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Swimming of a ludion in a stratified sea

 they are not the cause of the horizontal swimming. This does not however, exclude possible interactions between the ludion and internal gravity waves and possible hydrodynamic quantum analogies to be explored in the future.

Introduction

Inspired by the bouncing drops of Couder [START_REF] Couder | Walking and orbiting droplets[END_REF], we propose here the first to our knowledge experimental results on the dynamics of a Cartesian diver forced to oscillate in a layer of stably stratified fluid. In addition to studying this original dynamical system, the final goal of our investigations will be to explore new possibilities of hydrodynamical quantum analogs since, as we will see, our system associates a free moving particle and its own wave field.

The Cartesian diver (also called "ludion" in French) is a small object denser than the water in which it is immersed but which encloses a pocket of air. By decreasing the pressure in the water, this air pocket expands, increasing the buoyancy force that opposes the weight of the diver that rises accordingly. In contrast, if the pressure increases, the air compresses, causing the diver to sink. The first reference to such an object dates from 1648, when Raffaello Magiotti published his work on the resistance of water to compression [START_REF] Magiotti | Renitenza certissima dell'acqua alla compressione[END_REF]. In this historical publication, we can find the very first drawings of a ludion credited to Magiotti. The notes that Magiotti had accumulated were destroyed Figure 1. a) Picture of the container with the stratified layer of salt water and the ludion at its stable height. b) Drawing of the container with its filling tube and piston cylinder. Because of the density stratification, the ludion floats at an equilibrium position z = 0 around which it is forced to oscillate vertically when the pressure is periodically changed by moving the piston. c) Sketch of the piston inside the pipe that illustrates the pressure oscillating terms coming from the hydrostatic pressure and from the Laplace capillary pressure induced by the curved air water interface in the 1 mm gap between the piston and the pipe. In the sketch, the piston is descending. The reverse situation occurs when the piston is rising, with an interface curved inversely. d) Close-up of the ludion with the air-water interface.

during the great plague that raged in Rome in 1656 and of which he died. Later, in the first half of the 18th century, John Theophilus Desaguliers, a French-born philosopher, became a curator of the experiments of the Royal Society in London. Desaguliers wrote a book in experimental philosophy, in two volumes (1734 and 1744) in which he presented the ludion [START_REF] Desaguliers | A Course of Experimental Philosophy[END_REF]). We will keep in the following both appellations: the ludion and the diver. However, it is not known how the names "Cartesian diver" or "Cartesian devil" appeared and were popularized [START_REF] Ackerson | Cartesian diver plus[END_REF] and references herein). Unlike the case of a homogeneous fluid, in which the diver has an unstable equilibrium position except in a small window of perturbation amplitudes [START_REF] Güémez | The cartesian diver and the fold catastrophe[END_REF], if the diver is immersed in a stably stratified fluid it possesses a linearly stable equilibrium position as can be observed on figure 1. If the pressure is varied sinusoidally, the diver oscillates vertically around its stable position and behaves as an oscillator which can experience a resonance when the driving frequency is tuned. The first part of this study (section 2) is devoted to the presenta-tion of the experimental set-up and to the measuring devices. Then the analysis of the ludion dynamics in the neighbourhood of this resonance is presented in section 3. These calculations describe the main characteristics of the ludion dynamics including its added mass and friction coefficients. A series of experiments whose results are described in section 4 are devoted to the determination of the resonance which is compared to the analytic prediction. If the forcing frequency is lower than the Brunt-Väisälä frequency, the diver generates internal gravity waves that we characterize by Particle Image Velocimetry (PIV) [START_REF] Thielicke | PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in matlab[END_REF] and present in section 5. At high amplitude response to the periodic forcing, i.e. when the forcing frequency is close to the resonant frequency, the ludion dynamics shows a bifurcation to free horizontal locomotion in a similar way as the vertically flapping wing of [START_REF] Vandenberghe | Symmetry breaking leads to forward flapping flight[END_REF] or more recently as the oscillating spheroids simulated by [START_REF] Deng | Horizontal locomotion of a vertically flapping oblate spheroid[END_REF]. As soon as the oscillation amplitude is sufficiently large, this horizontal swimming appears regardless of the value of the forcing frequency, i.e. with or without the presence of internal gravity waves. The description of the bifurcation to this free dynamics is given in section 6. Finally, in the last section, some perspectives of this work for future research will be given. In particular, we mention the possible interaction of the ludion trajectories with its own internal gravity waves, which is reminiscent of the drops that bounce on the free surface of a vibrating liquid [START_REF] Couder | Walking and orbiting droplets[END_REF][START_REF] Perrard | Self-organization into quantized eigenstates of a classical wave-driven particle[END_REF][START_REF] Bush | Pilot-wave hydrodynamics[END_REF].

Experimental set-up and methods

All of the following experimental developments were realized in the Physics Department of UNAM in Mexico. For our experiments, a transparent acrylic rectangular container with dimensions 33 cm x 33 cm x 6 cm is filled with salt water (kitchen salt -NaCl) using the double bucket technique [START_REF] Oster | Density gradients[END_REF] to create the desired density stratification. The smallest dimension of this chamber is in the horizontal plane. Then a small hollow glass cylinder (the diver or ludion) (35 mm high for a diameter D= 12.5 mm) is introduced with care in order to preserve the density stratification. This diver (including its air pocket) was prepared to have a mean density intermediate between the minimum and maximum density of the fluid and thus after its dropping, it slowly sinks in the stratified layer and finds an equilibrium position. The fluid density vertical profile is measured by an Anton Paar MD 35 densimeter with an accuracy of 10 -4 . An example of such density stratifications is presented in figure 14 of the appendix. It is worth mentioning that as can be seen on the figure, the two density profiles measured before and after the experiments collapse nicely on a single curve proving that no mixing occurs in the experimental chamber. The stratification is characterized by its Brunt-Väisälä frequency N = -g ρ0 dρ dz where z is the vertical coordinate, g the gravity and ρ the density of the fluid at level z. ρ 0 is the density of the fluid at position z = 0, chosen at the ludion equilibrium position. As shown in figure 14, a linear fit of the density measurements leads to the determination of N with an accuracy of a few percents. Before filling the container with stratified salt water, some micron size PIV particles were added to the fluid. A 5 cm thick homogeneous dense layer of salt water is kept at the bottom of the container and a 10 cm thick layer of fresh water at the top. With the exception of a 50 mm inner diameter open pipe at its top wall (see figure 1-a) and -b), the container is completely closed so that its pressure can be controlled by moving a piston (having a diameter of 48 mm) inside this pipe which in consequence modifies the vertical level of the free surface of water inside the pipe and thus the pressure in the container. At the outlet of the pipe, we inserted a porous material to prevent any flow at this outlet. The absence of flow entering the working area has been verified by PIV. In all of the experiments, the piston is translated sinusoidally in its cylinder at a chosen frequency by a precise stepper motor (NEMA 34 from Kollmorgen with 25000 steps per rotation), causing a rise or a descent of the water surface inside the piston cylinder. This change in pressure is a priori measured by the amplitude of the free surface oscillations which is in all the cases presented here equal to 1.4 cm. In fact, this pressure oscillation needs to be supplemented by a surface tension contribution that is added when comparing the theory to the experimental data. A sketch of the piston inside the pipe is presented in figure 1-c) and illustrates the presence of a Laplace capillary pressure term due to the narrow gap between the piston and the cylinder. The size of this small gap is of the order of 1 mm and the surface tension pressure is calculated to be of the same magnitude of the hydrostatic pressure. Thus, the total change in pressure is in fact twice the 140 P a estimated first. To complement the description of the experimental set-up, a close-up of the ludion is also presented in figure 1-d). The forcing frequency is varied from 0.3 rad/s to 2.5 rad/s and each run is recorded for several minutes by a video camera (JVC Everio GZ-RY980) at a rate of 60 images per second. The video images have a resolution of 1920 × 1080 pixels. The position of the ludion is then calculated by a specially designed tracking software based on the brightness of the image as the ludion reflects the laser light more intensively that the fluid background. Thus the accuracy of the spatial detection is 1 pixel that represents in our case 0.1 mm. Note that the constant vertical gradient of the optical index of refraction due to the density gradient induces no image distortion of the ludion and thus no effect on the determination of its displacement. Moreover, if we estimate this effect for the determination by PIV of the fluid velocity in the gravity wave field (see [START_REF] Sutherland | Visualization and measurement of internal waves by "synthetic schlieren". part 1. vertically oscillating cylinder[END_REF]), the deviation of the optical rays through the layer is calculated to be less than 0.2 pixel, an effect that has been neglected in the following. Several dozen of stratifications were realized and the ludion dynamics investigated. However, only some of them have been exhaustively analysed. In the following, we will focus on two of them (N = 1.6rad/s and N = 2.3rad/s) having more than 20 different experimental forcing frequency values each and permitting to describe accurately on the same data sets the ludion resonance and its bifurcation to swimming.

The forced damped oscillator model

From the theoretical point of view, it is straightforward to write down the equation of motion of the ludion from the momentum conservation equation. In fact, this question has already been addressed in the past in the context of oceanography. [START_REF] Larsen | Oscillations of a neutrally buoyant sphere in a stratified fluid[END_REF] was the first to study the damped oscillations of a neutrally buoyant sphere in a stratified layer. He explicitly calculated the loss of power due to the radiation of internal gravity waves, neglecting the viscous friction. His results show that this radiative damping stops any small oscillations in few periods of oscillations. However, Larsen's calculation was criticized by [START_REF] Winant | The descent of neutrally buoyant floats[END_REF] who reconsidered the problem at the light of experiments performed by [START_REF] Cairns | On the dynamics of neutrally buoyant capsules; an experimental drop in lake tahoe[END_REF] on the descent of neutrally buoyant floats in the ocean. [START_REF] Winant | The descent of neutrally buoyant floats[END_REF] considered for his analysis, a quadratic drag law as opposed to the linear law used by [START_REF] Larsen | Oscillations of a neutrally buoyant sphere in a stratified fluid[END_REF] that takes into account the gravity wave radiation. The conclusion drawn by [START_REF] Winant | The descent of neutrally buoyant floats[END_REF] and observed in the experiments, was that at small displacements of the sphere, the damping term is due to internal gravity waves as predicted by [START_REF] Larsen | Oscillations of a neutrally buoyant sphere in a stratified fluid[END_REF] whereas one needs to incorporate in the equation of motion the quadratic drag term at large displacements as encountered in float descents from the sea surface.

In our experiments, the glass cylinder itself (of density ρ g ) occupies a volume V g . Its mass is thus M = V g ρ g . The buoyancy force that opposes its weight is F B = gρ(z)(V a + V g ), where ρ(z) is the density of the fluid surrounding the ludion at position z and V a the volume of the air bubble entrapped in the cylinder. Therefore, at equilibrium, supposed at z = 0 and fluid density ρ 0 , M = ρ 0 (V a + V g ). When changing the pressure in the container of stratified salt water by oscillating the piston up and down in its pipe, the initial volume of the air bubble V a0 varies following a process that we suppose to be adiabatic:

V a (t, z) = V a0 P0 P (t,z) 1/γ
where γ is the ratio of specific heats of air. This hypothesis can be justified by the fact that the period of oscillation of the ludion will be around 3 seconds, i.e. smaller than the the heat diffusion time in the air bubble of the order of 5 seconds. Let us also remark that supposing an isothermal process will only imply to take the value of γ equal to 1.

In the following, to obtain the equation of motion for the ludion that moves along the vertical axis of a distance ξ versus the equilibrium position z = 0, we will suppose that the change in volume of the air bubble trapped inside the diver affects only the buoyancy force. This is equivalent to the classical Boussinesq simplification of buoyant flows. The equilibrium pressure P 0 is modified by the addition of a small perturbation dp = ρ 0 g dh cos(ωt) created by moving up and down the piston in the pipe, inducing respectively a decrease or an increase of the water level in the pipe of a quantity dh. The motion of the ludion is then described by the following equation:

M d 2 ξ dt 2 = -M g + F B + F A + F H -µ dξ dt (3.1)
F A is a hydrodynamical force that originates from the motion of water entrained by the displacement of the ludion. This force is classically written as:

F A = -Real C A M d 2 ξ dt 2 (3.2)
with C A a complex added mass coefficient:

C A = C Ar +iC Ai .
When the motion is periodic with an angular frequency ω, F A can be split into two terms [START_REF] Ho | Added mass of a spheroid oscillating in a linearly stratified fluid[END_REF][START_REF] Ermanyuk | Force on a body in a continuously stratified fluid. part 2. sphere[END_REF][START_REF] Voisin | Added mass effects on internal wave generation[END_REF]) that represent the added mass and the added friction to be incorporated in the equation of motion. Both coefficients C Ar and C Ai depend on the frequency ω.

F A = -C Ar M d 2 ξ dt 2 + ω C Ai M dξ dt (3.3)
Therefore, the first term of F A will be added to the inertial term of equation 3.3 and the second term will be a new dissipative term that complements the friction term µ dξ dt supposed to be for simplification of Stokes type because of the relative low value of the Reynolds number of the flows as we will see later. We should note however that the study of the motions of bodies and of their drag in stratified layers has been the subject of an intense research (see the review by [START_REF] Magnaudet | Particles, drops, and bubbles moving across sharp interfaces and stratified layers[END_REF]) and it is today admitted that a supplementary drag (versus the drag exerted by the homogeneous fluid) originates in the buoyancy of the fluid entrained with the body [START_REF] Yick | Enhanced drag of a sphere settling in a stratified fluid at small reynolds numbers[END_REF]. Let us mention for instance, the calculation of [START_REF] Motygin | Wave motions in a two layer fluid driven by small oscillations of a cylinder intersecting the interface[END_REF] of the added mass and friction terms for an oscillating cylinder that radiates planar interfacial waves in a two-layer fluid system.

F H is the history force, or the Basset force that appears when the motion is accelerated [START_REF] Basset | Treatise of Hydrodynamics[END_REF][START_REF] Boussinesq | Sur la résistance qu'oppose un fluide indéfini au repos sans pesanteur au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables[END_REF]. Very often, this term is omitted in the determination of the drag forces applied to moving bodies in particular when the fluid is stratified, the reason being that the motions are generally considered quasi-static [START_REF] Yick | Enhanced drag of a sphere settling in a stratified fluid at small reynolds numbers[END_REF]). This memory force has been however explicitly calculated by [START_REF] Candelier | The history force on a small particle in a linearly stratified fluid[END_REF] in the case of a sphere and in the limit of small Reynolds and Peclet numbers. This memory term also has two origins: the first is due to the retroaction of the emitted waves on the motion of the ludion via the pressure field as it was calculated by [START_REF] Larsen | Oscillations of a neutrally buoyant sphere in a stratified fluid[END_REF] in the time-domain or by [START_REF] Ho | Added mass of a spheroid oscillating in a linearly stratified fluid[END_REF] in the frequency-domain (for more explanations, see appendix A of the article of [START_REF] Ermanyuk | Force on a body in a continuously stratified fluid. part 1. circular cylinder[END_REF]), and the second that represents the usual viscous diffusion of vorticity in the boundary layers surrounding the body. This term is classically written as:

F H = -Real η t -∞ d 2 ξ/dτ 2 √ t -τ dτ (3.4)
where η is a complex coefficient η = η r + iη i .

In the same way we did for F A , F H can be split into two terms thanks to the periodicity of the motion that starts at t = 0:

F H = -η r t 0 d 2 ξ/dτ 2 √ t -τ dτ -ω η i t 0 dξ/dτ √ t -τ dτ (3.5)
With an appropriate change of variables, the analytical expression of F H shows the appearance of the transcendental Fresnel integrals. However, if we study the behaviour of the ludion at large time, i.e. after tens of periods of oscillation, we can consider the limits of the integrals as time goes to ∞ which are finite and known quantities and F H simplifies to:

F H = - π 2ω η r + ω η i ω 2 d 2 ξ dt 2 + η r -ω η i ω dξ dt (3.6)
Therefore, as can be seen on equation 3.6, this memory or history force F H can be incorporated in the already existing added mass and added friction terms. This result was also used by [START_REF] Abad | Effects of the history force on a noscillating rigid sphere at low reynolds number[END_REF] in the case of an oscillating sphere in an homogeneous fluid. In order not to overload the notation, we will keep the coefficients C Ar and C Ai knowing that they come from both the added mass force and the history force. Anyway, our experiments will not be able to desentangle the different origins of these terms.

To calculate F B , we will expand its expression at first order in ξ and dp taking into account the variation of density along the vertical axis and the change in volume due to the change in pressure:

ρ(z) = ρ 0 + ξ dρ dz 0 (3.7) V a (z, t) = V a0 + ξ ∂V a ∂z 0 + dp ∂V a ∂p 0 (3.8)
At first order, we obtain the expression of the buoyancy force:

F B = g ρ 0 (V a0 + V g ) + ξ g (V a0 + V g ) dρ dz 0 + g ρ 0 ∂V a ∂z 0 + g ρ 0 dp ∂V a ∂p 0 (3.9)
The first term in the expression of F B will disappear as it is opposed to the weight of the ludion, and the equation of motion at first order reads:

(1 + C Ar ) d 2 ξ dt 2 = ξ g ρ 0 dρ dz 0 + g V a0 + V g ∂V a ∂z 0 + g dp V a0 + V g ∂V a ∂p 0 -( µ M + ω C Ai ) dξ dt (3.10)
The first term on the right hand side of equation 3.10 is simply equal to -N 2 ξ. The derivative of the volume in the second term can be rewritten as a function of the pressure, using the fact that the process is supposed to be adiabatic:

∂V a ∂z 0 = -V a0 γP 0 ∂P a ∂z 0 (3.11)
that finally leads to (when using the hydrostatic pressure expression):

g V a0 + V g ∂V a ∂z 0 = δ g 2 ρ 0 γP 0 = ω 2 0 (3.12)
with δ = 1 -ρ0 ρg and ω 2 0 = δ g 2 ρ0 γ P0 , P 0 being the reference pressure of the air pocket entrapped inside the ludion when this one is at its equilibrium position. The forcing term of equation 3.10 is the third term on the right hand side and is equal to -δ ω 2 0 dh cos(ωt) if the free surface position is periodically changed by an amplitude dh by the piston oscillations.

Finally, the equation of motion of the ludion along the vertical coordinate takes the form at first order of a damped forced harmonic oscillator :

(1 + C Ar ) d 2 ξ dt 2 = ξ(-N 2 + ω 2 0 ) -ω 2 0 dh cos(ωt) -( µ M + ω C Ai ) dξ dt (3.13)
The eigenfrequency is proportional to N 2 -ω 2 0 . We see that in a non stratified fluid, i.e. when N = 0, we recover the fact that the equilibrium position of the ludion in a pure fluid is unstable at first order of the expansion. In fact, [START_REF] Güémez | The cartesian diver and the fold catastrophe[END_REF] have shown that at second order, the non linear terms induce a saddle-node bifurcation in a limited domain of height and pressure perturbations (a fold catastrophe to take the terminology used by [START_REF] Güémez | The cartesian diver and the fold catastrophe[END_REF]). This effect will be ignored in the following as the density stratification (if large enough) of the fluid makes our system stable at first order. It is then traditional to rename the damping coefficient by 2 λ :

2 λ = µ M + ω C Ai 1 + C Ar (3.14)

Experimental observation of the resonance

As already explained, the ludion is then carefully immersed in the stratified fluid layer that is illuminated with a green laser sheet in order to record by a video camera (60 frames per second) the ludion oscillations as well as the PIV particle motions in its neighborhood.

Figure 2 presents three examples of the dynamics of the ludion. We will be first interested by the amplitude of the vertical motions along the Z axis which are illustrated in the left column of the figure. The horizontal motions (along the X axis) will be studied later in section 6. As can be observed, the amplitude A of the vertical excursions is a function of the forcing frequency as expected by the resonant response of a damped forced oscillator. Figure 3 shows this behaviour. We observe also that the maximum amplitude is reached for a frequency slightly smaller than N as expected from the model.

In order to get a comparison between our ludion oscillator model and the experimental data, we need to compute the different coefficients of equation 3.13. First, the mass of the ludion is determined by measuring its weight, but it appears that this mass needs to be completed by the mass of the water entrapped under the air pocket and transported with the glass cylinder. From the picture of the ludion we can guess that air and water are approximatively of equal volume inside the diver. Note that this mass of water is considered to be constant as the relative change of volume of the air pocket is calculated to be of the order of 2 10 -3 inducing a displacement of the air-water interface non detectable on the video images. This will lead to an effective glass density (mean density of the non compressible part constituted by glass and entrapped water in the cylinder) of 1445 kg/m 3 i.e. smaller than the real glass density. The second term to be estimated is the real pressure changes experienced by the ludion. This was first estimated by the rise and fall of the water level in the piston pipe. But as already mentioned earlier, the changes in the water level need to be completed by a surface tension term equal to 140 P a. Therefore we will use a value of 2.8 cm that will lead to a good comparison with the experimental data. Then we can measure the added mass and friction coefficients by the study of the ludion damped oscillations after the forcing is stopped. This technique was already used by [START_REF] Ermanyuk | The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid[END_REF] and we will use directly the analytical relations derived in their work. The first step to evaluate C Ar and C Ai , is to determine the damping coefficient λ from a best fit of the temporal evolutions. Figure 4 shows two examples of the damped oscillations of the ludion when the forcing is stopped. Note that contrary to the power-law decaying oscillations observed by [START_REF] Biró | Power-law decaying oscillations of neutrally buoyant spheres in continuously stratified fluid[END_REF], an exponential damping law fits properly our experimental data at least on the rather limited number of periods of oscillation that we measured.

We performed this analysis for the whole range of forcing frequencies. Figure 5 shows the evolution of λ as a function of ω. In particular, we recover the typical shape of the damping coefficient evolution with its modification by the emission of gravity waves as it is calculated theoretically (see [START_REF] Ho | Added mass of a spheroid oscillating in a linearly stratified fluid[END_REF]; [START_REF] Ermanyuk | Force on a body in a continuously stratified fluid. part 2. sphere[END_REF]; [START_REF] Voisin | Added mass effects on internal wave generation[END_REF]). We clearly see that when ω is larger than N , the damping is only due to the viscous effects with a typical frequency estimated around µ M = 0.16s -1 that permits to recover ω C Ai = 0 when ω is larger than N . From this experimental data, and using the formulas given by [START_REF] Ermanyuk | The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid[END_REF], we can explicitly write the added mass and friction coefficients:

C Ar = N 2 -ω 2 0 ω 2 + λ 2 -1 (4.1) ω C Ai = 2 λ N 2 -ω 2 0 ω 2 + λ 2 - µ M (4.2)
The experimental values of C Ar and ω C Ai are computed and plotted on figure 5. It is remarkable that these experimental data points possess the same trends obtained by the theoretical calculations of Lai & Lee (1981); [START_REF] Ermanyuk | Force on a body in a continuously stratified fluid. part 2. sphere[END_REF]; [START_REF] Voisin | Added mass effects on internal wave generation[END_REF] for spheres and horizontal cylinders. Therefore, we were able to interpolate them by modifying the analytical expressions obtained by [START_REF] Voisin | Added mass effects on internal wave generation[END_REF] for a vertically oscillating sphere (See Appendix). In particular, we observe that C Ar possesses a finite asymtotic value when ω increases above N , in accordance with the classical observations made on spheres or cylinders for which C Ar approaches the values 1/2 and 1 respectively for spheres and cylinders oscillating in non stratified fluids which is equivalent to fast oscillations in a stratified fluid layer. We also recover the known property that added mass and friction coefficients are zero when ω = N reflecting the resonance proximity where the fluid moves in phase with the ludion, thus exerting no additional force on it. On the contrary, when ω tends to zero, the added mass coefficient seems to diverge: fortunately the acceleration of the ludion decreases too, making the added inertial term finite. These interpolating curves are then used to recalculate the friction coefficient λ (called "analytical λ" in figure 5) to be used in the oscillator model in order to reproduce the resonant response of the ludion. Note that this operation is not an adjustment procedure to obtain a best fit of the resonant curve but rather an interpolation method to give to the theoretical model some realistic input functions describing properly the underlying physic. The fact that our measures of λ, C Ar and ω C Ai are close to the theoretically expected trends is a proof of the consistency of our analysis. Then, using these analytical expressions and values of λ, C Ar and ω C Ai , the prediction of the model (red line)i.e. the analytical expression of the harmonic oscillator resonance -gives without any free coefficients, a satisfactory prediction of the experimental resonance curve as can be observed in figure 3. In particular the slight deviation of the resonant frequency versus the Brunt-Väisälä frequency N is visible. Note also the presence of a "shoulder" on the left wing of the resonant curve which is reminiscent of the increase of the power loss by the radiation of internal gravity waves.

A gravity wave generator

When the forcing frequency is less than the Brunt-Väisälä frequency, internal waves accompany the diver in its oscillations. Seeding the salt water with micron sized particles, it is possible to measure the fluid motions around the ludion by PIV [START_REF] Thielicke | PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in matlab[END_REF]. Figure 6-a) shows in color the vertical velocity field in a vertical plane. A typical Saint Andrew's cross is clearly visible for a forcing frequency ω equal to 1.38 rad/s some 30 periods after the oscillations started. However, as shown on Figure 6-b), multi-reflections of the gravity waves on the lateral walls and on the density gradients at the bottom and top homogeneous layer frontiers make the wave pattern to look like a chessboard pattern reminiscent of an underlying eigenmode. In the present case, the eigenfrequency of mode (n x = 4, n y = 1, n z = 2) where n j is the number of wavelengths in direction j, is also equal to 1.38 rad/s. Note however that this correspondence is obviously frequency dependant and does not occur in general. Moreover, we did not find at this point of our experimental work any correlation between the amplitude of the vertical oscillations as described in section 4 and the possible excitation of a global eigenmode in the container.

As it is well known, the arms of the Saint Andrew's cross are wave conical iso-phase surfaces. These cones can be observed in horizontal planes as presented by the horizontal divergence of the velocity field in Figure 7 measured 1 cm above the highest position of the ludion.

The diver can also swim

As visible on the right column plots of Figure 2, in some of the experiments we have observed that the ludion moves or swims along the permitted horizontal axis X. We recall that in the other direction, the ludion is confined between two vertical walls distant of 6 cm. To describe these motions, we have detected the maximum displacements of the ludion along the horizontal axis during the recording time of the run. Then we calculated the corresponding mean velocity represented by the slope of the red lines in Figure 2. We have analysed two sets of experiments with different density stratifications leading respectively to N = 1.6 rad/s and N = 2.3 rad/s. As already noted in the introduction, this kind of horizontal locomotion associated with vertically oscillating body has already been observed in particular for the vertically flapping wing of [START_REF] Vandenberghe | Symmetry breaking leads to forward flapping flight[END_REF] or more recently for the oscillating spheroids simulated by [START_REF] Deng | Horizontal locomotion of a vertically flapping oblate spheroid[END_REF] where it is demonstrated that this horizontal propulsion is directly linked to a symmetry breaking in the vortical flow pattern generated at each oscillation. These last studies follow in fact the seminal experimental work of [START_REF] Tatsuno | A visual study of the flow around an oscillating circular cylinder at low keuleganâĂŞcarpenter numbers and low stokes numbers[END_REF] on the flow generated by horizontal oscillations of a cylinder in a homogeneous fluid. [START_REF] Tatsuno | A visual study of the flow around an oscillating circular cylinder at low keuleganâĂŞcarpenter numbers and low stokes numbers[END_REF] produced a classification of the different flows they observed as function of two non dimension parameters : the Keulegan-Carpenter number KC = 2πA/D and the Stokes number β = ωD 2 /2πν where ν is the kinematic viscosity of water. In particular, these authors determined a transition between symmetric and asymmetric flows (called Regime D in their article). It is this critical threshold that [START_REF] Deng | Horizontal locomotion of a vertically flapping oblate spheroid[END_REF] as well as other authors refer to as the transition towards propulsion. Therefore, and even if the ludion is a small vertical cylinder (and not a sphere) and even if all of these previously cited experiments and calculations were realized in non stratified fluids, we will also refer to the Tatsuno & Bearman's curve in the following. Note moreover that in the case of stratified fluids, the oscillating body is always attached in a way or another to an oscillating device. This is the case for instance for the experiments of [START_REF] Lin | Flows generated by the periodic horizontal oscillations of a sphere in a linearly stratified fluid[END_REF] where a classification diagram is also presented in the (KC, β) plane for a Froude number larger than 0.20 and compared to the results of [START_REF] Tatsuno | A visual study of the flow around an oscillating circular cylinder at low keuleganâĂŞcarpenter numbers and low stokes numbers[END_REF]. In particular, a critical threshold is found above which internal gravity waves are emitted by the periodic oscillations of a sphere. The generation of internal gravity waves by oscillating bodies in stratified fluids (see for instance [START_REF] Flynn | Internal wave excitation by a vertically oscillating sphere[END_REF]) is of course a long standing history starting from the description of the "herring bone" pattern by [START_REF] Mowbray | The internal wave pattern produced by a sphere moving vertically in a density stratified liquid[END_REF] and [START_REF] Stevenson | Axisymmetric internal waves generated by a travelling oscillating body[END_REF]. More recently, [START_REF] Chashechkin | Regular and singular flow components for stimulated and free oscillations of a sphere in continuously stratified liquid[END_REF] have also documented the flow patterns (cumulative jets and wave beams) around oscillating spheres and their singular features using a Schlieren technique.

Using the non dimension parameters KC and β as defined above, we can plot in figure 8 the resonant curves for both Brunt-Väisälä frequencies N = 1.6 rad/s and N = 2.3 rad/s. In both cases, the Froude number defined as F r = ωA/N D stays between 0.05 and 1. On this figure, the data points are colored following the intensity of the horizontal velocity experienced by the ludion. As can be observed, the more intense vertical displacements lead to larger horizontal velocities. We have also represented by dotted lines the estimated thresholds for the apparition of horizontal excursions. By defining a flapping Reynolds number Re A = β KC/2 π we can describe the transition between oscillations with and without horizontal motions. We observe on figure 8 that these thresholds are lower than the one detected by [START_REF] Tatsuno | A visual study of the flow around an oscillating circular cylinder at low keuleganâĂŞcarpenter numbers and low stokes numbers[END_REF]. Therefore we can conclude that density stratified flows associated to vertical oscillations of a body seem to be more sensitive to flow symmetry breaking and in consequence to horizontal propulsion.

To compare with the numerical observations of [START_REF] Deng | Horizontal locomotion of a vertically flapping oblate spheroid[END_REF], we have calculated for each experiment the locomotion Reynolds number Re U = V H D/ν. As described in figure 9, in both cases we observe pitchfork supercritical bifurcations with the amplitude of the horizontal velocity V H (proportional to the locomotion Reynolds number) varying as the square root of the distance to thresholds. Using the accuracy of our spatial detection (±0.1 mm) at a rate of 60 Hz, we estimate the maximum relative error on these Reynolds numbers of the order of 10 -2 i.e. less than a unit at the considered Reynolds numbers and thus not plotted on figure 9. A particular feature of our study is the observation for both sets of experiments of two bifurcated branches having slightly different threshold values. These branches seem not to be correlated with the left or right wing of the resonant curves and might correspond to different flow symmetries as described in [START_REF] Deng | Coherent structures in interacting vortex rings[END_REF]. Note also that if the critical flapping Reynolds numbers that we observe have similar values that those for the oscillating spheroids of [START_REF] Deng | Horizontal locomotion of a vertically flapping oblate spheroid[END_REF], the locomotion Reynolds numbers are several order of magnitudes lower in our case, revealing the poor efficiency of our swimmer due to the high drag of the ludion vertical cylindrical shape moving along an horizontal trajectory -a feature that was obviously not optimized in our study.

To characterize the interaction between the ludion and the internal gravity waves it emits, we calculate the space-time diagram along an horizontal line located just above the diver using the PIV vorticity fields in the plane (X, Z). as expected the source of the waves. On the figure, we have also reported in black the trajectory of the ludion as determined by the tracking study presented in section 4. Except from limited local defects which are due to spurious laser reflections on the glass cylinder and thus a poor position determination by our tracking algorithm for these particular times, the correspondence between the detected trajectory and the trace of the ludion on the PIV map is good. As is expected from a wave emitter moving at a given velocity, the frequency of the gravity waves should be shifted by a Doppler shift given by the product k x V H where k x is the wavenumber of the gravity waves in the X direction and V H the horizontal instantaneous locomotion velocity of the ludion. On the same figure, we have also drawn four lines on each side of the trajectory. Between the solid red and blue lines the ludion swims towards the left whereas between the dash red and blue line it swims towards the right. The velocity V H between the solid lines is equal to approximately to 0.8 mm/s. Note that this instantaneous velocity is larger than the mean velocity (equal to 0.23 mm/s) calculated on a longer period of time and reported of figure 8. The wavelength of the gravity waves can also be estimated on figure 10 around 40 mm . This value corresponds to a wavenumber equal to k x = 0.157 rad/mm. These values give then a Doppler shift equal to 0.12 rad/s.

To check this prediction, we calculate the Fourier spectra of the vorticity along the four lines of figure 10. They are represented on figure 11 keeping for each spectrum the color and line styles identical to those of figure 10. As can be observed, the angular frequency of the waves emitted ahead of the trajectory (and crossing the red solid line and the blue dash line) are slightly larger than the frequency of the waves emitted behind (and crossing the red dash line and the blue solid line). As can be checked on figure 11, the separation between the maxima of the spectra is equal to 0.23 rad/s, leading to a shift of ±0.12 rad/s between the wave angular frequencies and the forcing frequency ω validating as expected the presence of a Doppler shift. Note moreover that associated to this frequency shift there is also a slight increase of the wave amplitude behind the ludion. We have at this stage of the study no interpretation of this effect.

Conclusions and perspectives

This work is the first step of the study of the swimming of a vertically oscillating but free -in the horizontal plane-neutrally buoyant body (the ludion) in a density stratified fluid. All of the presented experiments were performed in a rectangular but narrow container in order to constraint the horizontal displacements in a single direction. We have been able to measure and model the resonance of the ludion taking into account the added mass and added friction terms in the equation of motion. We have also shown that the Basset (or memory) term can be incorporated in the added coefficients because the motion is harmonic and supposed to last for a sufficiently long time. In particular, we have measured the damping rate of the ludion oscillations during transients. As expected, the radiation of internal gravity waves increases the energy loss and thus the damping term. This emission of these gravity waves for forcing frequencies less than the Brunt-Väisälä frequency has been characterized by PIV measurements. Then a bifurcation towards locomotion (the swimming) is observed above a critical flapping Reynolds number measured at values lower than what was expected from previous works performed in homogeneous fluids. Finally we showed that this swimming of the ludion is accompanied by a Doppler shift of the wave frequency.

Our experiments on the swimming of the ludion in a stratified fluid are of course reminiscent of the drops that bounce on the free surface of a vibrating liquid [START_REF] Couder | Walking and orbiting droplets[END_REF][START_REF] Bush | Pilot-wave hydrodynamics[END_REF]). Some differences between the bouncing drops and our system should however be pointed. First, the ludion experiences a forced resonance and in consequence its oscillation is not the result of a parametric instability as it is the case for the drops bouncing on a subcritical wave pattern of the Faraday instability. However this difference should not be so crucial as the surface waves are in fact also locally forced by the bouncing droplets in the same way the ludion forces the internal gravity waves. Moreover, in our system (and also in the case of the capillary surfers of [START_REF] Ho | Added mass of a spheroid oscillating in a linearly stratified fluid[END_REF]), the waves are continuously emitted and in interaction with the body which is not the case for the drops as they leave the fluid surface. However, it appears that in our case the threshold to locomotion is not caused by the waves as we observed horizontal displacements even when the forcing frequency is higher than the Brunt-Väisälä frequency. This is different from the walkers which start to move because of the presence of their waves. Another important difference with Couder walkers, is the propagating nature of the internal gravity waves emitted by the ludion whereas the Faraday surface waves induced by the bouncing drops are stationary in a frame linked to the drops. Even if not the cause of swimming, the gravity waves should interact with the ludion through the surface integral of the pressure they exert on it. One of the results of the waves effect on the ludion motions is the presence of some added mass and added friction terms evidenced in the equation of motion and that we characterized through our experimental measurements. As it is the case for the bouncing drops, history or memory terms exist but we were not able to evaluate them as we can not desentangle them from the added mass and friction terms. We have moreover highlighted the presence of a Doppler shift on the gravity wave frequency as they are emitted by a moving source. This will cause a phase shifts between the waves emitted by the front and by the rear sides of the diver, inducing pressure differentials and horizontal forces that at their turn should modify the ludion motions. The feed back loop, between the swimming of the ludion and the wave pattern it emits is certainly quite subtle.

To open perspectives on these works, we present in figure 12 two trajectories of the ludion in a horizontal plane of a larger container and using the same experimental procedure as that described above for the experiments in the narrow container. In these two examples we could record from the top, long temporal series of swimming. In both cases, the ludion moves along trajectories confined on one half of the container. In the first case, the trajectory winds up along elliptic loops whereas in the second case the ludion describes loops close to trefoils [START_REF] Perrard | Self-organization into quantized eigenstates of a classical wave-driven particle[END_REF]) before slowing down, attracted to a motionless position. In fact, it happens quite often during these first experiments in an extended geometry, that the ludion was attracted by some fixed locations and stayed there motionless. These locations may correspond to suitable spatial positions inside an underlying eigenmode, proving in a sense that the internal gravity waves can indeed interact with the ludion and may drive some of its behaviors. This is the case for instance in the experiments presented on figure 13-a) where after the introduction of three divers in the stratified layer, they were all of them attracted to three places that as can be observed on figure 13-b), seem to correspond to trapped locations in an underlying eigenmode that possesses an eigenfrequency very close to the forcing frequency. This particle trapping is similar to what happens in the walker system where the bouncing drops are attracted and pinned in a periodic wave pattern [START_REF] Sungar | Hydrodynamic analog of particle trapping with the talbot effect[END_REF]. Note that an important constraint to respect for this pinning is the identical phase difference between each ludion and the mode itself as the three divers are locked at the same phase difference to the forced pressure oscillations. As a consequence, there are quantized separations (i.e. integer numbers of half wave lengths in both directions) between the ludions that freely move to the locked positions in the horizontal plane. This is of course reminiscent of the recent experiments by [START_REF] Ramananarivo | Flow interactions lead to orderly formations of flapping wings in forward flight[END_REF] on a pair of flapping wings in tandem.

In this case, the flying wings are observed to move naturally to some positions separated by an integer number of wave lengths of the periodic vortex pattern of the wing wake. The same situation is also encountered with capillary surfers [START_REF] Ho | Added mass of a spheroid oscillating in a linearly stratified fluid[END_REF] where two self-propelled particles floating on a vibrating bath can travel together, separated by an integer number of capillary wave lengths. This remarkable observation also opens up new perspectives on the possible use of our experimental set-up to study the crystalline arrangements of groups of self-propelled bodies (the so-called active matter) as often encountered in flocks of birds and schools of fish. Therefore, and even if at this stage of our study it is not yet possible to precisely quantify the effect of the internal gravity waves on the motions and trajectories of the ludion, our observations encourage us to continue the search for possible hydrodynamics analogies with undulatory mechanics, in the quest for a new fluid mechanics example of a wave-particle duality as already beautifully observed and explored by [START_REF] Couder | Walking and orbiting droplets[END_REF], [START_REF] Perrard | Self-organization into quantized eigenstates of a classical wave-driven particle[END_REF] and [START_REF] Bush | Pilot-wave hydrodynamics[END_REF] for the Couder walkers.

Appendix

8.1. Density profile measurements Figure 14 presents an example of the density profile measurements performed by translating the inlet of our Anton Paar MD 35 densimeter along the vertical direction inside the experimental chamber. The density is measured every 2 cm and as can be seen on the figure, the profiles before and after the experimentations collapse nicely on a single curve permitting to determine by least squares interpolation and outside the top and bottom layers, the constant Brunt-Väisälä frequency of the fluid layer. This plot shows that no mixing occurs by the density measurements themselves, nor by the introduction of the ludion nor even by performing several dozens of runs to describe the resonance curve as presented in section 4. [START_REF] Ermanyuk | The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid[END_REF][START_REF] Ermanyuk | Force on a body in a continuously stratified fluid. part 2. sphere[END_REF][START_REF] Voisin | Added mass effects on internal wave generation[END_REF], the general trends of these variations are largely recovered. In these articles, it is shown in particular that C Ar and ω C Ai depend on the aspect ratio of the considered oscillating body. As the ludion is a finite size cylinder that oscillates vertically along its axis -a case never considered theoretically -we will modify the analytical expressions derived for the sphere by [START_REF] Voisin | Added mass effects on internal wave generation[END_REF] in order to interpolate our experimental data points. These functions will then be used to calculate the "analytical λ" of figure 5 necessary to compute the resonant curve using the classical analytical expression of the harmonic oscillator resonance . The complex added mass coefficient C z for a sphere oscillating vertically at frequency ω in a stratified fluid of Brunt-Väisälä frequency N is [START_REF] Voisin | Added mass effects on internal wave generation[END_REF]:

Interpolation of the measured complex added mass coefficients

C z (ω/N ) = 1 - N 2 ω 2 B(ω/N ) 1 -B(ω/N ) (8.1)
with

B(ω/N ) = (ω 2 /N 2 ) 1 -1 - N 2 ω 2 1/2
arcsin(N/ω) (8.2)

We will then defined heuristically the real and imaginary parts of C A by:

• if ω ≤ N , C Ar = 10 Real(C z ) 1.4 and C Ai = 1.44 Imag(C z ) 0.6 +0.22 (ω/N ) -2.4 -0.16,

• if ω ≥ N , C Ar = 3.8 Real(C z ) 2.1 and C Ai = Imag(C z ),

where the different coefficients have been determined by best fit trial and error method. These analytical expressions are then used in the ludion oscillator model.

Figure 2 .

 2 Figure 2. Tracking of the ludion by video image analysis for three forcing frequencies with a Brunt-Väisälä frequency N = 1.6 rad/s. left: vertical oscillations vs. time. right: horizontal excursion vs. time. Red stars are the minimum and the maximum horizontal coordinates of the ludion. The red solid line between the stars is used to calculate the mean horizontal velocity between the stars.

Figure 3 .

 3 Figure3. Resonant curve of the ludion with a Brunt-Väisälä frequency N = 1.6 rad/s. The data points (squares) are the vertical oscillation amplitudes A collected from the experimental trajectories. The red solid line is the result of the analytical expression of the resonance of the oscillator that takes into account the added mass and added friction coefficients interpolated from the transient measurements whereas the forcing free surface elevation dh is chosen equal to 2.8 cm and the effective glass density as defined in the text, measured to be equal to 1445 kg/m 3 . There are no free coefficients in the theoretical model. There are no error bar drawn on this plot as the accuracy of the oscillation amplitude measurement is better than the size of the symbols.

Figure 4 .

 4 Figure 4. Transient vertical oscillations of the ludion when the forcing is stopped (N = 1.6 rad/s). A linear fit of the logarithm of ξ/ξmax, leads to the measurement of the damping coefficient. a) λ = 0.27 s -1 when frequency ω = 1.38 rad/s. b) λ = 0.16 s -1 when frequency ω = 2 rad/s.

Figure 5 .

 5 Figure5. Evolution of the damping mass and friction coefficients with the reduced forcing frequency ω/N . First the typical time scale of the damping is extracted from the exponential fits of the transients (black squares). Then using the formula explicitly derived by[START_REF] Ermanyuk | The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid[END_REF], we can calculate the real part CAr and the imaginary part ω CAi of the complex added mass. The solid curves are then heuristic interpolations calculated from modified analytical formula given by[START_REF] Voisin | Added mass effects on internal wave generation[END_REF] for an oscillating sphere (see Appendix).

Figure 7 .

 7 Figure 7. The horizontal divergence of the velocity field in a horizontal plane 1 cm above the ludion (forcing frequency ω = 1.26rad/s and N = 1.6rad/s). The target pattern is centered on the ludion horizontal position.

Figure 8 .

 8 Figure 8. The resonant curves in the (β, KC) plane for both N = 1.6 rad/s (red vertical line) and N = 2.3 rad/s (blue vertical line). The colors of the data points are functions of the horizontal velocity as given in the colorbar. Dashed lines refer to instability thresholds given by constant values of flapping Reynolds numbers determined on the bifurcation diagrams of figure 9.

Figure 9 .

 9 Figure 9. Pitchfork bifurcations towards horizontal motions of the ludion. We observe the different branches that bifurcate at different threshold values. Here the horizontal velocities have been converted into locomotion Reynolds numbers. For each experiment, two bifurcated branches are observed (solid symbols).

  Figure 10 presents this diagram where the propagation of the waves are visible on each side of the trajectory which is

Figure 10 .

 10 Figure 10. Space-time diagram of the PIV vorticity field together with the ludion trajectory as calculated by our tracking software (black line). Four lines are drawn ahead or behind the ludion, along which the Fourier spectra of the vorticity fields are calculated and presented on figure 11.

Figure 11 .

 11 Figure 11. Fourier spectra of the vorticity field along the lines drawn on figure 10. As can be observed, the angular frequency of the gravity waves ahead of the ludion is higher that of the waves behind as expected by a Doppler shift. In this example, ω = 1.50 rad/s and N = 1.60 rad/s.

Figure 12 .

 12 Figure 12. Two examples of trajectories of the ludion in a larger container for N = 1.29 rad/s. On the left, nearly 2 hours recording with ω = 1.23 rad/s and on the right, 3/4 hour recording at ω = 1.20 rad/s.

Figure 13 .

 13 Figure 13. An example where three ludions were introduced in the experimental set-up. a) A top view of the container where after a transient, the three ludions were trapped, motionless in the horizontal plane. These oscillate vertically in phase as they are forced with the pressure oscillation with ω = 2.136 rad/s and N = 2.19 rad/s. b) superimposed on the 3 ludions positions, the eigenmode at a frequency equal to 2.135 rad/s with half a wavelength in the vertical direction, three in the Y direction and six in the X direction.

Figure 14 .

 14 Figure 14. Density profile measurements before the introduction of the ludion in the stratified water layer and after the experimentation for N = 1.60 rad/s. The collapse within a few percents of the two data sets shows that no mixing occurs in the container.

Figure 5

 5 Figure5presents the evolution with the forcing frequency of the experimental values of C Ar and ω C Ai that are calculated from the experimental values of ω and λ. As can be checked on the theoretical calculations of Lai & Lee (1981),[START_REF] Ermanyuk | The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid[END_REF][START_REF] Ermanyuk | Force on a body in a continuously stratified fluid. part 2. sphere[END_REF][START_REF] Voisin | Added mass effects on internal wave generation[END_REF], the general trends of these variations are largely recovered. In these articles, it is shown in particular that C Ar and ω C Ai depend on the aspect ratio of the considered oscillating body. As the ludion is a finite size cylinder that oscillates vertically along its axis -a case never considered theoretically -we will modify the
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