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Dynamic Retrieval of Olive Tree Properties Using
Bayesian Model and Sentinel-2 Images

Hana Abdelmoula , Abdelaziz Kallel , Jean-Louis Roujean , and Jean-Philippe Gastellu-Etchegorry

Abstract—The goal of this study is to provide a fine detection
and monitoring of olive orchard trees over large areas to antici-
pate any damage. We developed an original method to assess the
spatiotemporal dynamics of biophysical parameters in the olive
orchards using satellite observations and radiative transfer models.
Sentinel-2 time-series data collected over a four-year period were
fused with Planet images from the same time period to enhance
the temporal trends in olive orchards in the Sfax region located
in southern Tunisia. These images also served to extract soil spec-
trum variations required by the 3-D discrete anisotropic radiative
transfer model to account for canopy background effect. As a
backward model, we developed an original technique based on the
Markov chain Monte Carlo method that has the advantage of being
able to model sensor noise and account for spatial and temporal
regularization. It allows retrieving key parameters such as leaf area
index (LAI), chlorophyll content, water content, and mesophyll
structure. Taking advantage of 1) the Sentinel-2 images downscaled
to a moderate resolution of 80 m to ensure representative pixels
of the local mixing (i.e., trees and soil); 2) the appropriate soil
signature derived from high spatial and spectral resolution image;
and 3) the accuracy of the direct and inverse modeling, it was
possible to retrieve the plant properties even when LAI values are
less than 0.14. Indeed, our inversion results show that the estimated
parameters are strongly correlated especially with the LAI field
measurements with R2 = 0.9937.

Index Terms—Biophysical properties, discrete anisotropic
radiative transfer (DART), Markov chain Monte Carlo (MCMC),
olive trees, planet, Sentinel-2, time series.

I. INTRODUCTION

E STIMATING the biophysical properties of olive tree or-
chards is mandatory as it has a tremendous impact on

the agricultural field management, the vegetative decay, and
also for farmers, leading to monitoring health and estimating
yield. Leaf area index (LAI), chlorophyll content (Cab), and
other leaf biochemical components, such as dry matter (Cm),
water content (Cw), and mesophyll structure (N ) are indeed
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the meaningful parameters to better characterize olive crops
in their growing stage [1]. Any anomaly in the derivation of
such biophysical parameters is useful piece of information to
detect stress or disease [2]. These anomalies could be seen using
Sentinel-2 satellite data, mostly because of the red-edge (RE)
spectral regions sensitive to photosynthetic pigment absorption.
In addition, the short revisit interval at moderate latitudes of this
satellite offers important temporal information on short-term
changes in vegetation across broad regions. Recent research
using Sentinel-2 data revealed the sensor’s ability to monitor
biophysical parameters such as chlorophyll content [3] and
LAI [4], [5]. Therefore, Sentinel-2 data are deemed relevant
for vegetation monitoring, especially for heterogeneous and
complex canopies [6].

Sentinel-2 has a spatial resolution, which leads to mixed
pixels in our study area such like it is difficult to disentangle
the soil and vegetation components, whereas it is mandatory to
support our modeling approach. This is crucial since the canopy
is seldom closed in the case of olive orchards [7]. In addition,
as a result of agriculture practices and vegetation phenology in
these landscapes, soil varies spatially and seasonally. It is worth
recalling that Planet scenes have a 3-m spatial resolution but
limited spectral information. Moreover, they do not cover the RE
nor shortwave infrared domain. At least, this satellite presents
the asset of being able to acquire daily global images with small
swath width. When combined with other satellite data, it offers
the ability to monitor vegetation at regional scale [8], [9] like
monitoring tropical forest carbon stocks and emissions [10]. As
a result, merging Planet with Sentinel-2 images provides a high
spatial well-defined spectral product allowing the extraction of
soil spectrum variations to properly account for the influence of
the soil background.

Most approaches link the vegetation monitoring with the
retrieval of biophysical variables from satellite observations,
including the use of empirical and radiative transfer models
(RTMs) [11]–[13]. These latter have proven their strong poten-
tial for estimating biophysical parameters. RTMs can solve some
of the drawbacks of purely empirical techniques by reducing
reliance on field measurements and modeling the reflectance
mixture formed by the contribution of various components at
medium resolutions (e.g., 80 m). These two elements are critical
for enhancing the retrieval of biophysical parameters over time.
While some popular 1-D RTMs for uniform canopies, like the
scattering by arbitrarily inclined leaves (SAIL) model, provide
computationally efficient solutions, they are severely limited in
their ability to depict quite heterogeneous and discontinuous
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canopies [14]. Such category of models requires handling com-
plex 3-D RTMs that account for realistic tree canopy structure
and soil effects. Previous research have used the 3-D forest light
interaction model to represent tree canopies in a 3-D manner
and to conduct spatial and spectral scaling of several biophysical
parameters [15], [16]. Moreover, to the best of our knowledge,
none of these models account for the impact of soil on spectral re-
flectance in open canopies and dealt with biophysical properties
for a monitoring at high spatial and temporal resolution in open
canopies like olive orchards. In such natural environments, soil
variations are extremely relevant and have a large influence on
time-series data processing over versatile sparse canopies [17].
Other RTMs, such as the discrete anisotropic radiative transfer
(DART) model [18], [19], have addressed these constraints and
are found especially useful for canopy modeling. The RTM
inversion techniques to retrieve the biophysical parameters from
Sentinel-2 simulated data and also the investigation of the
inversion methods have been outlined in [14] and [20]. The
lookup table (LUT), the quasi-Newton (QNT) [21], and the
neural network (NNT) [22] are the most popular techniques
used to solve the inverse problem. The LUT method has been
widely used to invert the RTM for the estimation of canopies
biophysical parameters [23] since it is simple to implement and is
low demanding in terms of computation time compared to other
methods. Indeed, it seeks the closest simulated observation to
the real measurement from a database of simulated observations,
rather than requiring a priori information as in the QNT ap-
proach. Furthermore, unlike the NNT, it does not require a huge
training database. However, there are some limitations inherent
to the LUT method, such as it cannot model the a priori infor-
mation about the parameter distributions. Moreover, the LUT
method cannot predict errors caused by observation noise and
reflectance model inaccuracy, which degrades the performance
of the retrieval. On the other hand, the inverse problem do not
have a unique solution due to the presence of uncertainties in the
datasets and also the possible inadequacy of RTM simulations.
To overcome such issues, applying Bayesian models to RTM
inversion processes provides a straightforward way to quantify
the covariance and uncertainty of parameter estimates while
integrating different sources of information. RTM inversion has
relied on the use of independent prior information to address the
otherwise underdetermined challenge of estimating a high num-
ber of parameters from a limited number of observations [21],
[24], [25]. As these studies neglect the parameter uncertainties
or just approximate it, recent research has showed the efficiency
of the hierarchical Bayesian technique called the Markov chain
Monte Carlo (MCMC) methods [26], [27]. Nevertheless, to the
best of our knowledge, such methods have yet to be applied for
satellite time-series data. In this case, it will be useful to add
regularization techniques with the spatial criterion to prevent
from outliers and the temporal criterion to reduce time-series
fluctuation mainly due to atmospheric conditions. The objective
of this article is to estimate the biophysical variables (LAI, Cab,
Cw, and N ) of olive tree orchards based on fused Sentinel-2
and Planet images covering a period of four years. An original
forward/backward modeling approach is presented herein based
on the combined use of a 3-D RTM DART and an MCMC

Fig. 1. Location of the study areas in Châal, Sfax, Tunisia from Google maps.

TABLE I
FIELD MEASUREMENT ACQUISITION DATES AND MEASURED GROUP LABELS

approach including a spatial and temporal regularization. This
method is evaluated using satellite data collected at two different
sites and is further validated using ground-based measurements.

II. MATERIALS

A. Data Collection

1) Study Area: The study site is located in Châal (Sfax, south-
ern Tunisia) (34◦37′27.77′′N, 10◦17′33.78′′E) and consisted of
a 17 500-ha commercial olive area. The main olive cultivar is
Chemlali grown in southern Tunisia. Within this area, two olive
orchards, field 1 and field 2, with an area of 1704 and 419 ha,
respectively, were selected as they differ in soil and olive tree
properties (see Fig. 1). The soil of field 1 is a marginal soil
(clay and gypsum), whereas the soil of field 2 is a deep sandy
soil. Note that distance between two successive olive trees is
always 24 m. The Sentinel-2 pixel resampled to 80-m resolution
covers an area that contains around 11 olive trees. Hence, each
measured group contains four homogeneous trees, either well
developed or senescent, rather than a unique tree. Table I displays
the field measurement acquisition dates and the measured group
labels. Table II displays the variability of the set of collected
biophysical parameters and olive tree dimension for each group.
Field 2 olive trees are more developed than those of field 1.
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TABLE II
LAI, CAB, CW, AND TREE DIMENSION (HEIGHT ×WIDTH) GROUND MEASUREMENTS

Fig. 2. Field 1 olive tree sample images of the measured groups. (a) Tree
from Dev1june19. (b) Tree from Dev1july20. (c) Tree from Senes1june19.
(d) Tree from Senes1july20.

Note that none of the two sites were irrigated. The local climate
of the area is classified Mediterranean, which is characterized
by hot and dry summers and cool winters plus the scarcity
of rainfall events, estimated to 282 mm per year in average,
occurring mostly during the fall and autumn-winter-time seasons
(September–March).

2) LAI Acquisition: Over each field, a mean estimate of the
biophysical parameters was achieved from the four trees of each
group. The LAI was measured by calculating the gap fraction
using olive tree images taken by a smartphone. The latter was
positioned under each olive tree crown at 0.5-m distance from
the ground in eight different positions. With the clumping effect
caused by the 3-D architecture of the tree, the resulting image as
shown in Fig. 2 included both leafy and woody materials. The
LAI ground-truth derivation protocol from smartphone images
will be detailed in Section IV-D.

3) Cw and Cab Measurement Protocol: For the Cw measure-
ments, ten individual leaves (with around 70% exposed to the
sun) were randomly collected from the top layer of each tree.

To improve the accuracy, three repetitive measurements were
achieved for each group of trees, and then, the mean value of
the four trees was finally calculated. Before each measurement
of Cw, the sampled leaf is weighed and then dried in an oven
at 65◦ during 48 h to measure the weight of the dry leaf. Cw is
calculated by [28]

Cw =
FW− DW

S
(g/cm2) (1)

where FW is the weight of the fresh leaf (g), DW is the weight
of the completely dried leaf (g), and S is the surface area of the
leaf (expressed in cm2) that is measured with an ADC AM-350
leaf area meter.

The Konica Minolta SPAD-502 leaf chlorophyll meter, which
is a hand-held device, was used for the measurement of Cab. For
each tree, we measured 20 individual leaves randomly selected
with about 70% exposed to the sun, and we calculated the mean
value. To measure Cab accurately, a calibration relationship
is required between the chlorophyll meter readings and Cab
content measured in the laboratory according to a suggested
procedure [29]. We used the calibration relationship proposed
by [30] for olive trees in nonirrigated fields

Cab = 0.8271× SPAD− 12.8; (R2 = 0.84). (2)

Equation (2) converts the SPAD readings into leaf Cab contents.
4) Satellite Data Acquisition: In order to test our algorithm,

Planet and Sentinel-2 data time series during four consecutive
years from January 2017 to January 2021 over Châal region
were processed and analyzed. Sentinel-2 images were fused
with Planet images to reach a 3-m resolution. The Planet image
acquisition date was as close as possible in time to the Sentinel-2
image acquisition, on the same day or at worst day before or after.
Due to frequent high cloud coverage throughout the rainy season
in the study areas, our time series include only one image per
month, which appears to be sufficient for monitoring olive trees.
The Sentinel-2 multispectral imager instrument (MSI) Level
2-A image covering Sfax (particularly Châal) is an atmospheric
corrected product issued from the French Land Data Center
(THEIA: theia.cnes.fr). The product is radiometrically cali-
brated into bottom-of-atmosphere (BOA) reflectance data. The
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TABLE III
CORRESPONDING LAI VALUES TO THE LEAF NUMBER

Planet images are distributed as a four-band product (P1 = blue,
P2 = green, P3 = red, and P4 = near infrared) and downloaded
as a Planet Surface Reflectance image product. These images
are atmospherically corrected to BOA reflectance.1 Sentinel-2
provides spectral data in 13 bands from 443 to 2200 nm [14].
A selection of Sentinel-2 10- and 20-m pixel resolution bands
(S2, S3, S4, S5, S6, S7, S8, S8a, and S11) covering VIS, RE,
NIR, and SWIR spectral ranges were considered to retrieve
the vegetation properties as they are recommended to capture
vegetation features [25].

III. PHYSICAL BASEMENT

A. Forward Radiative Transfer Modeling

To create as realistic simulations as possible, an accurate for-
ward RTM is required. The latter entails creating a LUT database
with free parameters and simulated reflectance spectra. These
RTMs take as input the biophysical parameters and the scene
architecture and geometry to simulate reflectance. Inversion of
these models provides an estimate of biophysical parameters
given reflectance values as input. In this study, two RTMs were
coupled to estimate the biophysical parameters of the vegetation:
the DART model at canopy level was linked with the PROperties
SPECTra (PROSPECT) leaf model, thereby combining canopy
and leaf attributes. The DART model is able to simulate the
radiation propagation in complex 3-D scenes for the entire op-
tical domain from mock-ups created with 3-D imported objects
composed of a set of triangle groups. The elements of each group
have the same optical properties (i.e., same scattering function).
To cover various scenarios of LAI, several mock-ups can be
created with different leaf density. Moreover, DART simulations
take into account the atmospheric conditions of illumination and
the geometry of the scene, that is the direction of the sensor and
the sun, which results in a realistic simulation of a satellite image.

The PROSPECT model [31] calculates leaf hemispherical
reflectance and transmittance as a function of Cab, Cw, andN in
addition to the leaf dry matter content Cm and the leaf carotenoid
content Car. The coupled model is deemed enough accurate as
it provides realistic satellite observations [18]. In our case, the
model simulations allow us to link the Sentinel-2 reflectance to
the olive tree properties. The parameterization of the DART and
PROSPECT models is detailed in Section IV-B1 and Table IV.

IV. METHODOLOGY

The approach followed to retrieve olive tree biophysical prop-
erties relies on an inversion method applied to time series of

1[Online]. Available: https://assets.planet.com/marketing/PDF/Planet-Sur
face-Reflectance-Technical-White-Paper.pdf/

Fig. 3. Smartphone image from group Dev1june19.

satellite image. The different steps of the developed approach are
summarized in Fig. 3. The algorithm inputs are the Sentinel-2
and Planet image time series (step 1), and the outputs are the
maps of the inverted biophysical properties. These latter are
generated at a degraded spatial resolution (i.e., 80 m). Indeed, a
medium-resolution map is all needed because the Châal region
is wide with 17 500 ha of olive tree crops, and getting infor-
mation at a very high resolution is difficult to exploit because it
could be only bare soil. The basic pattern must even be larger
to integrate all landscape components. Therefore, the retrieval
procedure applies to downsampled Sentinel-2 images. Some
preprocessing was applied on the Sentinel-2 and Planet images
to estimate the soil background reflectance (step 2). Considering
that a Sentinel-2 image contains mixed pixels, the different
components of the reflectance are evidenced from the sharpened
Sentinel-2 image at the Planet resolution using the TsHARP
method (see Section IV-A2). Particularly, the fused Sentinel-2
and Planet images were split into olive tree and surface units.
Besides, a ground classification was performed to distinguish
the various soils that affect differently the spectral signature
of the satellite pixels. The LUT generation was performed by
simulating many Sentinel-2 observations of olive tree fields for
a set of predefined biophysical parameters: LAI, N , Cab, and
Cw as well as soil reflectance (step 3). The resulting simulated
database serves as input for the LUT inversion (used as a com-
parison method), which consists of retrieving the optimal set of
biophysical properties in the LUT database from the best simi-
larity criterion with the actual observation. The LUT database is
also found useful for the developed methods: MCMC for single
date inversion and MCMCtimeseries for multidate inversion.
These latter allow us to take into account statistical constraints
such as the spatiotemporal regularization. Finally, the MCMC
inversion approach is performed as well as the MCMCtimeseries
inversion approach (step 4). For the LAI measurement protocol,
smartphone images are used to calculate the gap fraction that
serves to derive LAI olive tree ground value. In the following,
these steps are described in separate sections.

A. Preprocessing Steps

1) Downsampling: The DART model serves to simulate
olive tree images as realistically as possible. An image composed
of a single olive tree and its surrounding soil background is
then generated. Such an image is assumed to contain a sufficient
degree of heterogeneity to be representative of the landscape

https://assets.planet.com/marketing/PDF/Planet-Sur&break;face-Reflectance-Technical-White-Paper.pdf/
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TABLE IV
INPUT PARAMETERS USED FOR CREATING THE LUT

3aThe value for generating the LUT was held constant at its mean value (0.02).
3bThe value for generating the LUT was held constant at its mean value (15).
3The variation interval of the parameters θ1, θ2, θc2, and θ5 is presented by minimal value:step:maximal value. The soil values correspond to
the class number, as explained in Section IV-A3.

variability. In the case of dense vegetation, the soil effect is not
so much important, and the canopy reflectance solely would be
needed to ensure an accurate retrieval of the vegetation proper-
ties. However, in the present case, as the distance separating two
olive trees is 24 m, the soil effect plays an important role and
must be included in the retrieval procedure to avoid an erroneous
estimate of the biophysical properties. Sentinel-2 images of 10-
and 20 m pixel resolutions are composed of mixed pixels varying
from pure soil to dense vegetation. In the inversion process, the
mixed pixels contain too unknown information to be compared
to DART averaged reflectance. At 10 m, pixels could be pure
soil or tree crown. At 20 m, the pixel cannot either represent a
sequence of the scene since the distance between two trees is
24 m. Therefore, a degraded image is needed to better represent
the local heterogeneity of the field. At 40 and 60 m, we noticed
that pixels are varying due to their compositions: for instance,
high brightness mainly in the visible domain if the number of
trees is low. At 80 m, this dependence vanishes and is hidden in
the pixels signature. For this reason, images are downsampled to
this resolution, which is deemed, somewhat arbitrary, as the best
tradeoff between minimizing the heterogeneity and maximizing
the resolution.

2) Fusion/Correction: Hitherto, Sentinel-2 satellite imagery
is broadly exploited for vegetation detection and monitoring in
huge areas. Information on the soil background reflectance can
constrain the solution space and, therefore, enhance the inversion
accuracy, overall the precision on retrieved vegetation parame-
ters. This is especially the case when the soil is very bright
and may be largely influent. In this case, the total reflectance
is highly influenced by the soil properties. To disentangle soil
and vegetation components, we propose to fuse Sentinel-2 with
Planet images that propose a very high spatial resolution. The
two satellites Planet and Sentinel-2 do not share exactly the same
spectral bands. To overcome this problem, the fusion approach
is achieved in two steps using the response functions. The first
one, using the TsHARP method [32] applied to the Sentinel-2
image of 10-m resolution, we obtain a sharpened product at
3-m resolution using the Planet image at this same resolution by

tuning the average and the standard deviation of the latter to fit
the Sentinel-2 image. The second step enhances the sharpened
image by correcting the bias produced at 80-m resolution. The
result mimics the Sentinel-2 image at 3 m, which further serves
to obtain a soil reflectance image at 80-m resolution. This step
of the processing drives the pixel reflectance due to brightness.

More precisely, in the first step, Sentinel-2 bands closest to
Planet bands are spectrally projected into them. It results that
10 m Sentinel-2 bands 2, 3, 4, and 8 are corrected by the Planet
bands 1, 2, 3, and 4, respectively. Besides, 20 m Sentinel-2 bands
5, 6, 7, 8A, and 11 are corrected by the Planet band 4. The fusion
is achieved by modifying the mean and the standard deviation of
the Planet band (Pi) to fit those with the corresponding Sentinel-
2 band (Sj), and the new band S3

j is given by

S3
j =

(Pi −mPi)

σPi
× σSj +mSj (3)

where mSj and mPi are the average of Sj and Pi images,
respectively, and σSj and σPi are the corresponding standard
deviation.

Correcting S3
j reduces the distortion effect between Planet

and Sentinel-2 spectral bands. It is worth remembering that, in
the ideal case, downsampled S3

j to the resolution of Sj should
be equal to Sj , which is not precisely the case after the first step.
Therefore, in the second step, we propose to correct the local
average of S3

j by Sj . However, due to the misregistration issues
between P and S, such a processing could generate additional
artifacts at 10-m resolution. To overcome this problem, we
propose to correct S3 average by S downsampled to 80 m
(S80). In this case, for each S80 pixel (x80), the corresponding
pixels at 3-m resolution ({x3n/x3n ⊂ x80, n = 1, . . . , N}) have
an averaged valueS80(x80). Finally, the update of the reflectance
of a pixel x3n of each band j of S(3) is given by

S
(3)
j (x3n)← S

(3)
j (x3n)−m3

Sj
{x3n}n=1,...,N + S80

j (x80), (4)

where m3
Sj
{x3n}n=1,...,N is the average of S3 over

{x3n}n=1,...,N .
3) Trees and Ground Detection: In this section, we proceed

to the detection of olive trees and to the derivation of the intensity
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Fig. 4. Schematic diagram of the different steps of the olive tree biophysical property retrieval.

of soil reflectance surrounding each tree. To build realistic
mock-ups, background reflectance is important as well as tree
detection since the distance between two trees and their size
form important inputs. Such information can be derived from
the product Sentinel-2 at 3-m resolution based on a classification
that allows separating ground from trees. Nevertheless, in order
to accurately estimate the soil reflectance, it is important to apply
a postprocessing that ensures the removal of the mixed pixels
from the soil class. Moreover, in order to define the soil over
the whole study area, reflectance of pixels that do not belong
to this class should be replaced by an expected value of soil
reflectance. First, we classified the image between ground and
olive trees classes using the Gaussian mixture model (GMM)
described in [33], which allows estimating the size and the
number of trees (see Fig. 3). Since the simulation of RTM
requires a good knowledge of the soil reflectance, it is crucial
to obtain a local determination because of its high variability
within a landscape scene. For such, we created a soil image
delineating the soil reflectance in and around each tree. To do
so, the spectral signature of the pixels of the Sentinel-2 and
Planet fused images at 3-m resolution belonging to the olive
tree class are replaced by the soil signature according to an
interpolation scheme (i.e., Bicubic) [34]. Moreover, to ensure the
removal of the mixed pixels within the soil class, the olive class is
enlarged using the morphological opening tool. It is important to
notice that the soil reflectance may vary significantly between the
80-m pixels. Therefore, it is required that mock-ups are ideally
generated on a pixel-by-pixel basis. However, this is heavy to
implement, and instead, we consider for each date ten classes

for soil. Mock-ups are then created for each class. For pixels
having intermediate soil reflectance between classes, the total
reflectance is interpolated.

B. DART Simulations

1) LUT Generator: The DART model is used to generate the
LUT database to be compared with Sentinel-2 images. Simula-
tions are performed for multispectral Sentinel-2 channels. In the
present case, a realistic 3-D mock-up will draw an olive tree
every 24 m, which is the constant row distance between two
stands. We have retained the mock-up2 of Fig. 4(a) because
it well depicts an olive tree of the Châal region at the peak
season. In order to view and modify the chosen 3-D model,
we use the Blender3 3-D software that permits to adjust the
olive tree size (tree height and crown diameter) in removing
leafy material. This allows us to produce olive tree mock-ups
similarly to the actual ones as well as to get correct LAI values
within its physical domain of variations. The seven created olive
tree mock-ups are illustrated in Fig. 5. DART simulates our scene
using these mock-ups. DART decomposes the optical properties
in two groups: one for the leaves and one for the woody material,
merely trunk and branches. The optical properties of woody
elements are simulated using the predefined spectral response
of a bark-spruce-stem of the DART database. The leaf spectral
response is simulated using the PROSPECT model.

2Download site: https://cgtricks.com/olive-trees-mereces-arch-viz-3d-
visualization-studio/

3Blender: https://www.blender.org/

https://cgtricks.com/olive-trees-mereces-arch-viz-3d-visualization-studio/
https://www.blender.org/
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Fig. 5. Seven 3-D olive trees used to build the mock-ups: the number presented
in the top of each mock-up represents the number of thousands of leaves within
the tree.

The LUT is then generated by simulating many observations
(14000 simulations) in varying the structural and biophysical
properties of interest of the olive tree such as the number of
leaves in the tree (proportional to LAI), Cw, Cab, mesophyll
structure (N ), and soil reflectance (ρs).

A sensitivity analysis similar to [35] was conducted to eval-
uate the impact of each parameter (LAI, Cab, Cw, N , Cm, and
Car) on Sentinel-2-simulated canopy reflectance. For such, we
modified one DART parameter at the time by specific incre-
ments while holding the remaining parameters at their mean
values. This served to fix a number of model parameters when
generating the LUTs.

Fig. 6 displays the outcomes of DART/PROSPECT sensitivity
study to estimate LAI, Cab, Cw,N , Cm, and Car. The simulated
canopy signatures are more–less affected by the parameters, as
it could be expected. The variable LAI exerts a strong influence
on the simulated reflectance of the canopy for all Sentinel-2
channels, particularly on the VIS and NIR spectral bands. This
proves that LAI values ranging from 0.0092 to 0.1350 (measured
values) can be estimated provided that the soil signature is well
known. Variations in Cab primarily changed the reflectance
in the visible and RE range (550–750 nm), affecting both the
green peak and the RE signatures. N also influenced mainly
the visible channels, but its domain of influence covers the
whole spectral range, thereby enhancing the level of reflectance
simulation. Car produces little variations and only in the vicinity
of 530 nm. Cw and Cm barely contribute to variations in the
visible. Cw intensely affects the NIR, and mostly, the SWIR
and Cm infers small variations in the NIR domain. Finally, it
was decided to take fixed values for Car = 15 μg · cm−2 and
Cm = 0.025 g · cm−2 in the LUT generation. The next step
consists of optimizing the retrieval of freely variable biophysical
parameters.

Seven olive trees are created using the Blender software in
varying the number of leaves. Table III illustrates the correspond-
ing LAI value calculated by DART according to the number of

leaves to match with the field measurements. The acronyms and
the imposed range of the 12 input parameters of DART for LUT
creation are indicated in Table IV. The illumination and viewing
angles are input parameters of each image. Note that for the
variable parameters (i.e., LAI, Cab, Cw, N , Car, Cm, and ρs),
their values were varied based on the range obtained from the
field measurements and from other studies focused on the same
crop [36]–[38].

C. Inversion Procedure

1) LUT Database: The inversion procedure using the built
LUT database is performed in two steps. The first one consists
of generating the LUT inherent to the Sentinel-2 image using
the DART model in sampling the solutions space of the retrieved
parameters. The second one is activated when a Sentinel-2 image
is available. It consists of searching in the precomputed solutions
space the one that fits the best image pixel reflectance. Such
an inversion procedure is based on computing a cost function
that minimizes the differences between measured and simulated
reflectance [39]. In the LUT approach, the mean values of n best
parameter combinations give the solution [40], [41]. In our case,
the root-mean-square error (RMSE) between the measured and
simulated reflectance is selected as the cost function.

2) MCMC Method: The inversion is carried on by searching
the closest simulation to the actual observation using the LUT
technique. However, this technique presents some uncertainty
in case of noisy datasets. For such, we improved the inversion
technique by taking into account atmospheric effects and sensor
noise, also by considering the error on the simulation due to the
possible inappropriateness of the forward model. As a result, we
choose to use a hierarchical Bayesian modeling to compute the a
posteriori probability of the different unknown variables and to
formulate the a priori knowledge. The a posteriori probability is
not so easy to sample. The Bayesian statistical approach called
MCMC is an iterative processing of sampling with, for instance,
the Gibbs sampler. At each step of the procedure, only one
parameter is sampled according to its conditional probability,
while other parameters are fixed. MCMC sampling converges
to the a posteriori distribution. In this section, we present our
developed MCMC approach incorporating the spatiotemporal
regularization technique including information from neighbor-
ing pixels [42] and from Sentinel-2 image time series [43]. In
the following, we present our statistical assumption and then the
derivation of the a posteriori probability for both spatial and
temporal regularization conditions.

Spatial regularization condition: We postulate that any
observationR, i.e., the reflectance value for any Sentinel-2 band
downsampled pixel, depends on several parameters plus a noise
term

R = f(θ) + ε (5)

where f is a conceptual function that assigns a value from
the DART model, Θ = (θ(1), θ(2), θ(3), θ(4)) is the set of the
unknown parameters [θ(5) corresponding to the soil pixel re-
flectance, it is not taken into account as it is already precalculated
for each pixel using the soil classification], and εmodels the cu-
mulative error due to uncertainty assessment in mock-up design
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Fig. 6. Variation in the spectral response of the simulated canopy reflectance of Sentinel-2 after varying each DART/PROSPECT parameter (olive tree in 24× 24
scene dimension) and keeping all other parameters fixed at their reference values (LAI = 0.1023, Cab = 30µg · cm2, Cw = 0.05 cm, N = 2, Cm = 0.025 g · cm2,
and Car = 15 µg · cm2).

and observation perturbation. It follows a normal (Gaussian)
distribution

ε ∼ N (0, σ2
εI) (6)

where σ2
ε is the variance of the noise assumed unknown and

I is the identity matrix of the same dimension as the vector
R (i.e., nine). The vector of unknown parameters is, therefore,
φ = (θ(1), θ(2), θ(3), θ(4), σ2

ε), to be estimated using MCMC.
In order to determine the a posteriori probability of the unknown
parameters, it is necessary to define a priori distributions that
well characterize the model. In our case, as there is no any
auxiliary information, all the unknown vegetation parameters
are assumed to follow uniform distributions θ(i) ∼ UΘ(i) when
θ(i) is the discrete space of variation of θ(i) defined in Table IV.

The mesophyll structure is assumed to be spatially homoge-
neous and to only vary with time in link with the phenological
stage. Contrarywise, Cab, Cw, and LAI are known to vary
between trees; thus, {θ(2), θ(3), θ(4)} must be estimated sep-
arately from a pixel s to another. s belongs to the set of the
image pixels Ω = {(i, j)}i=1,..,Nr ;j=1,..,Nc , when Nr and Nc
are the number of rows and column, respectively. A subscript
s is added to θ(2), θ(3), and θ(4) to distinguish them. The
parameter set to be estimated in this case is Θ = {θ(2)s }s∈Ω ∪
{θ3s}s∈Ω ∪ {θ(4)s }s∈Ω ∪ {θ(1)}. Even though {θ(2)s , θ

(3)
s , θ

(4)
s }

are estimated independently for each pixels, they are assumed
to be slightly different between neighboring pixels. In this
respect, each variable is assumed to follow a Markov random
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field (MRF) in space. The mathematical formulation is given in
Appendix A. Since the magnitude of the noise ε over our set
of observation is not well known, the corresponding variance is
assumed unknown and follows the inverse gamma distribution
σ2
ε ∼ IG(α, β), where α and β are, respectively, the shape

(height control) and the scale (propagation control) parameter
of this distribution. Thus, the vector of constant parameters
is ψ = (Θ(1),Θ(2),Θ(3),Θ(4), α, β). The derivation of the a
posteriori probability of the unknown parameters is included
in Appendix A.

Temporal regularization condition: Due to the short-time
revisit of Sentinel-2 satellite, it is possible to account for time
dependence in the implementation of the inversion procedure.
As tree properties vary continuously in time, a Markov chain
is deemed appropriate. The inversion is then operated by con-
sidering all images over the whole period. We use here the
same annotations as the spatial variation with nevertheless
some little changes considering the variance of the noise σε =
{σε,k}k=1,..,K , where K is the times series length and k is the
image index within the series. The set of the image pixels, Ω,
is extended in this case to take into account the time variation;
Ω = {(i, j, k)}i=1,..,N ;j=1,..,M ;k=1,..,K . LAI, Cab, and Cw are
varying in space and time. All of them are defined over the new
space Ω. However, as in the case of a spatial regularization,
these parameters remain close on a delimited space and are
modeled as a spatiotemporal MRF. To symbolize the mesophyll
structure, temporal variation, a subscript k is added to θ

(1)
k ,

further estimated as {θ(1)k }k∈Ωk with Ωk = {1, . . ., k}. Since
the temporal variation is slow, a Markov Chain is appropriate
to describe the sequence of possible events θ(1)k . The different
steps to calculate the a posteriori probability of the unknown
parameters are described in Appendix B.

D. LAI Ground-Truth Derivation Protocol

LAI measurements within each crown (LAItree) were carried
out by using the relationship between light transmittance and
LAI, described by the Beer–Lambert law [44]. T , the tree crown
transmittance, is the ratio of the intensity reacting the ground
surface (I) to the total intensity (IT ). This ratio is the gap fraction
at ground level [Pgap [45], shown in (7)]

T (θ) =
I

IT
= exp(−k(θ)× (LAItree)) = Pgap (7)

where θ is the viewing angle, k is the extinction coefficient,
depending on the leaf angle distribution, and LAItree is the
LAI. To use these equations, a constant viewing angle and a
homogeneous environment are required. Hence, to compute the
gap fraction, first, a classification is needed to extract the sky
pixels; then, a ring-based image division is required to ensure a
constant value of leaf interception efficiency (i.e., k); finally, due
to clumping effect, a patch-based image division is necessary to
ensure homogeneity as it is required to use (7).

Olive trees are considered planophyle in terms of leaf incli-
nation distribution [46]. In this case, k varies as a function of
the viewing angle.

Fig. 7. Classification and Ring/Patch-based image division. (a) Smartphone
image classification and ring-based division, where class 1 corresponds to foliage
tissue, class 2 corresponds to areas of gaps, and class 3 corresponds to trunk and
(b) LAI patches.

In order to use (7), we first need to eliminate the woody
materials in the aim to not overestimating LAItree. Each image is
separated into foliage tissue, woody materials, and areas of gaps,
as shown in Fig. 7(a), using an image classification algorithm,
i.e., the GMM [47]. Second, to ensure that thek value remains al-
most constant, we divided the image into six rings [see Fig. 7(a)]
with different zenith angles varying from 5◦ to 30◦ (camera
maximum view angle). The corresponding k values for each ring
are kring = {0.8051, 0.8060, 0.8077, 0.8104, 0.8144, 0.8197}.
They are calculated using the SAIL model [48]. Finally, due
to clumping effect, the leaves spatial distribution is not ho-
mogeneous by rings, which can cause an underestimation of
the LAI [49]. Therefore, the rings are divided in homogeneous
patches, as shown in Fig. 7(b).

After subtracting the trunk pixelsNpatchtrunk from the total patch
pixels Npatch, the gap fraction per patch can be computed by
dividing the number of gap pixelsNpatchgap byNpatch. Then, using
(7), the corresponding LAIpatch is derived [see Fig. 7(b)]

LAIpatch =
−1
kring

ln

(
Npatchgap

Npatch −Npatchtrunk

)
(8)

and the image LAI is obtained averaging all the patches.
Finally, LAItree for the whole tree crown is calculated in

averaging the LAI of the eight images (one sample is shown
in Fig. 7).

In our case, we need to calculate LAItotal in the surface area
Stotal = 24 m× 24 m. It is derived from LAItree as follows:

LAItotal = LAItree × Stree

Stotal
(9)

where Stree is the tree crown horizontal surface. To be measured
for each individual tree, the perimeter of the tree crown’s orthog-
onal projection was marked on the soil surface with a pole fitted
with an eight-point leveling bubble, drawing eight equidistant
transects from the tree center. The olive crown area projected into
the horizontal plane was determined as the sum of the circular
sector areas for each transect [50].

V. EXPERIMENTAL RESULTS

A. Pretreatment

1) Sharpening: Results of the fusion between Sentinel-2 and
Planet images are shown in Fig. 8 on a subset located in field 1.
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Fig. 8. Sentinel-2 image at (a) 10 m and (b) fused with the Planet image.

Fig. 9. Soil background detection and classification for fields 1 and 2.

Fig. 8(b) reveals the asset of this merging in terms of image
definition compared to the Sentinel-2 image [see Fig. 8(a)].

2) Soil Image Downsampling: The soil image is resampled
to 80-m resolution to estimate the background reflectance pixel
by pixel (see Fig. 9). The soil classification into ten classes
seems to be justified. What seems to be an overclassification
is nevertheless required because the class centers are the sole
soil background reflectances simulated by DART.

B. Monodate

1) LUT and MCMC Validation: Results obtained from the
LUT and the MCMC inversion for both fields on June 21, 2019
are presented in Figs. 10 and 11, respectively, whereas, for those
in 2020 and 2021, they are omitted since the visual difference
between maps is rather small. One can see that the entire a
priori ranges were covered by the estimated values for all the
biophysical parameters but with different occurrence probability
as particular trees are shown. A visual check with the Sentinel-2
fused image at 3-m resolution reveals that low estimates of
LAI and Cab correspond to senescent trees. A thorough visual
inspection of these maps shows that high LAI pixels have a low
variability in Cab, whereas pixels with low LAI present a wide
range of Cab values especially in field 2. This reflects that in the
latter case, the sensitivity to Cab becomes minimal that increases
the estimation variance [51]. The output map properties of the
LUT inversion approach are shown in Figs. 10(a) and 11(a),
whereas output map properties of the MCMC inversion approach

are shown in Figs. 10(b) and 11(b). The Cw estimate is noisier
than the LAI and Cab maps, which could explain by the low
sensitivity of Sentinel-2 measurement to water content (except
B11 band). The estimates of LAI, Cab, and Cw were compared
with the collection of 16 ground measurements for the two
sites. Table V displays the results of model inversion to the
groups’ ground measurements using LUT, MCMC, and MCM-
Ctimeseries inversion techniques, while Table VI indicates the
accuracy of each one. For MCMCtimeseries inversion results,
they will be discussed in Section V-C. The LAI was estimated
more accurately, followed by Cab and then by Cw. It shows
that both LUT and MCMC inversion methods globally support
the same acceptable accuracy on retrieved properties [19], [36].
The LAI shows a lesser bias and a higher correlation than the
others parameters because the observations are highly sensitive
to this parameter. The bias of Cab and Cw may be explained
by the fact that satellite observations are primarily impacted
by the top layer of the canopy where sunlit leaves are located.
These latter are more subject to stress than any other layer of the
canopy [52], [53]. For the structural parameterN , the estimated
value equals N = 2.5 for both fields 1 and 2. This value is
around the known values for olive trees [54]. As for the estimated
noise, starting from the a priori value and after a number of
iterations, the estimated parameter oscillates around average
values, which are the most likely, σε ≈ 0.005 and 0.0024 for
fields 1 and 2, respectively. These values sound reasonable for
Sentinel-2 MSI [55]. Visual inspection shows that results are
more homogeneous with the MCMC method. Indeed, as the
sensitivity to Cab and Cw is not too high, it was important to
reduce the spatial variation in order to decrease uncertainty. The
comparisons with the field measurements prove the quality of
the estimated products by using the MCMC monodate inversion,
where the smooth biophysical parameter variations in space as
reported in earlier studies are taken into account [42]. Precision
of the retrieval mainly depends on the satellite data quality.
Although the radiometric signal coming from tree is lower than
the one issued from the soil background, it was possible to
retrieve the set of parameters with an acceptable level of accuracy
particularly for LAI estimates ranging from 0 to 0.14 [56]. This
performance was possible thanks to the sensitivity of Sentinel-2
spectral bands to the vegetation properties with appropriate
narrow bands in RE and shortwave-infrared band, the precise
soil signature detection obtained by Sentinel-2 and Planet image
fusion, the precise RTM (DART), and the accurate inversion
method.

2) Reflectance Spectra Analysis: In order to better under-
stand the effect of the vegetation on the reflectance spectrum, the
difference between soil and soil plus trees is analyzed. Results
shown in Fig. 12 relate to the four measurement groups in June
2019, where each image is of size 80× 80 m2 and contains
around 11 olive trees, four from which were measured and their
mean corresponds to one measurement group. The latter plots
them at 3-m resolution for S4 band (red), and Fig. 13 displays the
corresponding reflectance spectra. In addition to the soil and the
total Sentinel-2 80-m spectra, here, two additional spectra simu-
lated by DART with parameters estimated by LUT and MCMC
are shown for the sake of comparison. Moreover, for better
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Fig. 10. Field 1 map properties at 80 m for (a) LUT inversion and (b) MCMC inversion.

Fig. 11. (a) and (b) Idem as Fig. 10 for field 2.

distinguishing between the different spectra, a zoom around
the S4 band is shown. In the visible spectrum, the vegetation
reflectance response is mainly governed by the quantity of Cab,
while in the NIR domain, it is due to LAI and leaf structure N .
In the SWIR domain, the sensitivity to the water content Cw

dominates [57]. In our case, since the 80 m Sentinel-2 pixels are
mixed, the spectral response of Sentinel-2 combines the olive
trees and the soil components. As our field soil is too bright,
the highest reflectance values belong to the soil class image
in all the spectral bands for all the field groups. Comparison
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TABLE V
COMPARISON OF THE LAI, CAB, AND CW ESTIMATED VALUES USING LUT, MCMC, AND MCMCTIMESERIES WITH THE GROUND MEASUREMENTS

TABLE VI
COMPARISON OF THE LUT, MCMC, AND MCMCTIMESERIES INVERSION METHOD ACCURACY IN RETRIEVING LAI, CAB, AND CW VALUES

Fig. 12. Images of the four groups of validation: first and second columns correspond to Google Earth image and S4 band of Sentinel-2 at 3-m resolution,
respectively.

between the inverted spectra (LUT and MCMC) and the original
reflectance shows close results. Even if the inverse model re-
mains ill-posed, these close results are reached with accurate soil
estimation, which is a driving signature, accurate 3-D canopy
modeling using DART, and finally accurate inversion method.
Difference between soil and soil+tree spectra is the highest
for group Dec1june19 and Dev2june19. Conversely, for group
Senes2june19, they are close to each other. This difference is de-
pendent on the tree development and particularly the LAI value.
This is evidenced in Fig. 12, where trees are clearly distinguish-
able in group Dev1june19 but not in group Senes2june19. This

explain the feasibility of LAI estimation in the range between
0 and 0.14 using reliable satellite data (Sentinel-2) for accurate
global and soil signature estimate. Due to the brightness increase
of the soil as a function of the wavelength, the global reflectance
is also increasing even if vegetation reflectance decreases in
red spectrum due to the chlorophyll absorption. It remains that
vegetation effect in S4 (red) is well observed for all the groups,
where difference between soil background and the global re-
flectance increases. The latter effect is dependent not only on
Cab but also on LAI. Hence, the more leaves the more absorption
due to chlorophyll is observed. As Cab× LAI shows the highest
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Fig. 13. Reflectance spectra for (a) field 1 and (b) field 2 ground measurement groups.

Fig. 14. Field 1 and field 2 soil seasonal variation during the period (2017–2021).

values for groups Dev1june19 and Dev2june19, the curve dif-
ferences in S4 are the highest in these cases. Water content has
similar effect like the chlorophyll, but in the shortwave infrared
domain (S11), soil and soil+trees curves are the furthest in this
domain for group Dev1june19 since the product LAI× Cw is
the highest.

C. Time Series

1) Seasonal Variation: Our goal is to capture the develop-
ment of olive tree growth using the Sentinel-2 image time series

over an entire season and then compare different seasons. These
time series allow monitoring with precision the temporal dynam-
ics of the biophysical properties of the sampled fields with the
in fine objective to give raise to the more important phenomena
such as the segregation of rainy periods, flowering, and pruning.
LUT, MCMC date-by-date, and MCMC time-series (called in
the following MCMCtimeseries) inversion are performed over
the whole set of Sentinel-2 dates (around four years). This
requires the estimation of the soil reflectance within the studied
fields all along the time series. Fig. 14 draws the seasonal
variations of the soil, and Fig. 15 plots the development cycle of
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Fig. 15. Field 1 and field 2 estimated properties in the period (2017–2020): (a) LAI, (b) Cab, (c) Cw, and (d) N .
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the olive trees in the Châal area in terms of biophysical property
variations. For the soil plot, as expected, Fig. 14 shows that the
field 2 soil spectral response for all Sentinel-2 bands is higher
than the field 1 soil spectral response due to soil composition
(field 1: marginal soil; field 2: sandy soil). These different
soil compositions under the same rainfall range show a highly
meaningful effect on the values of the biophysical parameters,
especially on LAI. In fact, on a deep sandy soil (field 2), the LAI
average is around 0.04, whereas on a marginal soil (field 1), it is
only around 0.02. We noticed an increase of the soil reflectance
from the end of February to September, which corresponds to
the hot and dry seasons leading to get a bright soil. In addition,
during this period of the year, the sun elevation is high and the
hot spot effect may be captured. As a remind, this phenomenon
marked by a surge of reflectance in all spectral bands is observed
when the illumination and the scanning directions coincide due
to the lack of observed shadows, whereas all sunlit areas are
seen [49]. The decrease until the end of the year is possibly due
to the presence of an understory layer formed by grassland laying
over wet soil since rainfall events occurred. Shadowing effect
may even enhance this feature. The remaining plots fit well the
expected seasonal variations of the biophysical properties of the
olive trees. In particular, Fig. 15(a) shows that LAI decreases
around the end of January, which corresponds to the pruning
season performed between end of winter and flowering [58], and
increases from March to reach a peak by the end of April due to
the flowering season [59]. Finally, the LAI decreases from June,
when the majority of old leaf and petals starts falling in August
and increases again until the end of the year. A comparison
between the two fields of LAI shows that the highest values occur
during the second growing period. This is confirmed by ground
truth where the trees are clearly more developed during the
post-summer period. From Fig. 15(b), Cab gets its largest value
in May corresponding to the flowering season. In June, when
rainfall becomes scarce, Cab values drop significantly [60].
From Fig. 15(c), one can see that Cw is maximum during the
autumn and winter seasons due to rainfall. Besides, Cw shows
a slight variation throughout the year, within a range around
0.013 cm. This almost invariance could be explained by the low
sensitivity of the measure to the water content. The estimated
parameter N [see Fig. 15(d)] shows an average value around
2 throughout the year. It decreases slightly during two periods
of time: the end of February and the end of September. This
behavior is connected to the apparition of new leaves having
small N values in these times [61]. Olive leaves have a cycle of
two years. Hence, leaves with different ages and having different
N values coexist. This explains the low temporal variability of
N . For that, we think that the N parameter is less relevant for
monitoring the olive growth than LAI.

Regarding the annual variations, a same seasonal trend is
noticed during the four recorded years. However, some dif-
ferences are detected relatively to the estimated values of the
biophysical parameters. This is caused by the water shortage
and the drought during 2017 with an annual average equals to
149.06 mm [62]. LAI, Cab, and Cw reached their lowest values
in 2017. The most significant peaks of LAI were detected in

2018 and 2019, especially in April 2019 (0.0189, 0.0451) in
fields 1 and 2, respectively, using the MCMCtimeseries method.
Fig. 15(b) shows mainly similar values for Cab especially in
April 2019: 48 and 49 μg/cm2 in fields 1 and 2, respectively,
using the MCMCtimeseries method. For estimated values of
Cw using the MCMCtimeseries method, the majority of highest
values occurs also in 2018 and 2019. This can be explained
by the positive influence on the tree development during the
winter’s heavy rainfall events with an annual average of 179.04
and 211.83 mm for 2018 and 2019, respectively [62].

Taking into account the spatial and the temporal variations,
MCMCtimeseries inversion shows a smoother plot for all the
estimated biophysical parameters, presenting more realistic re-
sults since the biophysical properties are not so fluctuating in
time. For example, it is impossible to obtain a variation from
0.0147 (September 2019) to 0.0487 (October 2019) in terms of
LAI during one month in field 2 using the LUT and the MCMC
date-by-date inversion, as shown in Fig. 15(a). The temporal
biophysical profiles match with results found in the literature
about the description of the phenological growth stages of olive
tree [59]. LAI and Cab estimates follow the same behavior.
Furthermore, the presence of water has both direct and indirect
influences on all biophysical parameters. Particularly, rain is
very important for olive tree, especially since the Châal fields are
not irrigated and depend entirely on rainfall contribution. Trend
of biophysical parameters over the seasons and the years could
be further exploited to measure the impact of climate change
on the ecophysiology of olive tree orchards in regard to its
strong socioeconomical role. Furthermore, since high-quality
Sentinel-2 time series are freely distributed, the method pro-
posed here could serve to a fine monitoring of a very popular
crop serving for proxy to detect tree diseases and also prevent
any early unexpected senescence. In conclusion, comparing the
MCMCtimeseries inversion with the previous inversion tech-
niques, such modeling allows reducing the atmospheric effects
and the sensor noise in the inversion and, therefore, improves
the quality of the results at the end.

2) MCMCtimeseries Validation: In order to validate results
improvement brought by the MCMCtimeseries inversion, output
maps of canopy properties are presented in Fig. 16 based on field
measurements acquired in June 2019. Visual inspection shows
that results are less noisy compared to MCMC and LUT; this is
mainly the case for LAI.

The MCMCtimeseries inversion approach (see Tables V
and VI) provides more realistic estimated parameters and lower
values of RMSE andR2. Hence, the improvement of the MCM-
Ctimeseries inversion compared to the MCMC inversion at a
given time proves the importance of taking into account the
spatiotemporal regularization.

VI. CONCLUSION

In this study, we evaluated the capability of the multispectral
Sentinel-2 imagery completed by Planet imagery to obtain a
mapping of LAI, Cab, Cw, and N variables in two open olive
tree orchards of the Châal area in Tunisia that differ in soil
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Fig. 16. Map properties using the MCMCtimeseries approach for (a) field 1 and (b) field 2.

types. The method relies on the inversion of the 3-D radia-
tive transfer DART model, using the LUT technique, and an
original approach based on the MCMC technique. This latter
includes spatial and temporal regularization, MCMCtimeseries.
Overall results reveal the appropriateness of the DART model
for simulating the canopy reflectance of Sentinel-2 bands and
to retrieve the most relevant olive tree biophysical properties
using the MCMC inversion technique. It comes out that the
Cab and Cw retrieval accuracy is affected by the limits of
the RTM to describe multiscale processes and the definition of
the Sentinel-2 bands in regard to their central wavelength and
width. Further improvement for biophysical parameters retrieval
is expected by combining Sentinel-2 and Sentinel-3 data as this
latter owns spectral bands dedicated to measure the pigment
contents contained in olive tree leaves e.g., the Sentinel-3 OLCI
Terrestrial Chlorophyll Index for Chlorophyll retrieval [63]. The
MCMCtimeseries inversion approach could be improved by
relaxing the temporal dependence in case of strong change due
to rainfall, pruning, flowering, etc.

The validation strategy is the cornerstone of the whole ap-
proach. The protocol to collect multiscale and multidate field
measurements is somewhat cumbersome and must be considered
here as a demonstrator. In the future, it is clear that it should be
repeated at the landscape scale to emphasize the usefulness of
the method for olive crop monitoring.

APPENDIX A
DERIVATION OF THE POSTERIOR PROBABILITY

(SPATIAL VARIATION)

The a prior probability derived using the Bayes theorem is

P (φ|R,ψ) ∝ P (R|φ, ψ)P (φ)

∝
∏
s

P (Rs|φ, ψ)P (φ)

∝
∏
s

P (Rs|φ, ψ)P (θ)P (σ2
ε) (10)

where

P (φ) = P (θ)P (σ2
ε)

= P ({θ(2)s }s∈Ω)P ({θ(3)s }s∈Ω)P ({θ(4)s }s∈Ω)
P ({θ(1)})P (σ2

ε). (11)

And ∀p ∈ {2, .., 4}

P ({θ(p)s }s∈Ω) = exp

⎛
⎝−βs ∑

(s,s′)∈C
(θ(p)s − θ(p)s′ )

2

⎞
⎠

∏
s

1Θ(p)(θ(p)s ) (12)

where βs is the spatial regularization parameter (i.e., the larger
it is, the more regular the field), C is the neighbor set, and

C = {(s, s′) ∈ Ω× Ω/s = (i, j), s′ = (i,′ j ′),

|i− i′|+ |j − j ′| = 1} (13)

where 1Θ(p) is the indicator function and

1Θ(p)(x) =

{
1, si x ∈ Θ(p)

0, sinon
. (14)

Thus

P (φ|R,ψ) ∝
∏
s

P (Rs|φ, ψ)

×
⎡
⎣ 4∏
p=2

∏
(s,s′)

exp−(θ(p)s − θ(p)s′ )
2

⎤
⎦
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×
[

4∏
p=2

∏
s

1Θ(p)(θ(p)s )

]

1Θ(4)(θ(4))× P (σ2
ε). (15)

The Gibbs sampler is used then to calculate the a posteriori
probability

P (θ(p)s |θ(p)s′ �=s, θ
(q �=p)
s∈Ω , σ2

ε , R, ψ)

=
P (φ|R,ψ)∑

x∈Θ(p) P (φ(x,p)|R,ψ) (16)

where

φ(x,p)(i) =

{
φ(i), i �= p
x, i = p

. (17)

Thus, the probability of the θps parameter knowing its neighbor
is as follows:

P (θ
(p)
s |θ(p)s′ �=s,θ

(q �=p)
s∈Ω ,σ2

ε ,R,ψ)=

P (Rs |φ,ψ)

∏
(s,s′) exp−(θ(p)s −θ(p)

s′ )
2∑

x∈Θ(p) P (Rs |x,ψ)

∏
(s,s′) exp(−(x−θ(p)

s′ ))
2 =

∏
(s,s′)∈C exp−(θ(p)s −θ(p)

s′ )
2
P (Rs |θ(p)s ,θ

(q �=p)
s ,θ

(1)
s ,σ2ε,ψ)∑

x∈Θ(p)

∏
(s,s′)∈C exp−(x−θ(p)

s′ )
2
P (Rs |x,θ(q �=p)s ,θ

(1)
s ,σ2ε,ψ)

=

exp−
∑

(s,s′)∈C(θ
(p)
s −θ(p)

s′ )
2
P (Rs |θ(p)s ,θ

(q �=p)
s ,θ

(1)
s ,σ2ε,ψ))∑

x∈Θ(p) exp−
(∑

(s,s′)∈C (x−θ(p)
s′ )2

)
P (Rs |x,θ(q �=p)s ,θ

(1)
s ,σ2ε,ψ))

=

exp−
∑

(s,s′)∈C(θ
(p)
s −θ(p)

s′ )
2
− ‖f(θs)−Rs‖

2

2σ2ε

)∑
x∈Θ(p) exp

(
−
∑

(s,s′)∈C(x−θ
(p)

s′ )
2
− ‖f(θ

(x,p)
s )−Rs‖2

2σ2ε

) (18)

where

θ(x,p)s (i) =

{
θs(i) ∀i �= p
x, i = p

. (19)

Regarding the estimated θ(1) parameter, its prior follows a
uniform distribution θ(1) ∼ UΘ(1)

P (θ(1)|φ \ {θ(1)}, R, ψ) ∝
P (R|θ(1), φ \ {θ(1)}, ψ)1Θ1(θ(1)) ∝∏
s

P (Rs|θ(1), φ \ {θ(1)}, ψ)1Θ1(θ(1)) ∝

1√
2Πσ2

ε

(NLK)
2

exp

(
−
∑
s ‖f(θs)−Rs‖2

2σ2
ε

)

1Θ1(θ(1)). (20)

Finally, σ2
ε is estimated as

P (σ2
ε |φ \ {σ2

ε}, R, ψ) ∝
P (R|σ2

ε , φ \ {σ2
ε}, ψ)P (σ2

ε) ∝∏
s

P (Rs|σ2
ε , φ \ {σ2

ε}, ψ)P (σ2
ε) ∝

1√
2Πσ2

ε

(NbNrNc)

2

exp

(
−
∑
s ‖f(θs)−Rs‖2

2σ2
ε

)

P (σ2
ε) ∝

IG

(
α+

NbNrNc
2

,

∑
s ‖f(θs)−Rs‖2

2
+ β

)
. (21)

APPENDIX B
DERIVATION OF THE POSTERIOR PROBABILITY

(TEMPORAL VARIATION)

The a priori probability derived using the Bayes theorem is
then

P (φ|R,ψ) ∝ P (R|φ, ψ)P (φ)
∝
∏
s

P (Rs|φ, ψ)P (φ)

∝
∏
s

P (Rs|φ, ψ)P (θ)P (σ2
ε,k) (22)

where

P (φ) = P (θ)P (σ2
ε,k)

= P ({θ(2)s }s∈Ω)P ({θ(3)s }s∈Ω)P ({θ(4)s }s∈Ω)
P ({θ(1)k }k∈Ωk)P (σ2

ε,k). (23)

And ∀p ∈ {2, .., 4}
P ({θ(p)s }s∈Ω) =

exp

⎛
⎜⎜⎝− ∑

(s,s′)∈C
k=k′

β(p)
s (θ(p)s − θ(p)s′ )

2

⎞
⎟⎟⎠

exp

⎛
⎜⎜⎝− ∑

(s,s′)∈C
k �=k′

β
(p)
t

√
tk − tk′(θ(p)s − θ(p)s′ )

2

⎞
⎟⎟⎠×

∏
s∈Ω

1Θ(p)(θ(p)s ) (24)

where C is the neighbor set C = {(s, s′) ∈ Ω× Ω}, and

s = (i, j, k)
s′ = (i,′ j,′ k′)

} |i− i′|+ |j − j ′| = 1, k = k′

|k − k′| = 1, i = i,′ j = j ′. (25)

For p = 1

P ({θ(p)k }k∈Ωk) =

exp

⎛
⎜⎜⎝− ∑

(k,k′)∈Ck
k �=k′

β
(p)
t

√
tk − tk′(θ(p)k − θ(p)k′ )

2

⎞
⎟⎟⎠

1Θ(p)(θ
(p)
k ) (26)

where Ck = {(k, k′) ∈ ΩK × ΩK , |k − k′| = 1} is the set of
temporal neighbors for the parameter θ(1)k . Thus

P (φ|R,ψ) ∝∏
s

P (Rs|φ, ψ)
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⎡
⎢⎢⎣

4∏
p=2

∏
(s,s′)
k=k′

β(p)
s exp

(
−(θ(p)s − θ(p)s′ )

2
)⎤⎥⎥⎦×

⎡
⎢⎢⎣

4∏
p=2

∏
(s,s′)
k �=k′

β
(p)
t

√
tk − tk′ exp

(
−(θ(p)s − θ(p)s′ )

2
)⎤⎥⎥⎦

[
4∏
p=2

∏
s

1Θ(p)(θ(p)s )

]

⎡
⎢⎢⎣ ∏
(k,k′)
k �=k′

β
(p)
t

√
tk − tk′ exp

(
−(θ(p)k − θ(p)k′ )

2
)⎤⎥⎥⎦

1Θ(1)(θ
(1)
k )× P (σ2

ε,k) (27)

where {β(p)
T }p=1,..,4 are the parameters of temporal regulariza-

tion of the four unknown parameters.
The Gibbs sampler is then used to calculate the a posteriori

probability

P (θ(p)s |θ(p)s′ �=s, θ
(q �=p)
s∈Ω , σ2

ε,k, R, ψ) =

P (φ|R,ψ)∑
x∈Θ(p) P (φ(x,p)|R,ψ) (28)

where

φ(x,p)(i) =

{
φ(i), i �= p
x, i = p

. (29)

Thus, ∀p ∈ {2, . . . , 4}, the probability of the θps parameter
knowing its neighbor is as follows:

P (θ
(p)
s |θ(p)s′ �=s,θ

(q �=p)
s∈Ω ,σ2

ε,k,R,ψ)=

P (Rs |φ,ψ)

∏
(s,s′)
k=k′

β
(p)
s exp

(
−(θ(p)s −θ(p)

s′ )
2
)

∑
x∈Θ(p) P (Rs |x,ψ)

∏
(s,s′) exp

(
−(x−θ(p)

s′ )
2
)×

∏
(s,s′)
k �=k′

β
(p)
t

√
tk−tk′ exp

(
−(θ(p)s −θ(p)s′ )2

)
=

∏
(s,s′)∈C exp

[
−(θ(p)s −θ(p)

s′ )
2
]
P (Rs |θ(p)s ,θ

(q �=p)
s ,θ

(1)
s ,σ2

ε,k
,ψ)∑

x∈Θ(p)

∏
(s,s′)∈C exp

[
−(x−θ(p)

s′ )
2
]
P (Rs |x,θ(q �=p)s ,θ

(1)
s ,σ2

ε,k
,ψ)

=

exp−
(∑

(s,s′)∈C (θ
(p)
s −θ(p)

s′ )2
)
P (Rs |θ(p)s ,θ

(q �=p)
s ,θ

(1)
s ,σ2

ε,k
,ψ)∑

x∈Θ(p) exp−
(∑

(s,s′)∈C (x−θ(p)
s′ )2

)
P (Rs |x,θ(q �=p)s ,θ

(1)
s ,σ2

ε,k
,ψ)

=

exp

(
−
∑

(s,s′)∈C (θ
(p)
s −θ(p)

s′ )2− ‖f(θs)−Rs‖
2

2σ2
ε,k

)
∑

x∈Θ(p) exp

(
−
∑

(s,s′)∈C (x−θ(p)
s′ )2− ‖f(θ

(x,p)
s )−Rs‖2
2σ2
ε,k

) (30)

where

θ(x,p)s (i) =

{
θs(i) ∀i �= p
x, i = p

. (31)

For p = 1, the probability of θ1k taking into account only tem-
poral variation is as follows:

P (θ
(1)
k |θ

(1)

k �=k′ ,σ
2
ε,k,R,ψ)=

P (Rs |φ,ψ)

∏
(k,k′)∈CK

β
(1)
t

√
tk−tk′ exp(−(θ

(1)

k
−θ(1)
k′ )2)∑

x∈Θ(p) P (Rs |x,ψ)
∏

(k,k′)∈CK
exp(−(x−θ(p)

k′ )2)
=

∏
(k,k′)∈CK

exp−(θ(1)k −θ(1)
k′ )

2
P (Rs |θ(p)s ,σ2

ε,k
,ψ)∑

x∈Θ(p)

∏
(k,k′)∈CK

exp−(x−θ(p)
k′ )

2
P (Rs |x,σ2

ε,k
,ψ)

=

exp−
(∑

(k,k′)∈CK
(θ

(1)

k
−θ(1)
k′ )2

)
P (Rs |θ(p)s ,σ2

ε,k
,ψ)∑

x∈Θ(p) exp−
(∑

(k,k′)∈CK
(x−θ(p)

k′ )2

)
P (Rs |x,σ2

ε,k
,ψ)

=

exp

(
−
∑

(k,k′)∈CK
(θ

(1)

k
−θ(1)
k′ )2−

∑
s
‖f(θs)−Rs‖2

2σ2
ε,k

)
∑

x∈Θ(p) exp

(
−
∑

(k,k′)∈CK
(x−θ(p)

k′ )2− ‖f(θ
(x,1)
s )−Rs‖2
2σ2
ε,k

) . (32)

Also, σ2
ε,k is estimated as

P (σ2
ε,k|φ \ {σ2

ε,k}, R, ψ) ∝
P (R|σ2

ε,k, φ \ {σ2
ε,k}, ψ)P (σ2

ε,k) ∝∏
s

P (Rs|σ2
ε,k, φ \ {σ2

ε,k}, ψ)P (σ2
ε,k) ∝

1√
2Πσ2

ε,k

(NbNrNc)

2

exp

(
−
∑
s ‖f(θs)−Rs‖2

2σ2
ε,k

)

P (σ2
ε,k) ∝

IG

(
α+

NbNrNc
2

,

∑
s ‖f(θs)−Rs‖2

2
+ β

)
. (33)
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