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Abstract 

Monitoring landslides is essential to understand their dynamics and to reduce the risk of 

human losses by raising warnings before a failure. A decade ago, a decrease of apparent seis-

mic velocity was detected several days before the failure of a clayey landslide, that was moni-

tored with the ambient noise correlation method. It revealed its potential to detect precursor 

signals before a landslide failure, which could improve early warning systems. To date, nine 

landslides have been monitored with this method, and its ability to reveal precursors before 

failure seems confirmed on clayey landslides. However three challenges remain for opera-

tional early-warning applications: to detect velocity changes both rapidly and with confi-

dence, to account for seasonal and daily environmental influences, and to check for potential 

instabilities in measurements. The ability to detect a precursory velocity change requires to 

adapt the processing workflow to each landslide: the key factors are the filtering frequency, 

the correlation time window, and the choice of temporal resolution. Other optional processing 

steps are described, to better measure rapid velocity changes, improve signal-to-noise ratio, or 

estimate the measurement uncertainty. The velocity also fluctuates seasonally, by 1 to 6% on 

the reviewed landslide studies, due to environmental influences. This review reveals a linear 

trend between the amplitude of seasonal fluctuations and the filtering frequency over the 0.1–

20 Hz range, encompassing both landslide and non-landslide studies. The environmental ve-

locity fluctuations are caused mostly by groundwater levels and soil freezing/thawing, but 

could also be affected by snow height, air temperature and tide depending on the site. Daily 

fluctuations should also occur on landslides, and can be an issue when seeking to obtain a 

sub-daily resolution useful for early-warning systems. Finally, spurious fluctuations of appar-

ent velocity—unrelated to the material dynamics—should be verified for. They can be caused 

by changes in noise sources (location or spectral content), in site response (change of scatter-

ers, attenuation, or resonance frequency due to geometrical factors), or in inter-sensor dis-

tance. As a perspective, the observation of seismic velocity changes could contribute in as-
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sessing a landslide stability across time, both during the different creeping stages occurring 

before a potential failure, and during its reconsolidation after a failure. 

1 Introduction 

Every year, slope destabilization events cause more than 4000 casualties and tens of billions 

of euros losses in material damage (Froude and Petley, 2018; Alimohammadlou et al., 2013). 

The risk can be reduced (Dai et al., 2002) by anticipating slope failures thanks to early-

warning systems (Intrieri et al., 2012). These systems usually involve monitoring ground de-

formation, rainfall, or groundwater levels. Recently, geophysical methods have emerged as an 

alternative means to investigate the internal structure, hydrological and mechanical properties 

of landslides (Jongmans and Garambois, 2007), and to provide insights into their dynamics 

through monitoring (Fig. 1) (Whiteley et al., 2019). Electrical methods are mostly sensitive to 

the bulk material, pore-water salinity and water circulation, providing useful insights into the 

hydrological dynamics of the landslide. However, groundwater levels measured directly with 

piezometers cannot predict a rupture when used in isolation, therefore indirect estimations 

using geophysical methods are unlikely to provide better forecasts (Carrière et al., 2018a). 

Quadrature conductivity measurements on landslides (Flores Orozco et al., 2018; Gallistl et 

al., 2018) should provide complementary indicators on the characteristics of the solid matrix, 

such as the clay distribution and its permeability (Revil et al., 2020), but remain operationally 

difficult to permanently monitor with high accuracy. In contrast, passive seismic methods 

provide direct insights into the mechanical alterations of the subsurface that could lead to a 

failure. Passive seismic methods include site-specific spectral amplification, microseismic 

methods, and more recently ambient noise correlation. Analysis of long-term monitoring data 

using passive seismic methods has revealed clear precursory signals several hours or days 

before landslide failures (Larose et al., 2015). 

The study of spectral amplification on a site consists in measuring and analyzing the hori-

zontal-to-vertical ratio (H/V) of the seismic noise amplitude (Nakamura, 1989). Use of these 

techniques on landslides, especially for mapping, has been extensively reviewed (Del Gaudio 

et al., 2014; Kleinbrod et al., 2019). The method has been applied to rock columns (Lévy et 

al., 2010; Bottelin et al., 2013a), rock slopes (Burjánek et al., 2010, 2012; Kleinbrod et al., 

2019), rock slides (Gaffet et al., 2010), and soft-material landslides (Amitrano et al., 2007; 

Méric et al., 2007; Danneels et al., 2008). It can be used for landslide zonation, either locally 

by mapping fractures and unstable areas (Burjánek et al., 2010; Häusler et al., 2019), or at a 

regional scale to assess the risk of earthquake-induced slope destabilization (Del Gaudio et 

al., 2014). The depth of a rock column fracture can be estimated by measuring the first reso-

nance frequency together with the material’s Young modulus (Valentin et al., 2017). The slid-
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ing depth of a soft-material landslide that has a strong impedance contrast at its base can also 

be estimated from resonance frequencies combined with a rough shear-wave velocity profile 

(Imposa et al., 2017; Pazzi et al., 2017). In terms of precursory signals, the resonance fre-

quency has been observed to decrease a few days before failure of a rock column (Lévy et al., 

2010), or one hour before failure of a clay column (Fiolleau et al., 2020). However, this moni-

toring method appears adapted to sites with marked geometrical features, such as prone-to-

failure columns, but is less adapted to monitor soft-soil landslides 

Another family of methods, microseismic methods, has been used to monitor rockslides and 

softer material landslides, in order to detect events emerging from noise (Amitrano et al., 

2007; Spillmann et al., 2007a), classify them (Walter and Joswig, 2008; Helmstetter and 

Garambois, 2010; Walter et al., 2011; Provost et al., 2017, 2018b; Vouillamoz et al., 2018), 

and locate them (Lacroix and Helmstetter, 2011; Provost et al., 2018a). For example, the 

method can be used to determine remotely the size, location, and timing of major failures and 

smaller afterslides (Schöpa et al., 2018). In terms of signals preceding a failure, the 

microseismic rate was found to correlate with the displacement rate of a rockslide (Spillmann 

et al., 2007b; Helmstetter and Garambois, 2010) or a soft-soil landslide (Amitrano et al., 

2007; Walter et al., 2013; Tonnellier et al., 2013). This parameter may therefore serve as a 

proxy for displacement monitoring, making it possible to forecast the time-to-failure of a 

slope using common displacement-based methods (Intrieri et al., 2019). As for observed pre-

cursors, an increase in the microseismic rate was observed 2–15 hours before a cliff collapse 

or a rockfall (Amitrano et al., 2005; Senfaute et al., 2009), and a few hours or minutes before 

the failure of a suggested stick-slip landslide (Poli, 2017; Schöpa et al., 2018; Yamada et al., 

2016). However, microseismic events (sometimes referred to as acoustic events when includ-

ing high frequencies) are difficult to detect on soft-soil landslides, due to their low energy and 

strong attenuation, and in practice they cannot predict all failures. 

Finally, the ambient noise correlation method —or passive seismic interferometry— (Sens-

Schönfelder and Wegler, 2006; Sens-Schönfelder and Brenguier, 2019) has detected a drop in 

shear-wave velocity several days before the rupture of a clayey landslide (Mainsant et al., 

2012b). Ambient noise correlation thus represents a potential new method that can detect pre-

cursors before a failure. It is promising because the drop in seismic velocity likely represents 

a decrease in rigidity (softening) in the underground layers, which is directly related to failure. 

Use of ambient noise correlation monitoring is increasing in landslide research: to date, nine 

landslides have been monitored (Renalier et al., 2010a; Mainsant et al., 2012b; Larose et al., 

2015; Voisin et al., 2016; Bertello et al., 2018; Bièvre et al., 2018; Valentin, 2018; Colombero 

et al., 2018; Le Breton, 2019a; Guillemot et al., 2020; Bontemps et al., 2020; Fiolleau et al., 
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2020) (Table 1). However, the method still encounters obstacles that appear to limit is ap-

plicability in early-warning systems. This review aims to identify the challenges, and their 

potential solutions, to integrating ambient noise correlation monitoring into an operational 

early-warning system. 

The review starts by presenting the method and its applications on landslides, and by identi-

fying its potential and limitations when included in a landslide early-warning system (part 2). 

The processing workflow and its key parameters are then presented (part 3). Fluctuations in 

the measurement may be caused by spatiotemporal variations of the noise field (part 4), or by 

environmental factors that appear crucial to understand (part 5). Finally, the influence of two 

major triggers—earthquakes and rainfall-induced fluidization—is presented, and their mecha-

nisms discussed (part 6). 

 

Fig. 1: Geophysical methods used to monitor landslides, adapted from Whiteley et al. (2019). 

2 Ambient noise correlation for landslide monitoring 

2.1 Ambient noise correlation 

The basic premise of ambient noise correlation is to approximate the impulse response of 

medium to an excitation (or Green’s function), by cross-correlating the seismic noise meas-

ured passively by two sensors. That results in a cross-correlation function (CCF) that is repre-

sentative of the direct and diffused propagation within the medium. The method was first ap-

plied at a decimetric scale on a solid block using two ultrasonic receivers and a pulse genera-

tor (Lobkis and Weaver, 2001), then on at a crustal scale using the late seismic coda of an 

earthquake (Campillo and Paul, 2003). Exploiting the diffused ambient seismic noise from 

multiple sources then helped to reconstruct a more stable approximation of the Green’s func-

tion (Shapiro and Campillo, 2004). The last two studies used reconstructions of the early-

arrival direct surface waves (usually Rayleigh waves) to make the tomography of crustal ve-
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locity. Subsequently, research teams suggested mixing the ambient noise correlation tech-

nique with coda wave interferometry, to detect small relative velocity changes in the coda. 

Thus, Sens-Schönfelder and Wegler (2006) proposed measuring relative variations in appar-

ent velocity for crustal objects, such as a volcano, using the coda wave interferometry meth-

od. Over a year of monitoring, their data showed that an increase in groundwater levels re-

duced the apparent seismic velocity. Later, the apparent velocity was observed to decrease 

slightly before a volcanic eruption (Brenguier et al., 2011, 2008b, 2016; Obermann et al., 

2013a; Nakata et al., 2016), or to decrease abruptly followed by a slow recovery after an 

earthquake (Wegler and Sens‐Schönfelder, 2007; Brenguier et al., 2008a; Rivet et al., 2011; 

Hobiger et al., 2016). The apparent velocity was observed to decrease even more after an 

earthquake in a volcanic area (Brenguier et al., 2014; Taira and Brenguier, 2016). On smaller-

scale objects, velocity decreases were observed when seepage occurred in dams or levees 

(Planès et al., 2016, 2017; Olivier et al., 2017) or during seasonal thawing of permafrost 

(James et al., 2017). In complement to apparent velocity, the indicator of CCFs decorrelation 

can detect structural changes of a material (e.g., Obermann et al., 2013; Walter et al., 2015; 

Preiswerk and Walter, 2018), which may also be used to monitor landslides (see 4.1). 

2.2 Applications to landslide monitoring 

On landslides, changes of apparent surface wave velocity can be monitored based on ambient 

noise correlation associated with coda wave interferometry. This technique attracted interest 

after detecting for the first time a clear velocity drop five days before the catastrophic acceler-

ation of a shallow clayey landslide, at Pont-Bourquin (Mainsant et al., 2012b). This observa-

tion led to the development of a new technique to predict landslide failures. The drop in ve-

locity, which reached 7% before the failure (Fig. 2), was attributed to a decrease in the rigidity 

of the soil during a partial fluidization at the base of the moving layer caused by an increase 

of water pore pressure. The variation of shear-wave velocity    depends on the density  and 

the rigidity , following the equation: 

     
 

 
 (1) 

This phenomenon was reproduced in laboratory experiments, where pore saturation was 

shown to decrease shear-wave velocity in the clay as the medium progressively fluidized 

(Mainsant et al., 2012a, 2015; Dong and Lu, 2016; Carrière et al., 2018a, 2018b) (see sec-

tion 6.1). 
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Fig. 2: On the Pont-Bourquin landslide, the apparent surface wave velocity (blue) was monitored be-

fore the major failure of 19 August 2010 (gray). Vertical line 1: the first velocity reduction starts after 

rainfall on 23 July and represents a 2% drop developing over 20 days. Vertical line 2: the major drop 

starts after rainfall on 14 August, with a total decrease of 7% over the 5 days preceding the landslide. 

The water table height (green) was not sufficient to predict a failure. From (Mainsant et al., 2012b). 

Since then, several new landslides have been monitored with this technique (Table 1), in-

cluding deep-seated landslides (Voisin et al., 2016; Bontemps et al., 2020), a rock glacier 

(Guillemot et al., 2020), and a rockfall/slide (Colombero et al., 2018). However, these land-

slides remained relatively stable over the course of their observation, and consequently no 

precursor signal was detected. A decrease in velocity related to a failure was observed on sev-

en earthflows (Berti et al., 2019), but after the failure, since no data were recorded just before 

the failures. The potential of relative change in seismic velocity (called dv/v) to serve as a 

precursory signal was recently confirmed on Montevecchio earthflow (Bertello et al., 2018). 

In this latter study, the Rayleigh wave velocity decreased during the progressive acceleration 

of the landslide four days before its failure. In addition, on Harmalière rotational landslide, a 

progressive decrease in the CCF correlation coefficient (CC) was observed 20 days before the 

failure of an earth column (Fiolleau et al., 2020). In this study, one sensor was placed on the 

unstable column and the other was placed on stable ground. The decrease in CC was probably 

due to the progressive opening of the rear fracture. 

Table 1: Landslide monitoring based on ambient noise correlation. Landslide monitoring studies of short duration or low time 

resolution were not included (Chtouki et al., 2017; Harba and Pilecki, 2017; Hussain et al., 2019) 

Landslide 
Technique 
(a) 

Precursor Seasonal 
variation 

Duration 
(yr.) 

Sliding 
depth (m) 

Slide class 
(Hungr, 2014) 

References 

Avignonet, 
France 

dv/v na ±0.5% 2.5 10–16 and 
42–47 

Clay/silt compound 
slide 

(Renalier et al., 2010a) 

Pont-Bourquin, 
Switzerland 

dv/v 2–7% in 5 d, 
at 10–12 Hz 

±2% 6 10 Clay planar slide-
earthflow 

(Mainsant et al., 2012b; La-
rose et al., 2015; Bièvre et al., 
2018; Le Breton, 2019a) 

Utiku 
New Zealand 

dv/v na ±2% 1.1 300 (Mas-
sey et al., 
2013) 

Planar rock-
slide/earthflow  

(Voisin et al., 2016) 

Madonna del 
Sasso, Italy 

dv/v 
H/V 

na ±10% 
2.7-3.3 Hz 

2.3 15 Rock fall-slide (Colombero et al., 2018) 

Harmalière, 
France 

CC 
H/H 

0.8–0 in 20 d 
9–6 Hz in 8 h 

na 
na 

0.3 3 Earth rotational slide (Fiolleau et al., 2020) 
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Gugla, Swit-
zerland 

dv/v 
CC 

na 
na 

±1.5% 
1-0.5 

3 2–15 Rock slope defor-
mation/creeping 

(Guillemot et al., 2020) 

Maca, 
Peru 

dv/v Na ±1% 3 50 Clay/silt compound 
slide 

(Bontemps et al., 2020) 

 

Montevecchio, 
Italy 

Time 
lapse dv/v 

After event: 
30% at 11 Hz 

na 1.3 unknown Earthflow (Bertello et al., 2018) 

Char d’Osset, 
France 

dv/v Na ±2.5% 2 ≈15 Debris flow (Valentin, 2018, chap. 7) 

2.3 Challenges for early-warning system applications 

 Landslide early-warning systems (Intrieri et al., 2012) could take advantage of ambient 

noise correlation monitoring. Firstly, the method measures the loss of rigidity that causes the 

failure directly in the material’s bulk, at depth. It is therefore complementary to the indicators 

of surface displacement or rainfall infiltration that are commonly monitored. Secondly, ambi-

ent noise correlation provides continuous and robust monitoring even under rain, snow, vege-

tation, or without a line of sight between sensors. Thirdly, sensor can be installed either on the 

stable or unstable part of the slope, at the surface, or partially buried, and do not require drill-

ing unlike underground piezometers or inclinometers.  

Nevertheless, an early-warning system must predict a failure before it occurs, which adds 

several challenges compared to the existing applications in the literature. Firstly, all failures 

should be detected, with a low rate of false alerts. So far, failures were reported on three land-

slides monitored with an ambient noise correlation method, and all showed a precursory sig-

nal (Mainsant et al., 2012b; Bertello et al., 2018; Fiolleau et al., 2020). In particular, the Pont-

 
(a) dv/v: relative temporal velocity variations based on the coda of the Green’s function; CC: Correlation Coefficient of the Green’s 
function. H/V and H/H use ambient noise to monitor the horizontal resonance frequency, normalized relative to the vertical or horizontal 
component from another sensor. 
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Bourquin landslide showed no false alert during 5 years without failure (Bièvre et al., 2018), 

using a ±2.5 % threshold value. The threshold must be carefully adapted to each landslide, to 

remain higher to the seasonal fluctuations of dv/v (to avoid false alerts) and lower than the 

precursory signal. A preliminary monitoring period is therefore required before setting a 

threshold. 

Secondly, the detection system should work without fine-tuning the processing parameters 

based on the data obtained after the failure. Therefore, prior knowledge of the landslide’s be-

havior is important to set appropriate parameters in the processing workflow. A depth-

sensitivity analysis constrains processing parameters such as the frequency range of the seis-

mic signal and time window for the coda (detailed in section 3). This requires a first investi-

gation to estimate the active layer’s depth —subject to rigidity reduction— and its seismic 

velocities.  

Finally, an alarm should be raised early enough (=long lead time) before a potential land-

slide failure, to give time for mitigation measures (Intrieri et al., 2012). Today, the state-of-

the-art time resolution for landslide monitoring is 1 day (Mainsant et al., 2012b), which corre-

sponds to a delay of 2+ days before detection in order to confirm the measurement in case of 

an outlier.  The delay can be reduced by using a fully automated processing (e.g., Duputel et 

al., 2009, on a volcano), by reducing the time resolution to less than one day (even though we 

must then contend with daily cyclic variations and a lower signal-to-noise ratio), and by recti-

fying reversible environmental influences to allow for a more sensitive threshold. Today, the 

delay of the method restricts its usage in early warning systems to slopes evolving over long 

time scales—several days or weeks. 

3 Processing for early-warning systems 

3.1 Processing workflow 

A general processing workflow is presented in Fig. 3, based on those proposed by Bensen et 

al. (2007), Larose et al. (2015), Sens-Schönfelder and Brenguier (2019), and Ritzwoller and 

Feng (2019).  
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Fig. 3: General workflow to process ambient seismic noise correlation and extract daily relative veloc-

ity changes dv/v and correlation coefficients CC. Adapted from Larose et al. (2015). 

The workflow starts with preparation of the continuous raw data (or “traces”) recorded by 

the seismometers. Traces consist of velocity or acceleration records usually in the vertical  or 

in the three directions. Data is typically sampled every 1–10 milliseconds and accurately 

timed by a GPS-synchronized clock to avoid a time drift (Sens-Schönfelder, 2008; Stehly et 

al., 2007). Sensors are selected in pairs within the area investigated. Their traces are split in 

time into subrecords of equal duration. The duration chosen for these segments, typically one 

hour, determines the shortest possible resolution of the dv/v. Each i trace segment  is then fil-

tered within a broad frequency band, and the contribution from each frequency can be equal-

ized with a whitening operation (Bensen et al., 2007; Fichtner et al., 2017). The traces spec-

trum can be normalized in the frequency domain, and filtered using an apodization window  

shaping a smooth transition from 0 —outside the bandwidth— to 1 —within the bandwidth: 

   (2) 

The next step consists in removing strong events, such as earthquakes, that emerge from the 

noise. Stronger events can be attenuated in the time domain by applying a moving-average 

weighted normalization (Bensen et al., 2007), or by clipping the signal once or iteratively 

(Machacca-Puma et al., 2019a) above a maximum threshold value. The threshold can be a 

percentile of the amplitude or be based on the sign of the signal measured (one bit) (Larose, 

2004). All these methods increase the contribution of scattered waves (very stable) and con-

tinuous weak sources (often stable) compared to strong transient events, and thus provide 

more stable CCFs. 

The CCFs are then computed by cross-correlating the traces from d sensors. Cross-

correlating two traces  and  provides an approximation (rigorously speaking, the time deriva-

tive) of the Green’s function  between the two sensors that recorded them: 
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   (3) 

Alternatively, the Green’s function can be estimated by applying deconvolution instead of 

cross-correlation (Mehta et al., 2007; Snieder and Safak, 2006; Joubert et al., 2018). This has 

provided a more stable estimation of the Green’s function when using borehole sensors or 

unstable sources (Nakata and Snieder, 2012). 

CCFs can then be normalized by the energy of their traces before stacking, generally over 

one or several days. CCFs are then filtered within the frequency range investigated, within 

often a more narrow band than the initial broad-band filtering.  Each CCF is then compared to 

a reference CCF (e.g., the average CCF over the whole monitoring period, see 3.3.4). The 

dv/v between these two CCFs is computed within a given time window, using either the 

stretching or the doublet method. The doublet method (Ratdomopurbo and Poupinet, 1995; 

Brenguier et al., 2008b) consists in measuring the time shift  between two similar signals over 

a narrow moving window—in time or frequency domain—and extracting the slope  (Fig. 4.a). 

In contrast, the stretching method (Sens-Schönfelder and Wegler, 2006) consists in simulating 

an artificial seismic velocity change by stretching the wavelet through the factor and applying 

the transformation. The CCFs are stretched for several possible values of (Fig. 4.b). The op-

timum velocity change dv/v at a given date maximizes the CC computed between the 

stretched and reference CCF values. 

   (4) 

The two methods were compared by Hadziioannou et al. (2009). The comparison revealed 

the doublet method to be better for eliminating localized decorrelation of the waveforms, 

identifying nonlinear velocity variations across time windows, and providing the same contri-

bution from every part of the CCF whatever its amplitude. In contrast, the stretching method 

works with a lower signal-to-noise ratio and requires less parametrization, which seems better 

adapted for use in an automatic early-warning system. 

This processing can be applied to multiple pairs of sensors, providing multiple dv/v time se-

ries measured between each pair. These spatialized measurements can be used to locate the 

velocity change (Brenguier et al., 2008b), or to compute the mean and standard deviation of 

the dv/v over the whole area covered by the sensors. 

The main settings of the processing workflow are the stacking time, frequency range, refer-

ence selection, and time window. Choosing the adequate settings depend on the investigated 

site and on the need to measure either a stable or rapidly moving dv/v, which is discussed in 

the following sections.. 

( ) ( ) ( ) ( )AB ABh CCF a t b t dt    

   2 2( ) ( )a t b t dtdt t dv v    ( ) 1h t h t  

 
  

    
2 2

1 ( )

1

refh t h t dt
CC

h t dt h t dt






 


 



 



11 

 
Fig. 4: Illustration of (b) doublet and (c) stretching methods, used to estimate a dv/v value from a sam-

ple signal (a), modified from (Hadziioannou, 2011; Hadziioannou et al., 2009)  
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3.2 Investigation depth 

The diffuse propagation between two sensors, represented by the CCF, involves body and 

surface waves. These waves, that mutually convert due to heterogeneities beneath the free 

surface (Shapiro et al., 2000; Larose et al., 2005; Margerin et al., 2009), exhibit very different 

sensitivity depths (Obermann et al., 2013b). This section investigates the contributions of 

body and surface waves to the apparent dv/v, depending on the depth and properties of the 

medium. 

The surface waves considered in the literature and in this review are mostly Rayleigh 

waves, because vertical sensors are generally used. In a multilayer terrain, the phase velocity 

of these waves depends on their frequency—they are dispersive. The investigation depth zmax 

of Rayleigh waves—which is generally shallower than body waves—is approximately one 

third of the maximum wavelength (e.g., Park et al., 1999). The maximum wavelength depends 

on the phase velocity at the lowest signal frequency. The phase velocity, in turn, depends on 

the vertical profile of body wave velocities and on the density of the medium. Therefore, an 

accurate computation of the depth sensitivity as a function of frequency (e.g., Fig. 5) requires 

all three parameters (VS, VP, and density) to be modeled at depth. On landslides, the frequen-

cy filtering of the CCFs must therefore be defined as a function of the depth and the nature of 

the whole unstable layer. The sensitivity depth of a velocity change can be estimated from the 

dispersion of direct surface wave velocities, i.e., surface wave phase velocity versus frequen-

cy. The curve is then inverted to estimate the shear-wave velocity profile at depth (Wathelet et 

al., 2008), using for example the active MASW or passive ReMI method  (Park et al., 1999; 

Louie, 2001). Shear-wave velocity tomography based on CCFs has been reported for a few 

landslides (Renalier et al., 2010b; Pilz et al., 2014; Harba and Pilecki, 2017; Harba et al., 

2019), and results are similar or complementary to active methods. 

As an example of depth sensitivity, the frequency dependence of dv/v was used to estimate 

the depth of the liquefied medium during the Pont-Bourquin failure (Mainsant et al., 2012b), 

and to estimate fluctuations in groundwater levels on the Utiku landslide (Voisin et al., 2016). 

Information on the landslide’s sliding depth and the seismic velocity of its layers will help to 

select in advance the frequency to be monitored in the cross-correlations.  
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Fig. 5: Example showing the sensitivity of the Rayleigh phase velocity to shear velocity perturbation 

dVs over a thin layer, for various frequency ranges, computed for the Deep Heat Mining Project in 

Basel, Switzerland. The 0.1 − 0.4 Hz curves, in black, are magnified x5. Adapted from (Hillers et al., 

2015). 

Scattered waves are composed of both P and S body waves (Hennino et al., 2001). They are 

sensitive at deeper levels than surface waves. Their sensitivity depth can be estimated using 

the diffusion approximation (e.g., Wegler and Lühr, 2001). Alternatively, the radiative trans-

fer approximation can be used (Paasschens, 1997) and appears more accurate at shallow 

depths (Obermann et al., 2013b). The depth sensitivity defined by radiative transfer depends 

on the energy velocity, on the distance between the source and receiver, and on the scattering 

mean free path. The scattering mean free path—the average wave distance between two scat-

tering events—is controlled by the medium’s degree of heterogeneity. The time window ob-

served for the CCF also plays a key role, as body waves dominate at later times (say, about 

six mean free times, representing the propagation over six mean free paths). Therefore, the 

sensitivity depth of body waves depends on the medium’s heterogeneity, on the inter-sensor 

distance and on the processing parameters (time window). In practice, attenuation by the me-

dium also plays a role, as does the frequency which influences both the attenuation and the 

degree of heterogeneity: lower frequencies will be less sensitive to small heterogeneities, but 

also less attenuated. In short, investigations at shallow depths (i.e., of landslides) based on 

body waves would require a highly heterogeneous medium, a late time window, and a high 

frequency. The hypothesis that body waves dominate the dv/v results has not been tested in 

landslide studies, but these waves might still contribute in part to the dv/v. 

The relative contributions of body and surface waves were simulated in 2D and 3D by 

Obermann et al. (2013, 2016, 2019). Fig. 6 shows the contribution of surface waves (in red) 

and body waves (in blue) to the apparent velocity change dv/vapp in response to a bulk velocity 
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change dv/vbulk within a layer located at a variable depth, in an ideal lossless medium. This 

model indicates that surface waves are sensitive down to about half a wavelength, and that 

scattered body waves are sensitive at much greater depths. However, the distribution between 

body and surface waves’ sensitivity depends not only on the depth of the velocity change, but 

also on the time window selected and on the mean free path. Surface waves dominate early 

coda (early scattered waves), whereas bulk-diffused waves dominate later coda. We suspect 

that this bulk diffusion regime (P/S) occurs when absorption is weak compared to scattering. 

However, in metric and hectometric landslides, seismic waves generally have a relatively high 

frequency and the shallow material is highly absorbing. Consequently, very late coda are 

barely visible and the bulk diffusion regime is relatively rarely implicated in field experi-

ments. In contrast, in very large landslides or rock slopes (> kilometric scales), this regime 

might play a role. Furthermore, controlling the contribution and sensitivity depth of bulk-

diffused waves will require estimation of the transport mean free path of the material, which 

is rarely measured. In practice, the time window is set between the end of the high-amplitude 

direct surface waves, up to 5–10 periods of the selected frequency or the limit before the CCF 

becomes too noisy. In summary, the role of surface waves is sufficient to monitor landslides 

based on coda wave interferometry, but the effect of body waves should be kept in mind when 

studying very large landslides. 
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Fig. 6: Simulation of the apparent velocity variations caused by a 20% increase in bulk velocity in a 

200-m thick layer at depth, depending on the depth of the layer (S-wave velocity of the ground = 

3750 m/s, frequency range of the ambient noise =16 − 24 Hz, stretching time window = 2.8 − 4.4 s). 

Surface waves appear sensitive to changes near the surface (in red, up to approximately half the wave-

length) whereas diffused waves (in blue) are sensitive to much deeper changes (in blue). Redrawn 

from (Obermann et al., 2013b). 

3.3 Stability, responsiveness, and signal-noise ratio 

Today, CCFs on landslides are averaged over 24 h or more. This period can be too long for 

landslide early-warning systems that often require decisions to be made just a few hours or 

days before a potential failure. The ability to monitor rapid dv/v variations, with subdaily time 

resolution, is required to observe landslide processes (e.g., water infiltration). However, de-

creasing the time resolution often degrades the signal’s stability or its signal-to noise ratio due 

to the limited signal stacking. A tradeoff is thus required between signal stability and the time 

resolution. This tradeoff implies several decisions: using small or large number of noise 

sources, ballistic or scattered waves, short or long stacking periods, and multiple or unique 

reference(s). All these options are detailed in the following subsections. 

3.3.1 Localized or diffuse sources 

Seismic signals used for ambient noise correlation may originate from strong transient 

events, repeating localized sources, or weak distributed sources. Reconstructing a Green’s 

function requires sources that perfectly surround the pair of sensors, a homogeneous spatial 

distribution of sources around the sensors, or a highly scattering medium (scatterers act as 

secondary sources). Green’s function reconstruction was first tested using the coda (=late ar-

rival) from regional earthquakes, occurring at multiple locations (Campillo and Paul, 2003). 

One drawback of this method is the limited number of sources and the limited available coda 

(limited scattering versus attenuation effects). Without scattering, reconstruction of the direct 

waves requires the seismic sources to be aligned with the two sensors to achieve correlation 

(Snieder and Larose, 2013). In practice, these very restrictive conditions are rarely met, but a 

stable CCF is sufficient to monitor relative velocity changes (Hadziioannou et al., 2009), 

which simply requires stable sources from one stacking period (generally 24 h) to the next. 

This latter condition is met in most field applications, making it possible to retrieve dv/v (but 

not the full Green’s function, strictly speaking). 

Near-surface applications can also exploit smaller repeating sources that are stable in space 

and frequency, such as cars passing on a road (Planès et al., 2017). The sources must be first 

selected and identified—and their spatial and spectral stability verified—either by their time-

domain signature, frequency-domain signature, or spatial/azimuthal signature (Preiswerk and 

Walter, 2018). If the sources identified move slightly in space or frequency, a small phase 

shift will be visible in the correlograms resulting in false dv/v. The verifications required are 
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complicated for continuous monitoring, as they require human validation, and should be 

avoided as much as possible within an early-warning system, but in some industrialized areas 

there is no other option. 

The contribution of continuous and weak noise can be greatly increased by removing strong 

sources. In such case, the ambient noise may come either from continuous weak sources (e.g., 

wind, rivers, trees) or from secondary sources due to waves being scattered multiple times 

before arriving on the sensor. Scattered sources will ensure a better spatial distribution of the 

pseudo-sources (scatterers should surround the sensors) as well as better stability: under-

ground scatterers out of the landslide rarely move, and act like stable secondary sources, thus 

contribute to stability. Potential moving scatterers inside the landslide contribute to 

decorrelation (thus instability of the reconstructed GF, see 4.1) but this population is in lim-

ited (and minor) number. In practice, scattered waves are continuous in time but have a low 

amplitude, and they may be eclipsed by strong events. The contribution of stronger events to 

the CCF can also be removed by clipping (see section 3.1). The influence of source instability 

over time, and how to reduce it, is discussed in section 4.1. 

3.3.2 Scattered or ballistic waves 

Ballistic waves (early arrivals in the correlograms) have a stronger signal than scattered 

waves (coda of the correlograms) but are more strongly affected by minor changes to the 

source direction or by small alterations occurring at the ground surface between the two sen-

sors. The emergence of scattered waves in the correlations improves stability but requires a 

better signal-to-noise ratio and a longer observation time than when reconstructing ballistic 

waves. It is not always straightforward to discriminate between ballistic and scattered waves. 

Direct and scattered waves can be distinguished after the slower arrival time, plus an addi-

tional time corresponding to the time duration for the source (1/f, where f is the frequency 

bandwidth). Furthermore, it is easier to measure velocity variations using long coda from 

scattered waves (more than 10 periods of the filtered frequency) rather than short early arri-

vals. Exploiting multiple periods provides a more accurate estimation of waveform time 

shifts, and using broad time delays t allows more accurate computation of dv/v (particularly 

for landslide applications where short inter-sensor distances cause ballistic waves to arrive at 

times close to zero). Scattered waves are used more frequently, but ballistic waves can also be 

exploited (e.g., Voisin et al., 2016). Computing the dv/v on the full cross-correlations, includ-

ing very early CCF times, would include both contributions, but the higher amplitude of the 

ballistic wave may dominate when using the stretching method. Alternatively, the doublet 

method does not suffer from the domination of large-amplitude early arrivals because it uses 
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constant weighting throughout the moving window. The technique used to compute dv/v must 

be carefully selected depending on what type of waves are to be used. 

3.3.3 Stacking and denoising 

Reducing the time resolution below 24 h reduces the signal-to-noise ratio of the CCFs 

(Hadziioannou et al., 2011) and can introduce rapid sub-daily dv/v fluctuations of potentially 

a few % (see 5.2, Fig. 14 and Table 3). These fluctuations are not easy to handle in terms of 

processing, and might combine true velocity variations with spurious variations due to an-

thropogenic noise fluctuations (see 3.3.1). The time resolution could be improved in spite of 

daily fluctuations by stacking the hourly cross-correlations over a 1-day moving average win-

dow, but this cannot truly be considered to be a sub-daily resolution due to its low-pass filter-

ing effect. This approach was used for example to automatically monitor a volcano, with a 10-

days moving average window (Duputel et al., 2009). Alternatively, a reference CCF could be 

computed separately for each period of the day (e.g., each hour) and compared with each CCF 

for the same period (variant of Richter et al., 2014). The stacking period that provides a high 

enough signal-to-noise ratio can be estimated using a convergence analysis (e.g., Joubert et 

al., 2018). Additionally, the signal-to-noise ratio can be increased using an SVD-Wiener filter 

to remove noise that is not coherent between neighboring CCFs (Moreau et al., 2017). Finally, 

fluctuations could be reduced by subtracting a model predicting their occurrence from the dv/v 

curve, based on meteorological data or by filtering out long period variations (e.g., 

Gassenmeier et al., 2016; Bottelin et al., 2017) 

3.3.4 Reference CCFs 

Selecting the reference CCF affects the ability to measure rapid or strong variations. Most 

studies compare each CCF to a single reference CCF, obtained by stacking all the CCFs over 

the whole period investigated, or over a selected stable period. Stacking has the advantage of 

increasing the signal-to-noise ratio, and using a single reference has the advantage of ensuring 

consistency between all the dv/v computed. However, CCFs may evolve over time, due to 

changes in the sources or in the structure of the material observed. Consequently, stacking 

CCFs that are not consistent over time may induce bias within the averaged CCF, and could 

decrease the accuracy of the dv/v computation.  

Computing a reference in two iterative steps increases the dv/v accuracy when the velocity 

varies considerably (Richter et al., 2014). First, an intermediate dv/v is first computed using a 

standard reference. This dv/v value is used to normalize the velocity of each CCF and increase 

mutual coherence. A second reference, more coherent, is obtained by stacking the corrected 

CCFs, and used to compute the final dv/v. This method is used for example to tackle cycle-

skipping problems (Richter et al., 2014). Cycle-skipping is a common drawback of dv/v com-
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puting methods: it may create large instantaneous dv/v jumps or miss resolving a rapid varia-

tion in dv/v (e.g., the gray rectangle in Fig. 8). The phenomenon may occur both with the 

stretching method, due to picking the wrong maximum for the CC, and with the doublet 

method, due to incorrect phase unwrapping. This problem is more common with rapid dv/v 

variations, when the signal-to-noise ratio for cross-correlations is low, when testing for a large 

range of velocity variations during stretching, or when using small time windows, late time 

windows, and high frequency ranges. 

Sometimes, changes in the structure of the medium (including scatterer positions) alter the 

waveforms so much that they are too dissimilar to be accurately compared. Computing a 

moving-window reference, over only several days to months period before the day of interest, 

can minimize this unwanted effect. On permafrost for example, thawing strongly alters the 

correlation over time. In that case, computing the reference over a moving window (3 to 10 

days’ long) allows rapid velocity variations to be resolved (James et al., 2017). However, such 

method can introduce a long-term dv/v drift (due to the accumulation of small errors) that re-

quires an additional correction. The method may also result in a lower signal-to-noise ratio 

caused by the shorter stacking period of the reference. 

A final method consists in computing the dv/v between every possible pair of dates , result-

ing in a 2-D grid of velocity variations . The optimal 1-D dv/v time series of  is then inverted 

to fit the grid  (Brenguier et al., 2014; Machacca-Puma et al., 2019b) (see Fig. 7). This tech-

nique could handle a reduction in the correlation coefficient between CCFs over time by giv-

ing a higher weight is given to mutually coherent CCFs (potentially close in time). It also ac-

counts for CCF pairs that are distant in time to avoid a drift. This may result in the best re-

sponsiveness/stability tradeoff, but at the cost of greater computational complexity. 
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Fig. 7: Comparison of an inverted dv/v time series to the standard stretching method, and to the full 

CC matrix, from (Machacca-Puma et al., 2019b) 

 

Fig. 8: Correlation coefficient between the CCFs, when testing for velocity variations during stretch-

ing. The dv/v is at the maximum correlation coefficient. The image emphasizes potential aliasing prob-

lems after a sudden dv/v change, highlighted by the vertical gray line (earthquake) and the gray box. 

Rapid velocity changes may be better resolved using an iterative reference (Richter et al., 2014). 

3.4 Assessing uncertainty 

A reliable warning system using dv/v observations requires to estimate their uncertainty, in 

order to avoid false warnings due to artifacts or low-quality data. To ensure the stability of the 

cross-correlations over time, its CC can be computed relative to the reference, or even be-

tween each pair of sensors (Lesage et al., 2014). CCFs with a low correlation coefficient (typ-

ically < 0.6) may be omitted from the dv/v computation to avoid computing erroneous veloci-

ty variations. Another indicator of quality is the spatial homogeneity and stability of the 

sources, which can be estimated from the consistency between the positive and negative sides 

of the cross-correlations (e.g., Brenguier et al. 2008a), or between different station pairs with 

distinct azimuths (e.g., Meier et al. 2010).  

When using the stretching method, a theoretical formulation was introduced to estimate the 

error when computing dv/v (Weaver et al., 2011a). This estimation relies on the assumption 

that the correlation coefficient corresponds to a lack of convergence of the CCF toward the 

real GF. This lack of convergence produces an apparent stretching factor that can fluctuate 

statistically. The resulting root mean square (rms) error depends on the maximized correlation 

coefficient    between the stretched and reference cross-correlations, but also on the fre-

quency bandwidth, on the time window , and on the central pulsation (Weaver et al., 2011b): 

F 1 2,t t
c
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   (5) 

Consequently, extending the frequency bandwidth  or the time window duration  reduces 

the rms, and a lower CC causes a higher rms error.  

More empirically, the dv/v can be statistically computed for several configurations (e.g., 

multiple time windows and/or multiple sensor pairs) to extract their average, standard devia-

tion, or probability density functions (Voisin et al., 2016). For the best possible robustness, 

the two approaches should be combined. In the case of arrays of several seismometers, the 

averaging approach increases robustness, but also reduces spatial sensitivity when locating the 

precursory signal. Therefore, rules for warnings should be based on multiple indicators at the 

same time: the average dv/v value, the statistical standard deviation over multiple pairs or 

multiple time windows, and the rms computed from the CC. 

3.5 Instrumental instability 

When computing velocity variations, a fixed distance must be maintained between sensors, 

and seismic records must be accurately timed. In some studies, seismic sensors were installed 

directly on the unstable slope, for continuous monitoring (Voisin et al., 2016; Bertello et al., 

2018; Guillemot et al., 2020) or time-lapse surveys (Harba and Pilecki, 2017; Bertello et al., 

2018). This type of installation could lead to alterations to the relative distances between sen-

sors over time, as illustrated in Fig. 9. This design may be intentional, for practical reasons on 

large landslides, or unintentional if landslide boundaries are undefined or evolving. In both 

cases, the positions of the sensors should be verified. This effect may be neglected if the ex-

tent of the variation is small. For example, Voisin et al. (2016) measured variations in inter-

sensor distance of a few centimeters and considered them negligible compared to the total 

inter-sensor distance of hundreds of meters, and to the dv/v variations measured of several 

percent. On Gugla rock glacier, Guillemot et al. (2020) suggested that an observed linear 

trend of variation in the dv/v could be explained by the modification of the inter-sensor dis-

tance dl/l, that were of the same order of magnitude (≈0.1%). Thus, in general, geometrical 

changes are negligible compared to seismic velocity changes. 

Inaccurate time recording may also be a potential problem (Stehly et al., 2007). In general, 

records are synchronized by using the same digitizer for multiple sensors, or resampled after 

recording based on GPS time-stamp synchronization. However, GPS may not always be 

available, particularly on steep mountainous slopes with extensive vegetation cover (often the 

case on landslides), and precipitation or snow may also affect GPS reception. In case of 

doubt, the synchronization should be verified. Desynchronization of one sensor compared to 

another results in asymmetrical CCF drift, which is easily checked, and can be corrected for 

(Sabra et al., 2005). 
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In conclusion, the need to have a stable distance and synchronized timings when computing 

a velocity are trivial. In practice, geometrical changes or time desynchronization have not 

been real limitations in field experiments up to now. Nevertheless, their explicit verification 

on landslide studies would produce more robust results. 

 

Fig. 9: Example of a monitoring installation on the Montevecchio earthflow, where non-negligible 

relative displacement of the four seismic sensors might occur. From (Bertello et al., 2018). 

4 Spatiotemporal variations in the noise field 

Several environmental factors may lead to spurious variations in the computed apparent ve-

locity, such as variations in sources of ambient noise, loss of CCF correlation coefficient due 

to changes to scatterers in the propagation medium, and variations in resonance frequency as 

a result of geometrical changes to the medium. These factors could influence the CCF and 

therefore the apparent velocity measured, without necessarily representing a true change of 

velocity in the material. In our opinion, the stability of these factors should be verified to en-

sure that apparent velocity changes can be safely interpreted.  

4.1 Coda wave decorrelation  

In addition to relative seismic velocity changes (dv/v), another indicator can be directly 

measured from coda wave interferometry: the CC. Indeed, we can easily compute the wave-

form correlation between the CCFs for the reference period on the first hand, and the CCFs 

for the day (or hour) of interest on the second hand. When using the stretching method, CC 

computation is straightforward. It is defined as the maximized coefficient correlation between 

the reference signal and the stretched one, which is used to select the best stretching factor, 

together with its corresponding dv/v value (see eq. (4)). Hence, coda wave interferometry can 

be used to directly compare the different CCFs, and this comparison can itself be used as an 

additional indicator.  
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Also known as “coda wave decorrelation”, the CC indicator quantifies waveform changes. 

These changes are highly sensitive to structural and geometric changes, together with fluid 

injection. These types of subsurface alterations modify the location of scatterers and the 

wavepaths of scattered seismic waves, thus impacting the waveform of the coda part of the 

CCF. The decorrelation is also used as a proxy for fluid injection into the porous medium 

monitored. This method takes advantage of the high sensitivity of diffusive coda waves (late 

arrivals) to track tiny changes in the structural, geometric, and scattering properties of the 

medium. 

The ratio between the observed wavelength and the size of the scatterers strongly affects the 

influence of the scatterers on the CCF. When the wavelengths are significantly larger than 

scatterers, the wave have small interactions with them, ballistic wave propagation dominates 

the CCF, and variations of the CC indicator may not be adequate for observing changes in the 

scatterers. This regime has been studied on sedimentary soils (Konstantaki et al., 2013), rocks 

(Winkler and Nur, 1979), and concrete (Abraham et al., 2012; Garnier et al., 2013). All these 

materials show variations in elastic wave velocity and attenuation with water content. But 

when the wavelength is of the same order of magnitude than heterogeneities of the medium, 

multiple scattered waves become also sensitive to variations in scattering propertiess. There-

fore, changes to the scatterers and reflectors (position, or reflection coefficient), or in the at-

tenuation of the propagating medium, would modify signals coming from the scatterers, and 

consequently alter the shape of the coda part of CCFs (e.g., reflection interferome-

try: Draganov et al., 2007; Wapenaar et al., 2010; Draganov et al., 2013).  

Structural changes to the landslide’s subsurface may modify neighboring scatterers and re-

flectors, consequently decreasing CC over time. Coda wave decorrelation has been used as an 

indicator of deconsolidation in a few landslide studies (Fiolleau et al., 2020; Guillemot et al., 

2020), with the depth of the deconsolidation estimated from the frequency range studied. The 

depth can also be estimated from the time-window of the Green's function after which 

decorrelation is observed (Planès et al., 2015), based on the body-wave sensitivity kernel. 

This technique might be applicable on deep landslides with considerable heterogeneity and 

rapid kinematics. 

Water pore filling in a porous medium also changes scattering wavepaths, leading to a de-

crease in CC. In fact, Thery et al. (2019) performed laboratory experiments to monitor water 

level elevation in sand and water infiltration in concrete. Using active ultrasonic waves, they 

measured the CC in the coda using the stretching method, and then defined the decorrelation 

value        . Results from both experiments indicated that    is more sensitive to 

water than the apparent velocity change dv/v. When applied in a geophysical context involv-
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ing fluid infiltration into porous media, this method provides new insight and perspectives for 

volcanoes, landslides and rock glaciers monitoring (Thery et al., 2019). Indeed, a drop in CC 

has been observed on partially frozen porous media like rock glaciers during melting periods, 

reflecting percolation of liquid water within the surveyed medium (Guillemot et al., 2020). 

Hence, the CC indicator helps to track noise instabilities induced by the presence of water, 

which is a major source of scattering changes.  

 

Fig. 10: Correlation coefficient CC (red) between a stretched and a reference signal, computed for the 

Gugla rock glacier using the stretching method in the 10–14 Hz frequency range. Snow-cover meas-

urements (black) were taken at the same location. Red boxes highlight the main melting periods over 

the three years. The CC dropped as melt water percolated into the medium (Guillemot et al., 2020). 

Another outcome of coda wave decorrelation is related to the processing strategy. Indeed, 

monitoring of the apparent velocity—which requires stable scatterers—may become biased as 

a result of a low CC caused by a modification of the CCF shape (cf eq. (4)). This low CC may 

result in large uncertainties on the computed dv/v (cf. eq. (5)) (Weaver et al., 2011b). There-

fore, it is worth computing the CC together with dv/v, to estimate its degree of confidence. At 

a low CC, the dv/v indicator is no longer reliable, and changes in the medium should be ob-

served only based on the CC indicator. When the CCF evolves significantly along time, the 

CC can be improved by using an adaptative reference CCF (see 3.3.4). 

4.2 Sources of ambient noise 

Identifying seismic noise sources is a key challenge to be undertaken before computing the 

CCFs, as variations in the sources may influence the resulting apparent dv/v. Indeed, sources 

of seismic noise vary across space, time, and frequency bands (Peterson, 1993; Bonnefoy-

Claudet et al., 2006; McNamara and Boaz, 2019). Landslide monitoring mostly uses noise 
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within 1−20 Hz spectra (Fig. 14), where at least 50% of the noise is anthropogenic, i.e., pro-

duced by human activities such as vehicle traffic, machinery, factories, and wind turbines 

(e.g., Planès et al., 2017; Lecocq et al., 2020). Anthropogenic noise often displays daily and 

weekly cyclic variations, due to reduced human activity at night and on weekends (Bonnefoy-

Claudet et al., 2006; McNamara and Buland, 2004). Anthropogenic noise also varies in space, 

and is lower for example in rural or desert areas than in urbanized spaces. Additional ambient 

noise is also produced by regular natural sources such as wind turbulence around topograph-

ical irregularities (McNamara and Buland, 2004; Young et al., n.d.), the coupling of tree mo-

tion to the ground through their roots (McNamara and Buland, 2004; Withers et al., 1996), 

local surf in the sea, and glacier displacement and melting (Gimbert et al., 2016; Preiswerk 

and Walter, 2018). The distribution of these sources of noise across space promotes a more 

homogeneous noise field, which can be useful to obtain more stable CCFs. Finally, landslides 

themselves (Suriñach et al., 2005; Provost et al., 2018b), or events such as snow avalanches 

(van Herwijnen and Schweizer, 2011; Lacroix et al., 2012), can also generate noise  above 

1 Hz due to friction within the material, thus creating instability within the ambient noise. It 

should be noted that natural noise may also vary seasonally or daily due to environmental 

forcings. 

 
Fig. 11: “Normalized Fourier spectra amplitude recorded in an urban area (Grenoble, French Alps) 

from 10.06.2004 to 22.07.2004”, vertical component. At frequencies > 1 Hz, the noise displays daily 

and weekly fluctuations, due to anthropogenic activity. From (Bonnefoy-Claudet et al., 2006). 

These fluctuations of the sources might make it difficult to accurately reconstruct the 

Green’s function for dv/v computation (Hadziioannou et al., 2009). Indeed, as well as reduc-

ing the CC, a variation in the frequency content or in the location of the sources (=source ani-

sotropy) could alter the apparent dv/v, regardless of the physical changes occurring in the 

propagation medium tested (Zhan et al., 2013; Froment et al., 2010). For example, water re-

leased as snow melts on a glacier can induce daily noise amplitude peaks, and alter the appar-

ent dv/v by changing the direction of the energy flux (Preiswerk and Walter, 2018). On a pe-

troleum platform, Delaney et al. (2017), recorded dv/v fluctuations of 0.25% at [0.55-

1.55] Hz, and attributed them to variations in the mean noise source azimuth (≈ 90°) that oc-
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curred between two consecutive days. On Los Angeles Basin, Zhan et al. (2013) suggested 

that the previously observed seasonal velocity variation of 0.05% (at f <0.5 Hz) (Meier et al., 

2010), could be caused by differences in the wave field frequency content between winter and 

summer, rather than by true variations in the velocity of the bulk. At higher frequencies, 

Mikesell et al. (2015) modeled the variation in frequency content of a source using the 

stretching method between a 14-Hz source wavelet and a 16-Hz wavelet. At these higher fre-

quencies, they found variations of less than 0.1%, caused by changes in the frequency content. 

Overall, these instabilities of apparent velocity variations appear to remain relatively small, or 

in any case smaller than the precursor signals before landslide destabilization, which corre-

sponds to several %. Therefore, coda wave interferometry may be suitable for use in landslide 

early-warning applications. In addition, anthropological noise often comes from cities, roads, 

and rivers, that are stable in space, and if averaged over a few hours or more, can be consid-

ered stable in time (Delaney et al., 2017; Voisin et al., 2016). This stability holds true as long 

as no new local sources (roads, engines, or factories) are installed close to the landslide.  

To avoid spurious fluctuations caused by an unstable source, the stability of sources over 

time and space within the frequency studied can be investigated. The anisotropy of the 

sources and its fluctuation over time can be measured with a network of sensors by using 

microseimic methods, or by measuring the asymmetry of the cross-correlations (Renalier et 

al., 2010b; Stehly et al., 2006). Unstable source location can be corrected for by discriminat-

ing between noise sources in the time domain and computing separate CCFs for each source 

category (e.g., traffic or no traffic on a road) (e.g., Planès et al., 2017). Spatially-

inhomogeneous sources may be homogenized using the C3 method with a network of sensors, 

where each sensor is considered as a virtual source (Stehly et al., 2008). Alternatively, the 

influence of unstable noise frequency content on the dv/v can also be reduced by whitening 

the coda of the correlation—instead of the traces only—(Daskalakis et al., 2016), or by esti-

mating and accounting for the error caused by the noise source variations (Delaney et al., 

2017). Finally, the influence of unstable sources can be mitigated by comparing CCFs meas-

ured inside and outside the landslide, placing the pairs of sensors far enough apart to have 

clearly separate sensitivity kernels. 

4.3 Resonance frequency 

Some sites, such as rock columns, may exhibit resonant frequencies and polarization 

(Nakamura, 1989) that vary over time, often under the influence of environmental factors 

such as ground temperature (Bottelin et al., 2013a, 2013b, 2017; Colombero et al., 2018; 

Valentin et al., 2017). The resonance frequency of a zone depends on the mechanical charac-
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teristics of the material (vp, vs, density), but also on its geometrical features (size and shape of 

the object). 

A change in resonant frequency would alter the apparent velocity. Indeed, the traces record-

ed between two sensors should be more coherent at the resonance frequency. This remains 

true even after frequency-normalization—or whitening—presented in section 3.1. As a result, 

the CCF spectra becomes dominated by the resonance frequency, which we can write as  

   (6) 

Where A(t) is the amplitude of the resonating oscillation over time and r(t) the residual 

component of the CCF that is not due to the resonant frequency. A change in the resonance 

frequency by a factor ε would change the CCF as follows:  

   (7) 

Considering  small enough compared to A(t), a change in resonant frequency would lead to 

a change in apparent velocity that is equivalent to stretching the time t, as in equation (4). If 

the change in resonant frequency is caused by a change in seismic velocity, the resulting dv/v 

alteration would correspond to a true change occurring in the bulk material. However, if the 

change to resonant frequency is caused by a change in geometrical features, the apparent dv/v 

variation should be rather interpreted as a change in local geometry (also useful information), 

with no change to the seismic velocity of the material. In this case, it may be more appropriate 

and accurate to directly measure the resonant frequency rather than using the dv/v. We suggest 

that this effect explains the strong correlation between the time series of dv/v and resonance 

frequencies (H/V method) reported by Colombero et al. (2018) for a prone-to-failure rock 

compartment (Fig. 12). In their study, the relative variation in velocity and resonance fre-

quency both fluctuated seasonally within 20% peak-to-peak. The influence of resonance fre-

quency could explain why this seasonal dv/v amplitude, observed at 2–4 Hz, was far outside 

the trend displayed in Fig. 14. Note that the CC was highest at the resonance frequency, 

showing that care should be taken when using the CC as the only quality indicator of the dv/v 

result (Weaver et al., 2011b). Finally, a sensor placed near the resonating structure might also 

be affected by the resonant frequency, due to irradiation by the structure of ambient noise 

dominated by its resonant frequency. If this is the case, the resonating structure should be 

considered to be an unstable secondary source of ambient noise (see 4.1). 

1( ) ( ) cos(2 ) ( )CCF t A t ft r t  

2 ( ) ( ) cos(2 (1 ) ) ( )CCF t A t f t r t    

( )r t
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Fig. 12: Time series showing (a) the resonance frequency of the Madonna del Sasso rock column 

computed by H/V, between October 2013 and February 2016. (b) Apparent dv/v obtained from cross-

correlation of the horizontal component (North in black, South in gray) from a sensor placed on the 

rock column and a sensor placed outside, at 2−4 Hz. The two curves are highly correlated, showing a 

relative peak-to-peak amplitude of 20% (Colombero et al., 2018) 

Variations of dv/v within the band of a strong resonance frequency should therefore be in-

terpreted with care. When possible, the stability and amplitude of the resonance frequencies 

should be verified directly using the horizontal-to-vertical spectral ratio method (H/V) 

(Nakamura, 1989). Any resonance frequency may simply be eliminated by applying an ap-

propriate frequency filtering to the traces or the CCFs, or attenuated by equalizing the fre-

quency content of the CCFs (Daskalakis et al., 2016). 

5 Environmental influences on the apparent velocity 

5.1 Seasonal fluctuations 

Seasonal fluctuations in dv/v were clearly observed on the shallow and deep-seated land-

slides at Pont-Bourquin (Fig. 13) and Utiku, respectively (Larose et al., 2015; Bièvre et al., 

2018; Voisin et al., 2016). These fluctuations were suggested to be caused by yearly cycles of 

environmental factors, such as soil temperature and precipitations. Understanding and predict-

ing these seasonal variations are necessary to distinguish them from possible precursory sig-

nals. However, few studies of seasonal variations have been performed on soft-soil landslides, 

and to better understand seasonal effects, the scope of the present review must be extended to 

non-landslide investigations. 
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Fig. 13: (a) Relative daily velocity changes dv/v at Pont-Bourquin landslide between March 2010 and 

June 2018, computed by stretching at frequencies of 10–14 Hz, with a ±[0.2,0.6]-s time window. The 

horizontal gray lines in the dv/v represent a possible threshold of ±3%. The 2010 drop and the seasonal 

amplitude are slightly higher here than reported in previous studies (Mainsant et al., 2012b; Larose et 

al., 2015; Bièvre et al., 2018) because the 10–12 Hz frequency signal was used. 

Seasonal variations in dv/v have also been observed at non-landslide sites, including volca-

noes, sedimentary basins, groundwater storage, CO2 storage, glaciers and ice sheets, and even 

lunar soil (Table 2). A first glance at the corresponding data reveals that the amplitude of sea-

sonal variations varies by a factor of 200 between studies, from 0.03% (Lecocq et al., 2017; 

Wang et al., 2008) to 6% (James et al., 2017). This extensive range is mostly explained by the 

different frequency ranges and subsequent investigation depths considered. Indeed, when 

comparing the studies to each other, the seasonal amplitude appears to be linked to the central 

frequency f chosen to filter the CCFs (Fig. 14). The trend  provides a good fit for the data 

from all the study sites. There are only two outliers, on the Moon (Sens-Schönfelder and 

Larose, 2008) and on Greenland’s ice sheet (Mordret et al., 2016), which are special case 

studies. Since higher-frequency surface waves are sensitive at shallower depths, the observed 

trend confirms that near-surface soil is more sensitive to seasonal variations than deep materi-

al. Inter-station distances and time windows also follow a trend with the seasonal amplitude-

variations (not shown here): in practice, these parameters are also linked to the investigation 

depth. In fact, multiple studies report an increase in seasonal variations with early time win-

dows (Sens-Schönfelder and Wegler, 2006; Richter et al., 2014; Hillers et al., 2015b), shorter 

inter-station distance (Meier et al., 2010), and higher frequencies (Richter et al., 2014; Voisin 

et al., 2016). Only one study reported a decrease in seasonal variation when the frequency was 

increased (Hillers et al., 2015a), and this effect was explained by the sensitivity of deep rocks 

to thermoelastic strain.  

Two conclusions emerge from this trend. First, the consistency of the trend observed across 

several regions and for different materials demonstrate a consistent behavior between land-

slides and other sites for the seasonal variations. Secondly, seasonal dv/v variations should be 

greater when monitoring shallow landslides than deep-seated landslide, due to the difference 

in frequency filtering. Indeed, the surface-wave sensitivity depth estimated in the publications 

reviewed here was roughly of the order of 10 m at 10 Hz, hundreds of meters at 1 Hz, and 

3/2

max
~v v f
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kilometers at 0.1 Hz.  The landslides studied, with a depth ranging from 2 m to 300 m, were 

observed within the 1.3–20 Hz range. In most cases, seasonal variations were small compared 

to the velocity drops observed before or during a failure. 

 

Study 
Frequency 

(Hz) 

Amplitude 

(%) 
Context 

Suggested governing influence 

(correlation sign, lag time) 

Sens-Schönfelder 

and Wegler 

(2006) 
Broadband>0.5 4 Volcano, Merapi, Indonesia Groundwater level (–) 

Sens-Schönfelder 

and Larose 

(2008) 

6–11 0.15 Lunar soil, Apollo 17 Temperature (+, 7 d) 

Meier et al. 

(2010); Tsai 

(2011) 

0.1–2 0.1 Basin, Los Angeles, USA Groundwater level (–) 

Voisin et al. 

(2016) 

6–8 2.2 

Landslide, Utiku Groundwater level (–)  

3–20 6 

Bièvre et al. 

(2018); Larose et 

al. (2015) 

8–12 3 
Landslide, Pont-Bourquin, 

Switzerland 

Rainfall (–), temperature (+, 

40 d), 

frost (+) 

Wang et al. 

(2017) 
0.15-0.9 0.03 Whole Japan, Hi-net 

Pore pressure (–), snow depth (+), 

sea level/tide (+), Temperature 

(+, 40 d) 

Miao et al. 

(2018) 
Broadband <30 0.3 ms East Japan, Kik-net Rainfall (–) 

Lecocq et al. 

(2017) 
0.1–0.8 0.04 

Ground water storage, 

Gräfenberg Array, Germany.  

Temperature (+)  

and groundwater level (–) 

Clements and 

Denolle (2018) 
0.5–2 0.3 

Groundwater basin, San Ga-

briel Valley, California 
Groundwater level (–) 

Hillers et al. 
0.5–2 0.2 

San Jancinto Fault, Califor-
Temperature (+, 20 d) 
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Fig. 14: Amplitude of seasonal variations in relative velocity, versus central frequency. Coefficient 

a = 0.11 (dashed lines: 0.025 and 0.45). Landslides also include Gugla rock glacier. 

5.2 Fluctuations occuring within a day 

Improving the time resolution down to a few hours would greatly improve the lead time for 

the dv/v method, but requires to handle daily cyclic fluctuation of apparent velocity. The ve-

locity fluctuations occurring within daily cycles has not been studied on landslides, but a 

small number of studies on non-landslides can provide insights on these fluctuations (see Ta-

ble 3). Daily fluctuations have been little studied on deep geological structures, because the 

small dv/v variations of deep structures require a high measurement accuracy (typically <10
-3

, 

see Fig. 15) that requires stacking the CCFs over one day or more to improve their signal-to-

noise ratio. Furthermore, the inertia of deep structure reduces the interest of observing them at 

a sub-daily resolution. In contrast, the observation of shallow layers is likely to reveal strong-

er dv/v variations (several %) and to tolerate a lower signal-to-noise ratio.  

Observing daily fluctuations of dv/v is challenging:  the low stacking time reduces the sig-

nal-to-noise ratio, and the daily fluctuations in the sources may introduce spurious velocity 

variations that do not reflect changes in the medium (discussed in 4.1). To handle these diffi-

culties, it is necessary to adapt the processing workflow. However, no standard technique has 

yet emerged for studying daily fluctuations in dv/v. Thus, for example, Takano et al. (2014) 

computed CCFs every minute between 2 a.m. and 4 p.m., then averaged periods of tidal dila-

tation and contraction separately over three months. Alternatively, Planès et al. (2017) and 

Voisin et al. (2017) used the energetic early arrivals of the CCFs after verifying the stability 

and azimuth of the source, and discarding unstable sources. In contrast, Mao et al. (2019) 

denoised the correlation by applying a Wiener filter (Moreau et al., 2017) and averaged the 

dv/v over 1225 pairs from a seismic sensor network. And finally, Richter et al. (2014) com-
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puted a dv/v between each hourly correlation and their average calculated for the same day, 

then computed the averaged dv/v over 1570 days, for each hour of the day, after discarding 

the values associated with a low CC.  

Table 3: Variations in dv/v occuring within a day that were reported in the literature. 

Study 
Frequency 
(Hz) 

Amplitude of 
dv/v (%) 

Context Suggested governing influence 

Takano et al. 
(2014) 

1–2 0.19 Volcano, Iwate, Japan 
Tidal strain ( velocity decrease during 
dilatational episodes) Takano et al. 

(2019) 
2−4 0.6 Volcano, Izu-Oshima, Japan 

(Hillers et al., 
2015c) 

2−8 0.6 
Piñon Flat Observatory, Califor-
nia. 

Tidal strain 

James et al. 
(2017a) 13–17 0.2 

Permafrost, Poker Flat Research 
Range, Alaska 

No suggestion for daily variations (only 
seasonal) 

Planès et al. 
(2017a) 

5–20 5 
Sea levee, Colijnsplaat, Nether-
lands 

Pore water pressure (–) [due to sea tide 
levels] 

Joubert et al. 
(2018) 

7−13 5 Sea dike Sea tide level (–) 

Preiswerk and 
Walter, (2018) 

4–16 CC drop 
Glacier, Plaine Morte, Switzer-
land 

Source variation, due to drainage/filling of 
a glacier-dammed lake 

Mao et al. 
(2019) 

1–5 0.02 
Volcano, Piton de la Fournaise, 
La Réunion 

Tidal strain, temperature 

Voisin et al. 
(2017) 

5–12 3 
Groundwater storage, Crépieux-
Charmy, France 

Groundwater levels (–) controlled by fluid 
injection 

Richter et al. 
(2014a) 

4–6 0.09 Northern Chile Temperature (+, with a lag) 

 

The reviewed literature shows that the seismic velocity in the first meters of soil  may vary  

rapidly throughout the day. Daily cyclic variations of dv/v have been observed, and attributed 

to thermally induced stress  (Richter et al., 2014; Mao et al., 2019). In many areas, a daily 

cycle of dv/v might also be caused by variations of the anthropogenic noise (see 4.2). 

Additionaly, cycles of half days were also observed, and attributed to earth tide stress (Takano 

et al., 2014; Mao et al., 2019), or to marine tide that induces a groundwater level changes near 

the sea (Planès et al., 2017). A better understanding of the environmental influences on the 

fluctuations of dv/v (temperature, rainfall, frost, tide, or simply source variations) would help 

to distinguish them from a potential precursor, which  is the aim of the next section 

5.3 Reversible environmental factors  

Correlations observed between the dv/v and environmental factors suggest an influence of 

several factors on the dv/v (detailed in section  5.3), such as groundwater level, shallow soil 

temperature, soil freezing/thawing, snowfall or tide.The studies are consistent on the follwing 

governing factors. A higher groundwater elevation decreases the apparent velocity. Higher 

temperature increases it (if T>0 °C) with several days of lag. In cold conditions, soil freezing 

increases the velocity, whereas soil thawing decreases it.  
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Some governing causes suggested in the studies listed in Table 2 may also appear unclear. 

For example, temperature and groundwater levels are often mentioned, but are difficult to 

discriminate between because they are often mutually correlated over the year. Furthermore, 

several of these phenomena may differ spatially from one region to another (Wang et al., 

2017), consequently their influences must be studied locally. Their amplitude can be reduced 

empirically using a linear model based on the influence factors measured (pore pressure 

changes, sea level, air temperature, snow height) that is fitted empirically to the raw dv/v time 

series for each region. Subtracting this empirical model from the raw time series then helps to 

distinguish events of interest from seasonal fluctuations (e.g., Wang et al., 2017). Yet, to han-

dle these influences more accurately, the processes causing the fluctuations must be better 

understood. Such understanding will require further investigations, with in-situ monitoring of 

the adequate environmental parameters, that are highlighted. 

5.3.1 Groundwater 

A better understanding of the influence of groundwater is essential when studying rainfall-

induced landslides, to discriminate dv/v drop due to normal groundwater elevation (e.g., 

Fig. 16) from dv/v drop due to soil liquefaction preceding a failure (Mainsant et al., 2012b). 

The phenomena should be studied at the time scale of a few days for early warning. On the 

Utiku landslide, Voisin et al. (2016a) reported a clear negative correlation between the water 

table level and the dv/v (Fig. 15.a). Similarly, on the Pont-Bourquin landslide, cross-

correlation between dv/v and rainfall over four years revealed a clear peak of negative correla-

tions, with a lag of 2–5 days explained by the delayed water infiltration (Bièvre et al., 2018) 

(Fig. 15.b).  

Precipitations, and the resulting increase in groundwater levels, were rapidly suggested to 

decrease the apparent dv/v over a time scale of months (Sens-Schönfelder and Wegler, 2006). 

Indeed, over a 15-year observation period, Clements and Denolle (2018) found the dv/v to 

reflect changes in regional groundwater levels, marked by long depletion and rapid replen-

ishment as a result of a succession of droughts and floods. At a sub-daily scale, Planès et al. 

(2017) reported a negative correlation between dv/v and pore water pressure, generated by the 

tides under a sea levee, with a 12 hours cycle (Fig. 17) (see 5.3.5). Finally, a negative correla-

tion between groundwater levels and dv/v within a time frame of hours to days was also con-

firmed in a controlled fluid-injection experiment (Voisin et al., 2017). 

Groundwater levels could influence the dv/v through two mechanisms: poroelasticity and 

direct water loading. In the poroelastic mechanism, the water filling open pore spaces would 

increase the homogenized bulk modulus and the averaged density of the soil, therefore alter-

ing the seismic wave velocity (Grêt et al., 2006a). According to this mechanism, groundwater 
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would both increase the P-wave velocity and decrease the S-wave velocity. This would result 

in a clear decrease in surface wave velocities (Biot, 1962) which are mostly (90%) sensitive to 

S-waves velocity (Grêt et al., 2006b). This direct poroelastic effect mainly affects the shallow 

layers where the water table fluctuates (Meier et al., 2010; Hillers et al., 2014). The second 

mechanism, direct water loading, may have two contrasting effects depending on the wave’s 

sensitivity depth (i.e., related to the frequencies studied). Near the surface and in confined 

layers, the load of the water mass will increase pore pressure (Voisin et al., 2017; Wang et al., 

2017; Clements and Denolle, 2018). Indeed, if the area cannot drain, pore pressure leads to 

cracks opening and decreases the area of grains in contact, hence decreasing the seismic ve-

locity (Rivet et al., 2015). At deeper layers, under the groundwater table or under impermea-

ble layers, the water load will increase the stress on the granular matrix, increasing the seis-

mic velocity (Obermann et al., 2014). 

In conclusion, precipitations and rising groundwater levels decrease the surface wave veloc-

ity, and therefore the dv/v, on shallow landslides. Correcting the effect of groundwater levels 

on the dv/v would require an indication of groundwater levels fluctuations, estimated from 

precipitations (e.g., Sens-Schönfelder and Wegler, 2006) or measured directly at depth (e.g., 

Voisin et al., 2016). Because unstable slopes hydrological processes are heterogeneous in 

time and space (Brönnimann, 2011), several in situ measurements would ideally be required. 

As a side application to providing precursors to failure, the dv/v method could be used to 

non-destructively estimate groundwater levels on a landslide (Voisin et al., 2017, 2016). This 

usage would complement piezometric measurements which are difficult to maintain over long 

periods on a moving landslide and only provide local measurements. However, estimating 

groundwater fluctuations using the dv/v (Clements and Denolle, 2018) might require to dis-

tinguish it from other influence factors, such as the thermoelastic effects that might influence 

the dv/v to a similar extent (see next section). 
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Fig. 15: Influence of water on two landslides. (a) On the Utiku landslide, measurements of dv/v (in-

verted axis) over a year show a clear negative correlation between dv/v and groundwater levels meas-

ured—from (Voisin et al., 2016). (b) On the Pont-Bourquin landslide, the cross-correlation between 

dv/v and rainfall (colored curves represent three pairs of sensors) over four years shows a clear peak of 

negative correlations 2–5 days after the rainfall event, due to the infiltration delay. A shorter delay was 

observed between rainfall and displacement rate (in black)—from (Bièvre et al., 2018). 

 

 

Fig. 16: How temporal perturbations of seismic wave velocity (black curve) relate to groundwater 

levels (blue curve) and modeled thermoelastic strain (dashed curve) in the Baldwin Park Key Well, in 

California Basin. From (Clements and Denolle, 2018) 
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Fig. 17: On a coastal levee, dv/v correlates with tide level, and measurements of the groundwater level 

(Pwp). Groundwater level is shifted by -195 cm to superimpose with the dv/v. From (Planès et al., 

2017) 

5.3.2 Thermoelasticity 

 

 

Fig. 18: Daily fluctuations in velocity and correlation coefficient at a frequency range of 4–6 Hz for 

three time windows, along with the air temperature, measured on dry rocky ground in the Atacama 

Desert. The apparent fluctuations in velocity appear to correlate well with air temperature, with a de-

lay of 1.5 h for the 5–10-s time window. The fitted curves represent the temperature curve, scaled and 

shifted to mirror the dv/v data. From (Richter et al., 2014) 

In many studies, air temperature is reported to correlate positively with the dv/v, with a time 

lag (e.g., Hillers et al., 2015; Lecocq et al., 2017). This correlation was observed at a seasonal 

scale on the Pont-Bourquin landslide, with a ≈30-day lag (Bièvre et al., 2018), suggesting that 

the temperature might control the material’s rigidity, through soil moistening or drying. The 

30-day lag would locate the sensitivity of dv/v in the shallow layer (2 m or less), according to 

1D heat wave diffusion modeling (Bièvre et al., 2018). However, other parameters such as 

groundwater levels, or snowfall and subsequent melting, also often correlate with temperature 

over a year, making them hard to discriminate at a seasonal scale. The influence of tempera-
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ture was distinguished from that of groundwater in Richter et al. (2014) (Fig. 7) and Sens-

Schönfelder and Larose (2008), as the respective measurements for these studies were taken 

in an arid desert and on the moon without water. Hillers et al. (2015a) suggests 

thermoelasticity to mostly control dv/v seasonal variations (±0.2% at 0.5 − 2 Hz) observed for 

4 years at the San Jacinto fault area: the correlation and the lag with the dv/v better matched a 

thermoelastic model than other potential mechanisms (wind speed, source variation, rainfall, 

groundwater levels, atmospheric pressure). 

Modeling the thermal influence on stresses can help to estimate the amplitudes and time 

lags of dv/v in order to discriminate thermal effect from other effects. Two configurations, 

with freely expandable or confined medium, are considered. If the material can expand freely 

at the surface, and assuming a constant pressure, rigidity will decrease with temperature. In 

such configuration, dv/v would be negatively correlated with temperature (Anderson et al., 

1968), which is contradictory with most of observations (Table 2). However, in a confined 

medium that cannot expand freely, stress increases with temperature, increasing the seismic 

velocities at depth. A higher stress then increases the dv/v (Larose and Hall, 2009). In this 

configuration, the thermally induced stress is a plausible explanation for the positive correla-

tion observed between temperature and dv/v (Tsai, 2011; Richter et al., 2014). 

To explain the lag time of thermally induced stress, the diffusion of temperature at depth 

must be modeled. Temperature fluctuations propagate with a depth-dependent lag through 

heat conduction waves. Considering a 2-D elastic half-space in plane strain, and a 1-year or 1-

day periodic thermal forcing at the surface as boundary conditions, the associated strain and 

stress changes can be computed using a thermally constrained equation (Berger, 1975). The 

local velocity changes at depth are then computed using third-order (Murnaghan) elastic con-

stants (Tsai, 2011). Finally, the dv/v is determined by integrating the different velocities at 

depth, using autocorrelation sensitivity kernels (Tsai, 2011). To improve the fitting with ob-

servations (amplitudes and lag times between dv/v and temperature), an unconsolidated layer 

may be added at the surface of this 2-D model (Ben-Zion &Leary, 1986, Tsai 2011). It is 

worth noticing that poorly constrained parameters and large uncertainties due to potential het-

erogeneity of the medium make the accuracy of these thermoelastic models not definitive 

(Tsai, 2011). Furthermore, the contribution of thermoelastic effect would be site dependent 

(Wang et al., 2017), and indeed this effect is supposed to be either major or negligible de-

pending on the studies. Our conclusion is that thermoelastic effect indeed influences the dv/v. 

This effect should be negligible on unconsolidated materials, and play a more important role 

on soils and rocky materials. 
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Removing thermoelastic effect from dv/v measurements should be easier in regions where 

the temperature is positive all the year. Monitoring the groundwater levels and underground 

temperature should help to discriminate these two remaining factors. However, in colder re-

gions such as in mountains (e.g., Bièvre et al., 2018), the d/v is also influenced by snow cover, 

snow melting or soil thawing/freezing (see 5.3.3 and 5.3.4). These factors are mutually corre-

lated—but non-linear—with air temperature over a year, therefore discriminating them from 

thermoelastic effect should be made with care. 

5.3.3 Soil freezing and thawing 

 

Fig. 19: Variations in (a) apparent seismic velocity computed with a fixed reference (black) and a 

moving window reference (red), from 2013/10 to 2015/07, on the Poker Flat Research Range, Alaska. 

(b) Air temperature measurements. The permafrost may melt when air temperature >0 °C and freeze 

when <0 °C. (James et al., 2017) 

In polar and mountainous regions, several types of permafrost have been monitored by pas-

sive seismology methods, including sites subject to possible destabilization due to global 

warming (Gariano and Guzzetti, 2016). On Pont-Bourquin mountainous landslide, cold in 

winter correlated with rapid increases in dv/v, which was suggested to be caused by soil freez-

ing (Bièvre et al., 2018). James et al. (2017) investigated discontinuous permafrost composed 

of frozen loess and alluvial deposits. They used coda wave interferometry to demonstrate that 

seasonal changes in physical properties (water-ice ratio within the active layer) can be moni-

tored using this technique (Fig. 19). Another example of seismological monitoring of perma-

frost (Guillemot et al., 2020) investigated the Gugla rock glacier (Switzerland) over more than 

three years. Since active rock glaciers move downslope at rates between cm/yr and several 

m/yr, they can be assimilated to rocky landslides. Monitoring the dv/v reveals seasonal varia-

tions in amplitude of around 2% at 4 − 8 Hz. This variations correlates negatively with air 

temperature, with a lag of around 1 month (which corresponds to the propagation of the ther-

mal waves throughout the entire active layer, diffusing to around 5 m depth). This observation 

suggests that a freeze-thawing process takes place within the shallow layers. 

Through this seasonal freeze-thawing cycle induced by thermal forcing and propagating at 

depth, the mix of coarse blocks, fine matrices, air, liquid water, and ice evolves throughout 

the year. Modeling shows a higher seismic velocity in winter, due to the increase in overall 
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rigidity of the shallow frozen layers; in contrast, seismic velocity is lower in summer as a re-

sult of the lower rigidity due to soil thawing combined with water percolation resulting from 

snowmelt (Guillemot et al., 2020). 

A similar evolution was observed on a geological CO2-storage site which is subject to freez-

ing (Gassenmeier et al., 2015a). When the maximal daily temperature decreases below 0 °C, 

the upper part of the soil freezes, inducing a sharp increase in seismic velocity. Conversely, a 

drastic decrease in this velocity is observed when the soil thaws. Such variations are interpret-

ed as the consequence of strong variations in the shear modulus between frozen and thawed 

soils. Quantitatively, this correlation between dv/v and freezing processes can be corrected by 

applying an empirical temperature-dependent model. In a frozen soil in Japan, the cumulative 

negative temperature at freezing days was found to be an indicator of the frost depth, whereas 

the current temperature acts as a proxy for the extent of freezing (Miao et al., 2019).  

Soil freezing-thawing should be taken into account in cold and mountainous regions. Re-

moving this effect from the dv/v would require an estimation of the freezing depth. Freezing 

depth should be estimated ideally from underground temperature measurements, or alterna-

tively modeled from data such as precipitation, air temperature and snow depth measurements 

(Rankinen et al., 2004).  

5.3.4 Snow  

When located in polar or temperate mountainous regions, landslides are regularly subject to 

snow and ice cover during cold periods. The presence of this layer may have significant local 

influence on the mechanical, hydrological, and thermal context of the site. 

Several studies mentioned a significant correlation between the presence of snow cover and 

measured seismic surface wave velocities. For example, changes occurring in the deep crust 

(around 3 to 10 km) in Greenland correlate with the ice sheet’s mass balance, with a lag of 2–

3 months (Mordret et al., 2016). Similarly, positive anomalies in seismic velocity are mainly 

controlled by snow cover in western Hokkaido, Japan (Wang et al., 2017). In shallower 

subsurfaces in the vicinity of Mount St. Helens volcano, a similar positive relationship be-

tween dv/v and snow depth was reported, with nearly zero lags (Hotovec‐Ellis et al., 2014). 

The relation was also briefly noticed in the case of the Pont-Bourquin landslide (Switzerland), 

but in that case a negative drop in dv/v correlated with intense snowfall and snow melting 

periods (Le Breton, 2019b). A negative drop of dv/v was also observed following intense 

snowfall in eastern Hokkaido (Wang et al., 2017), although the underlying cause remains un-

clear. This heterogeneity of behavior confirms that the effect of snow on d/v should be caused 

by several processes. 
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The direct influence of the snow on dv/v variations remains poorly understood. A direct 

elastic loading effect due to the weight of the snowpack is the mechanism most frequently 

invoked to account for the positive correlation between dv/v and snow cover (Hotovec‐Ellis et 

al., 2014; Wang et al., 2017). Several geodetic measurements clearly show deformation of the 

crust due to loading with snow mass, and subsequent strain changes (Grapenthin et al., 2006; 

Heki, 2001). These strain changes can be modeled by a poroelastic approach, with a pore 

pressure wave diffusing in the crust and modulated by the pressure variations due to changes 

to ice or snow cover at the surface. Snow loading within the crust can also be modeled by a 

viscous rebound response (Mordret et al., 2016). Although the poroelastic model provides the 

best fit for the observed lag time of the dv/v response, a combination of both poroelastic and 

viscoelastic effects is expected to explain the negative correlation between dv/v and snow 

cover (Mordret et al., 2016).  

Hydrological insulation due to the snow cover can impede water infiltration and limit 

groundwater recharging (Seiler and Gat, 2007; Wang et al., 2017), and thus can lead to an 

increase in seismic velocity. However, the mechanisms leading to a negative drop in dv/v 

simultaneously with snowfall are still incompletely known (Wang et al., 2017). 

Thermal state is modified by snow, as a result of melting water advection, snow cover insu-

lation, and latent heat release. It is well known and commonly taken into account for land-

slides and mountainous slope instabilities like rock glaciers (Goodrich, 1982; Staub and 

Delaloye, 2017). The presence of a thickly packed snow cover induces a thermal insulation 

buffering heat exchanges between atmosphere and ground, and then modulates the ground 

thermal state through its timing, duration and thickness. The snow layer could thus change 

both the water content and the thermal state of surface layers, by slowing soil freezing, while 

also allowing thawing and moistening of the underlying layers. When snow cover melts, the 

advection of heat and water within the subsurface decreases the shear modulus, and may also 

cause dv/v to decrease. 

The properties of snow on the ground, such as depth, density, water content, structure, and 

water equivalent, are very heterogeneous in space and time (Bartelt and Lehning, 2002; Fierz 

et al., 2009). These properties affect the resulting stress, snowmelt water or thermal insulation 

caused by snow, and therefore influence the dv/v. Investigating the effect of snow on dv/v 

should require at least to monitor the snow depth. The other snow properties are more expen-

sive to monitor (Kinar and Pomeroy, 2015; Tedesco, 2015; Pirazzini et al., 2018), and in prac-

tice may have to be modeled from meteorological data such as air temperature, solar illumina-

tion and wind speed (Bartelt and Lehning, 2002). Instead of measuring snow properties, it 
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might also be easier measure only its effect on the soil, such as soil superficial stress (due to 

snow loading), soil temperature (snow insulation) and groundwater levels (snow melting). 

It is worth noting that the influence of snow on the apparent dv/v may not only be caused by 

a change of seismic velocity in the bulk material. For example, the presence of snow may 

create new sources of ambient noise, or might alter the frequency content of noise (by attenu-

ating high frequencies). These effects may distort the partially reconstructed cross-correlation 

function and lead to apparent dv/v that are not related to changes in velocity. These questions 

should be quantitatively addressed in future studies to reinforce alert systems based on seis-

mological monitoring for mountainous landslides. 

5.3.5 Tide 

The influence of tide on seismic velocity occurs mostly with cycles of 14, 1 and 0.5 days, as 

observed for example near a coast and 10 meters under a cliff using underground active trans-

ducers measuring variations of Vp (Yamamura et al., 2003). Tidal influence on dv/v can be 

governed by either strain or pore water pressure, depending on the context. 

Tide modifies the crustal strain, through earth tide or by water loading caused by ocean tide, 

causing a relatively small fluctuation of dv/v, ranging from 0.02 to 0.6% in the literature. Dur-

ing dilatational (resp. contractional) episodes, respectively, the dv/v has been observed to de-

crease (resp. increase) on volcanoes (Takano et al., 2014, 2019; Mao et al., 2019) similarly to 

former observation (e.g., Yamamura et al., 2003), and in contrary to increase (resp. decrease) 

observed on the Piñon Flat Observatory (Hillers et al., 2015c). In any case, the amplitude of 

strain effect appears negligible compared to other effects on soft soil landslides, particularly 

shallow ones. 

Pore water pressure was suggested to govern the semidiurnal dv/v fluctuations, on a sea lev-

ee and a sea dike (Planès et al., 2017; Joubert et al., 2018). High marine tide was shown to 

strongly and clearly decrease dv/v, with a 0.5-day periodicity and a non-negligible dv/v ampli-

tude of more than 5%. On the sea levee, the dv/v correlated perfectly with the pore water pres-

sure measured in situ (Planès et al., 2017). A lag of 40 − 100 minutes occurred between pore 

pressure and tide level, that was attributed to water diffusion under the levee. The sea dike 

and see levees were mostly composed of sand and clay, that are similar to soft-soil landslides, 

and the filtering frequency of the CCFs (5–20 Hz) were in the range of most landslides inves-

tigations. Therefore, on coastal landslides (e.g., Francioni et al., 2018), marine tide might play 

a significant role on  dv/v observed, due to changes of groundwater levels at its base (but is 

already negligible a few km from the coast). Lastly, atmospheric tide, that varies by ~ 1% 

within 12h, can activate a periodic semidiurnal displacement on a few landslides (Schulz et 

al., 2009). This displacement is supposedly caused by pressure imbalance induced by the 
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slowness of the diffusion of the tidal atmospheric pressure changes within the pores.  Such 

effect might potentially influence the dv/v on the landslides where it occurs, but with ampli-

tudes that we expect negligible on most landslides, compared to other environmental influ-

ences. 

6 Landslide triggers 

To effectively monitor a landslide, precursor signals before a potential failure must be dis-

criminated from non-precursor environmental influences. Two precursor phenomena have 

been studied so far with ambient noise correlations: the liquefaction of clayey layers and the 

combined effect of earthquakes together with precipitations. 

6.1 Rainfall-induced fluidization 

Fluidization of landslide material was observed to turn clay-rich landslides to mudflows or 

debris flows (Van Asch and Malet, 2009) following heavy rainfalls (Iverson et al., 1997). The 

mechanisms of fluidization of clayey soils can be explained by viscoplastic laws (Huang and 

García, 1998), with the soil behaving as a soft solid when the static shear stress applied is be-

low the yield stress  , and as a viscous fluid above that limit. Fluidization can also be trig-

gered by an increase in the water content, above the so-called Atterberg liquid limit with zero 

stress. These two indicators (   and water content) are related. Indeed, the critical stress    

decreases when the water content of the soil increases (Coussot, 1995). This relationship has 

been confirmed on a Triève landslide soil (Fig. 21) and was consistent across six landslide 

soils (Carrière et al., 2018b). In short, landslide fluidization can be triggered by an increase in 

either the shear stress or the water content. 
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Fig. 20: Critical stress as a function of the gravimetric water content w on soil samples from Triève 

clayey soil. The critical stress was either measured (blue squares) or fitted with an exponential law 

(Coussot, 1995). The shear-wave velocity Vs was measured for specific water content and stress val-

ues, and its value is represented by the size of the green circles. Vs is represented qualitatively in the 

background by the dark shadow, representing higher Vs values. From (Mainsant et al., 2012a). 

Shear-wave velocity should decrease during fluidization, because of the reduced rigidity, if 

the material density remains constant (see eq. (1)). Indeed, on fluidization-prone landslides, 

reduced shear-wave velocity has been observed in faster-moving zones (Jongmans et al., 

2009; Renalier et al., 2010b) before dramatic accelerations (Mainsant et al., 2012b), and im-

mediately after such accelerations (Bertello et al., 2018; Berti et al., 2019). To further analyze 

these observations, laboratory tests were carried out on soil samples from seven landslides 

known to have undergone fluidization in the past. The laboratory experiments showed shear-

wave velocity to decrease by up to 8% when the sample shifted from a plastic to a viscous 

behavior (Carrière et al., 2018b, 2018a; Mainsant et al., 2015, 2012a). Therefore, the fluidiza-

tion of clayey materials leads to a decrease in the dv/v that exceeds yearly environmental vari-

ations (1–5% observed on landslides, see Fig. 14). Consequently, ambient noise correlation 

could be used to monitor fluidization-prone landslides.  

The precursory nature of the velocity drop observed before a dramatic acceleration was 

suggested by Mainsant et al. (2012b). However, two questions remained: Is the precursor sig-

nal reproducible under controlled conditions? Is the drop in velocity precursory to or concom-

itant with the displacement? (The time resolution for the displacement measured during the 

failure of Pont-Bourquin in 2010 was not high enough to answer this question). Mainsant et 

al. (2015), followed by Carrière et al. (2018a), performed laboratory experiments to monitor 

the velocity of shear waves over time in soil samples taken from various landslides. In their 

tests, they progressively increased the shear stress applied to samples with different water 

contents. They observed that a decrease in Vs, a distinctive feature of the solid-fluid transition 

of the soil, was consistently observed before any measurable displacements (e.g., Fig. 19). 

c
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These observations confirm that decreases in shear-wave velocity are a precursor to fluidiza-

tion of the soil. However, in these experiments, fluidization resulted from increasing stress, 

and not water content as it would occur in the field. The precursory nature of the velocity drop 

therefore needs to be further confirmed, for example with a rain-controlled flume simulation 

(e.g., Wang and Sassa, 2003), and compared to standard predictive methods such as the in-

verse of the displacement rate (Intrieri et al., 2019). 

 
Fig. 21: Influence of the shear stress τ applied on the apparent Rayleigh velocity variation dVR/VR 

(dots) and surface displacement (continuous lines). Flume experiments were performed in the labora-

tory, with two different water contents w. The results confirm the joint influence of shear stress and 

water content on the liquid-plastic threshold, and that the VR starts to decrease at a stress  before sur-

face displacement (strain) is triggered at . From (Mainsant et al., 2015). 

Reduced shear-wave velocity has been observed multiple times on the Montevecchio earth 

flow (Bertello et al., 2018) and on six other landslides in the same region (Berti et al., 2019) 

following fluidization of the soil, using the active MASW and passive ReMI methods (Park et 

al., 1999; Louie, 2001). These observations emphasize the strong impact the fluidization of 

the landslide has on shear-wave velocity, with a considerable drop in Rayleigh wave velocity 

(−30% to −40%). This value is much higher than the –7% observed at Pont-Bourquin: on this 

landslide, the material affected was limited to a thin layer at depth, whereas in Montevecchio 

the whole structure was affected. Interestingly, these studies also highlight the usefulness of 

Vs for slope consolidation once fluidization has occurred. Indeed, after the rapid decrease in 

shear-wave velocities due to fluidization of the soil, a progressive increase (recovery) of the 

Rayleigh waves was observed in the landslide’s bulk as the earth flows slowed down. The 

authors linked this phenomenon to the consolidation of the slope material (Bertello et al., 

2018; Berti et al., 2019) (see Fig. 20). In short, recordings of the shear-wave velocity could 

thus be used to monitor the progressive consolidation of the slope material after a rapid flow 

event.  

RVS
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Fig. 22: Rayleigh wave velocity measured at a depth of 2 m using the MAWS and the ReMi tech-

niques during repeated surveys of the Montevecchio earth flow at several locations. Arrows show the 

start of the main reactivation events. The velocity inside the landslide appears to drop after reactiva-

tions, with a recovery period of several weeks before returning to its original value. From (Bertello et 

al., 2018). 

6.2 Earthquakes 

 

Fig. 23: (a) Landslide displacement generated by an earthquake in the vicinity of a landslide (~10 km) 

and (b) decrease of the apparent seismic velocity recorded at the landslide following the event. Re-

drawn from (Bontemps et al., 2020) 

Strong decreases in seismic wave velocity have consistently been observed after major 

earthquakes (Brenguier et al., 2008a; Obermann et al., 2014; Richter et al., 2014; 

Gassenmeier et al., 2015a; Viens et al., 2018). The amplitude of the variations observed for a 

given event can vary from 0.1% (Brenguier et al., 2014) to more than 10% (Nakahara, 2015; 

Nakata and Snieder, 2011), depending on the investigation depth and the distance between the 

seismometer and the source of the earthquake (Viens et al., 2018). Following the co-seismic 

drop, the ground consistently undergoes a recovery phase, characterized by an increase in the 
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dv/v, which often returns to its pre-earthquake value (Richter et al., 2014; Gassenmeier et al., 

2016). This recovery phase has also been observed at laboratory scale (TenCate, 2011), and is 

referred to as “slow dynamic” recovery. Both in the laboratory and after large earthquakes, 

the recovery phase was shown to follow a pseudo-logarithmic shape over time (TenCate, 

2011; Richter et al., 2014; Gassenmeier et al., 2015a; Snieder et al., 2017; Viens et al., 2018). 

Bontemps et al. (2020) revealed that even moderate earthquakes (Mw ≤ 5.5) can affect the 

surface wave velocity on a landslide. Thus, on the slow-moving Maca landslide (< 1 m/year 

in 2016–2018) in Peru, a local earthquake of magnitude 5.5 located 10 km away abruptly re-

duced the dv/v by 3% (Fig. 23). This seismic event also generated a co-seismic slip of 1 cm, 

followed by an 11-cm displacement one month after the earthquake. A recovery phase was 

then observed, which fitted the model proposed by Richter et al. (2014). 

Strong ground motion caused by earthquakes generates a nonlinear response within the soil, 

which decreases its elastic modulus and diminishes the seismic velocity (Beresnev and Wen, 

1996). In extreme cases, plastic deformation can occur, leading to soil liquefaction (Keefer, 

1984). The drop in soil rigidity following strong shaking may be due to the generation of 

macro- and micro-cracks in the medium (Ostrovsky and Johnson, 2001; Rojstaczer and Wolf, 

1992) or to the rearrangement of the grains due to weak inter-grain contacts (Ostrovsky and 

Johnson, 2001; Tournat et al., 2004). The slow dynamic effect corresponds to healing of the 

soil by the progressive closing of cracks, and the rearrangement and cementation of grains 

(Gassenmeier et al., 2016; Viens et al., 2018) progressively returning to their initial state. 

Several studies have attempted to determine the dv/v trend during and after earthquakes to 

better understand the parameters controlling damage to the ground over time. Richter et al. 

(2014) fitted a logarithmic curve to the dv/v drop observed on the day of a major earthquake. 

Once long (seasonal or tectonic) trends had been removed from the signal, they found a linear 

relationship between the transient velocity changes and the peak ground acceleration caused 

by smaller events at a given station (Richter et al., 2014). Gassenmeier et al. (2016) inferred 

that small vibrations as well as large earthquakes can decrease the rigidity of the material. 

Therefore, they integrated the envelope of the ground acceleration over one day instead of the 

peak ground acceleration alone, to model the expected drop in dv/v during an earthquake. 

They subsequently modeled the recovery using an exponential curve rather than a logarithmic 

curve (Snieder et al., 2017). This model has the advantage of converging toward a finite limit 

at long times, and thus better represents the real state of the soil once completely healed 

(Gassenmeier et al., 2016). Nevertheless, the ambient noise correlation technique has only 

relatively recently been adopted to study the impact of earthquakes on landslides, and many 

questions remain. Can we also find a relation between the dv/v drop and the peak ground ac-
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celeration measured on the landslide like that described by Richter et al. (2014)? Can the 

presence of water in the landslide also affect the dv/v drop generated by the shaking, as ob-

served by Brenguier et al. (2014) on volcanoes? Does the recovery process always follow a 

logarithmic shape with time? Can other processes specific to landslides, such as displacement 

or changes to the preferential flow of water after an earthquake, affect how the material re-

covers?  

In summary, earthquakes affect the dv/v measured on landslides. The amplitude of the drop 

in dv/v depends on the frequency band studied (i.e., the investigation depth) and the distance 

between the earthquake and the landslide. An extensive drop in dv/v can be expected for local 

moderate earthquakes or remote large earthquakes. The sudden 3% velocity drop that fol-

lowed the magnitude 5.5 earthquake 10 km from Maca was clearly identifiable within the 

slow seasonal fluctuations (dv/v ≈ 2%). This type of velocity drop could give an indication of 

the potential risk of landslides being triggered during and for several days after an earthquake. 

6.3 Stability indicators before and after an event 

Slow-moving landslides may either accelerate or stabilize under the influence of external 

factors such as rainfall, earthquakes or human interventions (Lacroix et al., 2012). Extending 

the proposal of Bontemps et al. (2020), we suggest that the following four states of a landslide 

can be related to a dv/v value (Fig. 24): stable, moving, critical, and failure. In the stable state, 

the landslide is not moving. On landslides that activate after a precipitation threshold, such as 

Maca (Bontemps et al., 2018; Zerathe et al., 2016),  the landslide can remain stable despite 

minor earthquakes or rainfall. 

In the creeping state, the displacement rate is linear with respect to the rainfall rate con-

volved with a fixed impulse response (Helmstetter and Garambois, 2010; Belle et al., 2014; 

Bernardie et al., 2015; Le Breton, 2019a). This state also corresponds to the classical primary 

and secondary creep of landslides (Intrieri et al., 2019). The transition from stable to creeping 

state, and its reverse, corresponded to the dv/v crossing a threshold on the Maca deep-seated 

landslide (Bontemps et al., 2020). In the latter study, the transition from stable to moving was 

triggered both by rainfall and seismic events. Bontemps et al. (2020) observed that, over 2.5 

years in 2016–2018, the Maca landslide moved only when the dv/v dropped below a threshold 

(-1.2% at 3 − 8 Hz), and stopped moving when it once again exceeded this threshold as it re-

covered. 

In the critical state, the amplitude of the impulse response increases, leading to a higher dis-

placement rate after the same rainfall (Le Breton, 2019a); this increased displacement rate can 

be a precursory signal before failure (Bernardie et al., 2015). The critical state corresponds to 

the tertiary creep phase occurring before a failure (Intrieri et al., 2019). The creeping-to-
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critical transition, and its reverse, is suggested on the Pont-Bourquin landslide, where a de-

crease in dv/v of 1 − 2% at 10 − 14 Hz (no threshold identified) correlates with a doubling of 

the landslide displacement following the same rainfall input (Le Breton, 2019a). 

Finally, failure corresponds to extremely rapid and nonlinear landslide displacements. The 

critical-to-failure transition was observed on the Pont-Bourquin landslide, when the dv/v de-

creased below −5% at 10 − 12 Hz before the failure (Mainsant et al., 2012b). The reverse, the 

failure-to-metastable transition, corresponds to the recovery observed on the Montevecchio 

earthflow (Bertello et al., 2018) where the dv/v slowly increased from about −30% back to 0% 

 

Fig. 24: Four states proposed for a creeping landslide, with transitions related to the dv/v.  

 

In addition to precursory signals, the dv/v indicator can be used to observe how a landslide 

recovers. As previously mentioned, a slow recovery of the shear-wave velocity has been re-

ported both after an earthquake shaking (Bontemps et al., 2020), or after fluidization triggered 

by rainfall (Bertello et al., 2018; Berti et al., 2019). During recovery, the apparent velocity 

progressively (within weeks or months) returned to its original value, while the landslide tran-

sitioned from creeping to stable state. Recovery may take years to complete, as observed on 

non-landslide sites (Gassenmeier et al., 2016). Monitoring recovery should help to determine 

when an unstable slope has become stable once again, after a critical event such as a failure, a 

period of heavy rainfall, stabilization work (e.g., drainage), an explosion, or an earthquake. 

That could also be helpful for designing risk-management strategies, for example to support a 

decision of reopening a road after a landslide acceleration.  

Nevertheless, in current practice, no geophysical method provides certain precursors for use 

in an early-warning system. Therefore, multiple geophysical indicators (microseismicity, res-

onance frequency, dv/v, CC) should be monitored simultaneously to increase the robustness of 

warnings. In all cases, any alert system would have to include surface observations (Intrieri et 

al., 2019), such as extensometry, GPS, or recently RFID (Angeli et al., 2000; Gili et al., 2000; 
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Le Breton et al., 2019) to allow comparison of bulk mechanical variations to surface defor-

mations.  
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Conclusion 

The present review covers studies performed on nine long-term investigations of landslides 

using ambient noise correlation, and focuses on early-warning applications: using robust pro-

cessing, improving the time resolution below a day, and understanding environmental fluctua-

tions. Depending on the site studied, it might be necessary to check for the stability of the 

noise source (in space, azimuth, and frequency content), for changes to resonance frequencies 

or the scattering structure of the propagating medium, for accurate synchronization, and for 

the stability of inter-sensor distance. The main processing parameters to be adapted to each 

landslide are the time window and the filtering frequency of the correlation functions over 

which the velocity is computed. 

Apparent velocity may fluctuate due to changes in the noise field, to reversible environmen-

tal influences, or to triggering factors. For the noise field, we recommend checking for source 

fluctuations, source anisotropy, and resonance frequencies, before interpreting variations in 

apparent velocity, to avoid any spurious influences. If problems are identified, we suggest 

avoiding the resonance frequency, distinguishing between seismic events and sources, and 

using a network of sensors as pseudo-sources. Reversible environmental influences can be 

monitored based on the amplitude of seasonal fluctuations, which happens to follow a linear 

trend with the filtering frequency (from a few hundredths of % to a few %).  

Several environmental factors can cause a reversible fluctuation of the seismic velocity, ei-

ther seasonal or daily. Understanding their influence will allow to better distinguish these 

fluctuations from precursory signal before landslide failures. The influence of groundwater 

levels and soil freezing/thawing on these fluctuations was consistent across studies, but the 

effects of temperature, snow and tide remain to be investigated. The two major landslide trig-

gers—fluidization due to rainfall and earthquakes—were both observed to decrease the seis-

mic velocity, during which landslides were observed to accelerate. After an acceleration 

event, the seismic velocity slowly recovered back to its initial value, which is explained by 

the progressive reconsolidation of the landslide material. 

Future developments could focus on confirming the relation between dv/v and landslide 

triggers (earthquakes and soil fluidization) on additional sites, correcting for environmental 

variations and studying their variations at a sub-daily time resolution. The effect of snow dep-

osition and melting should also be studied in detail, as the impact of these major triggering 

factors on the apparent velocity remains unclear. In the cases reported, nevertheless, the de-

creases in velocity observed prior to or during failure were larger than other effects.  
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