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Abstract. We study the asymptotic behaviour of a stationnary shot noise random field. We use
the notion of association to prove the asymptotic normality of the moments and a multidimensional
version for the correlation functions. The variance of the moment estimates is decreased by use
of the isotropy property of the field. These results will be applied to the estimation of the model
parameters in the case of a Gaussian kernel. The asymptotic normality is proved and a simulation
study is carried out.

1. Introduction and notation

A spatial random field X is a family of random variables {X(t), t ∈ T} indexed by T = R2 or T =

Z2. Many models exist and have for instance applications in spatial modeling and image analysis
(e.g. Bernardino and Duval, 2019). Most interesting random fields are smooth and therefore have
a dependency structure and one may only adress their asymptotic normality by using for instance
mixing properties, as can be found in Rosenblatt (1956) and Bolthausen (1982). Unfortunately,
although the usual mixing definition are very useful for the processes, there are only few examples
of a random field satisfying this mixing requirement. To obtain asymptotic results one may also use
the concept of association introduced by Esary et al. (1967) for which Newman (1980, 1984), Burton
et al. (1986) and more recently Bulinski and Shashkin (2007) proved asymptotic results. The logical
connections between mixing and association have been established for some point process (Poinas
et al., 2019) but it is more complicated for random fields. Several classical processes and models
are associated (Last et al., 2019) and in particular Bulinski and Shashkin (2007) demonstrated the
association for some shot noise random fields.
A shot noise is an elegant random field built from a point process and a kernel function; more
precisely in this paper we will consider the following model

∀x ∈ T, X(x) =
∑

(xi,mi)∈φX

mig(x− xi), (1.1)
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where g : R2 → R is a deterministic function that we will call kernel and φX is a marked Poisson
point process on R2 × R+ with intensity measure λdxF (dm) i.e. the xi are the points of an homo-
geneous Poisson point process with intensity λ in R2 and the mi are the marks with common law
F , independent of the Poisson point process.
Initially introduced in 1909 by Campbell (1909a,b), the one dimensional shot noise process was
much studied in the 20th century to model physical phenomena with a first important theoretical
paper by Rice (1944). More recently, the process has also been used in network theory (Baccelli,
2009) and finance (Schmidt, 2017). Generalization to higher dimensions is more recent with the
important work of Heinrich and Schmidt (1985) proving asymptotic normality for high intensity
and which can be seen as a link between the Gaussian setting and the discrete models of stochastic
geometry such as the Boolean one (Chiu et al., 2013). We can also mention the recent works of
Biermé and Desolneux (2020) and Lachièze-Rey (2016) studying geometric statistics of excursion
sets. Shot noise random fields have also found their interest in Cox point processes (seeMø ller,
2003) to generalize cluster point processes model such as Neyman-scott processes.

By Campbell’s theorem, the random sum (1.1) exists if and only if∫
R2×R+

min(|mg(x)|, 1)λdxF (dm) <∞

which holds in particular if the distribution of the mark M given by F has a finite expectation
and g is integrable. More precisely, in the rest of the paper we will consider the following set of
assumptions (H)

(1) the mark M is positive almost surely and has finite moments of order 4 i.e. E[M4] <∞;
(2) the kernel g is a non negative, continuous, bounded and Lebesgue integrable function on R2.

The paper is organized as follows. In Section 2 we propose an asymptotic study on the empirical
moments : the first moment (the mean), the second moment and the second central moment (the
variance). More specifically, we are interested in the mixed moment of second order, the central
mixed moment of second order (the covariance) and the correlation. Due to the stationarity property,
all those moments are functions on T . Our main aim is to prove the strong consistency and the
asymptotic normality of those statistics. In Section 3, we deal with the case of isotropic kernels for
which the mixed moments are given by functions on R+. By taking this property into account, we
can construct a refinement of the estimates. Finally in the last part, these results are applied to
estimate the parameters considering the case where the kernel g is Gaussian with variance σ2. A
specific application of this Gaussian kernel is the fundamental solution of the heat equation with
initial data a point process, yielding a parameter σ depending on the time t. Moreover, in the
Gaussian kernel case most of the computations can be performed in an explicit way.

2. Asymptotic behaviour of moments

Although moments do not fully characterise the law of a random variable, they provide a great
amount of information. When considering a random field, it is not always easy to calculate the
raw moments and it is even less easy to calculate the mixed moments. Under (H) and thanks to
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Campbell theorem, since g is bounded and integrable, we can calculate all the moments up to order
4 of a shot noise random field using kernel dependent integrals. Let us start with a few notations

I1 =

∫
R2

g(c)dc (2.1)

I2(x) =

∫
R2

g(c− x)g(c)dc (2.2)

I3(x, y) =

∫
R2

g(c− x)g(c− y)g(c)dc (2.3)

I4(x, y, s) =

∫
R2

g(c− x)g(c− y)g(c− s)g(c)dc (2.4)

It is usually assumed without loss of generality that the kernel g has a total mass 1 (i.e. I1 = 1)
and recall that the 4 integrals are non negative since g is non negative.
By stationarity, for k = 1, . . . , 4, the moments E[X(x)k] do not depend on the position x ∈ T and
the mixed moments of second order E[X(x)X(y)] depend only on x − y for all x, y ∈ T . The first
moments of a shot noise random fied are given in the following lemma which proof is postponed to
the appendix.

Lemma 2.1. Let x ∈ T and mk = E[Mk] for k ∈ {1, 2} where M is a random variable with law F.
Then under (H) and I1 = 1 we have :

• M1 := E[X(0)] = λm1;
• h(x) := E[X(x)X(0)] = λm2I2(x) + λ2m2

1;
• f(x) := Cov[X(x), X(0)] = λm2I2(x) .

Note in particular that M2 := E[X(0)2] = h(0) and V := Var[X(0)] = f(0).
The limiting behaviour of a random field (or a sequence) of dependent random variables is of great
interest. Roughly speaking, if the dependence between distant variables is small enough, then we
will have our limit theorems such as the strong law of large numbers or the central limit theorem.
The different notions of mixing (Rosenblatt, 1956; Bolthausen, 1982) are often used to characterise
this weak dependance. However mixing properties are (in general) inaccessible for a shot noise
process. The framework that will enable us to achieve results is that of the association that has
been initially introduced by Esary et al. (1967) and for which a reference book is the one of Bulinski
and Shashkin (2007). For n ∈ N, we noteM(n) the class of bounded coordinate-wise nondecreasing
Borel function f : Rn 7→ R and M = ∪n∈NM(n). We note also XI = {X(xi), xi ∈ I} for I ⊂ T

with finite cardinal |I|.

Definition 2.2 (Associated random field). A random field X = {X(x), x ∈ T} is associated if for
all finite set I ⊂ T and φ, ψ ∈M(|I|), one has

Cov(φ(XI), ψ(XI)) ≥ 0.

Note in particular that the covariance of 2 variables of the random field are necessarily non
negative.

The starting point of this work is the following result due to Bulinski and Shashkin (2007). The
proof is based on the property of independence of the underlying Poisson process.
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Theorem 2.3. Let X be a shot noise random field defined in (1.1) such that M ≥ 0 a.s. and that
g is a mesurable non negative function. Assume that X(x) <∞ a.s. for any x ∈ R2.
Then X is an associated random field.

Let us point out that Theorem 2.3 is true under our assumptions (H). The finiteness condition
is fulfilled because as M and g are integrable, our random field is also integrable.

The asymptotic results for associated random fields were mainly proved by Newman (1980, 1984)
but we will rely on recent book of Bulinski and Shashkin (2007). The viewing window is equivalent
to the sample of a traditional statistical study and asymptotic results for random field are based on
the notion of growing set in the Van Hove sense (the VH-growing). For more details on this topic
we refer to Bulinski and Shashkin (2007) but for example one may observe the random field on an
image Un = [0, n− 1]2 ⊂ Z2 with n2 pixels.

We actually need to ascertain a multidimensional version of the association for two main reasons.
The first one is that we want to study the correlation and the second one is that we are interested
in results on several moments.

Definition 2.4 (Associated vector valued random field). A random field X = {X(x), x ∈ T} with
values in Rk is associated if for all finite subset I ⊂ T and φ, ψ ∈M(k|I|), one has

Cov(φ(XI), ψ(XI)) ≥ 0.

The following result is given by Bulinski and Shashkin (2007) under the (BL,θ)-dependance
assumption 1 but in the case where the random field is associated, square-integrable and check the
finite susceptibility condition of Newman (1980) then it satisfies the (BL,θ)-dependance.

Theorem 2.5 (Corollary 1.13. of Bulinski and Shashkin (2007)). Let X = {X(x), x ∈ Z2} be an
associated, strictly stationary, centered, square-integrable vector valued random field taking values
in Rk. Let us note

Clm =
∑
z∈Z2

Cov(X l(0), Xm(z)), l,m = 1, . . . , k;

all the cross-covariance and suppose that all series are convergent. Then, for any sequence of
regularly growing sets Un ⊂ Z2, as n→∞ one has

|Un|−1/2
∑
x∈Un

X(x)
d−→ N (0, C)

Here C is the k × k matrix with coefficients Clm.

This is the conditions of convergence which are known as the finite susceptibility condition of
Newman (1980).
Note that if X is an associated random field, then for all constant c ∈ R the random field X + c is
still associated and therefore the centering condition is not a problem. Indeed, for all f ∈M(n) the
function f(· + c) is still a bounded and coordinate-wise nondecreasing function. It is now possible
to state our first theorem for which we introduce the following notation and recall that all these

1See Bulinski and Shashkin (2007) for the definition of (BL, θ)-dependance.
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series have positive terms.
Notation: for all w1, w2 ∈ Z2 we write

S(2) :=
∑
z∈Z2

I2(z) (2.5)

S(2, 2, w1) :=
∑
z∈Z2

I2(z)I2(z + w1) (2.6)

S(3, w1) :=
∑
z∈Z2

I3(z, w1) (2.7)

S(4, w1, w2) :=
∑
z∈Z2

I4(z, z + w1, w2) (2.8)

Theorem 2.6. Let X be a shot noise random field satisfying hypotheses (H) and the finite suscep-
tibility condition

∑
z∈Z2

I2(z) <∞. Let also (Un)n be a sequence of regularly growing sets,

M̂1 =
1

|Un|
∑
x∈Un

X(x) (2.9)

be the estimators of the first moments and, for w ∈ Z2, let

ĥn(w) =
1

|Un 	 w|
∑

x∈Un	w
X(x)X(x+ w) (2.10)

be the estimators of mixed moment of second order, with Un 	 w = {x ∈ Un ; x+ w ∈ Un}.
Then M̂1 (resp. ĥn(w)) are unbiased and strongly consistent estimators of M1 (resp. h(w)).

Furthermore, for k > 0 and w1, . . . , wk ∈ Z2, noting w0 = 0, as n→∞ we have :√
|Un|

(
M̂1 −M1, ĥn(w0)− h(w0), ĥn(w1)− h(w1), . . . , ĥn(wk)− h(wk)

)
d−→ N (0,Σ1,h(w0,...,wk))

where for i, j = 1, . . . , k the coefficients ai,j of the matrix Σ1,h(w0,...,wk) are given by ;

• a1,1 = σ2
1 = λm2S(2),

• a1,i+2 = σ2
1,h(wi)

= m3λS(3, wi) + 2m2m1λ
2S(2),

• ai+2,j+2 = σ2
h(wi),h(wj)

= m4λS(4, wj , wi) + 2m3m1λ
2

(
S(3, wj) + S(3, wi)

)
+m2

2λ
2

(
S(2, 2, wi + wj) + S(2, 2, wi − wj)

)
+ 4m2m

2
1λ

3S(2).

Proof : Let us start with the the computational but important lemma whose proof is postponed to
Appendix and based on a repeated use of Campbell’s theorem.

Lemma 2.7. Let x, y, s, t ∈ T . Under (H) the third and fourth mixed moments of a shot noise
random field X defined by (1.1) are respectively given by

E[X(x)X(y)X(s)] = m3λI3(x− s, y − s) +m2m1λ
2(I2(x− y) + I2(x− s) + I2(y − s)) +m3

1λ
3,

(2.11)
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and

Cov(X(x)X(y), X(s)X(t)) = m4λI4(x− t, y − t, s− t)

+m3m1λ
2

(
I3(x− s, y − s) + I3(x− t, y − t) + I3(x− t, s− t) + I3(y − t, s− t)

)
+m2

2λ
2

(
I2(x− s)I2(y − t) + I2(x− t)I2(y − s)

)
+m2m

2
1λ

3

(
I2(x− s) + I2(x− t) + I2(y − s) + I2(y − t)

)
. (2.12)

Now return to the proof of Theorem 3. By Lemma 2.1 the convergence of
∑
z∈Z2

I2(z) is equivalent

to the convergence of
∑
z∈Z2

Cov(X(0), X(z)). By Theorem 3.2.1 of Guyon (1995) we have the con-

sistency property of M̂1. Let w ∈ Z2, we will prove the other convergences with the same theorem
but this time we need the convergence of

∑
z∈Z2

Cov(X(0)X(w), X(z)X(z+w)). For this purpose, by

Lemma 2.7 we have to check the convergence of S(4, w, w), S(3, w), S(2, 2, 0) and S(2, 2, 2w). To
see the convergence of S(4, w, w), just write I4(z, z+w,w) ≤ ||g||2∞I2(z) whose series is convergent.
We have the same for the other series. The unbiased property is simply due to the stationarity of
our random field.

To have the asymptotic normality we need to apply Theorem 2.5 and the following lemma :

Lemma 2.8. Let k > 0, w0 = 0 and w1, . . . , wk ∈ T . We denote also by Zw the following vector
valued random field

Zw(x) = (X(x), X(x)X(x+ w0), X(x)X(x+ w1), . . . , X(x)X(x+ wk))

Then Zw is associated with values in Rk+2
+ .

Proof of Lemma 2.8: Let I = {x1, . . . , xn} ∈ T be a finite set and φ, ψ ∈ M((k + 2)n). For
i = 1, . . . , n we note Xxi:xi+wk = (X(xi), X(xi + w1), . . . , X(xi + wk)) with values in Rk+1

+ . Then,

Cov(φ(ZwI ), ψ(ZwI )) = Cov

(
φ(Zw(x1), . . . , Zw(xn)), ψ(Zw(x1), . . . , Zw(xn))

)
= Cov

(
φ ◦ tw(Xx1:x1+wk , . . . , Xxn:xn+wk), ψ ◦ tw(Xx1:x1+wk , . . . , Xxn:xn+wk)

)
≥ 0

with
t̃w : R(k+1)

+ −→ R(k+2)

y = (yi)1≤i≤k+1 7→ (y1, y
2
1, y2y1, . . . , yk+1y1)),

which we extend into a function on R(k+1) with t̃w(y) = 0 for all y /∈ R(k+1)
+ , and

tw : R(k+1)n −→ R(k+2)n

y = (y(i))1≤i≤n 7→ (t̃w(y(i)))1≤i≤n.



Statistical inference on stationary shot noise random fields 7

The last line comes from the assocation of the random field X since the functions φ ◦ tw, ψ ◦ tw ∈
M((k + 1)n). Indeed, as φ and ψ are bounded, it is clear that those functions are bounded.
Moreover, since tw is coordinate-wise nondecreasing on R(k+1)n

+ , these functions are also coordinate-
wise nondecreasing on R(k+1)n

+ , using the fact that X is positive almost surely this concludes the
proof. �

Since X has a moments of order 4, Zw has a moment of order 2 and Theorem 2.5 applies.
It remains to compute the asymptotic variances, where we mainly use Lemma 2.1. For the first one

σ2
1 =

∑
z∈Z2

Cov(X(0), X(z)) =
∑
z∈Z2

λm2I2(z) = λm2S(2),

where S(2) is defined by (2.5).
Moreover, for i, j = 1, . . . , k we have :

σ2
h(wi),h(wj)

=
∑
z∈Z2

Cov(X(0)X(wi), X(z)X(z + wj))

=
∑
z∈Z2

m4λI4(z, z + wj , wi)

+
∑
z∈Z2

m3m1λ
2

(
I3(z − wi, z + wj − wi) + I3(z, z + wj) + I3(z, wi) + I3(z + wj , wi)

)

+
∑
z∈Z2

m2
2λ

2

(
I2(z − wi)I2(z + wj) + I2(z)I2(z + wj − wi)

)

+
∑
z∈Z2

m2m
2
1λ

3

(
I2(z − wi) + I2(z) + I2(z + wj − wi) + I2(z + wj)

)

= m4λS(4, wj , wi) + 2m3m1λ
2

(
S(3, wj) + S(3, wi)

)
+m2

2λ
2

(
S(2, 2, wi + wj) + S(2, 2, wi − wj)

)
+ 4m2m

2
1λ

3S(2),

using (2.5) - (2.8).
By first noticing that for wi, wj ∈ Z2 we have I3(z − wi, z + wj − wi) = I3(−z + wi, wj) and
I3(z, z + wj) = I3(−z, wj), it follows that∑

z∈Z2

I3(−z + wi, wj) =
∑
z∈Z2

I3(−z, wj) = S(3, wj);∑
z∈Z2

I3(z, wi) =
∑
z∈Z2

I3(z + wj , wi) = S(3, wi);∑
z∈Z2

I2(z − wi)I2(z + wj) =
∑
z∈Z2

I2(z)I2(z + wi + wj) = S(2, 2, wi + wj);∑
z∈Z2

I2(z − wi) =
∑
z∈Z2

I2(z) =
∑
z∈Z2

I2(z + wj − wi) =
∑
z∈Z2

I2(z + wj) = S(2).

The computation for σ2
1,h(wi)

is similar. �

These estimators are important because they allow us to introduce other estimators such as
V̂ = ĥ(0)− M̂1

2
, the variance estimator, and f̂n(w) = ĥn(w)− M̂1

2
, the covariance estimator. All
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these estimators are biased because E[M̂1
2
] 6= M2

1 , due to the correlation between variables, but
asymptotically unbiased. Their strong consistency is straightforward since they are transformations
of strongly consistent estimators by a continuous function. We also have the following proposition.

Proposition 2.9. Let X be a shot noise random field satisfying hypotheses (H) and the finite
susceptibility condition

∑
z∈Z2

I2(z) < ∞. Let also (Un)n be a sequence of regularly growing sets,

w0 = 0 and w1, . . . , wk ∈ Z2 with k > 0. Then as n→∞ we have :

√
|Un|

(
M̂1 −M1, f̂n(w0)− f(w0), f̂n(w1)− f(w1), . . . , f̂n(wk)− f(wk)

)
d−→ N (0,Σ1,f(w0),...,f(wk))

where for i, j = 1, . . . , k the coefficients ai,j of the matrix Σ1,f(w0),...,f(wk) are given by :

• a1,i+2 = σ2
1,f(wi)

= m3λS(3, wi)

• ai+2,j+2 = σ2
f(wi),f(wj)

= m4λS(4, wi, wj) +m2
2λ

2

(
S(2, 2, wi − wj) + S(2, 2, wi + wj)

)
Proof : Let φ be the smooth function defined by

φ : Rk+2 −→ Rk+2

(x, z0, z1, . . . , zk) 7→ (x, z0 − x2, z1 − x2, . . . , zk − x2)

then

(M̂1, f̂n(w0), f̂n(w1), . . . , f̂n(wk)) = φ(M̂1, ĥn(w0), ĥn(w1), . . . , ĥ(wk))

and

(M1, f(w0), f(w1), . . . , f(wk)) = φ(M1, h(w0), h(w1), . . . , h(wk)).

The jacobian matrix of φ is

Dφ(x, z0, z1, . . . , zk) =



1 0 . . . . . . . . . 0

−2x 1 0 . . . . . . 0

−2x 0 1 0 . . .
...

...
...

. . . . . . . . .
...

−2x 0 . . . 0 1 0

−2x 0 . . . . . . 0 1


.

By the delta method (see Wasserman, 2010) and Theorem 2.6 we have

Σ1,f(w0),...,f(wk) = Dφ(M1, h(w0, . . . , wk))Σ1,h(w0),...,h(wk)Dφ(M1, h(w0), . . . , h(wk))
t
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which is too cumbersome to be detailed. Nevertheless, to know a sub-matrix such as Σf(wi),f(wj)

we only need the sub-matrix Σ1,h(wi),h(wj) that leads to :

Σf(wi),f(wj)

=

(
−2M1 1 0

−2M1 0 1

)
σ2

1 σ2
1,h(wi)

σ2
1,h(wj)

σ2
1,h(wi)

σ2
h(wi)

σ2
h(wi),h(wj)

σ2
1,h(wj)

σ2
h(wi),h(wj)

σ2
h(wj)


−2M1 −2M1

1 0

0 1



=

(
−2M1 1 0

−2M1 0 1

)
−2M1σ

2
1 + σ2

1,h(wi)
−2M1σ

2
1 + σ2

1,h(wj)

−2M1σ
2
1,h(wi)

+ σ2
h(wi)

−2M1σ
2
1,h(wi)

+ σ2
h(wi),h(wj)

−2M1σ
2
1,h(wj)

+ σ2
h(wi),h(wj)

−2M1σ
2
1,h(wj)

+ σ2
h(wj)


=

(
4M2

1σ
2
1 − 4M1σ

2
1,h(wi)

+ σ2
h(wi)

4M2
1σ

2
1 − 2M1(σ2

1,h(wi)
+ σ2

1,h(wj)
) + σ2

h(wi),h(wj)

4M2
1σ

2
1 − 2M1(σ2

1,h(wi)
+ σ2

1,h(wj)
) + σ2

h(wi),h(wj)
4M2

1σ
2
1 − 4M1σ

2
1,h(wj)

+ σ2
h(wj)

.

)
By developing the calculations we then have

σ2
f(wi),f(wj)

= 4M2
1σ

2
1 − 2M1(σ2

1,h(wi)
+ σ2

1,h(wj)
) + σ2

h(wi),h(wj)

= 4λ2m2
1m2λS(2)− 2λm1(m3λS(3, wi) + 2m2m1λ

2S(2) +m3λS(3, wj) + 2m2m1λ
2S(2))

+m4λS(4, wj , wi) + 2m3m1λ
2

(
S(3, wj) + S(3, wi)

)
+m2

2λ
2

(
S(2, 2, wi − wj) + S(2, 2, wi + wj)

)
+ 4m2m

2
1λ

3S(2)

= m4λS(4, wi, wj) +m2
2λ

2

(
S(2, 2, wi − wj) + S(2, 2, wi + wj)

)
.

�

Another very important function for this model is the correlation function, i.e. the covariance
function normalized by the variance, that we note ρ(w) = f(w)

f(0) . The important point is that
this function does not depend on the Poisson process (neither on λ, nor on the mark) because
ρ(w) = I2(w)

I2(0) by Lemma 2.1. It is therefore a very useful statistic to infer about the kernel itself.

This function is estimated by ρ̂(w) = f̂(w)

f̂(0)
which is strongly consistent since it is a transformation

of strongly consistent estimators by a continuous function and we also have the following central
limit theorem (CLT).

Proposition 2.10. Let X be a shot noise random field satisfying hypotheses (H) and the finite
susceptibility condition

∑
z∈Z2

I2(z) < ∞. Let also (Un)n be a sequence of regularly growing sets and

w0 = 0. Then as n→∞ we have :√
|Un|

(
M̂1 −M1, f̂n(w0)− f(w0), ρ̂n(w1)− ρ(w1), . . . , ρ̂n(wk)− ρ(wk)

)
d−→ N (0,Σ1,f(w0),ρ(w1),...,ρ(wk))

where for i, j = 1, . . . , k the coefficients ai,j of the matrix Σ1,f(w0),ρ(w1),...,ρ(wk) are given by :

• a1,i+2 = σ2
1,ρ(wi)

= m3
m2I2(0)(S(3, wi)− S(3, 0) I2(wi)

I2(0) )
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• a2,i+2 = σ2
f(w0),ρ(wi)

=
2m2λ

I2(0)
(S(2, 2, wi)− S(2, 2, 0)

I2(wi)

I2(0)
)

+
m4

m2I2(0)
(S(4, 0, wi)− S(4, 0, 0)

I2(wi)

I2(0)
)

• ai+2,j+2 = σ2
ρ(wi),ρ(wj)

= (m4λS(4, 0, 0) + 2m2
2λ

2S(2, 2, 0))
I2(wi)I2(wj)

λ2m2
2I2(0)4

− (m4λS(4, 0, wi) + 2m2
2λ

2S(2, 2, wi))
I2(wj)

λ2m2
2I2(0)3

− (m4λS(4, 0, wj) + 2m2
2λ

2S(2, 2, wj))
I2(wi)

λ2m2
2I2(0)3

+ (m4λS(4, wi, wj) +m2
2λ

2

(
S(2, 2, wi − wj) + S(2, 2, wi + wj)

)
)

1

λ2m2
2I2(0)2

Proof : We have the asymptotic normality by the same argument as for Proposition 2.9. To know
a sub-matrix Σ2

ρ(wi),ρ(wj)
we only need the sub-matrix

Σf(0),f(wi),f(wj) =


σ2
f(0) σ2

f(0),f(wi)
σ2
f(0),f(wj)

σ2
f(0),f(wi)

σ2
f(wi)

σ2
f(wi),f(wj)

σ2
f(0),f(wj)

σ2
f(wi),f(wj)

σ2
f(wj)

.


Let φ be the smooth function defined by

φ : R3 −→ R2

(x, y, z) 7→ (
y

x
,
z

x
)

then by the delta method we have

Σρ(w1),ρ(w2)

= Dφ(f(0), f(wi), f(wj))Σf(0),f(wi),f(wj)Dφ(f(0), f(wi), f(wj))
t

=

(−f(wi)
f(0)2

1
f(0) 0

−f(wj)
f(0)2

0 1
f(0)

)
σ2
f(0) σ2

f(0),f(wi)
σ2
f(0),f(wj)

σ2
f(0),f(wi)

σ2
f(wi)

σ2
f(wi),f(wj)

σ2
f(0),f(wj)

σ2
f(wi),f(wj)

σ2
f(wj)



−f(wi)
f(0)2

−f(wj)
f(0)2

1
f(0) 0

0 1
f(0)



=

(−f(wi)
f(0)2

1
f(0) 0

−f(wj)
f(0)2

0 1
f(0)

)
−f(wi)
f(0)2

σ2
f(0) + 1

f(0)σ
2
f(0),f(wi)

−f(wj)
f(0)2

σ2
f(0) + 1

f(0)σ
2
f(0),f(wj)

−f(wi)
f(0)2

σ2
f(0),f(wi)

+ 1
f(0)σ

2
f(wi)

−f(wj)
f(0)2

σ2
f(0),f(wi)

+ 1
f(0)σ

2
f(wi),f(wj)

−f(wi)
f(0)2

σ2
f(0),f(wj)

+ 1
f(0)σ

2
f(wi),f(wj)

−f(wj)
f(0)2

σ2
f(0),f(wj)

+ 1
f(0)σ

2
f(wj)


=

(
σ2
ρ(wi)

σ2
ρ(wi),ρ(wj)

σ2
ρ(wi),ρ(wj)

σ2
ρ(wj)

)
,
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with

σ2
ρ(wi),ρ(wj)

=
f(wi)f(wj)

f(0)4
σ2
f(0) −

f(wj)

f(0)3
σ2
f(0),f(wi)

− f(wi)

f(0)3
σ2
f(0),f(wj)

+
1

f(0)2
σ2
f(wi),f(wj)

= (m4λS(4, 0, 0) + 2m2
2λ

2S(2, 2, 0))
I2(wi)I2(wj)

λ2m2
2I2(0)4

− (m4λS(4, 0, wi) + 2m2
2λ

2S(2, 2, wi))
I2(wj)

λ2m2
2I2(0)3

− (m4λS(4, 0, wj) + 2m2
2λ

2S(2, 2, wj))
I2(wi)

λ2m2
2I2(0)3

+ (m4λS(4, wi, wj) +m2
2λ

2

(
S(2, 2, wi − wj) + S(2, 2, wi + wj)

)
)

1

λ2m2
2I2(0)2

.

�

3. Isotropic shot noise random field

In this section, we consider the case where the kernel g is isotropic. We immediately note that
this implies that the random field X is isotropic: let n ≥ 1, x1, . . . , xn ∈ T and R a rotation matrix,
then by Campbell’s theorem (see Kingman, 1967) we have for all (u1, . . . , un) ∈ Rn

E
[
eiu1X(x1)+...+iunX(xn)

]
= exp

(
−
∫
R2

∫
R+

[1− exp(i
n∑
l=1

ulmg(xl − c))]λdcdF (m)

)

= exp

(
−
∫
R2

∫
R+

[1− exp(i
n∑
l=1

ulmg(Rxl −Rc))]λdcdF (m)

)

= exp

(
−
∫
R2

∫
R+

[1− exp(i
n∑
l=1

ulmg(Rxl − c′))]λdc′dF (m)

)

= E
[
eiu1X(Rx1)+...+iunX(Rxn)

]
,

and therefore X ◦R fdd
= X.

Due to isotropy, the mixed moment function h is reduced to a function h̃ defined on R+ such that
for all w ∈ T we have h(w) = h̃(||w||), and as for the variance reduction techniques by antithetic
variables, the estimators of mixed moment can be improved taking into account isotropy. Concretely,
noting (e1, e2) the canonical basis of R2, for all r ∈ Z+ there are 2 vectors w1 = re1 and w2 = re2

in Z2 such that ||w1|| = ||w2|| = r so we use the isotropic estimator

̂̃hn(r) =
1

2
(ĥn(re1) + ĥn(re2)). (3.1)

We do not count −re1 and −re2 because even without isotropy h(−re1) = h(re1) and h(−re2) =

h(re2). Anyway since we have ĥn(re1) = ̂hn(−re1) and ĥn(re2) = ̂hn(−re2), it would not bring
anything more. Note that there are other values of r /∈ Z+ such that there are several w ∈ Z2

with norm r but for this article, estimating the second order moments on the integers is more than
enough. Let us also note that for some values of r there are more than 4 elements of Z2 with norm
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r but for this paper we did not go in that way because simplifications are only possible when there
are only two orthogonal vectors w ∈ Z2.

Proposition 3.1. Let X be a shot noise random field satisfying hypotheses (H) and the finite
susceptibility condition

∑
z∈Z2

I2(z) < ∞. Let also (Un)n be a sequence of regularly growing sets,

r0 = 0 k > 0 and r1, . . . , rk ∈ N. Then considering h̃n given by 3.1 the vector(
M̂1 −M1, ˜̂hn(r0)− h̃(r0), ˜̂hn(r1)− h̃(r1), . . . , ˜̂hn(rk)− h̃(rk)

)
is asymptotically normal with asymptotic variance given by :

• σ2
1,h̃(ri)

= σ2
1,h(rie1)

• σ2
h̃(ri),h̃(rj)

= 2m3m1λ
2

(
S(3, rje1) + S(3, rie1)

)
+ 4m2m

2
1λ

3S(2)

+
1

4

2∑
p=1

2∑
q=1

m4λS(4, rjeq, riep) +m2
2λ

2

(
S(2, 2,−riep, rjeq) + S(2, 2, riep, rjeq)

)
and the asymptotic variance of ̂̃hn(r) is smaller than that obtained in the case of directional estima-
tion in Theorem 2.6.

Proof : The asymptotic normality comes from the asymptotic normality of (M̂1, ĥn(0), . . . , ̂hn(w2k))

in Theorem 2.6 where the 2k elements w1, . . . , w2k of Z2 are r1e1, r1e2, . . . , rie1, rie2, . . . , rke1, rke2.
Before computing asymptotics variances, let us give the following lemma :

Lemma 3.2. Let g be an isotropic kernel and r ∈ Z+. Then we have the following identities

S(4, re1, re1) = S(4, re2, re2)

S(4, re1, re2) = S(4, re2,−re1)

S(4, 0, re1) = S(4, 0, re2)

S(3, re1) = S(3, re2)

S(2, 2, re1) = S(2, 2, re2)

S(2, 2, re1 − re2) = S(2, 2, re1 + re2).

Proof : Let R be the rotation matrix such that R(e1) = e2. Then

S(4, re1, re1) =
∑
z∈Z2

∫
R2

g(c− z)g(c− z − re1)g(c− re1)g(c)dc

=
∑
z∈Z2

∫
R2

g(Rc−Rz)g(Rc−Rz − re2)g(Rc− re2)g(Rc)dc

=
∑
z′∈Z2

∫
R2

g(a− z′)g(a− z′ − re2)g(a− re2)g(a)da

= S(4, re2, re2)

by isotropy of g and by changes of variables a = Rc, z′ = Rz. Let us note here that for this rotation
matrix R we have got z′ ∈ Z2. Similar computations lead to the other equalities. �
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Now by this lemma, since the asymptotic variance σ2
1,h(w) depends only on S(3, w) and S(2) we

can directly affirm that

σ2
1,h̃(ri)

=
1

2

(
σ2

1,h(rie1) + σ2
1,h(rie2)

)
= σ2

1,h(rie1)

we also have

σ2
h̃(ri),h̃(rj)

=
1

4

2∑
p=1

2∑
q=1

σ2
h(riep),h(rjeq)

=
1

4

2∑
p=1

2∑
q=1

m4λS(4, rjeq, riep) + 2m3m1λ
2

(
S(3, rjeq) + S(3, riep)

)

+m2
2λ

2

(
S(2, 2, riep − rjeq) + S(2, 2, riep − rjeq)

)
+ 4m2m

2
1λ

3S(2)

= 2m3m1λ
2

(
S(3, rje1) + S(3, rie1)

)
+ 4m2m

2
1λ

3S(2)

+
1

4

2∑
p=1

2∑
q=1

m4λS(4, rjeq, riep) +m2
2λ

2

(
S(2, 2, riep + rjeq) + S(2, 2, riep − rjeq)

)
then σ2

h̃(ri)
is then obtained as a special case. To see the benefit on the asymptotic variance directly

in this formula is not simple but as ∀r ∈ Z+ we have

Cov(ĥn(re1), ĥn(re2)) ≤
√

Var(ĥn(re1))Var(ĥn(re2)) = Var(ĥn(re1))

we can write

Var(̂̃hn(r)) =
1

4
(Var(ĥn(re1)) + Var(ĥn(re2)) + 2Cov(ĥn(re1), ĥn(re2)) ≤ Var(ĥn(re1))

�

Let us observe that the gain on the variance is more and more important with increasing r, up
to a factor of 2 when r →∞.
The same is true considering the covariance function f̃ and corelation function ρ̃ which are now
functions defined on Z+. The isotropic estimator of f̃(r) is given by

̂̃fn(r) =
1

2
(f̂n(re1) + f̂n(re2)) (3.2)

and that one for ρ̃(r) is
̂̃ρn(r) =

1

2
(ρ̂n(re1) + ρ̂n(re2)) (3.3)

These isotropic versions have a smaller asymptotic variance than their directional counterpart. More

precisely, the asymptotic variance of ̂̃fn(r) is

σ2
f̃(r)

=
m4λ

2

(
S(4, re1, re1) + S(4, re1, re2)

)
+
m2

2λ
2

2

(
S(2, 2, 0) + S(2, 2, 2re1) + 2S(2, 2, re1 − re2)

)
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and that of ̂̃ρn(r) is

σ2
ρ̃(r) =

m4

λm2
2I2(0)2

(S(4, 0, 0)
I2(r)2

I2(0)2
− 2S(4, 0, re1)

I2(r)

I2(0)
+

1

2
S(4, re1, re1) +

1

2
S(4, re1, re2))

+
1

I2(0)2
(2S(2, 2, 0)

I2(r)2

I2(0)2
− 2S(2, 2, re1)

I2(r)

I2(0)
+

1

2
S(2, 2, 0) +

1

2
S(2, 2, re1) + S(2, 2, re1 − re2))

(3.4)

4. Parameters estimation on Gaussian shot noise random field

In this section we want to apply the previous results to the estimation of the parameters of a
spatial shot noise random field defined in (1.1) by

∀x ∈ T, X(x) =
∑

(xi,mi)∈φX

mig(x− xi), (4.1)

and we will focus exclusively on the isotropic case with a Gaussian kernel

g(x) =
1

2πσ2
e−
||x||2

2σ2 (4.2)

with standard deviation σ. This is an example of a smooth random field since it is of class C∞

almost surely. The main motivation of this kernel is that by considering σ2 as a temporal variable
t, the spatio-temporal random field is a fundamental solution of the heat equation

∂X

∂t
= ∆X,

where ∆ = ∂2
11 +∂2

22 is the classical 2d Laplace operator. This can be seen by comparing the images
on the right where σ = 5 with the one on the left where σ = 50 in Figure 4.1. In this space-time
model, the points of the Poisson process are only drawn once at t0 and do not move. At first the
points are isolated and then over time the Gaussians become more and more spread out and meet
each other. It is the heat that spreads and the texture becomes more structured.
Thanks to Campbell’s Theorem we know the marginal law of a shot noise random field in inte-
gral form, but in general we can’t explicitly compute it. One exception is when considering this
Gaussian kernel with an exponential mark of parameter µ, then the marginal is of Gamma law
Γ(2πλσ2, 2πµσ2). This model satisfies (H) and we note it Xλ,µ,σ. To illustrate this model we have
simulated with Matlab four shot noise random fields with different parameters (see Figure 4.1).
With a simple application of Campbell’s theorem, we also have an interesting scale invariance

property. More precisely, for k > 0, let Xλk2,µk2,σ
k
be a Gaussian shot noise random fiel with ex-

ponential mark of parameter (λk2, µk2, σk ) and Xλ,µ,σ be a Gaussian shot noise random field with
exponential mark of parameter (λ, µ, σ). Then we have

{Xλk2,µk2,σ
k
(x) | x ∈ R2} fdd= {Xλ,µ,σ(kx) | x ∈ R2}

This property can be seen as a zoom on a part of an image where the k plays the role of the dis-
cretization step.
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Figure 4.1. Four images with 1024x1024 pixels. On the first line, both images have
the same λ = 1000

10242
which represents an average of 1000 points on the image. On

the second line, we have chosen λ to have an average of 100000 points. On the left,
both images have the same σ = 50 while σ = 5 on the right. Marks are exponential
laws of parameter µ = 1

100 which represents a average of 100.

We have that I2(x) = 1
4πσ2 e

− 1
4πσ2

||x||2 (proof in Appendix of Lemma 4.2) and consequently the
finite susceptibility condition is checked. Let us recall that the moments of an exponential law are
mk = k!

µk
, thus the moments of the random field are given for x ∈ R2 by :

• M1 = λ
µ ;

• h(x) = λ
2πµ2σ2 e

− 1
4σ2
||x||2 + λ2

µ2
;

• f(x) = λ
2πµ2σ2 e

− 1
4σ2
||x||2 ;

• ρ(x) = e−
1

4σ2
||x||2 .

The main aim of this section is to estimate the triplet of parameters (λ, µ, σ) of this model. Let’s
start by assuming we know σ, then a simple inversion of

M1 =
λ

µ

f(0) =
λ

2πµ2σ2
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allow us to estimate (λ, µ) by 
λ̂ =

M̂1
2

2πσ2f̂(0)

µ̂ =
M̂1

2πσ2f̂(0)

Estimating higher-order raw moments does not allow us to have 3 independent equations. To
capture σ, it is necessary to take into account the mixed moment of second order, and more par-

ticularly the correlation that allows to isolate σ. As ρ̃(r) = e−
r2

4σ2 we can get an estimate of σ for
different values of r ∈ Z∗+ by considering

σ̂r =

√
−r2

4 log( ̂̃ρn(r))
.

Note that we can consider this estimator only if ρ̂n(r) is stricty between 0 and 1. Once σ is estimated,
we keep the same estimators λ̂ and µ̂ as if σ was known. We then propose:

λ̂r =
−M̂1

2
2 log( ̂̃ρn(r))

πr2(M̂2 − M̂1
2
)

µ̂r =
−M̂12 log( ̂̃ρn(r))

πr2(M̂2 − M̂1
2
)

σ̂r =

√
−r2

4 log( ̂̃ρn(r))

(4.3)

Theorem 4.1. Let Xλ,µσ be a shot noise random field with exponential mark et and Gaussian kernel.
Then ∀r ∈ Z∗+, the estimators (λ̂r, µ̂r, σ̂r) given by (4.3) are consistent estimators of (λ, µ, σ).
Moreover, for (Un)n a sequence of regularly growing sets, as n→∞ one has

√
|Un|

λ̂r − λµ̂r − µ
σ̂r − σ

→ N (0,Σλr,µr,σr)

with
Σµ,λ,σ(r) = Dφ(M1, V, ρ̃(r))Σ1,V,ρ̃(r)Dφ(M1, V, ρ̃(r))t

where Dφ(x, y, z) =


−4x log(z)
πr2y

2x2 log(z)
πr2y2

−2x2

πr2yz
−2 log(z)
πr2y

2x log(z)
πr2y2

−2x
πr2yz

0 0
r
√
− log(z)

4z log(z)2

 .

The asymptotic variance of σ̂r is given by

σ2
σr = σ2

ρ̃(r)

4σ6

r4
e

r2

2σ2 . (4.4)

Proof : The random field Xλ,µσ check (H) and the finite susceptibility condition
∑
z∈Z2

I2(z)∞ so we

can apply Proposition 2.10 and its isotropic version. Now we use a delta method with φ : R3 7→ R×
R∗+×(0, 1), (x, y, z) 7→ (−2x2 log(z)

πr2y
, −2x log(z)

πr2y
,
√

−r2
4 log(z)). Then we have (λ̂r, µ̂r, σ̂r) = φ(M̂1, V̂ , ̂̃ρn(r))
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and (λ, µ, σ) = φ(M1, V, ρ̃(r)).

The jacobian of φ is Dφ(x, y, z) =


−4x log(z)
πr2y

2x2 log(z)
πr2y2

−2x2

πr2yz
−2 log(z)
πr2y

2x log(z)
πr2y2

−2x
πr2yz

0 0
r
√
− log(z)

4z log(z)2

 so we have

Σµr,λr,σr = Dφ(M1, V, ρ̃(r))

 σ2
1 σ2

1,V σ2
1,ρ̃(r)

σ2
1,V σ2

V σ2
V,ρ̃(r)

σ2
1,ρ̃(r) σ2

V,ρ̃(r) σ2
ρ̃(r)

Dφ(M1, V, ρ̃(r))t.

In the same spirit as above, we note Σλr,µr,σr =

 σ2
λr

σ2
λr,µr

σ2
λr,σr

σ2
λr,µr

σ2
µr σ2

µr,σr

σ2
λr,σr

σ2
µr,σr σ2

σr


To specify the asymptotic variance we just use a delta method with ψ : (0, 1) 7→ R, x 7→

√
−r2

4 ln(x)
.

We have ψ′(x) =
r
√
− ln(x)

4x ln(x)2
and hence ψ′(ρ̃(r)) =

2σ3e
r2

4σ2

r2
. Thus σ2

σr = σ2
ρ̃(r)ψ

′(ρ̃(r))2 =

σ2
ρ̃(r)

4σ6

r4
e
r2

2σ2 . �

parameter theoretical value relative bias relative MSE
σ 10 1, 5e−2 2, 2e−3

µ 0.01 −5, 5e−2 3, 1e−5

λ 9.5e−4 −3, 1e−2 9, 5e−8

Table 4.1. Bias and MSE for the parameters estimators of the example. Here the
observation windows is [0, 3000]2.

To illustrate Theorem 4.1, see Figure 4.2 where the size of the window increases. We also note
that the asymptotic variances of the parameter estimators with isotropy are smaller than without
isotropy. For the parameters of this example we have with isotropy :

σ2
λ10 = 0.005; σ2

µ10 = 0, 5454; σ2
σ10 = 19049

whereas if we estimate ρ in only one direction w = (10, 0) :

σ2
λw = 0.0113; σ2

µw = 1, 2381; σ2
σw = 192230

The bias and mean square error are excellent as shown in Table 4.1.
Moreover, by the interesting convolution properties of the Gaussian kernel, we have the following

lemma whose proof is postponed to appendix.

Lemma 4.2. All the integrals appearing in the asymptotic variances are explicit:

• I1 = 1

• I2(x) = 1
4πσ2 e

− 1
4σ2
||x||2

• I3(x, y) = 1
12π2σ4 e

− 1
6σ2

(||x−y||2+||x||2+||y||2)

• I4(x, y, s) = 1
32π3σ6 e

− 1
8σ2

(||x−y||2+||x−s||2+||y−s||2+||x||2+||y||2+||s||2)
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Figure 4.2. Parameters estimations of a shot noise random fiel with Gaussian kernel
and exponential marks. Parameters were estimated from ρ(5). On the x-axis, the
observation windows size that are increasing. Lower and upper bound of the 95%

confidence interval are also displayed.

and the series can be simplified as

S(2) =
1

4πσ2

∑
z∈Z2

e−
1

4σ2
||z||2 (4.5)

S(2, 2, w1 − w2) =
1

16π2σ4
e−

1
8σ2
||w1−w2||2

∑
z∈Z2

e−
1

2σ2
||z+w1+w2

2
||2 (4.6)

S(3, w1) =
1

12π2σ4
e−

1
4σ2
||w1||2

∑
z∈Z2

e−
1

3σ2
||z−w1

2
||2 (4.7)

S(4, w1, w2) =
1

32π3σ6
e−

1
4σ2

(||w1||2+||w2||2)
∑
z∈Z2

e−
1

2σ2
||z+w1−w2

2
||2 (4.8)
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Figure 4.3. Theoretical curve and estimation of the correlation function. The
mean value and empirical variance are compute with a sample of D = 300 random
field simulated on the windows [0, 500]2. The parameter of the model are σ = 10,
λ ≈ 10−3 and µ = 1

100 .

When σ is not too small, let’s say greater than 1, we can approach (4.5) - (4.8) by a series/integral
comparison leading to :

• S(2) ≈ 1

• S(2, 2, w1 − w2) ≈ 1
8πσ2 e

− 1
8σ2
||w1−w2||2

• S(3, w1) ≈ 1
4πσ2 e

− 1
4σ2
||w1||2

• S(4, w1, w2) ≈ 1
16π2σ4 e

− 1
4σ2

(||w1||2+||w2||2).

Thus the asymptotic variance of ̂̃ρn(r) given by (3.4) is

σ2
ρ̃(r) =

m4e
− r2

2σ2

2πσ2λm2
2

∑
z∈Z2

(
e−

1
2σ2
||z||2 − 2e−

1
2σ2
||z+ re1

2
||2 +

1

2
e−

1
2σ2
||z||2 +

1

2
e−

1
2σ2
||z+ re1−re2

2
||2
)

+
∑
z∈Z2

(
2e−

r2

2σ2 e−
1

2σ2
||z||2 − 4e−

3r2

8σ2 e−
1

2σ2
||z+ re1

2
||2

+
1

2
e−

1
2σ2
||z||2 +

1

2
e−
−r2
2σ2 e−

1
2σ2
||z||2 + e−

−r2
4σ2 e−

1
2σ2
||z+ re1+re2

2
||2
)

≈
∑
z∈Z2

(
2e−

r2

2σ2 e−
1

2σ2
||z||2 − 4e−

3r2

8σ2 e−
1

2σ2
||z+ re1

2
||2

+
1

2
e−

1
2σ2
||z||2 +

1

2
e−
−r2
2σ2 e−

1
2σ2
||z||2 + e−

−r2
4σ2 e−

1
2σ2
||z+ re1+re2

2
||2
)
,

where the approximation is a very small approximation coming from the fact that re1
2 and re1−re2

2

are not always in Z2. We put aside this small approximation. The asymptotic variance of ρ̃ does
not depend on λ and µ. If we make the series/integral approximation we have the simple formula

σ2
ρ̃(r) ≈ πσ

2

(
1 + 2e−

r2

4σ2 − 8e−
3r2

8σ2 + 5e−
r2

2σ2

)
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We observe that for all σ ≥ 0, the function r 7→ σ2
ρ̃(r) starts at 0 then grows to its limit πσ2.

To minimize variance, it would be useful to estimate this function for small r but for practical
observation windows, inconsistencies are often observed with an estimate greater than 1 for small

r. We observe also (see the Table 4.2) that for all σ ≥ 0, the function r 7→ σ2
σr starts at

πσ4

2
then

grows slowly (almost constant) then rapidly to infinity. As for ̂̃ρ(r), to minimize variance, it would
be useful to estimate this function for small r.

@
@
@@σ

r
1 2 3 4 5 10 15 20 30

1 1,90 3,64 13,86 149,03 5e+3 6e+18 1e+45 5e+82 4,19e+190
2 26,34 30,47 39,40 58,25 102,05 8e+4 1,04e+11 1,04e+20 2,86e+46
3 129,92 138,43 154,29 180,63 223,53 2e+3 4e+5 2e+9 5,27e+20
4 406,87 421,56 447,59 487,64 546,15 1e+3 1e+4 1e+6 1e+12
5 989,14 1e+3 1e+3 1e+3 1e+3 2e+3 8e+3 9e+4 4e+8
10 1e+4 1e+4 1e+4 1e+4 1e+4 2e+4 2e+4 3e+4 10e+4
15 7e+4 8e+4 8e+4 8e+4 8e+4 8e+4 9e+4 11e+4 18e+4
20 2e+5 2e+5 2e+5 2e+5 2e+5 2e+5 2e+5 3e+5 4e+5

Table 4.2. Theoritical asymptotic variance of σ̂r given by 4.4

Thus, to estimate σ, it seems more interesting to take into account the correlation function on
small r. But looking at Table 4.3, although a small r gives a small variance, the function ρ is
so close to 1 (especially by increasing σ) that the estimate is rough. The exponential form of the
correlation function (it starts from 1, decreases slowly then strongly then slowly to 0) does not allow
to distinguish the first values since it is slightly decreasing. This table reinforces us in the idea of
not using the large r values. A first idea would be to make an average of several estimated σr for
some specifically chosen r’s, when the scope of the ρ function is maximal and therefore allows us
to distinguish these values. For example, for σ = 1 we recommend using r = 1 to 3, for σ = 5 we
recommend using r = 3 to 7, for σ = 10 we recommend using r = 7 to 13.

Actually, these estimators are often identical and averaging them does not yield a significant gain.
Thus, for the sake of simplicity, we will consider only one well-chosen value σr to estimate σ. In
practice, when you have no idea of the value of σ it is also necessary to estimate a good r. A good
way to choose it is

r∗ = argmin
r∈N∗

|̂̃ρn(r)− exp(−1

2
)| (4.9)

because as ρ̃′′(r) =
e−

r2

4σ2

2σ2
(
r2

2σ2
− 1) the function is the most decreasing at r =

√
2σ. Observe the

correct estimation of r∗ in Table 4.4. Remark that the estimation is worse for large σ but if the size
of the image increases then the estimation is improved. The σ estimator we consider is then

σ̂r∗ =

√√√√ −r∗2

4 log( ̂̃ρn(r∗))
(4.10)
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@
@
@@σ

r
1 2 3 4 5 10 15 20 30

2 1,95 1,98 1,98 1,98 1,99 2,26 NA NA NA
3 3,19 3,05 3,02 3,00 2,99 2,89 2,65 5,23 NA
4 3,36 3,70 3,80 3,83 3,86 3,90 3,86 NA NA
5 6,24 5,28 5,13 5,07 5,04 4,98 4,91 4,65 NA
10 NA 11,78 10,53 10,19 10,05 9,89 9,87 9,87 9,84
15 NA 19,42 16,99 16,20 15,81 15,16 14,95 14,82 14,58
20 9,96 14,29 16,38 17,54 18,27 19,76 20,24 20,47 20,65

Table 4.3. Value of σ̂r with different σ and r estimating on one Gaussian shot
noise random field simulated on the windows [0, 500]2. The two other parameters
are λ = 1000/10242 and µ = 1/100. The NA values are complex number.

√
2σ

@
@
@@σ

r
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2.83 2 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7.07 5 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0
11.31 8 0 0 0 0 0 0 0 1 214 85 0 0 0 0 0 0 0 0
15.55 11 0 0 0 0 0 0 0 0 0 0 0 20 134 146 0 0 0 0
19.80 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 55 237 0

Table 4.4. Number of r̂∗ for different σ. The sample size isD = 300 on the windows
F = 500. The two others parameters are λ = 1000

5002
and µ = 1

100 .

Given a random field realization X, it is now sufficient to implement the following steps :

(1) estimate the correlation function ρ with (3.3)
(2) calculate r∗ with (4.9)
(3) estimate the mean and variance with (2.9) and (2.10)
(4) estimate (λ, µ, σ) with (4.3)

Let us finish with some illustration. In order not to study a single parameter triplet, the parame-
ters in the two following figures evolve in such a way that the parameter range is not too restrictive.
Figure 4.4 represents bias and variance of the 3 parameter estimators for several σ values on a
sample of size D = 300. In comparison with the table 4.1, let us look at our estimation on a small
image size like F = 500. There is a very good estimate with a small bias and an acceptable variance
for this window size. Again, the estimators become a bit worse for large σ values. Figures 4.5
represents bias and variance of the 3 parameter estimators for several λ values on a sample of size
D = 300. There again, the statistical properties are suitable for this window size. This time, there
is no consequence on the estimation of the three parameters when we consider larger λ values (to
see it for λ, just consider the relative bias and relative variance).
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5. Conclusion and perspective

Thank to Theorem 2.6 we have a solid foundation of moment estimates for a large class of shot
noise random field. The study of the case of the Gaussian kernel and the exponential mark in the
last part is an application to parameter estimation that could be extended to other marks very
easily. Other kernels whose possibe computations of (2.1)-(2.4) can aslo be used. The estimation of
the parameters of this model can allow applications in model validation and the calculation of other
statistics such as the geometry of the excursion levels (see Biermé and Desolneux, 2016). Finally, a
shot noise can be used for physical modeling such as heat propagation phenomena or also in biology,
so applications to practical cases can be considered.
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Figure 4.4. Bias and 95% CI of the three parameters for several σ values. Each are
calculated on a sample of D = 300 random field simulated on the windows [0, 500]2.
The two others parameters are λ ≈ 10−3 and µ = 1

100 .
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Figure 4.5. Bias and 95% CI of the three parameters for several λ values. Each are
calculated on a sample of D = 300 random field simulated on the windows [0, 500]2.
The two others parameters are σ = 10 and µ = 1

100 .
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6. Proof of results

Proof of Lemma 2.1 and 2.7: Let X a Poisson point process on Rn with intenstity measure Λ and
f a non-negative bounded measurable function defined on Rd, then we have :

E
[ 6=∑

(x1,...,xn)∈X

f(x1, . . . , xn)
]

=

∫
Rkn

f(x1, . . . , xn)Λ(dx1) . . .Λ(dxn) (6.1)

Previously called Campbell’s Theorem due to Campbell’s work on shot noise processes (Campbell,
1909a), the kind of equation such as 6.1 is now a common way to directly define the kth order moment
measure. We can now calculate the moments of a shot noise random field. Let S = R2 × R+, the
first one is simply given by

E[X(0)] = E
[ ∑

(xi,mi)∈ΦX

mig(xi)
]

=

∫
S

mg(c)λdcF (dm) = λm1

To compute the others moments, we need to split the sum such that the points are different then
simply use the Campbelle formula several times. Let x ∈ T then :

E[X(x)X(0)] = E
[( ∑

(xi,mi)∈ΦX

mig(xi − x)
)( ∑

(xj ,mj)∈ΦX

mjg(xj)
)]

= E
[( ∑

(xi,mi)∈ΦX

mig(xi − x)
)( i 6=j∑

(xj ,mj)∈ΦX

mjg(xj)
)

+
∑

(xi,mi)∈ΦX

m2
i g(xi − x)g(xi)

]

=

∫
S2

mg(c− x)ng(a)λ2dcF (dm)daF (dn) +

∫
S

m2g(c− x)g(c)λdcF (dm)

= λ2m2
1 + λm2I2(x)

Let x, y, s ∈ T , to calculate

E[X(x)X(y)X(s)] = E
[( ∑

i∈ΦX

mig(i− x)
)( ∑

j∈ΦX

mjg(j − y)
)( ∑

k∈ΦX

mkg(k − s)
)]

(6.2)

it is required to divide the sum into 5 as shown in Figure 6.6.
In order, the 5 terms are :

• E
[ ∑
i∈ΦX

m3
i g(i− x)g(i− y)g(i− s)

]
=

∫
S

m3g(x− c)g(y − c)g(s− c)λdcF (dm)

= m3λI3(x− s, y − s)

• E
[ 6=∑
i,k∈ΦX

m2
imlg(i− x)g(i− y)g(k − s)

]
=

∫
S2

m2ng(x− c)g(y − c)g(s− a)λ2dcF (dm)daF (dn)

= m2m1λ
2I2(x− y)

• E
[ 6=∑
i,j∈ΦX

m2
imkg(i− x)g(j − y)g(i− s)

]
=

∫
S2

m2ng(x− c)g(y − a)g(s− c)λ2dcF (dm)daF (dn)

= m2m1λ
2I2(x− s)
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Figure 6.6. Decomposition of the triple summation

• E
[ 6=∑
i,j∈ΦX

mim
2
jg(i− x)g(j − y)g(j − s)

]
=

∫
S2

mn2g(x− c)g(y − a)g(s− a)λ2dcF (dm)daF (dn)

= m2m1λ
2I2(y − s)

• E
[ 6=∑
i,j,k∈ΦX

mimjmkg(i− x)g(j − y)g(k − s)
]

=

∫
S3

mnpg(x− c)g(y − a)g(s− b)λ3dcF (dm)daF (dn)dbF (dp)

= m3
1λ

3

Hence

E[X(x)X(y)X(s)] = m3λI3(x− s, y − s) +m2m1λ
2
(
I2(x− y) + I2(x− s) + I2(y − s)

)
+m3

1λ
3.

To calculate E[X(x)X(y)X(s)X(t)], the sum must be divided into 15 terms as shown in Figure 6.7.
The calculations are similar to the ones perfomed for E[X(x)X(y)X(s)]. �
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Figure 6.7. Decomposition of the quadruple summation

Proof of lemma 4.2: Let x, y, s ∈ T .

I3(x, y) =
1

(2πσ2)3

∫
R2

e−
1

2σ2

(
||c−x||2+||c−y||2+||c||2

)
dc

=
1

(2πσ2)3
e−
||x−y||2+||x||2+||y||2

6σ2

∫
R2

e
− 1

2σ2
||
√

3c−x+y√
3
||2dc

=
1

(2πσ2)3
e−
||x−y||2+||x||2+||y||2

6σ2

∫
R2

e−
1

2σ2
||a||2 1

3
da

=
1

(2πσ2)3
e−
||x−y||2+||x||2+||y||2

6σ2
2πσ2

3

=
1

12π2σ4
e−

1
6σ2

(||x−y||2+||x||2+||y||2)

The calculation of the other integrals are very similar, for exemple for I4(x, y, s) juste write

||c−x||2+||c−y||2+||c−s||2+||c||2 = ||2c−x+ y + s

2
||2+

1

4

(
||x−y||2+||x−s||2+||y−s||2+||x||2+||y||2+||s||2

)
�
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Proof of 4.5, 4.6, 4.7 and 4.8: By Lemma 4.2 we have S(2) = 1
4πσ2

∑
z∈Z2

e−
1

4σ2
||z||2 . For the others

series, we can reduce as follows :

S(2, 2, w1, w2) =
∑
z∈Z2

I2(z + w1)I2(z + w2)

=
1

16π2σ4

∑
z∈Z2

e−
1

4σ2
(||z+w1||2+||z+w2||2)

=
1

16π2σ4

∑
z∈Z2

e
− 1

4σ2
||
√

2z+
w1+w2√

2
||2
e
− 1

4σ2
||w1−w2√

2
||2

=
1

16π2σ4
e−

1
8σ2
||w1−w2||2

∑
z∈Z2

e−
1

2σ2
||z+w1+w2

2
||2

S(3, w1) =
∑
z∈Z2

I3(z, w1)

= e−
1

6σ2
||w1||2 1

12π2σ4

∑
z∈Z2

e−
1

6σ2
(||z−w1||2+||z||2)

= e−
1

6σ2
||w1||2 1

12π2σ4

∑
z∈Z2

e
− 1

6σ2
||
√

2z−w1√
2
||2
e
− 1

6σ2
||w1√

2
||2

= e−
1

4σ2
||w1||2 1

12π2σ4

∑
z∈Z2

e−
1

3σ2
||z−w1

2
||2

S(4, w1, w2) =
∑
z∈Z2

I4(z, z + w1, w2)

= e−
1

8σ2
(||w1||2+||w2||2) 1

32π3σ6

∑
z∈Z2

e−
1

8σ2
(||z−w2||2+||z+w1−w2||2+||z+w1||2+||z||2)

= e−
1

8σ2
(||w1||2+||w2||2) 1

32π3σ6

∑
z∈Z2

e−
1

8σ2
||2z+w1−w2||2e−

1
8σ2

(||w1||2+||w2||2)

= e−
1

4σ2
(||w1||2+||w2||2) 1

32π3σ6

∑
z∈Z2

e−
1

2σ2
||z+w1−w2

2
||2

�
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