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Abstract

We give rates of convergence in the Central Limit Theorem for the coefficients and the

spectral radius of the left random walk on GLd(R), assuming the existence of an exponential

or polynomial moment.

1 Introduction

Let (εn)n≥1 be independent random matrices taking values in G = GLd(R), d ≥ 2 (the group

of invertible d-dimensional real matrices) with common distribution µ. Let ‖ · ‖ be the eu-

clidean norm on Rd, and for every A ∈ GLd(R), let ‖A‖ = supx,‖x‖=1 ‖Ax‖. Let also N(g) :=

max(‖g‖, ‖g−1‖). We shall say that µ has an exponential moment if there exists α > 0 such that∫
G

(N(g))αdµ(g) <∞ ,

We shall say that µ has a polynomial moment of order p ≥ 1 if∫
G

(logN(g))pdµ(g) <∞ .
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Let An = εn · · · ε1, with the convention A0 =Id. It follows from Furstenberg and Kesten [9]

that, if µ admits a moment of order 1 then

lim
n→∞

1

n
log ‖An‖ = λµ P-a.s., (1.1)

where λµ := limn→∞ n
−1E log ‖An‖ is the so-called first Lyapunov exponent.

Let now X := P (Rd) be the projective space of Rd and write x̄ as the projection of x ∈
Rd − {0} to X. An element A of G = GLd(R) acts on the projective space X as follows:

Ax̄ = Ax. Let Γµ be the closed semi-group generated by the support of µ. We say that µ

is proximal if Γµ contains a matrix that admits a unique (with multiplicity 1) eigenvalue of

maximal modulus. We say that µ is strongly irreducible if no proper union of subspaces of Rd is

invariant by Γµ. Throughout the paper, we assume that µ is strongly irreducible and proximal.

In particular, there exists a unique invariant measure ν on B(X), meaning that for any bounded

measurable function h from X to R,∫
X

h(x)dν(x) =

∫
G

∫
X

h(g · x)dµ(g)dν(x) . (1.2)

Let W0 be a random variable with values in the projective space X, independent of (εn)n≥1 and

with distribution ν. By the invariance of ν, we see that the sequence (Wn := AnW0)n≥1 is a

strictly stationary Markov chain with values in X. Let now, for any integer k ≥ 1,

Xk := σ(εk,Wk−1)− λµ = σ(εk, Ak−1W0)− λµ , (1.3)

where, for any g ∈ G and any x̄ ∈ X, σ(g, x̄) = log(‖gx‖/‖x‖). Note that σ is an additive

cocycle in the sense that σ(g1g2, x̄) = σ(g1, g2x̄) + σ(g2, x̄). Consequently

Sn :=
n∑
k=1

Xk = log ‖AnV0‖ − nλµ ,

where V0 is a random variable such that ‖V0‖ = 1 and V 0 = W0.

Benoist and Quint [2] proved that if µ has a moment of order 2, then

lim
n→∞

1

n
E(S2

n)→ s2 > 0 , (1.4)

and, for any t ∈ R,

lim
n→∞

sup
‖x‖=‖y‖=1

∣∣P (log |〈Anx, y〉| − nλµ ≤ t
√
n
)
− φ(t/s)

∣∣ = 0 ,

where φ denotes the cumulative distribution function of the standard normal distribution.
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Given a matrix g ∈ GLd(R) denote by λ1(g) its spectral radius (the greatest modulus of it

eigenvalues). Aoun [1] proved that if µ has a moment of order 2, then, for any t ∈ R,

lim
n→∞

∣∣P (log(λ1(An))− nλµ ≤ t
√
n
)
− φ(t/s)

∣∣ = 0 .

In this paper we provide rates of convergence in these Central Limit Theorems, if µ has either

an exponential moment, or a polynomial moment of order p ≥ 3.

2 The case of matrix coefficients

Theorem 2.1. Let µ be a proximal and strongly irreducible probability measure on B(G).

1. Assume that µ has an exponential moment, and let s > 0 be defined by (1.4). Then there

exists a positive constant K such that

sup
‖x‖=‖y‖=1

sup
t∈R

∣∣P (log |〈Anx, y〉| − nλµ ≤ t
√
n
)
− φ(t/s)

∣∣ ≤ K log n√
n

. (2.1)

2. Assume that µ has a polynomial moment of order p ≥ 3 and let s > 0 be defined by (1.4).

Then there exists a positive constant K such that

sup
‖x‖=‖y‖=1

sup
t∈R

∣∣P (log |〈Anx, y〉| − nλµ ≤ t
√
n
)
− φ(t/s)

∣∣ ≤ K

n(p−1)/2p
. (2.2)

Remark 2.1. Very recently Dinh, Kaufmann and Wu [8] obtained the bound (2.1) without the

extra logarithmic factor.

The proof of this theorem is based on Berry-Esseen estimates for log ‖Anx‖ − nλµ (given in

[12] and [7]), and on the following elementary lemma (see lemma 5.1 in [11] for a similar result):

Lemma 2.1. Let (Tn)n∈N and (Rn)n∈N be two sequences of random variables. Assume that

there exist three sequences of positive numbers (an)n∈N, (bn)n∈N and (cn)n∈N going to infinity as

n→∞, and a positive constant s such that

sup
t∈R

∣∣P(Tn ≤ t
√
n)− φ(t/s)

∣∣ ≤ 1

an
, and P(|Rn| ≥

√
2πns/bn) ≤ 1

cn
.

Then,

sup
t∈R

∣∣P(Tn +Rn ≤ t
√
n)− φ(t/s)

∣∣ ≤ 1

an
+

1

bn
+

1

cn
.
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Proof of Lemma 2.1. Recall that φ is 1/
√

2π-Lipschitz. We have

P(Tn +Rn ≤ t
√
n) ≤ P

(
Tn −

√
2πns/bn ≤ t

√
n, −Rn ≤

√
2πns/bn

)
+ P

(
−Rn ≥

√
2πns/bn

)
≤ P

(
Tn −

√
2πns/bn ≤ t

√
n
)

+ P
(
−Rn ≥

√
2πns/bn

)
.

Hence

P(Tn +Rn ≤ t
√
n)− φ(t/s) ≤ 1

an
+ |φ(t/s+

√
2π/bn)− φ(t/s)|+ 1

cn

≤ 1

an
+

1

bn
+

1

cn
.

The lower bound may be proved similarly, by noting that

P(Tn +
√

2πns/bn ≤ t
√
n)− P(Rn ≥

√
2πns/bn) ≤ P(Tn +Rn ≤ t

√
n, Rn ≤

√
2πns/bn)

≤ P(Tn +Rn ≤ t
√
n) . �

Proof of Item 1 of Theorem 2.1. The proof follows the steps used in Section 8.3 of [5]. We

shall need some notations. For every x̄, ȳ ∈ X, let

d(x̄, ȳ) :=
‖x ∧ y‖
‖x‖‖y‖

,

where ∧ stands for the exterior product, see e.g. [4, page 61], for the definition and some

properties. Then, d is a metric on X. Let also

δ(x̄, ȳ) :=
|〈x, y〉|
‖x‖ ‖y‖

. (2.3)

Recall that the function δ is linked to the distance d on X by the following: For every x̄, ȳ ∈ X,

δ2(x̄, ȳ) = 1− d2(x̄, ȳ) . (2.4)

We shall also need the following result due to Guivarc’h [10] (see Theorem 14.1 in [3]):

Proposition 2.1. Let µ be a proximal and strongly irreducible probability measure on B(G).

Assume that µ has an exponential moment. Then, there exists η > 0, such that

sup
ȳ∈X

∫
X

1

δ(x̄, ȳ)η
dν(x̄) <∞ .
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We start with the identity, for ‖x‖ = ‖y‖ = 1,

log |〈Anx, y〉| = log ‖Anx‖+ log
|〈Anx, y〉|
‖Anx‖‖y‖

= log ‖Anx‖+ log δ(An · x̄, ȳ) .

We shall then apply Lemma 2.1 to Tn = log ‖Anx‖ − nλµ and Rn = log δ(An · x̄, ȳ). Since µ has

an exponential moment, we know from [12] that we can take an = C
√
n in Lemma 2.1.

In view of Lemma 2.1, we see that Theorem 2.1 will be proved if we can show that there

exist τ,K > 0 such that (recall that δ(·, ·) ≤ 1)

P (|log δ(An · x̄, ȳ)| > τ log n) = P(δ(An · x̄, ȳ) < n−τ ) ≤ K√
n
, (2.5)

which means that the sequences (bn)n∈N and (cn)n∈N are such that bn =
√

2πns/(τ log n) and

cn =
√
n/K.

Recall the identity (2.4). As in [5], we have, using that d(·, ·) ≤ 1,

δ2(An · x̄, ȳ) = 1− d2(An · x̄, ȳ) ≥ 1−
(
d(An · x̄,Wn) + d(Wn, ȳ)

)2

≥ δ2(Wn, ȳ)− d2(An · x̄,Wn)− 2d(An · x̄,Wn)d(Wn, ȳ)

≥ δ2(Wn, ȳ)− 3d(An · x̄,Wn) . (2.6)

Hence, to prove (2.5), it suffices to prove that there exist τ,K > 0 such that,

P
(
δ2(Wn, ȳ) < n−2τ + 3d(An · x̄,Wn)

)
≤ K√

n
. (2.7)

Now, since µ has a polynomial moment of order 3, by Lemma 6 of [5], there exists ` > 0, such

that

P
(
d(An · x̄,Wn) ≥ e−`n

)
≤ C

n
(in fact this estimate remains true as soon as µ has a polynomial moment of order 2, via a

monotonicity argument).

Hence, for n large enough (such that 3e−`n ≤ n−2τ ), we have

P
(
δ2(Wn, ȳ) < n−2τ + 3d(An · x̄,Wn)

)
≤ P

(
δ2(Wn, ȳ) < 2n−2τ

)
+
C

n
.

On another hand, by Markov’s inequality, since Wn has law ν,

P
(
δ2(Wn, ȳ) < 2n−2τ

)
= ν

{
x̄ ∈ X :

1

δ2(x̄, ȳ)
>
n2τ

2

}
≤ 2η/2

nητ
sup
ȳ∈X

∫
X

1

δ(x̄, ȳ)η
dν(x̄) ,

and (2.7) follows from Proposition 2.1 by taking τ = 1
2η

. �
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Proof of Item 2 of Theorem 2.1. The proof follows the lines of that of Item 1. Instead of

Proposition 2.1, we shall use the following result due to Benoist and Quint (see Propositon 4.5

in [2]):

Proposition 2.2. Let µ be a proximal and strongly irreducible probability measure on B(G).

Assume that µ has a polynomial moment of order p > 1. Then

sup
ȳ∈X

∫
X

| log δ(x̄, ȳ)|p−1 dν(x̄) <∞ .

We shall then apply Lemma 2.1 to Tn = log ‖Anx‖ − nλµ and Rn = log δ(An · x̄, ȳ). Since

µ has a moment of order 3, we know from [7] that we can take an = C
√
n/ log n in Lemma 2.1

(and even an = C
√
n if p ≥ 4).

In view of Lemma 2.1, we see that Theorem 2.1 will be proved if we can show that there

exists K > 0 such that

P
(
|log δ(An · x̄, ȳ)| > n1/2p

)
≤ K

n(p−1)/2p
, (2.8)

which means that the sequences (bn)n∈N and (cn)n∈N are such that bn =
√

2πns/n1/2p and

cn = n(p−1)/2p/K.

Starting again from (2.6), we see that it suffices to prove that there exists K > 0 such that,

P
(
δ2(Wn, ȳ) < e−2n1/2p

+ 3d(An · x̄,Wn)
)
≤ K

n(p−1)/2p
. (2.9)

Proceeding as in the proof of Theorem 2.1, we deduce that, for n large enough (such that

e−`n ≤ e−2n1/2p
), we have

P
(
δ2(Wn, ȳ) < e−2n1/2p

+ 3d(An · x̄,Wn)
)
≤ P

(
δ2(Wn, ȳ) < 4e−2n1/2p

)
+
C

n
.

On another hand, by Markov’s inequality, since Wn has law ν, and for n large enough,

P
(
δ2(Wn, ȳ) < 4e−2n1/2p

)
= P

(
| log δ(Wn, ȳ)| > n1/2p − log 2

)
= ν

{
x̄ ∈ X : | log δ(x̄, ȳ)| > n1/2p − log 2

}
≤ 1

(n1/2p − log 2)p−1
sup
ȳ∈X

∫
X

| log δ(x̄, ȳ)|p−1 dν(x̄) ,

and (2.9) follows from Proposition 2.2. �

3 The case of the spectral radius

We now prove similar results for the spectral radius. Given a matrix g ∈ GLd(R) denote by

λ1(g) its spectral radius (the greatest modulus of its eigenvalues). The first result (Item 1 of
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Theorem 3.1 below), assuming an exponential moment for µ, has been recently proved by Xiao

et al. [13] (in fact, a stronger result is proved in [13]). We state it only for completeness.

Theorem 3.1. Let µ be a proximal and strongly irreducible probability measure on B(G).

1. Assume that µ has an exponential moment, and let s > 0 be defined by (1.4). Then there

exists a positive constant K such that

sup
t∈R

∣∣P (log λ1(An)− nλµ ≤ t
√
n
)
− φ(t/s)

∣∣ ≤ K log n√
n

. (3.1)

2. Assume that µ has a polynomial moment of order p ≥ 3, and let s > 0 be defined by (1.4).

Then there exists a positive constant K such that

sup
t∈R

∣∣P (log λ1(An)− nλµ ≤ t
√
n
)
− φ(t/s)

∣∣ ≤ K

n(p−1)/2p
. (3.2)

The proof of Item 2 is based on a Berry-Esseen estimate for log ‖An‖− nλµ given in [7], and

on Lemma 2.1.

A key ingredient in the proof of Item 1 by Xiao et al. [13] is Lemma 14.13 of [3].

To prove Item 2, we shall need a suitable version of Lemma 14.13 of [3]. The proof of Lemma

14.13 relies on Lemma 14.2 of [3] (of geometrical nature) and on large deviations, yielding to

Lemma 14.3.

We shall need the following consequence of large deviation estimates of Benoist and Quint

[2] (see also [6] for a related results under proximality).

Lemma 3.1. Let µ be a strongly irreducible probability measure on B(G). Assume that µ has a

polynomial moment of order p > 1. Let ε > 0. There exists C > 0 such that for every n ∈ N

sup
‖x‖=1

P
(

max
1≤k≤n

| log ‖Akx‖ − kλµ| > εn

)
≤ C

np−1
, (3.3)

P
(

max
1≤k≤n

| log ‖Ak‖ − nλµ| > εn

)
≤ C

np−1
; (3.4)

P
(

max
1≤k≤n

| log ‖Λ2(Ak)‖ − k(λµ + γµ)| > εn

)
≤ C

np−1
. (3.5)

Remark. Let us recall that, for any A ∈ GLd(R), Λ2(A) is the matrix on Λ2(Rd) defined by

Λ2(A)(x ∧ y) = Ax ∧Ay. In addition, in (3.5) , γµ is the second Lyapunov exponent of µ. With

the notations of [3, Section 14], λµ is denoted either λ1,µ or λ1, while γµ is either denoted λ2,µ

or λ2.
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Proof of Lemma 3.1. Let un be any of the left-hand side in (3.3), (3.4) or (3.5). It follows

from Proposition 4.1 and Corollary 4.2 of [2] that∑
n≥1

np−2un <∞ . (3.6)

In fact, in [2], (3.6) is proved for un defined without the maximum over k ∈ {1, . . . , n} under

the probability. However, it is easy to see that the maximum over k can be added: it suffices

to follow the proof of Theorem 2.2 of [2] with obvious changes, and to use a maximal version of

Burkholder’s inequality for martingales. Now, once (3.6) has been proven, it is easy to infer (via

a monotonicity argument) that (3.3), (3.4) and (3.5) are satisfied. �

Using Lemma 3.1 one can reproduce the proof of Proposition 14.3 of [3] to prove the following

version of it.

Lemma 3.2. Let µ be a strongly irreducible and proximal probability measure on B(G). Assume

that µ has a polynomial moment of order p > 1. Then, the estimates (14.5), (14.6), (14.7) and

(14.8) of [3] hold with 1− C
np−1 in the right-hand side instead of 1− e−cn.

Lemma 3.2 implies the next result.

Lemma 3.3. Let µ be a strongly irreducible probability measure on B(G). Assume that µ has a

polynomial moment of order p > 1. For every ε > 0, there exist C > 0 and `0 > 0 such that for

every `0 ≤ ` ≤ n,

P(log(λ1(An))− log ‖An‖ ≥ −ε`) ≥ 1− C

`p−1
.

Proof of Lemma 3.3. The lemma is a version of Lemma 14.13 of [3] with the following

difference: Lemma 14.13 holds under an exponential moment while in Lemma 3.3 we assume

polynomial moments.

Now, it happens that there is a small gap in the proof of Lemma 14.13 of [3] which can

be easily fixed thanks to a slight modification of the original argument. The problem comes

from the fact that there is no reason why the property (14.43) should be true except on an

exponentially small set, see the end of page 233 of [3] for the definition. We explain below how

to fix the proof of the original Lemma 14.13 since the proof of our Lemma 3.3 may be done

similarly, using our Lemma 3.2 instead of Lemma 14.3 of [3].

From (14.7) of [3] it follows that, with the notations of [3], for every n ≥ n0

µ⊗n
({

(b1, . . . , bn) ∈ Gn : δ(xMbn···b[n/2]+1
, ymb[n/2]···b1) ≥ e−ε[n/2]

})
≥ 1− e−c[n/2] ,

which yields easily (14.33) for all [n/2] ≤ ` ≤ n, taking c smaller if necessary.

8



Hence, it remains to prove (14.33) for all `0 ≤ ` < [n/2], for some `0 large enough.

Let `0 ≤ ` < [n/2], with `0 ≥ n0, where n0 is such that Lemma 14.3 be true. Using that

(14.39), (14.41) and (14.42) are true except on an exponentially small set (see the beginning

of the proof of Lemma 14.13 which relies on Lemma 14.3), one sees that Lemma 14.13 will be

proved (for that `) if we can prove that

µ⊗n
({

(b1, . . . , bn) ∈ Gn : d(xMbn···bn−` , bn · · · b1x0) ≤ e−(λ1,µ−λ2,µ−ε)`
})
≥ 1− e−c` , (3.7)

µ⊗n
({

(b1, . . . , bn) ∈ Gn : δ(xMbn···bn−` , y
m
b[n/2]···b1) ≥ e−ε`

})
≥ 1− e−c` . (3.8)

But (3.7) follows from (14.6) of [3] while (3.8) follows from (14.7) after noticing that n−` ≥ [n/2],

so that the sets of coordinates {b1, . . . , b[n/2]} and {bn−`, . . . , bn} do not overlap. �

Proof of Item 2 of Theorem 3.1. We shall apply Lemma 2.1 to Tn = log ‖An‖ − nλµ and

Rn = log(λ1(An)) − log ‖An‖. Since µ has a moment of order 3, we know from [7] that we can

take an = C
√
n/ log n in Lemma 2.1 (and even an = C

√
n if p ≥ 4).

In view of Lemma 2.1, we see that Item 2 of Theorem 3.1 will be proved if we can show that

there exists K > 0 such that

P
(
|log(λ1(An))− log ‖An‖| > n1/2p

)
≤ K

n(p−1)/2p
, (3.9)

which means that the sequences (bn)n∈N and (cn)n∈N are such that bn =
√

2πns/n1/2p and

cn = n(p−1)/2p/K.

Recall that λ1(g) ≤ ‖g‖ for every g ∈ GLd(R). Hence (3.9) follows from Lemma 3.3 by

taking ε = 1 and ` = n1/2p. �
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