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Abstract: Land surface reflectance measurements from the VEGETATION program (SPOT-4, SPOT-5
and PROBA-V satellites) have led to the acquisition of consistent time-series of Normalized Difference
Vegetation Index (NDVI) at a global scale. The wide imaging swath (>2000 km) of the family of
VEGETATION space-borne sensors ensures a daily coverage of the Earth at the expense of a varying
observation and illumination geometries between successive orbit overpasses for a given target
located on the ground. Such angular variations infer saw-like patterns on time-series of reflectance
and NDVI. The presence of directional effects is not a real issue provided that they can be properly
removed, which supposes an appropriate BRDF (Bidirectional Reflectance Distribution Function)
sampling as offered by the VEGETATION program. An anisotropy correction supports a better
analysis of the temporal shapes and spatial patterns of land surface reflectance values and vegetation
indices such as NDVI. Herein we describe a BRDF correction methodology, for the purpose of the
Copernicus Global Land Service framework, which includes notably an adaptive data accumulation
window and provides uncertainties associated with the NDVI computed with normalized reflectance.
Assessing the general performance of the methodology in comparing time-series between normalized
and directional NDVI reveals a significant removal of the high-frequency noise due to directional
effects. The proposed methodology is computationally efficient to operate at a global scale to deliver
a BRDF-corrected NDVI product based on long-term Time-Series of VEGETATION sensor and its
follow-on with the Copernicus Sentinel-3 satellite constellation.

Keywords: NDVI; VEGETATION; BRDF

1. Introduction

The normalized difference vegetation index (NDVI) is the most widespread vege-
tation index [1,2]. It is defined as the difference—normalized by the sum—between the
absorption of radiation in the RED spectral region, mainly caused by chlorophyll pigments,
and the reflectance in the NIR (near-infrared) spectral region as a result of canopy structure.
The computation of NDVI is as follows.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρ denotes the bidirectional reflectance factors (hereafter referred to as reflectances)
in their respective spectral bands. Since soil and snow reflectance spectral values do not
show a clear spectral difference between these bands [3], therefore NDVI was deemed
relevant to highlight and monitor vegetated surfaces. Moreover, NDVI shows a significant
relationship with fractional vegetation cover and leaf area index (LAI) [4]. Therefore,
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consistent long-term time-series of NDVI play a crucial role for the survey of the biosphere,
in pointing out drought episodes [3] or anomalies in vegetation health [5].

The Copernicus Global Land Service ((CGLS) https://land.copernicus.eu/global/
index.html, accessed on 15 March 2021) is a component of the Land Monitoring Core Service
that provides a series of bio-geophysical products about the status and the evolution of land
surface for the whole Earth. The production and delivery made available in near real time
conditions finds complement in long-term archive. The portfolio of the Copernicus Global
Land Service which contains an NDVI product at 1 km spatial resolution. The so-called
CGLS Collection 1 km NDVI Version 2 product 2 is a 10-daily maximum value composite
(MVC [6]) of NDVI derived from daily acquisitions of Earth land surface reflectance
observations obtained with the VEGETATION series of sensors (VGT1 embarked on SPOT-
4: March 1998–July 2003; VGT2 embarked on SPOT-5: May 2002–May 2014; VGTPV on
board of PROBA-V: May 2013–June 2020)

To ensure a temporal continuity in surface reflectance and NDVI time-series, the three
VEGETATION instruments’ designs were consistent in terms of radiometric definition and
spectral bands characteristics and performance [7,8]. Since a prime requirement was to
offer daily global coverage of land surfaces, the three platforms carrying the VEGETATION
instruments flew on Sun-synchronous circular orbit at an altitude of ∼820 km to image
the continental surfaces with a swath of ∼2200 km. The acquisition geometry for targets
with such a wide swath can significantly differ between satellite overpasses. Moreover,
the imaging Sun-sensor geometry for a given target changes according to the day of the
year and step during the mission lifetime [9,10].

The high level of anisotropy of most land surface reflectance triggers spurious de-
viations in the NDVI time-series [11], which may significantly hamper further analysis.
Minimizing the impact of directional effects in NDVI time-series is possible by considering
satellite observations within a reduced range of viewing zenith angles (e.g., close to nadir).
However, such a method discards clear sky observations that are mandatory to tune the
time-series. The constraint implemented in the MVC composites of the CGLS Collection
1 km NDVI Version 2 product is aimed to reduce the impact of directional effects due
to changing viewing conditions whereas the varying illumination is disregarded. Since
the normalization of TOC time-series to a standard Sun-sensor geometry before NDVI
computation improves the interpretation of seasonal variations of land surface vegetation
derived from VEGETATION [12,13] and other sensors [14–17], there is an obvious need to
remove directional effects from the Copernicus Global Land Service NDVI derived from
VEGETATION instruments.

The primary goal of this paper is to describe a methodology to perform a Bidirectional
Reflectance Distribution Function (BRDF) correction (removal of directional effects inferred
by land surface anisotropy) to the NDVI time-series derived from the three VEGETATION
sensors. The work is structured as follows: Section 2 briefly describes the datasets used
in the methodology’s processing and for performance evaluation. Section 3 details the
different processing steps implemented in the methodology. The results of performance
inherent to the BRDF correction are presented in Section 4 and further discussed in Section 5
while our conclusions are listed in Section 6.

2. VEGETATION Data Sets

Top of Atmosphere (TOA) reflectances from the VEGETATION instruments on board
SPOT-4 (https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/
spot-4, accessed on 15 March 2021) (VGT1: March 1998–July 2003), SPOT-5 (https://earth.esa.
int/web/eoportal/satellite-missions/s/spot-5, accessed on 15 March 2021) (VGT2: May 2002–
May 2014) and PROBA-V (http://proba-v.vgt.vito.be/en/about/proba-v-satellite-mission,
accessed on 15 March 2021) (VGTPV: October 2013–June 2020) satellites yield the useful
input to compute a long-term BRDF-adjusted NDVI Time-Series. Land surface reflectances at
1 km with almost daily global coverage were obtained from the VEGETATION instruments.
Satellite scenes images at 333 m and 100 m spatial resolution are acquired by the VGTPV

https://land.copernicus.eu/global/index.html
https://land.copernicus.eu/global/index.html
https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/spot-4
https://earth.esa.int/web/guest/missions/3rd-party-missions/current-missions/spot-4
https://earth.esa.int/web/eoportal/satellite-missions/s/spot-5
https://earth.esa.int/web/eoportal/satellite-missions/s/spot-5
http://proba-v.vgt.vito.be/en/about/proba-v-satellite-mission
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instrument, albeit with less coverage for the second one (for a full description of the VGTPV
instrument see [7]). The VEGETATION instrument is equipped of four wide spectral bands
(BLUE, RED, NIR and SWIR) with only two considered here (see Table 1).

VGT1 and VGT2 TOA reflectances used in this processor are the standard VGT-P
Collection 3 [18] products provided by the SPOT/VEGETATION program through the
VITO Product Distribution Facility (http://www.vito-eodata.be/ accessed on 15 March
2021). VGTPV TOA reflectances are the Collection 1 Level2A 1 km products issued from
the PROBA-V nominal processing chain. The PROBA-V product user manual [19] (http:
//proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf accessed
on 15 March 2021) contains a full description of TOA reflectances measured by VGTPV.

A subdataset of the NDVI 1 km V2 product serves to illustrate the performance
of the BRDF correction (see Section 4). As aforementioned, NDVI 1 km V2 product
inputs are VGT1, VGT2 and VGTPV RED and NIR 1 km 10-days synthesis (using a
Maximum Value Composite approach) of atmospherically corrected reflectance data sets.
Please note that a spectral correction is applied only to the NDVI derived from VGT1.
A full description of the Copernicus Global Land Service NDVI 1 km V2 product, here-
after referred to as NDVI MVC, can be found in the Algorithm Theoretical Basis Docu-
ment (ATBD) [20] (https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/
GIOGL1_PUM_NDVI1km-V2.2_I2.31.pdf accessed on 15 March 2021).

Table 1. RED and NIR Spectral ranges of the VEGETATION instruments. λ0 and FWHM are
the center wavelength and full width at half maximum, respectively. Information taken from
http://www.spot-vegetation.com/faqnew/index.html accessed on 15 March 2021 and http://proba-
v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf accessed on 15 March 2021.

VGT1 VGT2 VGTPV
λ0 FWHM λ0 FWHM λ0 FWHM

[µm] [µm] [µm] [µm] [µm] [µm]

RED (B2) 0.615 0.615–0.700 0.653 0.616–0.690 0.655 0.614–0.696
NIR (B3) 0.773 0.773–0.894 0.838 0.783–0.892 0.837 0.772–0.902

3. Methodology

Figure 1 shows the methodology’s flowchart to obtain long-term series of BRDF-
corrected NDVI from VEGETATION sensors radiometry. An atmospheric correction is first
performed on RED and NIR TOA reflectances to obtain Top of Canopy (TOC) reflectances.
Then, a spectral BRDF retrieval is performed on a pixel basis accumulating TOC values
over a short time period. The retrieved BRDF models serve to set the RED and NIR
VEGETATION TOC reflectances and NDVI values to a standard Sun-sensor geometry.
A detailed description of the processing stages is shown in Figure 1 and detailed in the
next subsections.

http://www.vito-eodata.be/
http://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf
http://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_NDVI1km-V2.2_I2.31.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_NDVI1km-V2.2_I2.31.pdf
http://www.spot-vegetation.com/faqnew/index.html
http://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf
http://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf
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Figure 1. General overview of the processing of BRDF-adjusted NDVI Time-Series based on the VEGETATION instruments
embarked on SPOT-4 (VGT1: March 1998–July 2003), SPOT-5 (VGT2: May 2002–May 2014) and PROBA-V (VGTPV: May
2013–June 2020) satellites.

3.1. Atmospheric Correction

The VEGETATION TOA L2A orbital segments are cut out in tiles with a spatial extent
of 10°. The atmospheric correction is performed in parallel for all tiles. The status map (SM)
of the Level2A orbital segments is assessed before performing the atmospheric correction.
Only land pixels flagged as clear and with good radiometric quality for the RED and
NIR spectral channels are atmospherically corrected using the Simplified Model for Atmo-
spheric Correction, SMAC [21]. The coefficients used in SMAC to perform the atmospheric
correction in data from the VEGETATION sensors can be found in the CESBIO’s reposi-
tory (http://tully.ups-tlse.fr/olivier/smac-python/tree/master/COEFS, accessed on 15
March 2021). This algorithm is well-suited for operational application and is thus widely
used in various projects, such as the Land Surface Analysis Satellite Application Facility
(LSA-SAF) [22] and the VEGETATION operational ground segments [18,23]. Additional to
the observed TOA reflectance, SMAC requires the angular information and aerosol optical
thickness (AOT), ozone and water vapor columnar contents as input parameters.

The aerosol input consists of AOT monthly climatology data (applied to day 15 of each
month) at a mid-visible (λ = 0.55 µm) wavelength. This climatology was generated from
re-analysis data covering the period 2003 to 2012 at 0.125◦ × 0.125◦ resolution provided
by the Copernicus Atmosphere Monitoring Service (CAMS), with bilinear interpolation
applied to get monthly AOT data at 1 km resolution. The CAMS-based climatology is
hereafter referred to as AOTCAMS.

A fall-back static AOT is used to replace the AOTCAMS when the SMAC calculations
using AOTCAMS result in negative TOC reflectances. The static AOT is solely based on
latitude and is hereafter referred to as AOTlat, which is defined as:

AOTlat = 0.2(cos(lat)− 0.25) sin(lat +
π

2
)3 + 0.05 (2)

Worth emphasizing that the AOTlat calculated from Equation (2) does not capture
any longitudinal and temporal variation and has a limited dynamic range of 0.05 to 0.20.
Although these limitations in AOT variation and magnitude are physically unrealistic,
an asset of using AOTlat is before all to avoid negative TOC reflectances. For example,
the static latitudinal AOT has been used to derive other surface reflectance datasets, such

http://tully.ups-tlse.fr/olivier/smac-python/tree/master/COEFS
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as in LSA-SAF, and the AOT fall-back mechanism in the PROBA-V Collection 1 atmo-
spheric correction.

Ozone information is retrieved from monthly mean climatology data (applied to day
15 of each month) calculated from an 11-year Earth Probe Total Ozone Monitoring Satellite
(EP-TOMS) dataset, available at 32 km resolution. A bilinear interpolation is applied
to obtain the ozone information at one km resolution. Total column water vapor data
are obtained from the European Centre for Medium-Range Weather Forecast (ECMWF)
Numerical Weather Prediction (NWP) data. For each day, the column-integrated water
vapor amounts are available at 6-h time steps (at 0, 6, 12, and 18 UTC) at a nominal
resolution of 0.25◦ × 0.25◦ (∼27 km). Per segment, the nearest NWP time step is taken
and subsequently a bilinear interpolation is performed spatially to obtain the water vapor
columnar data at 1 km resolution. The SMAC TOC reflectance calculations include two
steps, with the second one only to be performed if the first SMAC calculation using
AOTCAMS delivers negative TOC reflectances. In such situations, the SMAC calculation is
repeated, using this time AOTlat as input. This fall-back solution is necessary, as SMAC is
somewhat limited in calculating accurate TOC reflectances for high AOTCAMS and large
solar/viewing zenith angles.

3.2. BRDF Correction

The land surface reflectance varies with the observation and illumination geometry
(defined by the sensor and Sun positions) and wavelength. The BRDF quantifies the re-
flectance anisotropy, which can be approximated by a semi-empirical BRDF linear model
with three free parameters, commonly known as BRDF parameters or descriptors [24–27].
BRDF parameters are optimally retrieved based on an inversion method (see [28] for a
review) over a period of time during which the surface properties are assumed not to
undergo significant changes. The spectral BRDF models are then used to estimate normal-
ized (to a standard Sun-sensor geometry) RED and NIR reflectances. These normalized
reflectances are used to compute the BRDF-adjusted NDVI. The processing mentioned
above, which is pixel-based, is summarized in a flowchart (see Figure 2).

Figure 2. Diagram flow of the BRDF processor. Inputs and outputs are TOC reflectances and NDVI, respectively. The BRDF
correction is applied independently to each spectral band and is pixel-based.
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The processing of BRDF-adjusted NDVI correction module runs in three main stages
(blue blocks in Figure 2) which can be resumed as follows: (i) First step consists of collecting
a set of clear observations (output of the atmospheric correction module) which is achieved
within the assembling dataset stage; (ii) Second step is achieved during the BRDF correction
stage when the sets of observed RED and NIR TOC reflectances are fitted independently
using a semi-empirical linear BRDF model [24] to obtain normalized reflectances; (iii) In a
last step, the NDVI is computed. Each module of the BRDF correction is exemplified as
blue blocks in Figure 2, which comprises individual processes (listed in Figure 2) that are
described in the following subsections.

3.2.1. Accumulation

Normalizing surface reflectance time-series to a standard Sun-sensor geometry re-
quires a knowledge of the surface BRDF. This is an inverse problem, and its solution
involves the finding of wavelength-dependent kernels. The quality of the inversion proce-
dure and further reliability of BRDF kernels strongly depends on the number and diversity
of angular observations. Persistent cloud coverage can seriously jeopardize the collection
of surface reflectance observations, thereby shrinking the ensemble of observations to
invert. Gathering observations over a long period of time (e.g., >30 days) would provide
enough data to constrain the inversion, but vegetation properties cannot be longer assumed
stationary and temporal trend would contaminate the BRDF retrieval. On the other hand,
if a too short composite period is retained, the risk exists to lack of sufficient observations
to ensure a successful inversion.

Based on numerical experiments, an accumulation period of 16 days appeared as a
fair trade-off between the objective to gather enough clear surface reflectance observations
and to get the stationary properties of the surface. Please note that such strategy is consis-
tent with MODIS MCD43A4 product [27,29] for which a period of 16 days was deemed
appropriate to prevent smoothing out short timescale variations. Since the cloud/shadow
mask product of VEGETATION could still be improved, accumulated clean observations
may incorporate outliers resulting from some undetected clouds and shadows in the scene.
Therefore, we performed a simple screening to remove these outliers using a modified
z-score following the guidelines proposed by [30].

3.2.2. Compositing

To avoid introducing any delay on the timing of key phenological stages, we consid-
ered new observations as if they were acquired in the last ten days of the accumulation
period. If there is sufficient new information, i.e., three new clear observations at least,
the BRDF inversion uses only those. On the other hand, if there are not enough new
data (less than 3) acquired during the last ten days, the entire dataset of observations
accumulated over 16 days is used. This approach is what we called an adaptive window,
implemented to ensure that NDVI key phenological stages are not too much garbled by
data accumulation. If no clear observation is available in 16-days, the inversion is not
achieved. After assembling the set of clear observations, the median date of observations
used in the BRDF modelling is computed. The latter is provided as an independent layer
(time-grid) and indicates the most representative date of the observations ensemble used
to compute the BRDF-adjusted NDVI. The analyses of BRDF-adjusted NDVI time-series
presented in Section 4 use the aforementioned time-grid.

3.2.3. Weights

By assigning weights, we favor certain observations through the inversion process.
The weights assigned to the ensemble of observations have both temporal and angular
components. The analytical expression is given below:

σTOC = 0.5(c1 + c2 ρTOC)

(
1

cos(1.058 θs)
+

1
cos(1.058 θv)

)
(3)
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It was proposed by [31] to estimate uncertainties associated with TOC reflectances
as a function of solar zenith (θs) and viewing zenith (θv) angles. The coefficients c1 and
c2 in Equation (3) are wavelength-dependent and are taken from Table 1 in [31]. Thus,
the angular weights are the inverse of the TOC uncertainty assessment with Equation (3).
These weights allow setting less importance to observations that were acquired at large
viewing and solar zenith angles.

An effective temporal weight function is introduced by multiplying the prior covari-
ance matrix (see Equation (10)) with a factor which is a function of the elapsed time since the
last successful inversion. This temporal weight function has a decreasing exponential shape.
It gives an enhanced weight to new observations. The timescale of such an exponential func-
tion is arbitrary set to 10 days, which means that a temporal weight obtained ten days before
the last day of the accumulation period is 0.5. In contrast, the most recent observation has
an effective temporal weight of 1 (maximum). This approach is consistent with the BRDF
inversion methodology presented in [31,32] and the Copernicus Climate Change Service’s
albedo product derived from VGT1 and VGT2 https://c3s.vgt.vito.be/documents/C3S_
ALBEDO/D1.3.2-v1.0_ATBD_CDR_SA_SPOT-VGT_v1.0_PRODUCTS_v1.0.pdf, accessed
on 9 March 2021.

3.2.4. BRDF Model

We use the Roujean semi-empirical BRDF model [24] which approximates the surface
reflectance of a target by a linear combination of three kernels as in expression below:

ρ(θs, θv, φr) = k0 f0 + k1 f1(θs, θv, φr) + k2 f2(θs, θv, φr) (4)

where θs and θv are the Sun and viewing zenith angles, respectively. The relative azimuth
angle (φr = φv − φs) is the difference between viewing azimuth angle (φv) and Sun azimuth
angle (φs). Functions f0, f1 and f2 are commonly known as the BRDF kernels. The f0 is
an isotropic function accounting for bidirectional reflectance with nadir viewing and the
overhead Sun ( f0 = 1); f1 is a geometric function accounting for the effects of shadows and
the geometrical structure of protuberances on the surface; f2 is a function that simulates
the volume scattering properties of the surface (for a comprehensive review of linear BRDF
model see [28]). Full expressions for kernels f1 and f2 are presented in [24]. The geometric
and scattering kernels are computed using the illumination and observing geometry
associated with the assembled dataset. The wavelength-dependent kernel weights (k0, k1
and k2) from Equation (4) are then found via the BRDF inversion procedure, which runs
independently for the RED and NIR spectral bands. The selection of the Roujean BRDF
semi-empirical model is in line with the BRDF retrieval methodology of other Copernicus
Global Land Service products [32].

3.2.5. BRDF Model Inversion and Adjustment

Given a set of n surface reflectance observations obtained under varying illumination
conditions and viewing angles, the BRDF model can be inverted to further proceed to
the directional correction. Its solution involves finding the wavelength-dependent kernel
weights: k0, k1 and k2 (see Equation (4)). Moreover, the solution of the inverse BRDF
problem allows us to obtain a model of the reflectance anisotropy of the surface; that can
then be used to estimate reflectances under any observing and illumination conditions.
Thus, based on an ensemble of n observations obtained from the compositing phase,
the model serving for the inverse problem is expressed as:

ρ(θsj , θvj , φrj) = k0 f0 + k1 f1(θsj , θvj , φrj) + k2 f2(θsj , θvj , φrj) (j = 1, .., n) (5)

The expression above is an equation system which can be rewritten as follows:

Fk = r (6)

https://c3s.vgt.vito.be/documents/C3S_ALBEDO/D1.3.2-v1.0_ATBD_CDR_SA_SPOT-VGT_v1.0_PRODUCTS_v1.0.pdf
https://c3s.vgt.vito.be/documents/C3S_ALBEDO/D1.3.2-v1.0_ATBD_CDR_SA_SPOT-VGT_v1.0_PRODUCTS_v1.0.pdf
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where F is an (n × 3) matrix containing the Roujean kernels for the ensemble of n ob-
servations. However, k is a (3 × 1) vector containing the three wavelength-dependent
kernel weights and r is an (n × 1) vector with the observed reflectances. As described
before, uncertainties associated to individual reflectance observations (angular component
as defined in [31]) and their relevance within the compositing time window) are quantified
by means of weighting factors (wj for j = 1, ...n). Thus, Equation (6) can be rewritten as:

Ak = b (7)

with a weighted reflectance vector defined as b with elements bj = rjwj and a design matrix
A with elements Aji = Fjiwj.

The BRDF inversion is known for being an ill-posed problem e.g., [33–35], meaning
that there is no unique set of k parameters that can solve Equation (7). However, significant
variations of the surface BRDF shape parameters over a short timescale due to changes in
surface cover are usually not expected. An approach to ensure a smooth evolution of the
inverted k parameters is to make use of prior information obtained from previous BRDF
inversions (see Figure 2). This approach has also been implemented in previous works
e.g., [31–33]. Following Geiger et al. [31], the equation system to solve becomes:

(ATA + C−1
prior)k = ATb + C−1

priorkprior (8)

where kprior = [k0prior , k1prior , k2prior , ] is a vector containing the values of the k parameters
found in the previous BRDF inversion and the diagonal matrix

Cprior = diag
(

σ2
k0prior

, σ2
k1prior

, σ2
k2prior

)
contains the uncertainties of the uncorrelated prior

information on the k parameters. The previous estimates of the kernel weights (kprev) and
their uncertainties (Cprev) are used as follows as prior information:

kprior = kprev (9)

Cprior = Cprev(1 + ∆)(t−tprev) (10)

where t − tprev is the time difference (number of days) between the current production date
and the date associated with kprev and Cprev. As mentioned in Section 3.2.3, in consistency
with Roujean et al. [32], the timescale τ is chosen as 10 days. So that the factor ∆ (defined
as ∆ = 22/τ − 1) when applied to the prior covariance matrix could be equivalent to run
the inversion using a temporal weight function with a decreasing exponential shape and
timescale of 10 days [31,32]. This multiplicative factor applied to the prior covariance
matrix reduces the confidence in the prior estimate. Moreover, it allows the BRDF inver-
sion procedure to find the kernel weights that could best represent the current surface
conditions captured by the observations, albeit being constrained by prior information on
BRDF surface.

Then, Equation (8) is solved as:

k = C(ATb + C−1
priorkprior) (11)

where C = (ATA + C−1
prior)

−1 is the covariance matrix. Assuming uncorrelated errors,
we consider the covariance matrix’s diagonal elements as the variances associated with
the wavelength-dependent k parameters obtained via Equation (11). In other words,
σ2

k0
= C11, σ2

k1
= C22 and σ2

k2
= C33. It is important to notice that the quality of the BRDF

inversion attested by the uncertainties associated with the retrieved BRDF parameters is
strongly correlated with the number and diversity of observations used in the inversion.

Once we have approximated the surface anisotropy with a semi-empirical BRDF
model [24], we use the wavelength-dependent models to estimate RED and NIR reflectances
at a standard Sun-sensor geometry. Using the k parameters obtained from solving
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Equation (11), the BRDF-adjusted reflectances are calculated using Equation (4) for the
solar zenith angle corresponding to 10:00 local time and viewing zenith angle at nadir.

3.3. NDVI Computation

In addition to the surface properties, the reflectances are also largely dependent on the
specifications of the sensor spectral bands defined by the spectral response functions (SRFs).
This means that there is not a true NDVI for a specific surface, but only an NDVI according
to sensor-specific SRFs e.g., [36–38]. Consequently, the VGT1 NDVI is spectrally corrected
to VGT2 NDVI (It corrects for the fact that the SRF of VGT1 in the RED band overlaps
considerably with the transition zone from leaf absorption to foliage reflectance, which
was adapted in the design of VGT2 and PROBA-V), by correcting the BRDF-normalized
RED reflectance according to the relationship below:

REDVGT2 =

((
a + b NDVIVGT1 + c NDVI2

VGT1 + d NDVI3
VGT1

)REDVGT1

100

)
+ REDVGT1 (12)

With a = 0.277052, b = −13.1103, c = 33.03465, d = −41.0406, and NDVI calculated from
the uncorrected bands. The methodology used to derive these numerical coefficients is
detailed in [20]. The VGTPV NDVI is not spectrally corrected to VGT2 NDVI, because both
NDVI data sets have already a good matching that could not be improved by the estimated
correction functions. Thus, the final step is the computation of NDVI by Equation (1).

4. Results

The primary purpose of this work is to describe the methodology developed to remove
directional effects from the long-term VEGETATION NDVI time-series rather than present
a validation assessment of the BRDF-adjusted NDVI product as this can be found in the
Copernicus Global Land Service Quality Assessment report [39] (https://land.copernicus.
eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_NDVI1km-V3_I1.10.pdf, ac-
cessed on 15 March 2021). This section describes the results of the evaluation of the
performance of the algorithm implementation. The methodology described in Section 3
was applied to a selection of land surface reflectances tiles (10◦ × 10◦) acquired with the
VEGETATION series of sensors. A subdataset from the Copernicus NDVI 1 km V2 products
(MVC NDVI), was prepared for the same study regions to assess the impact of the BRDF
adjustment on the NDVI time series.

A notable example of directional effects on MVC NDVI time-series is a site located
near Bukedea (latitude = 1.25◦, longitude = 34.08◦), Uganda. Data for a pixel near the
location above is extracted from the MVC NDVI product and the 2019 NDVI profile
evolution along with its long-term average (computed from 1998 to 2020) are shown on
the top panel of Figure 3. Despite the viewing angle constraints implemented in the
synthesis of MVC NDVI product, directional effects on the 2019 NDVI time-series can be
identified as saw-like patterns. These latter can seriously hamper the interpretation of
observed NDVI temporal changes and derived information. For example, the computation
of NDVI anomalies (comparison of current NDVI values to long-term statistics via a z-score)
identifies whether vegetation growth conditions are ordinary. In this respect, the bottom
panel of Figure 3 reveals the NDVI anomalies for a pixel located near Bukedea where bands
denoting favorable (light green), very favorable (dark green), unfavorable (light red) and
very unfavorable (dark red) conditions are also displayed.

From the bottom panel of Figure 3, it can be seen that the temporal evolution of NDVI
anomaly follows abrupt changes with timescales shorter than the characteristic vegetation
activity timescales. A specific example is the NDVI anomaly fluctuations between dekad
12 and 19. Within this short period which lasts about two months, the evolution of the
NDVI anomaly shows a significant variability. The erratic switching of NDVI anomaly
values, as seen in bottom panel of Figure 3, is related to the saw-like patterns in the NDVI
time-series acquired with a changing viewing and illumination conditions.

https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_NDVI1km-V3_I1.10.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_NDVI1km-V3_I1.10.pdf
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Figure 3. Time series of NDVI (top panel) and NDVI anomalies (bottom panel) for a pixel near Bukedea
(lat = 1.25◦, lon = 34.08◦), Uganda. Data is extracted from the CGLS Collection 1km NDVI Version 2 product. The NDVI
temporal evolution for 2019 and long-term (1998–2020) average NDVI profile are shown in the top panel. NDVI anomalies
over 2019 are computed via a z-score. Positive (negative) anomalies denote whether an NDVI values is above (below) the
long-term NDVI average. The absolute value of the NDVI anomaly indicates how many standard deviations the NDVI
value departs from the long-term NDVI average. Colored bands in the bottom panel denote vegetation growth status and
are defined as follows: normal([−1, 1]; white), warning ([±1, ±1.5]; yellow), favorable ([1.5, 2]; light green), unfavorable
([−1.5, −2]; light red), very favorable (>2; dark green) and very unfavorable (−2<; dark red). Gaps in Time-Series occur
due to the lack of clear data for that dekad.

Thus, the Bukedea site illustrates the occurrence of directional effects in NDVI time-
series (see Figure 3) and allows us to verify whether our methodology can successfully
minimize directional effects (short-term variability introduced by changing viewing and
illumination conditions) in NDVI time-series. The NDVI profile and anomaly temporal evo-
lution for the Bukedea pixel is shown in the top and bottom panels of Figure 4, respectively.
At first glance, the saw-like pattern is not noticeable anymore in the BRDF-adjusted NDVI
profile evolution ( top panel of Figure 4). The uncertainties provided in the BRDF-adjusted
NDVI dataset allow us to identify less reliable normalized NDVI values. The later can
occur during periods of persistent clouds or in the presence of outliers associated with
misclassified clouds. The uncertainties on the NDVI are used as a weight in the compu-
tation of the long-term NDVI average, allowing down-weighting of the impact of less
reliable NDVI values. The uncertainty associated with the current NDVI values is further
propagated through the anomaly computations. Unlike, anomalies calculated from MVC
NDVI (see the bottom panel in Figure 3), the NDVI anomaly evolution derived from the
BRDF-adjusted NDVI dataset does not go through the anomaly regions rapidly. As a result,
the bottom panel of Figure 4 shows an anomaly signal with variability timescales, and an
overall trend that seems to be consistent with seasonal variations expected for a vegetated
site. More details on the spatial and temporal consistency of the NDVI anomalies derived
from the presented methodology can be found in Section 6 of its Copernicus Global Land
quality assessment report [39].
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Figure 4. Same as in Figure 3 but Time-Series are extracted from BRDF-adjusted NDVI datasets. Unlike data from the CGLS
Collection 1km NDVI Version 2 product, the BRDF-adjusted NDVI datasets provide uncertainties, see 2019 NDVI profile in
top panel.

To go further in the appraisal of the methodology, two additional sites (Belmanip 151,
Belmanip 332) were considered to be they show marked NDVI seasonal patterns. MVC and
BRDF-adjusted NDVI time-series for a pixel near Belmanip 151 site (Tanzania) are shown
in Figure 5. The uncertainties associated with the BRDF-adjusted NDVI are not shown to
avoid a cluttered plot. From Figure 5, NDVI time-series from both datasets show an overall
agreement in terms of phenological variations with no noticeable lag among time-series.
However, it can be noticed that during periods where high NDVI levels are observed, very
rapid variations are noticeable on the Belmanip 151 MVC NDVI profile. The impact of
directional effects on NDVI time-series is revealed by noise on the datasets [40], which leads
to spurious deviations for a timescale less than the characteristic timescale of the vegetation
activity. The rapid variability on NDVI time-series inferred by the BRDF effect is even more
conspicuous at the end of the growing canopy periods [16] when NDVI reaches a peak.
The lack of high-frequency variations in BRDF-adjusted NDVI Time-Series, especially in
the summertime, demonstrates that directional effects have been properly removed.

MVC NDVI and BRDF-adjusted NDVI time-series for Belmanip 332 site (India) are
shown in Figure 6 with the same line and color code as Figure 5. The NDVI time-series of
Belmanip 332 site show a strong seasonal component which is characteristic of an area that
is cultivated twice a year. From a visual inspection of Figure 6, it can be gleaned that the
BRDF-adjusted NDVI dataset does not lag the directional NDVI time-series. The BRDF-
adjusted NDVI time-series, from Belmanip 151 and Belmanip 332 sites, follow the overall
long-term phenological variations seen in MVC NDVI. From the examples above, it is no-
ticeable that the onset of the growing season in BRDF-adjusted NDVI time-series is affected
by the process of data accumulation. Since no significant delay on the NDVI time-series is
being introduced by the BRDF adjustment, the agreement between both NDVI datasets,
in regard to the temporal evolution, adds confidence on the adaptive window method
that is proposed here (see Section 3.2.2). This latter acts for avoiding abrupt temporal
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NDVI variations and to overcome persistent gaps in time-series. However, an apparent
difference between MVC NDVI and BRDF-adjusted NDVI in terms of NDVI peak levels
can be noticed for specific growing periods of Belmanip 151 and Belmanip 332 sites. This
apparent disagreement is discussed in Section 5.

Figure 5. Temporal evolution of the NDVI profile of Belmanip 151 site (Tanzania, see coordinates at top of Figure) over
a period of 20 years.VEGETATION MVC NDVI and BRDF-adjusted NDVI datasets are displayed in dark (thin) and red
(thick-solid) lines. To avoid clutter and enhance clarity, uncertainties associated with BRDF-adjusted NDVI are left out.

Figure 6. The layout is the same as in Figure 5 but for Belmanip 332 site (India).

Following previous works [13,16,40–43], we quantified the impact of the BRDF correc-
tion on the VEGETATION NDVI time-series by computing an estimate of the statistical
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noise. According to Bréon and Vermote [41], the statistical noise in time-series can be
defined as follows:

noise =

√√√√√√√Σn−1
i=1

(
(ti+1−ti)ρi−1+(ti−ti−1)ρi+1

ti+1−ti−1
−ρi

)2

ti+1−ti−1

Σn−1
i=1

1
ti+1−ti−1

(13)

where the NDVI values in a Time-Series are represented by ρi. The first and last element
are ρi=0 and ρi=n, respectively.

We use Equation (13) to estimate the statistical noise in MVC NDVI and BRDF-
adjusted NDVI Time-Series for pixels in three geographical subregions belonging to East-
ern Africa, Western Europe and Northern India for a period of 5 years (January 2014–
December 2018). These estimates are presented as noise maps in Figures 7–9. The noise in
MVC NDVI and BRDF-adjusted NDVI Time-Series for a subregion located in East Africa is
shown at the top and bottom panel of Figure 7, respectively. As shown in Figure 7, there is a
noise reduction in the VEGETATION NDVI time-series after applying the BRDF correction.
It is more demonstrated for vegetated areas than for pixels associated with barren soil areas
(scaled noise < 3), for which the noise in MVC NDVI is already low.

Figure 8 illustrates the artefacts for a subregion of Western Europe where the top and
bottom panels display the statistical noise estimates for MVC NDVI and BRDF-adjusted
NDVI time-series, respectively. The noise levels for MVC NDVI time-series display a
dependence on the latitude. In particular, the MVC NDVI compositing strategy favors
satellite observations within a reduced range of viewing zenith angles. Therefore, this
compositing strategy—aimed to minimize directional effects in NDVI time-series—is
significantly affected by the lack of clear observations. Since the frequency of cloud
coverage is higher for northern latitudes, it is expected to observe noisier NDVI time-series
as moving towards North. Top panel of Figure 8, revels this smooth trend with a residual
effect in the BRDF-adjusted NDVI. Comparison between noise images displayed on top
and bottom panels of Figure 9 (Northern India) shows at first glance an apparent reduction
of noise for a region dominated by mountainous landscapes.
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2 

Figure 7. Statistical noise in MVC NDVI (top-panel) and BRDF-adjusted NDVI (bottom-panel) Time-Series for a region of
Eastern Africa encompassing the so-called horn of Africa. Levels of scaled (×100) noise estimated from Equation (13) are
color coded as shown in the colorbar. It should be noticed that pixels with a scaled noise value higher than 10 are simply
shown as light yellow. Country borders are shown as green lines.
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1 
 

Figure 8. Statistical noise in MVC NDVI (top-panel) and BRDF-adjusted NDVI (bottom-panel) Time-Series for a subregion
in Western Europe. The noise levels and country borders are color coded in the same fashion as in Figure 7.
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Figure 9. Statistical noise in MVC NDVI (top-panel) and BRDF-adjusted NDVI (bottom-panel) Time-Series for a subregion
in Northern India. The noise levels and country borders are color coded in the same fashion as in Figure 7.

Figure 8 illustrates the artefacts for a subregion of Western Europe where the top and
bottom panels display the statistical noise estimates for MVC NDVI and BRDF-adjusted
NDVI time-series, respectively. The noise levels for MVC NDVI time-series display a
dependence on the latitude. In particular, the MVC NDVI compositing strategy favors
satellite observations within a reduced range of viewing zenith angles. Therefore, this

Figure 9. Statistical noise in MVC NDVI (top-panel) and BRDF-adjusted NDVI (bottom-panel)
Time-Series for a subregion in Northern India. The noise levels and country borders are color coded
in the same fashion as in Figure 7.
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5. Discussion

Directional effects are inherent properties of time-series of land surface reflectance
and vegetation indices derived from satellite observations. A comparison between di-
rectional and normalized NDVI time-series exemplifies the necessity for removing direc-
tional effects prior any analysis devoted to point out possible natural anomalies during
vegetation growth, peak and decay. Two sites (Belmanip 151 and Belmanip 332) were
selected to appraise the BRDF adjustment performance on the NDVI temporal patterns.
Figures 5 and 6 show the NDVI time-series for Belmanip 151 and Belmanip 332, respectively.
Despite an adequate agreement in terms of temporal evolution, a significant difference
between MVC NDVI and BRDF-adjusted NDVI in terms of NDVI peak levels can be
noticed. Since directional effects can significantly impact the levels and timing of maxi-
mum greenness [15], we explore whether the difference mentioned above is associated—or
not—to a removal of directional effects.

For such, we performed a qualitative comparison between VEGETATION NDVI time-
series and BRDF-adjusted NDVI derived from the MODIS MCD43A41 product (https:
//lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd43a4_v006, ac-
cessed on 15 March 2021) [27,29]. Nadir BRDF-adjusted reflectances (NBAR) for MODIS
band1 (RED) and band2 (NIR) were retrieved for Belmanip 151 and Belmanip 332 sites
via Google Earth Engine [44]. NDVI time-series derived from MCD43A4 NBAR data are
displayed in Figures 10 and 11 along with their corresponding MVC (top panel) and
BRDF-adjusted NDVI (bottom panel) NDVI Time-Series. Performing the comparison
with MODIS MCD43A4 reveals a couple of discrepancies associated with the fact that
the MODIS MCD43A compositing strategy (16 days) and kernels (Li- sparse, Ross-thick)
to model the land surface BRDF differs from the approach described in this article (see
Section 3).

Figure 10. NDVI time-series derived from MODIS MCD43A4 nadir BRDF-adjusted reflectances for a pixel close to
Belmanip 151 site. Overplotted in the top and bottom panels are the MVC and BRDF-adjusted NDVI time-series. NDVI
Time-Series are color and line encoded as shown in the legend.

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd43a4_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd43a4_v006
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Figure 11. Same layout as in Figure 10 but for Belmanip 332 site.

Nevertheless, bottom panel of Figures 10 and 11 show a general agreement between
BRDF-adjusted NDVI time-series. This confirms the efficiency of the directional correction
and that the high peak levels of MVC NDVI (see top panels in Figures 10 and 11)—occurring
mostly in periods of canopy development—are very likely linked to the anisotropy of the
land surface reflectance. The consistency between both BRDF-adjusted NDVI Time-Series
(MODIS and VEGETATION) relies on both the NDVI intensity and chronicle. Since the
MODIS MCD43A product is provided with a daily cadence, the consistency of the NDVI
temporal evolution seen in the bottom panels of Figures 10 and 11 adds confidence in the
timing of BRDF-adjusted NDVI dataset key phenological stages achieved by the adaptive
window approach proposed in our methodology.

To quantitatively evaluate the impact of the BRDF correction in NDVI time-series,
it is of primary interest to perform a comparison in terms of statistical noise between
MVC NDVI and BRDF-adjusted NDVI time-series. Herein, we define the noise reduction
percentage as follows:

noise reduction =
µnoiseBRDF − µnoiseMVC

µnoiseMVC

(14)

where µnoiseBRDF and µnoiseMVC are the median of the noise distributions from MVC NDVI
and BRDF-adjusted NDVI Time-Series, respectively.

Figure 12 shows the normalized distribution of the noise estimates for all pixels (in the
subregions selected) with a scaled noise estimate from MVC NDVI time-series larger than 3
i.e., noise×100 > 3). The latter allows us to remove pixels associated with barren soil areas
for which the BRDF effect should not be considered significant, and a reduction of noise
due to removal of directional effects is not relevant. The left panel in Figure 12 displays the
normalized distribution of noise from MVC NDVI and BRDF-adjusted NDVI time-series
color coded as indicated in its legend. From left-panel in Figure 12, the corresponding
values of µnoiseBRDF and µnoiseMVC are 3.25 and 5.24, respectively. From Equation (14),
the impact of the BRDF on the NDVI time-series for the subregion in East Africa can be
approximated as a median noise reduction in VEGETATION NDVI time-series ∼38%.
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Figure 12. Normalized distributions of statistical noise in NDVI Time-Series for selected subregions: Eastern Africa
(left-panel), Western Europe (middle-panel) and Northern India (right-panel). The NDVI Time-Series span a period of
five years (1 January 2014–31 December 2018). Distributions of noise in MVC NDVI and BRDF-adjusted NDVI Time-Series
are color coded as shown in the legends.

Although BRDF correction mitigates the effect of variations in solar and viewing zenith
angles on surface reflectance, NDVI values are still affected by numerous factors, including
sensor-specific and atmospheric conditions. The quality of the BRDF inversion is strongly
correlated with the number and diversity of observations used in the inversion. There might
be locations where, at periods, the gathering of clear observations is limited (or not possible),
thereby yielding to an unsuccessful BRDF retrieval and thereby a corrected product with
limited quality. Western Europe is a geographical region affected by periods of persistent
clouds or natural darkness. Thus, noisy and scarce data lead to a noticeable latitudinal noise
gradient in MVC NDVI (top panel of Figure 8). The lack of reliable observations translates
into periods of less reliable BRDF-adjusted NDVI time-series. However, the latitudinal
noise gradient seen in NDVI MVC is strongly quenched in the BRDF-adjusted NDVI
dataset (see bottom panel of Figure 8). The noise distributions in MVC and BRDF-adjusted
NDVI time-series for the selected subregion in West-Europe are shown in the middle panel
of Figure 12. It is clear from this figure that the dispersion of the noise distribution in
BRDF-adjusted NDVI Time-Series is significantly reduced when compared with MVC
NDVI. Moreover, from the median values of the noise distribution, the noise reduction
achieved with the directional correction is 33%, which is meaningful.

The right panel of Figure 12 shows the normalized distributions of noise in MVC
NDVI and BRDF-adjusted NDVI time-series for the subregion in northern India; its median
noise reduction is 28%. Although this noise reduction percentage is lower than the other
two subregions, the difference in the shape of noise distributions (right panel in Figure 12)
allows us to consider the noise reduction as significant. The latter is supported by a
Kolmogorov–Smirnov test, resulting in a probability of both noise distributions being
drawn from the same parent population <0.05. It should be noticed that the noise reduction
on NDVI time-series achieved with the BRDF adjustment presented here does not depend
on time (period of the time-series considered). As shown in Figure 13, the noise reduction
(27%) also holds for the early period of the VEGETATION NDVI time-series (1999 to
2005) comprising VGT1 and VGT2 observations. Therefore, the noise reduction in BRDF-
adjusted NDVI datasets, as described above, is to verify that the NDVI BRDF adjustment
methodology can significantly reduce the short-term variability in VEGETATION NDVI
Time-Series acquired with changing viewing and illumination conditions.

The computation time to generate a tile (10◦ × 10◦) of the BRDF-adjusted NDVI prod-
uct has been estimated by running the code on the MEP’s cluster [45] in parallel mode
(Spark). An average time to process a dekad is about 5 min per tile. In the VEGETATION
tile grid, there are 336 tiles. Thus, the processing time required to generate all dekads of a
time-series with 20-years is less than three days—using a single core per tile. The somewhat
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limited computation time required to implement our directional effects correction method-
ology to the full VEGETATION long-term archive is related to the linear kernel-driven
models, which offer a trade-off in computational complexity and physically motivated
parametrization of the surface reflectance anisotropy. The presented methodology is flexi-
ble enough to be upscaled to process data from another space-borne sensor with a wide
imaging swath (allowing for adequate sampling of the BRDF) such as Sentinel-3.
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Figure 13. Same as in Figure 9 but for NDVI Time-Series ranging from 1999 to 2005.

6. Conclusions

An implementation of a methodology aimed to remove directional effects from the
long-term VEGETATION NDVI Time-Series has been presented here with a detailed
description of the core processing stages of BRDF correction and computation of a BRDF-
adjusted NDVI. In addition, VEGETATION data for subregions in Eastern Africa, Western
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6. Conclusions

An implementation of a methodology aimed to remove directional effects from the
long-term VEGETATION NDVI Time-Series has been presented here with a detailed
description of the core processing stages of BRDF correction and computation of a BRDF-
adjusted NDVI. In addition, VEGETATION data for subregions in Eastern Africa, Western
Europe and Northern India have been used to evaluate the expected BRDF correction
performance on NDVI Time-Series. For each case, the impact of the BRDF correction on
NDVI Time-Series is evaluated in taking the reduction of statistical noise as criterion. These
examples show that an overall noise reduction of ∼ 30% in NDVI Time-Series is achieved
after applying the BRDF correction. This estimate is consistent with previous works [40,43]
that used the noise reduction in NDVI (or reflectance) time-series to assess the performance
of the BRDF correction. Thus, the noise reduction in the processed BRDF-adjusted NDVI
time-series suggests that the high-frequency noise component identified in MVC NDVI
time-series is likely associated with directional effects. Moreover, it can be significantly
diminished by the BRDF correction described here.

Since the methodology presented can successfully mitigate directional effects intro-
duced by the very large swaths of the VEGETATION series of sensors and is computa-
tionally efficient, it was adapted to process the whole VEGETATION NDVI data archive
(March 1998–June 2020) at a global scale. A full validation of this BRDF-adjusted NDVI
dataset will be presented in a forthcoming article based on the Copernicus Global Land
Service validation report of the methodology here presented [39]. The archival value of the
long-term NDVI Time-Series dataset after BRDF correction allows a seamless extension of
the ongoing vegetation activity monitoring by the Copernicus Sentinel 3 satellite constella-
tion.
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