalitions

involved in point (b) have not be moved and so also belong to E
%0

q0 . Then,

from %0 use the set of coalitions involved in point (b) to define deteriorating

moves up to the coalitional ranking %′. Because M
%′,i
q0 > M

%′,j
q0 , the number

of improving moves using coalitions as in point (a) is strictly greater than the
number of moves using coalitions as in point (b), as specified by Improving
Path Monotonicity. By Improving Path Monotonicity, we obtain:[

i ∼f(%′′) j
]

=⇒
[
i �f(%′) j

]
.

Case 3.2 M
%,i
q0 = M

%,j
q0 , and for each p < p0, M

%,i
pq0 = M

%,j
pq0 , and M

%,i
p0q0 >

M
%,j
p0q0 as in point 2.2 of Definition 4. Note that this pair (p0, q0) corresponds

to one chosen above. Once again, we have M
%′,i
q0 = M

%′,j
q0 . By points (a) and

(b) of the construction of %′′ and (9), it follows that the number of improving
moves is necessarily equal to the number of deteriorating moves along the ij-
path. Furthermore, there is no coalition of size strictly less than p0 involved in
the ij-path. Therefore the ij-path associated with the Procedure satisfies the
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conditions of Weak Path Monotonicity with Priority to the Smallest Coalition.
By Weak Path Monotonicity with Priority to the Smallest Coalition,[

i ∼f(%′′) j
]

=⇒
[
i �f(%′) j

]
.

From Cases 3.1-3.2, we hereby conclude that i ∼f(%′′) j implies i �f(%′) j.
By construction, % is a refinement of %′ obtained from the last equivalence

class E
%′

q0+1 that we divide into the equivalence classes E
%
q0+1, . . . , E

%
k . Thus,

by Independence from the Worst Class,[
i �f(%′) j

]
=⇒

[
i �f(%) j

]
.

In short, we have shown the following implication:[
i �L(2)(%) j

]
=⇒

[
i �f(%) j

]
.

From this point on, the proof is similar to the last part of the proof of point
2, and so is omitted. We finally obtain f(%) = L(2)(%). This completes the
proof of point 3. �

6 Logical independence of the axioms

We prove that the axioms used in points 1(a), 1(b), 2 and 3 of Theorem 1 are
logically independent. Without loss of generality, assume in the sequel that
N = {1, . . . , n}.

Neutrality is not satisfied. Consider the social ranking solution fC on RΩN
defined as follows:

∀ %∈ RΩN , fC(%) = (1 �fC(%) 2 �fC(%) . . . �fC(%) n− 1 �fC(%) n).

Thus, whatever the coalitional ranking, fC ranks the agents according to the
natural order on N. This constant social ranking solution fC satisfies (Super)
Weak Coalitional Anonymity, Independence from the Worst Class, (Improv-
ing Path) Monotonicity, and (Weak) Path Monotonicity with Priority to the
Smallest Coalition, but obviously violates Neutrality.

Monotonicity is not satisfied. Consider the social ranking solution f I on
RΩN defined as follows:

∀ %∈ RΩN , f I(%) = (1 ∼fI(%) 2 ∼fI(%) . . . ∼fI(%) n− 1 ∼fI(%) n).

Whatever the coalitional ranking, f I indicates that all agents in N have the
same rank. This constant social ranking solution f I satisfies Neutrality, (Su-
per) Weak Coalitional Anonymity, Independence from the Worst Class, but
obviously violates Monotonicity.
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Improving Path Monotonicity is not satisfied. Because the solution f I

violates Monotonicity, it also violates Improving Path Monotonicity.

Path Monotonicity with Priority to the Smallest Coalition is not
satisfied. Because the solution f I violates Monotonicity, it also violates Path
Monotonicity with Priority to the Smallest Coalition.

Weak Path Monotonicity with Priority to the Smallest Coalition
is not satisfied. The solution L satisfies Neutrality, Super Weak Coalitional
Anonymity, Improving Path Monotonicity, Independence from the Worst Class,
but violates Weak Path Monotonicity with Priority to the Smallest Coalition
because it is not influenced by the size of the coalitions involved in an ij-path.
Furthermore, if the number of improving moves is equal to the number of de-
teriorating moves along an ij-path, then the relative ranking of the pair {i, j}
is not changed under L.

Independence from the Worst Class is not satisfied. We introduce
the transpose of the solution L(1) which relies on the same principle as L(1)

except that it first explores the lines of the matrices M%,i, i ∈ N , instead of
their columns. This results in the following solution (L(1))T defined as follows:
i �(L(1))T (%) j if there is (p0, q0) ∈ {1, . . . , n} × {1, . . . , k − 1} such that:

1. ∀q ∈ {1, . . . , k − 1},∀p < p0, M
%,i
pq = M

%,j
pq ;

2. ∀q < q0, M
%,i
p0q = M

%,j
p0q ;

3. M
%,i
p0q0 > M

%,j
p0q0 .

The social ranking solution (L(1))T satisfies Neutrality, (Super) Weak Coali-
tional Anonymity, Path Monotonicity with Priority to the Smallest Coalition,
but obviously violates Independence from the Worst Class.

(Super) Weak Coalitional Anonymity is not satisfied. From L(1) and
L(2), we construct two associated social ranking solutions. To this end, for
each %∈ RΩN and each i ∈ N , define

Ni =
{
j ∈ N \ {i} : {i, j} ∈ E%

1

}
,

as the set of agents belonging in a coalition of size two containing i in the

best equivalence class of %. For each r ∈ {1, 2}, let L
(r)
∗ be the social ranking

solution on RΩN defined as follows: i �
L

(r)
∗ (%)

j if

– either i �L(r)(%) j,

– or
[
i ∼L(r)(%) j and ∃` ∈ Ni : ∀`′ ∈ Nj , {`} � {`′}

]
;

and, i ∼
L

(r)
∗ (%)

j otherwise. Note that these solutions induce total preorders

on the agent set, as required by the definition of a social ranking solution.

For each r ∈ {1, 2}, L(r)
∗ satisfies all the axioms satisfied by L(r) except

Super Weak Coalitional Anonymity. To see this, consider a coalitional rank-
ing %∈ RΩN where, for some i and j in N , Ni = {`} and Nj = {`′} such
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that {`} � {`′} and i ∼L(r)(%) j for each r ∈ {1, 2}. We have i �
L

(r)
∗ (%)

j

since {`} � {`′}. Take the permutation π ∈ Π∗ΩN such that π({`}) = {`′} and
π({`′}) = {`} and π(S) for each other coalition S. Clearly, this permutation is
agent i invariant, agent j invariant, and size invariant. But, for each r ∈ {1, 2},
j �

L
(r)
∗ (%π)

i. Thus, Super Weak Coalitional Anonymity is violated. In partic-

ular, this implies that each L
(r)
∗ does not satisfy Weak Coalitional Anonymity.

We also note that L
(1)
∗ satisfies Neutrality, Independence from the Worst Class,

Improving Path Monotonicity, and so Monotonicity, but violates Super Weak
Coalitional Anonymity, and so violates Weak Coalitional Anonymity. Thus,
Neutrality, Independence from the Worst Class and Monotonicity do not im-
ply Weak Coalitional Anonymity. This remark is useful to show the logical
independence of point 1(a).

7 Application to sport rankings

As an example of application of the different social ranking solutions intro-
duced in this paper, we analyze the performance of four attacking players of
the Paris Saint Germain (PSG) team during the eight matches of Champions
League played during the season 2019/2020 (temporarily suspended on March
2020 for the covid-19 emergency). At this time, the PSG boss Thomas Tuchel
faces a selection dilemma when he must select among the four attacking stars
Di Maŕıa (D), Icardi (I), Mbappé (M) and Neymar (N). Attempting to provide
a ranking of the individual contributions of the four players during the last
eight matches of Champions League, we considered all different subsets of the
four stars, and we assessed some relevant parameters like the total number of
points scored p, the number of goals scored s and the one of goals conceded
c by those groups when employed together in a match. These parameters are
reported in Table 1.

coalitions points goals goals
(p) scored (s) conceded (c)

{I,D,M} 6 6 0
{I,D} 6 4 0
{I,M,N} 3 5 0
{D,N} 3 2 0
{M} 1 2 2
{N,M} 0 1 2

Table 1 Relevant parameters for coalitions of four PSG attackers during eight matches of
Champions League 2019/2020.

A coalitional ranking has been computed according to a lexicographic com-
parison of vectors (p, s,−c). The negative sign for parameter c represents the
fact that a smaller number of goals conceded is preferred; furthermore, all
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coalitions not employed during these matches have been provided with vec-
tors (0, 0, 0) and then classified in the worst equivalence class of the coalitional
ranking. Therefore we obtain:

{I,D,M} � {I,D} � {I,M,N} � {D,N} � {M} � {N,M} � S,

for each other S ⊆ {D, I,M,N} (which are all in the same worst equivalence
class). In such a case, we have that

M%,I =


0 0 0 0 0 0 1
0 1 0 0 0 0 2
1 0 1 0 0 0 1
0 0 0 0 0 0 1

 , M%,D =


0 0 0 0 0 0 1
0 1 0 1 0 0 1
1 0 0 0 0 0 2
0 0 0 0 0 0 1



M%,M =


0 0 0 0 1 0 0
0 0 0 0 0 1 2
1 0 1 0 0 0 1
0 0 0 0 0 0 1

 , M%,N =


0 0 0 0 0 0 1
0 0 0 1 0 1 1
0 0 1 0 0 0 2
0 0 0 0 0 0 1


It is easy to verify that all three solutions L,L(1) and L(2) yield the same
ranking I �L(%) D �L(%) M �L(%) N .

On the other hand, if we believe that a close “similarity” in terms of vec-
tors (p, s,−c) in Table 1 determines a substantial equivalence between the
corresponding coalitions, one might be led to consider coalitions {I,D,M}
and {I,D} in the same equivalence class, as well as coalitions {I,M,N} and
{D,N}, respectively. Accordingly, we would have a new coalitional ranking %′

such that

{I,D,M} ∼′ {I,D} �′ {I,M,N} ∼′ {D,N} �′ {M} �′ {N,M} �′ S,

for all other S (which are all in the same worst equivalence class). Now, we
have that

M%′,I =


0 0 0 0 1
1 0 0 0 2
1 1 0 0 1
0 0 0 0 1

 , M%′,D =


0 0 0 0 1
1 1 0 0 1
1 0 0 0 2
0 0 0 0 1

 .

So, now, I and D are ranked indifferently according to L (i.e., I ∼L(%′) D), but

according to L(1) and L(2),D is ranked strictly better than I (i.e.,D �L(1)(%′) I

and and D �L(2)(%′) I) due to the higher importance assigned by L(1) and L(2)

to players that contribute to a smaller coalition in the second equivalence class
(while in the first equivalence class I and D always appear together).
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8 Conclusion

The importance about of ranking groups/agents has been arisen in numerous
areas and it is of big interest in many settings. The subject of ranking sets
over the set of all subsets of an agent set N as a modeling tool for choice from
a ranking over the single elements of the set N has been exhaustively studied
in the literature (see, for instance, [23] or [7] for a survey.)

In this paper, we focus on ranking the single elements of the set N from
a ranking of the subsets of N , i.e., we focus on how to categorize agents or
items taking into account the classification of groups.

In [8], the authors introduced the lexicographic excellence (lex-cel) solu-
tion based on the idea of a lexicographic comparison of vectors where the
individuals that are in the more highly scored groups are rewarded. However,
in certain contexts, it would be more advisable considering to participate in
excellent groups with a determined size. Integrate this feature in the idea of
lexicographic excellence solution can enrich and improve the output in cer-
tain frameworks. With this purpose, we formulate desirable principles in the
given context, and look for identifying social rankings satisfying combinations
of them. Next, two novel social rankings are presented. Unlike of the lexico-
graphic excellence solution, these two new solutions incorporate the effect of
the size of coalitions on them. Finally, a new characterization for the lex-cell
solution is given, and to highlight the essential difference among this solution
and the two new solutions, comparable characterizations of these three solu-
tions is provided. A summary of the axiomatic characterization of the solutions
studied in this paper, together with the results provided by the analysis of the
logical independence of the axioms used in such characterizations, is presented
in Table 2.

Sol.\Axiom N WCA SWCA IWC M IPM PMPSC WPMPSC

L 31.a,1.b 31.a,1.b 3 31.a 31.a 31.b 8 8

L(1) 32 8 32 32 3 8 32 3

L(2) 33 8 33 33 3 33 8 33

fC 8 3 3 3 3 3 3 3

fI 3 3 3 3 8 8 8 8

(L(1))T 3 3 3 8 3 8 3 3

L
(1)
∗ 3 8 8 3 3 8 3 3

L
(2)
∗ 3 8 8 3 3 3 8 3

Table 2 A summary of the axioms that are satisfied by the social ranking solutions con-

sidered in this paper. Notation fC , fI , (L(1))T , L
(1)
∗ and L

(2)
∗ refer to the social ranking

solutions considered in Section 6. The label 3 means that the axiom in the column is satis-
fied by the solution in the row; labels 31.a, 31.b, 32, and 33 correspond to the axiomatic
characterizations provided in Theorem 1.1.(a), 1.1.(b), 1.2, and 1.3, respectively. The label
8 means that the axiom in the column is not satisfied by the solution in the row.

As we already noticed, the IWC axiom penalizes the elements that are
members of worst groups. Although ranking individuals based on their excel-
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lence is, in general, appealing, one could argue that a dual formulation of the
IWC axiom rewarding mediocrity could be more appropriate, for instance, if
the objective of a social ranking is triggering a competition at the lowest level
(e.g., to boost the reserve players for a promotion to the first team). In this
direction, already introduced in [8], a new axiom, Independence of the Best
Class (IBC), can be formulated by considering, in the definition of the IWC
axiom, any refinement obtained from the first equivalence class of a coalitional
ranking, instead of any refinement from the last equivalence class. In words,
the IBC axiom implies that the performance of agents in coalitions placed in
the best position is less important. Thus, if a decision about the (strict) rank-
ing between two agents is taken according to a solution satisfying the IBC
axiom, any change in the relative ranking of coalitions in the best equivalence
class should be ignored (see [8] for more details). Of course, such solutions
would not satisfy any more the axioms involving the notion of ij-path intro-
duced in this paper. To characterize such solutions, it suffices to introduce new
axioms of path monotonicity by considering first the sequence of deteriorating
coalitions, and then the sequence of improving coalitions.

However, there are many other challenging aspects that we will analyze in
future research. In fact, a more realistic assumption, in many contexts, would
be to consider a set of feasible coalitions F of N instead of the set of all subsets
of N . To illustrate it, consider a network of associated editors in the editorial
boards of journals in a certain area. Usually, there are some associated editors
who are members of the editorial board of several journals in the field. This
network has the structure of a union stable system as introduced in [2] where
the editorial boards of associated editors in the considered set of journals form
the basis of a union stable system or the so called supports. It would be of
interest, for instance, to have a tool to analyze editorial board members per-
formance, where set rankings come into play because journals need to rank
sets based on their individual rankings and also the inverse problem how to
rank associated editors of a certain set of journals according to the coalitional
ranking over their editorial boards. More specifically, starting from a ranking
over the elements of N to obtain a ranking of the set of feasible coalitions of
N and also the inverse problem as dealt with this paper when the domain is
F . Therefore, it will be specially appealing to look for social rankings when
the set of feasible coalitions has a special structure, for instance, as mentioned
in the above example, when focusing on union stable systems which are the
more general structures reflecting communication and constitute a refinement
of hypergraphs (see [3]) and an extension of the set of connected coalitions of
an undirected graph, or of the set of winning coalitions in a voting game as
studied in [1] (see also [4]) or of the particular class of antimatroids (see [17]
and [18]) which would take into account the hierarchical features in the set of
feasible coalitions, or the more particular case derived from the conjunctive or
disjunctive approach (see [19] and [9]). Also, it will be compelling to consider
structures which integrate, simultaneously, both communication and hierarchi-
cal properties as accessible union stable systems (see [5]), among others. So,
given a set of feasible coalitions, further research will include the presentation
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of rankings in this context, as well as the analysis of how the properties of the
set of feasible coalitions could influence the axioms which characterize them.
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1. Algaba, E., Béal, S., Rémila, E., Solal, P. (2019). Harsanyi power solutions for cooperative
games on voting structures. International Journal of General Systems, 48(6), 575-602.
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10. Csató, L. (2019a). An impossibility theorem for paired comparisons. Central European
Journal of Operations Research, 27(2), 497-514.
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