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Abstract: The podand-type ligand L, based on a tertiary amine substituted by three pyridyl-6-
phosphonic acid functions, forms hydrated complexes with Ln3+ cations. The luminescence prop-
erties of the YbL complex were studied in D2O as a function of the pD and temperature. In basic
conditions, increases in the luminescence quantum yield and the excited state lifetime of the Yb
centered emission associated with the 2F5/2 → 2F7/2 transition were observed and attributed to
a change in the hydration number from two water molecules in the first coordination sphere of
Yb at acidic pH to a single one in basic conditions. Upon the addition of TbCl3 salts to a solution
containing the YbL complex in D2O, heteropolynuclear Yb/Tb species formed, and excitation of
the Yb at 980 nm resulted in the observation of the typical visible emission of Tb as a result of a
cooperative upconversion (UC) photosensitization process. The UC was further evidenced by the
quadratic dependence of the UC emission as a function of the laser power density.

Keywords: lanthanides; luminescence; upconversion; supramolecular chemistry; cooperative
sensitization

1. Introduction

The upconversion (UC) phenomenon is an anti-Stokes process in which low-energy
photons are converted into higher energy ones. This generally results in the observation of
visible-to-NIR emission upon excitation in the NIR domain [1,2]. This process is particularly
useful for applications in biology, as the excitation and emission wavelengths match the
biological window where the background is low. It thus provides a low autofluorescence
background and a high penetration depth [3–5].

Although it is mostly observed in the solid state [6–8], examples at the molecular
scale in solutions [9–12] are flourishing thanks to the wide use of lanthanides, with their
unique luminescence properties such as long luminescent lifetimes and line-like emission
spectra [13,14]. The molecular strategy opens the door to new perspectives in biological
applications, considering that it might resolve the drawbacks due to the biotoxicity and
hazardous reproducibility of nanomaterials [15].

However, in contrast to solid state devices and nanoparticles [7], the design of the
molecular devices in solution is still challenging as a result of important non-radiative
deactivations due to energy transfer to OH, NH and CH oscillators [16,17]. These oscillators
favor the decay of the intermediate excited state and inhibit the absorption of a second
photon or of an energy quantum that is mandatory to reach and emit at a higher energy.
One can limit these deactivations by (1) using deuterated oscillators as in D2O which have
less impact on quenching of the intermediate state [18]; (2) protecting the cation with a
polydentate ligand, thereby limiting the presence of the solvent in the first coordination
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sphere [19]; and (3) introducing bulky substituents which will keep the solvent molecules
away from the NIR emitters [20]. Thanks to these strategies, the number of reported
molecular upconverting devices has increased in the last decade.

Among the different mechanisms used to develop upconverting devices [1,21], ETU is
reported to be the most efficient for the observation of UC at the molecular scale [22]. Its
efficiency results from the possibility of having at least one sensitizer transferring its energy
to an emitting acceptor center. Thanks to its unique 2F5/2 → 2F7/2 electronic transition at
980 nm, Yb(III) is the most common sensitizer used, and it allows for reaching the excited
state of numerous other lanthanides such as Eu, Tb, Ho, Er or Tm, all of which can emit in
the visible spectrum [11,23–25]. Between those different pairs, the Yb/Tb one introduces
a particular mechanism called cooperative sensitization [11,12,26,27]. This mechanism
helps to overstep the absence of resonant electronic transition between Yb and Tb, but the
efficiency is expected to be weak. In that case, the UC process is possible by exciting 2 Yb
centers, which then transfer their energy to the excited state of the Tb (5D4), allowing its
emission in the visible spectrum (Scheme 1).
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Scheme 1. (left) Principle of the cooperative sensitization between Yb and Tb [27]. (right) Represen-
tation of ligand L and its dihydrated Yb complex (H atoms are omitted for clarity).

Considering our previous findings on the cooperative sensitization of Tb by Yb
complexes [11,12], we anticipated that a Yb complex formed by complexation with the
heptadentate ligand L (Scheme 1) [28] might offer opportunities to observe UC in D2O
solutions. The spectroscopic properties of the YbL complex were studied in detail together
with the interactions of the complex with Tb cations and were shown to allow the formation
of heteropolynuclear Yb/Tb complexes that exhibit UC in D2O.

2. Materials and Methods

The (YbL) complex was prepared by following a previously described procedure [28].
Spectroscopic measurements were performed with 10 × 10 mm2 quartz suprasil certified
cells (Helma Analytics). The steady state emission spectra were recorded on an Edinburgh
Instrument FLP920 spectrometer working with a continuous 450-W Xe Lamp and a red-
sensitive R928 photomultiplier from Hamamatsu in a Peltier housing for visible detection
(230–900 nm) or a Hamamatsu R5 509-72 photomultiplier for the Vis-NIR part. 330-nm and
850-nm high-pass filters were used to eliminate the second-order artifacts when recording
in the visible and NIR spectra, respectively. The steady state upconversion emission
spectra were recorded on the FLP920 spectrometer using an MDL-3 III-980-nm 2-W laser
(CNI Laser) with a 850-nm high-pass filter between the source and the sample to remove
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any potential visible excitation. The spectra were recorded using the Peltier-cooled R928
photomultiplier from Hamamatsu, using a fully opened emission slit width (20 nm) by
accumulation of 10 spectra at 1 point/nm, with a dwell time of 0.1 s per nm. The pD value
was adjusted with a solution of NaOD and a solution of DCl and was calculated with use
of the equation of Mikkelsen (pD = pH + 0.4) [29].

The phosphorescence lifetimes were measured with the same instrument working
in the multi-channel spectroscopy mode and using a Xenon flash lamp as the excitation
source. Errors for the luminescence lifetimes were estimated to be ±10%.

The upconversion quantum yields were measured by following the published pro-
cedures [6,11] with a diluted solution (optical density < 0.05) using [TbGlu(H2O)]Na as
a reference [30].

Low-temperature measurements were performed with a Mercury iTC thermocryostat
equipped with a HiCUBE turbopump. The solution was prepared with 10% glycerol in a
Tris buffer (10 mM, pH 7).

Power-dependent steady state and time-resolved UC luminescence measurements
were performed in quartz cuvettes (Hellma QS Semi-Micro Cells). The continuous-wave
laser beam (λ = 975 nm) of a single-mode fiber-coupled laser diode was collimated (Thor-
labs, TC12APC-980, Ottawa, Canada) and focused in the cuvette by a +100-mm focal length
lens. From the measured beam waist radius (w = 30.6 µm), we estimated the average
excitation intensity in the beam waist to be 8.1 kW/cm2 at the maximum laser power.
The emission of the sample was collected by a 10 × 0.25 numerical aperture objective
and focused on an avalanche photodiode (Excelitas, SPCM-AQRH-16, Wiesbaden, ger-
many). The scattered laser light was removed by a low-pass filter (Chroma, ET750-SP-2P,
Olching, Germany) and a band-pass filter (Semrock, FF01-550/88-25, Vanves, France). For
the steady state measurements (emitted intensity as a function of the excitation intensity),
the output power of the laser was adjusted electronically (by varying the current intensity
sent to the diode) and optically by using neutral density filters (Thorlabs) and then system-
atically measured by a power meter (Newport, 1917R and Ophir, 30A-BB-18). The signal of
the photodiode was collected by a computer equipped with a multifunction input/output
card (National Instruments multifunction board, PCIe 6711). During the time-resolved
measurements, the laser output was modulated electronically at 32 Hz with a 12% duty
cycle square waveform by a multifunction input/output card (National Instruments mul-
tifunction board, PCIe 6361). The single-photon events detected by the photodiode and
the synchronization signal of the laser were recorded by a time-correlated single-photon
counting board (Becker & Hickl, SPC-830, Berlin, Germany). SPCM 9.75 software (Becker &
Hickl) was used to both record the data and build the photon distribution over time. Exper-
imental luminescence decays were fitted by using the coupled differential rate equations
model discussed in the main text in Matlab 2017b.

3. Results and Discussions
3.1. Spectroscopic Properties of the YbL Complex

The YbL complex was prepared as previously described [28]. Considering the peculiar
hydration change observed for the parent Gd complex [31], the spectroscopic properties
of the Yb analog were first studied as a function of the pD in the D2O solution. Figure 1
shows the evolution of the emission spectra and of the excited state lifetime of the YbL
complex at various pD values. When moving from acidic conditions to basic conditions,
an increase in the Yb intensity and lifetime was observed. This phenomenon can be
explained by a change in the hydration state of the complex as a function of the acidity of
the medium. At pD values below six, the complex contained two water molecules in the
first coordination sphere, which was completed by the coordination of the heptadentate
ligand, forming the [(YbL)(H2O)2] species. Above a pD of six, deprotonation of one of the
phosphonate functions resulted in the hydrogen bridging of two phosphonate functions
with a concomitant overall contraction of the ligand around the Ln atom, resulting in the
repulsion of one of the two water molecules and the formation of the [(YbL)(H2O)] species.
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Due to the strong quenching effect of water [16,17], the displacement of one water molecule
led to a large increase in the luminescence intensity and lifetime. In addition to the main
transition observed at 975 nm at a low pD, a hypsochromic shift of the main band toward
970 nm was observed, as well as new bands appearing at ca. 1000 nm and 1040 nm when
increasing the pD, together with a shoulder on the high energy tail at ca. 960 nm. While
the former bands were ascribed to the 2F5/2 → 2F7/2 transitions of Yb with MJ splitting of
the ground and excited states [32], the latter was ascribed to hot bands of Yb, as evidenced
by the variable temperature measurements (see below) [33].
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3.2. Determination of the Yb-Centered Quantum Yield

In order to obtain more insights into the photophysical properties of the Yb com-
plex, the intrinsic luminescence quantum yield of YbL in D2O was determined using
Equation (1). τobs corresponds to the observed excited state lifetime measured upon exci-
tation of the ligand, and it amounts to 16.7 µs. τrad is the radiative lifetime of Yb in the
complex, which could be determined using the modified Einstein Equation (2) [34–36].
In this second equation, NA is Avogadro’s number, c is the speed of light in a vacuum
(in cm s−1), υ̃ is the barycenter of the transition in cm−1, n is the refractive index of the
medium (nD2O = 1.33), ε(υ̃) is the absorption spectrum of the transition (in M−1 cm−1) and
gl and gu are related to the degeneracies of the ground and excited states, respectively, and
are equal to 2J + 1, where J = 7/2 for gl and J = 5/2 for gu. A value of 1.13 ms was calculated
for τrad, which is generally between 0.5 and 1.3 ms in the solution [21,37]. Thus, an intrinsic
Yb quantum yield of 1.5% could be calculated at a pD of 7.5:

ΦYb
Yb =

krad
kobs

=
τobs
τrad

(1)

1
τrad

= 2303 ∗ 8πcn2∼υ
2

NA
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gu

∫
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υ
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d
∼
υ
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∼
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The efficiency of sensitization ηsens was also determined using Equation (3) [36]. φYb
L

is the luminescent quantum yield upon ligand excitation, and it was equal to 1.2% [28].
Compared with other complexes [38,39], the value of 0.8 obtained for ηsens in YbL was
higher and pointed to a remarkable transfer from the ligand triplet state to the Yb center:

ηsens =
φYb

L

φYb
Yb

(3)
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3.3. Low Temperature Measurements

To further characterize this complex, the Yb emission was monitored as a function
of the temperature by excitation of the ligand to observe the evolution of the Yb signal in
the 77–300 K range in D2O containing 12% glycerol. As shown in Figure 2, three sharp
bands were observed, which could be ascribed to the 2F5/2 → 2F7/2 transitions of Yb with
MJ splitting of the ground and excited states [32]. The lifetime was also measured (Table 1),
showing a gradual decrease upon heating. The higher lifetime values at a low temperature
can be explained by the minimization of the non-radiative transitions due to the solvent.
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Figure 2. Dependence of the Yb emission intensity as a function of the temperature for a 5.3 × 10−5 M
solution of YbL in D2O containing 12% glycerol (λexc = 270 nm).

Table 1. Ytterbium lifetime in the range of 77–300 K (YbL = 5.3 × 10−5, D2O with 12% glycerol).

T (◦K) 77 100 125 150 175 200 250 273 300

τYb (µs) 14.4 14.1 14.7 14.7 14.5 13.3 11.0 11.1 9.9

3.4. Upconversion Experiments

In order to check the possibility of a Yb-to-Tb UC process, titration was performed in
D2O in which the Yb complex was titrated by additions of aliquots of a solution of TbCl3
salts. The emission spectrum was recorded in the visible domain upon excitation at 980 nm
in the 2F5/2← 2F7/2 absorption band of Yb (Figure 3). After the first additions, characteristic
Tb-centered emission bands emerged at 485, 545, 580 and 620 nm, corresponding to the
5D4 → 7FJ (with J = 6, 5, 4 and 3, respectively) transitions of Tb. The signal then increased up
to 1.5 eq and then formed a plateau right after. To confirm the UC process, a Log I vs. Log P
plot was performed by monitoring the 5D4 → 7F5 transition as a function of the power
of the laser at 980 nm (Figure 4) for a mixture containing a 1.4 equivalent of Tb added
to the Yb complex. A value close to 2 (1.92 found) indicated the involvement of two
photons in the process and confirmed the UC phenomenon. The UC quantum yield was
determined using a protocol described in the literature [6,11]. A value of 2.6 × 10−8 was
obtained (P = 10.8 W cm−2), which was of the same order of magnitude as those reported
for similar compounds [11].
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the evolution of the UC intensity (black dots) and evolution of the concentrations of the species
formed during the titration ([(YbL)2Tb], blue; [(YbL)2Tb2], red and [(YbL)2Tb3] in green).
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Figure 4. Log–log plot of the Tb-emitted intensity of the 5D4 → 7F5 transition at 545 nm as a function
of the excitation intensity of the 980 nm laser for a 5.3 × 10−5 M solution of YbL in D2O containing a
1.4 equivalent of TbCl3·6H2O.

The data of the titration were analyzed by a nonlinear least-squares method using
Specfit software [40,41]. The analysis pointed to the formation of three emitting species,
which were ascribed to [(YbL)2Tbx] complexes with x = 1, 2 or 3. Their calculated distri-
butions are presented in the inset of Figure 3. These compositions were consistent with
previous spectroscopy titrations of the ligand by the addition of Ln(III) (Ln = Eu or Tb) [28].
All three species were able to generate UC, but the relative efficiencies, which were ob-
tained thanks to the fitting procedure, pointed to the UC efficiencies of [(YbL)2Tb2] and
[(YbL)2Tb3] being 1.84 and 5.6 times higher than that of [(YbL)2Tb], respectively.

To get deeper insight into the UC mechanism, time-resolved measurements were
performed with a modulated 975-nm laser diode generating excitation pulses with a square
temporal profile. As shown in Figure 5, 3–4 milliseconds were required for the rise of
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the UC emission before the steady state was reached. This result indicated a slow kinetic
step in the UC process which was related to the energy transfer occurring throughout the
cooperative energy transfer UC process [27] (Scheme 2). The fit of the rising and decaying
signals was made by using the model described by Nonat et al. [11] by updating the fitting
data with the initial parameters (τYb and εYb). In this model, the presence of two species
was assumed as a result of the presence of the different complexes in the solution. In our
case, the addition of the 1.4 equivalent of Tb per Yb complex pointed to the presence of
[(YbL)2Tb2] and [(YbL)2Tb3] as the dominant species in the solution. The upconversion
lifetimes (i.e., the Tb luminescence lifetimes upon excitation at 980 nm) were determined
to be 0.38 ± 0.04 ms and 1.86 ± 0.2 ms. The shorter Tb lifetime may be attributed to a
Tb cation more exposed to the solvent molecules (with a higher hydration number). The
associated UC rate constants kUC were determined to be of 755 and 355 s−1. In comparison
with the literature, the UC rate constants obtained were somehow smaller but consistent
with those reported in the literature [11,27,42].
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TbCl3·6H2O. The red line corresponds to the fit of the data (see text).
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The energy transfer efficiency of the UC process ηUC was then calculated using
Equation (4) [11]:

ηUC =
∑ kUC

∑ kUC + kr + knr
(4)

where kUC represents the UC energy transfer rate. The radiative rate constant kr of the
Yb complex is the inverse of τr (1.13 ms) and is equal to 885 s−1. The non-radiative rate
constant knr is obtained from the intrinsic quantum yield ΦYb

Yb by

ΦYb
Yb =

kr

kr + knr
(5)

Using ΦYb
Yb = 1.5%, a value of 58,100 s−1 was obtained for knr. The energy transfer

efficiency of the UC process ηUC was then calculated to be equal to 1.8%.

4. Conclusions

Our in-depth study of the YbL complex in D2O showed a dependence on the hydration
state as a function of the pD, resulting in the presence of two deuterated water molecules
in the first coordination sphere of the complex at low pD values and a single one around
the physiological pD. The dehydration was accompanied by a large increase in both the
luminescence intensity and the excited state lifetime of the Yb emission. An increase in
Yb emission was also observed at low temperatures as a result of decreased non-radiative
transitions due to water molecules.

When the Yb complex was titrated by Tb3+ salts in a D2O solution, heteropolynuclear
[(YbL)2Tbx] (x = 1–3) complexes formed, and direct excitation of the Yb atom at 980 nm in
the heteronuclear complexes resulted in emission of the Tb atoms in the visible domain
as a result of a cooperative sensitization UC mechanism. The energy transfer efficiency of
the UC process was determined to be 1.8%, while the overall UC quantum yield value of
2.6 × 10−8 in D2O was obtained for an excitation power density of 10.8 W cm−2. Although
weak, this value was in line with previous results in the literature [11], despite the presence
of water molecules in the first coordination sphere of Yb. The improvement of the protection
of Yb toward water de-excitation paves the way to even better UC devices for luminescence
bioanalytical applications.
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