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Introduction

Let (ε n ) n≥1 be independent random matrices taking values in G = GL d (R), d ≥ 2 (the group of invertible d-dimensional real matrices) with common distribution µ. Let • be the euclidean norm on R d , and for every A ∈ GL d (R), let A = sup x, x =1 Ax . Let also N (g) := max( g , g -1 ). We shall say that µ has an exponential moment if there exists α > 0 such that G (N (g)) α dµ(g) < ∞ , We shall say that µ has a polynomial moment of order p ≥ 1 if G (log N (g)) p dµ(g) < ∞ .

1 Let A n = ε n • • • ε 1 ,
with the convention A 0 =Id. It follows from Furstenberg and Kesten [START_REF] Furstenberg | Products of Random Matrices[END_REF] that, if µ admits a moment of order 1 then lim n→∞ 1 n log A n = λ µ P-a.s., (1.1) where λ µ := lim n→∞ n -1 E log A n is the so-called first Lyapunov exponent. Let now X := P (R d ) be the projective space of R d and write x as the projection of x ∈ R d -{0} to X. An element A of G = GL d (R) acts on the projective space X as follows: Ax = Ax. Let Γ µ be the closed semi-group generated by the support of µ. We say that µ is proximal if Γ µ contains a matrix that admits a unique (with multiplicity 1) eigenvalue of maximal modulus. We say that µ is strongly irreducible if no proper union of subspaces of R d is invariant by Γ µ . Throughout the paper, we assume that µ is strongly irreducible and proximal.

In particular, there exists a unique invariant measure ν on B(X), meaning that for any bounded measurable function h from X to R,

X h(x)dν(x) = G X h(g • x)dµ(g)dν(x) . (1.2)
Let W 0 be a random variable with values in the projective space X, independent of (ε n ) n≥1 and with distribution ν. By the invariance of ν, we see that the sequence (W n := A n W 0 ) n≥1 is a strictly stationary Markov chain with values in X. Let now, for any integer k ≥ 1,

X k := σ(ε k , W k-1 ) -λ µ = σ(ε k , A k-1 W 0 ) -λ µ , (1.3) 
where, for any g ∈ G and any x ∈ X, σ(g, x) = log( gx / x ). Note that σ is an additive cocycle in the sense that σ(g 1 g 2 , x) = σ(g 1 , g 2 x) + σ(g 2 , x). Consequently

S n := n k=1 X k = log A n V 0 -nλ µ ,
where V 0 is a random variable such that V 0 = 1 and V 0 = W 0 . Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] proved that if µ has a moment of order 2, then

lim n→∞ 1 n E(S 2 n ) = s 2 > 0 , (1.4) 
and, for any t ∈ R,

lim n→∞ sup x = y =1 P log | A n x, y | -nλ µ ≤ t √ n -φ(t/s) = 0 ,
where φ denotes the cumulative distribution function of the standard normal distribution.

Given a matrix g ∈ GL d (R) denote by λ 1 (g) its spectral radius (the greatest modulus of it eigenvalues). Aoun [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF] proved that if µ has a moment of order 2, then, for any t ∈ R,

lim n→∞ P log(λ 1 (A n )) -nλ µ ≤ t √ n -φ(t/s) = 0 .
In this paper we provide rates of convergence in these Central Limit Theorems, if µ has either an exponential moment, or a polynomial moment of order p ≥ 3.

Before giving our main results, les us recall the known results on this subject. Let µ be a proximal and strongly irreducible probability measure on B(G).

If µ has an exponential moment, then a Berry Esseen bound of order O(1/ √ n) for the quantity log A n x -nλ µ is proved in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups[END_REF]. The same rate is obtained in [START_REF] Cuny | Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF] under a polynomial moment of order 4; in the same paper, the rate O(log n/ √ n) is proved under a moment of order 3. Recently, the rate O(1/ √ n) has been obtained in [START_REF] Dinh | Random walks on SL 2 (C): spectral gap and local limit theorems[END_REF] under a moment of order 3, in the special case d = 2.

If µ has an exponential moment, then a Berry Esseen bound of order O(log n/ √ n) for the quantity log A n -nλ µ is proved in [START_REF] Xiao | Berry Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF]. The rate O(1/ √ n) is obtained in [START_REF] Cuny | Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF] under a polynomial moment of order 4; in the same paper, the rate O(log n/ √ n) is proved under a moment of order 3.

If µ has an exponential moment, then a Berry Esseen bound of order O(1/ √ n) for the quantity log | A n x, y | -nλ µ has been obtained very recently by Dinh et al. [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF] (see also [START_REF] Xiao | Limit theorems for the coefficients of random walks on the general linear group[END_REF] for a more precise statement). This improves on the rate O(log n/ √ n) of Item 1 of Theorem 2.1 below (note that the preprint [START_REF] Dinh | Berry-Esseen bound and local limit theorem for the coefficients of products of random matrices[END_REF] was available on arxiv after this note was submitted).

If µ has an exponential moment, then a Berry Esseen bound of order O(log n/ √ n) for the quantity log(λ 1 (A n )) -nλ µ is proved in [START_REF] Xiao | Berry Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF].

As we can see, with regard to the Berry-Esseen type bounds for the four quantities described above, the main questions which remain to be treated concern the case of polynomial moments. In particular, it would be interesting to see if the existing moment conditions are optimal (with regard to the rates obtained), and also to propose bounds in the case where µ has a polynomial moment of order between 2 and 3.

The case of matrix coefficients

Theorem 2.1. Let µ be a proximal and strongly irreducible probability measure on B(G).

1. Assume that µ has an exponential moment, and let s > 0 be defined by (1.4). Then there exists a positive constant K such that, for any integer n ≥ 2,

sup x = y =1 sup t∈R P log | A n x, y | -nλ µ ≤ t √ n -φ(t/s) ≤ K log n √ n . (2.1)
2. Assume that µ has a polynomial moment of order p ≥ 3 and let s > 0 be defined by (1.4).

Then there exists a positive constant K such that, for any integer n ≥ 2,

sup x = y =1 sup t∈R P log | A n x, y | -nλ µ ≤ t √ n -φ(t/s) ≤ K n (p-1)/2p . (2.
2)

The proof of this theorem is based on Berry-Esseen estimates for log A n x -nλ µ (given in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups[END_REF] and [START_REF] Cuny | Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF]), and on the following elementary lemma (see lemma 5.1 in [START_REF] Hörmann | Berry-Esseen bounds for econometric time series[END_REF] for a similar result): Lemma 2.1. Let (T n ) n∈N and (R n ) n∈N be two sequences of random variables. Assume that there exist three sequences of positive numbers (a n ) n∈N , (b n ) n∈N and (c n ) n∈N going to infinity as n → ∞, and a positive constant s such that, for any integer n,

sup t∈R P(T n ≤ t √ n) -φ(t/s) ≤ 1 a n , and 
P(|R n | ≥ √ 2πns/b n ) ≤ 1 c n .
Then, for any integer n,

sup t∈R P(T n + R n ≤ t √ n) -φ(t/s) ≤ 1 a n + 1 b n + 1 c n .
Proof of Lemma 2.1. Recall that φ is 1/ √ 2π-Lipschitz. We have

P(T n + R n ≤ t √ n) ≤ P T n - √ 2πns/b n ≤ t √ n, -R n ≤ √ 2πns/b n + P -R n ≥ √ 2πns/b n ≤ P T n - √ 2πns/b n ≤ t √ n + P -R n ≥ √ 2πns/b n .
Hence

P(T n + R n ≤ t √ n) -φ(t/s) ≤ 1 a n + |φ(t/s + √ 2π/b n ) -φ(t/s)| + 1 c n ≤ 1 a n + 1 b n + 1 c n .
The lower bound may be proved similarly, by noting that

P(T n + √ 2πns/b n ≤ t √ n) -P(R n ≥ √ 2πns/b n ) ≤ P(T n + R n ≤ t √ n, R n ≤ √ 2πns/b n ) ≤ P(T n + R n ≤ t √ n) .
Proof of Item 1 of Theorem 2.1. The proof follows the steps used in Section 8.3 of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]. We shall need some notations. For every x, ȳ ∈ X, let

d(x, ȳ) := x ∧ y x y ,
where ∧ stands for the exterior product, see e.g. [4, page 61], for the definition and some properties. Then, d is a metric on X. Let also

δ(x, ȳ) := | x, y | x y . (2.3)
Recall that the function δ is linked to the distance d on X by the following: For every x, ȳ ∈ X,

δ 2 (x, ȳ) = 1 -d 2 (x, ȳ) . (2.4)
We shall also need the following result due to Guivarc'h [START_REF] Guivarc'h | Produits de matrices aléatoires et applications[END_REF] (see Theorem 14.1 in [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]):

Proposition 2.1. Let µ be a proximal and strongly irreducible probability measure on B(G).

Assume that µ has an exponential moment. Then, there exists η > 0, such that

sup ȳ∈X X 1 δ(x, ȳ) η dν(x) < ∞ .
We start with the identity, for

x = y = 1, log | A n x, y | = log A n x + log | A n x, y | A n x y = log A n x + log δ(A n • x, ȳ) .
We shall then apply Lemma 2.1 to T n = log A n x -nλ µ and R n = log δ(A n • x, ȳ). Since µ has an exponential moment, we know from [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups[END_REF] that we can take a n = C √ n in Lemma 2.1. In view of Lemma 2.1, we see that Theorem 2.1 will be proved if we can show that there exist τ, K > 0 such that (recall that δ(•, •) ≤ 1)

P (|log δ(A n • x, ȳ)| > τ log n) = P(δ(A n • x, ȳ) < n -τ ) ≤ K √ n , (2.5) 
which means that the sequences (b n ) n∈N and (c n ) n∈N are such that b n = √ 2πns/(τ log n) and c n = √ n/K. Recall the identity (2.4). As in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], we have, using that d(•, •) ≤ 1,

δ 2 (A n • x, ȳ) = 1 -d 2 (A n • x, ȳ) ≥ 1 -d(A n • x, W n ) + d(W n , ȳ) 2 ≥ δ 2 (W n , ȳ) -d 2 (A n • x, W n ) -2d(A n • x, W n )d(W n , ȳ) ≥ δ 2 (W n , ȳ) -3d(A n • x, W n ) .
(2.6)

Hence, to prove (2.5), it suffices to prove that there exist τ, K > 0 such that,

P δ 2 (W n , ȳ) < n -2τ + 3d(A n • x, W n ) ≤ K √ n . (2.7)
Now, since µ has a polynomial moment of order 3, by Lemma 6 of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], there exists > 0, such that

P d(A n • x, W n ) ≥ e -n ≤
C n (in fact this estimate remains true as soon as µ has a polynomial moment of order 2, via a monotonicity argument).

Hence, for n large enough (such that 3e -n ≤ n -2τ ), we have

P δ 2 (W n , ȳ) < n -2τ + 3d(A n • x, W n ) ≤ P δ 2 (W n , ȳ) < 2n -2τ + C n .
On another hand, by Markov's inequality, since W n has law ν, We shall then apply Lemma 2.1 to T n = log A n x -nλ µ and R n = log δ(A n • x, ȳ). Since µ has a moment of order 3, we know from [START_REF] Cuny | Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF] that we can take a n = C √ n/ log n in Lemma 2.1 (and even a n = C √ n if p ≥ 4). In view of Lemma 2.1, we see that Theorem 2.1 will be proved if we can show that there exists K > 0 such that

P δ 2 (W n , ȳ) < 2n -2τ = ν x ∈ X : 1 δ 2 (x, ȳ) > n 2τ 2 ≤ 2 η/2 n ητ sup ȳ∈X X 1 δ(x, ȳ) η dν(x) ,
P |log δ(A n • x, ȳ)| > n 1/2p ≤ K n (p-1)/2p , (2.8) 
which means that the sequences (b n ) n∈N and (c n ) n∈N are such that b n = √ 2πns/n 1/2p and c n = n (p-1)/2p /K.

Starting again from (2.6), we see that it suffices to prove that there exists K > 0 such that,

P δ 2 (W n , ȳ) < e -2n 1/2p + 3d(A n • x, W n ) ≤ K n (p-1)/2p .
(2.9)

Proceeding as in the proof of Theorem 2.1, we deduce that, for n large enough (such that e -n ≤ e -2n 1/2p ), we have

P δ 2 (W n , ȳ) < e -2n 1/2p + 3d(A n • x, W n ) ≤ P δ 2 (W n , ȳ) < 4e -2n 1/2p + C n .
On another hand, by Markov's inequality, since W n has law ν, and for n large enough,

P δ 2 (W n , ȳ) < 4e -2n 1/2p = P | log δ(W n , ȳ)| > n 1/2p -log 2 = ν x ∈ X : | log δ(x, ȳ)| > n 1/2p -log 2 ≤ 1 (n 1/2p -log 2) p-1 sup ȳ∈X X | log δ(x, ȳ)| p-1 dν(x) ,
and (2.9) follows from Proposition 2.2.

The case of the spectral radius

We now prove similar results for the spectral radius. Given a matrix g ∈ GL d (R) denote by λ 1 (g) its spectral radius (the greatest modulus of its eigenvalues). The first result (Item 1 of Theorem 3.1 below), assuming an exponential moment for µ, has been recently proved by Xiao et al. [START_REF] Xiao | Berry Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF] (in fact, a stronger result is proved in [START_REF] Xiao | Berry Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF]). We state it only for completeness. Theorem 3.1. Let µ be a proximal and strongly irreducible probability measure on B(G).

1. Assume that µ has an exponential moment, and let s > 0 be defined by (1.4). Then there exists a positive constant K such that, for any integer n ≥ 2,

sup t∈R P log λ 1 (A n ) -nλ µ ≤ t √ n -φ(t/s) ≤ K log n √ n . (3.1)
2. Assume that µ has a polynomial moment of order p ≥ 3, and let s > 0 be defined by (1.4).

Then there exists a positive constant K such that, for any integer n ≥ 2,

sup t∈R P log λ 1 (A n ) -nλ µ ≤ t √ n -φ(t/s) ≤ K n (p-1)/2p . (3.2)
The proof of Item 2 is based on a Berry-Esseen estimate for log A n -nλ µ given in [START_REF] Cuny | Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF], and on Lemma 2.1.

A key ingredient in the proof of Item 1 by Xiao et al. [START_REF] Xiao | Berry Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF] is Lemma 14.13 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF].

To prove Item 2, we shall need a suitable version of Lemma 14.13 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]. The proof of Lemma 14.13 relies on Lemma 14.2 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] (of geometrical nature) and on large deviations, yielding to Lemma 14.3.

We shall need the following consequence of large deviation estimates of Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] (see also [START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF] for a related results under proximality). Lemma 3.1. Let µ be a strongly irreducible probability measure on B(G). Assume that µ has a polynomial moment of order p > 1. Let ε > 0. There exists C > 0 such that for every n ∈ N sup

x =1 P max 1≤k≤n | log A k x -kλ µ | > εn ≤ C n p-1 , (3.3) 
P max 1≤k≤n | log A k -nλ µ | > εn ≤ C n p-1 ; (3.4) 
P max 1≤k≤n | log Λ 2 (A k ) -k(λ µ + γ µ )| > εn ≤ C n p-1 . (3.5) 
Remark. Let us recall that, for any 

A ∈ GL d (R), Λ 2 (A) is the matrix on Λ 2 (R d ) defined by Λ 2 (A)(x ∧ y) = Ax ∧ Ay. In
n≥1 n p-2 u n < ∞ . (3.6) 
In fact, in [START_REF] Benoist | Central limit theorem for linear groups[END_REF], (3.6) is proved for u n defined without the maximum over k ∈ {1, . . . , n} under the probability. However, it is easy to see that the maximum over k can be added: it suffices to follow the proof of Theorem 2.2 of [START_REF] Benoist | Central limit theorem for linear groups[END_REF] with obvious changes, and to use a maximal version of Burkholder's inequality for martingales. Now, once (3.6) has been proven, it is easy to infer (via a monotonicity argument) that (3.3), (3.4) and (3.5) are satisfied.

Using Lemma 3.1 one can reproduce the proof of Proposition 14.3 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] to prove the following version of it. Lemma 3.2. Let µ be a strongly irreducible and proximal probability measure on B(G). Assume that µ has a polynomial moment of order p > 1. Then, the estimates (14.5), (14.6), (14.7) and (14.8) of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] hold with 1 -C n p-1 in the right-hand side instead of 1 -e -cn .

Lemma 3.2 implies the next result.

Lemma 3.3. Let µ be a strongly irreducible probability measure on B(G). Assume that µ has a polynomial moment of order p > 1. For every ε > 0, there exist C > 0 and 0 > 0 such that for every 0 ≤ ≤ n,

P(log(λ 1 (A n )) -log A n ≥ -ε ) ≥ 1 - C p-1 .
Proof of Lemma 3.3. The lemma is a version of Lemma 14.13 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] with the following difference: Lemma 14.13 holds under an exponential moment while in Lemma 3.3 we assume polynomial moments. Now, it happens that there is a small gap in the proof of Lemma 14.13 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] which can be easily fixed thanks to a slight modification of the original argument.

One of the steps in the proof of Lemma 14.13 consists in proving that the property (14.38) is true on an exponentially small set (see the end of page 233 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] for the definition of an exponentially small set). A second step of the proof consists in proving the equivalence of the fact that the properties (14.38) and (14.43) of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] are true on an exponentially small set .

The problem then comes from the fact that it does not seem possible to deduce straightforwardly from (14.7) that the property (14.43) is true on an exponentially small set, as mentioned in [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]. Yet the weaker property (3.7) below follows from (14.7). Notice that since we prove below that the property (14.38) is true on an exponentially small set, from the above mentioned equivalence, it will follow that the property (14.43) is also true on an exponentially small set.

We choose to explain how to fix the proof of the original Lemma 14.13. Then, the proof of our Lemma 3.3 may be done similarly, using our Lemma 3.2 instead of Lemma 14.3 of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF].

From (14.7) of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] it follows that, with the notations of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], for every n ≥ n 0

µ ⊗n (b 1 , . . . , b n ) ∈ G n : δ(x M bn•••b [n/2]+1 , y m b [n/2] •••b 1 ) ≥ e -ε[n/2] ≥ 1 -e -c[n/2] . (3.7) 
Using (14.39), (14.40), (14.41) and (14.42), this yields that

µ ⊗n (b 1 , . . . , b n ) ∈ G n : δ(x M bn•••b 1 , y m bn•••b 1 ) ≥ e -ε ≥ 1 -e -c ∀[n/2] ≤ ≤ n , (3.8) 
for some c > 0 that may differ from the above one (and from the other c's below).

Let 0 ≤ < [n/2], with 0 ≥ n 0 , where n 0 is such that Lemma 14.3 be true.

By (14.6) of [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], we have

µ ⊗n (b 1 , . . . , b n ) ∈ G n : d(x M bn•••b n-, b n • • • b 1 x 0 ) ≤ e -(λ 1,µ -λ 2,µ -ε) ≥ 1 -e -c . (3.9) 
By (14.7), we have Using the fact that (14.39), (14.41) and (14.42) are true except on an exponentially small set, combined with (3.9) and (3.10), we infer that Then, the proof of Lemma 14.13 may be finished as in [START_REF] Benoist | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], combining Lemma 14.14 with the facts that the properties (14.37) and (14.38) are true on exponentially small sets.

µ ⊗n (b 1 , . . . , b n ) ∈ G n : δ(x M bn•••b n-, y m b [n/2] •••b 1 ) ≥ e -ε ≥ 1 -e -c , (3.10 
Proof of Item 2 of Theorem 3.1. We shall apply Lemma 2.1 to T n = log A n -nλ µ and R n = log(λ 1 (A n )) -log A n . Since µ has a moment of order 3, we know from [START_REF] Cuny | Esseen type bounds for the left random walk on GL d (R) under polynomial moment conditions[END_REF] that we can take a n = C √ n/ log n in Lemma 2.1 (and even a n = C √ n if p ≥ 4). In view of Lemma 2.1, we see that Item 2 of Theorem 3.1 will be proved if we can show that there exists K > 0 such that

P |log(λ 1 (A n )) -log A n | > n 1/2p ≤ K n (p-1)/2p , (3.12) 
which means that the sequences (b n ) n∈N and (c n ) n∈N are such that b n = √ 2πns/n 1/2p and c n = n (p-1)/2p /K.

Recall that λ 1 (g) ≤ g for every g ∈ GL d (R). Hence (3.12) follows from Lemma 3.3 by taking ε = 1 and = n 1/2p .

and ( 2 . 7 )Proposition 2 . 2 .

 2722 follows from Proposition 2.1 by taking τ = 1 2η . Proof of Item 2 of Theorem 2.1. The proof follows the lines of that of Item 1. Instead of Proposition 2.1, we shall use the following result due to Benoist and Quint (see Propositon 4.5 in [2]): Let µ be a proximal and strongly irreducible probability measure on B(G). Assume that µ has a polynomial moment of order p > 1. Then sup ȳ∈X X | log δ(x, ȳ)| p-1 dν(x) < ∞ .

  )where we used that bn • • • b n-and b [n/2] • • • b 1 are independent since n -> [n/2].

µ

  ⊗n (b 1 , . . . , b n ) ∈ G n : δ(x M bn•••b 1 , y m bn•••b 1 ) ≥ e -ε ≥ 1 -e -c ∀1 ≤ < [n/2] . (3.11)Combining (3.8) and(3.11), we see that the property(14.38) is true on an exponentially small set.

  addition, in(3.5) , γ µ is the second Lyapunov exponent of µ. With the notations of [3, Section 14], λ µ is denoted either λ 1,µ or λ 1 , while γ µ is either denoted λ 2,µ or λ 2 .Proof of Lemma 3.1. Let u n be any of the left-hand side in (3.3),(3.4) or (3.5). It follows from Proposition 4.1 and Corollary 4.2 of [2] that