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Abstract

The moment-of-fluid method (MOF) is a second-order accurate interface reconstruction method which can be
seen as an extension of the volume-of-fluid method with piecewise linear interface construction (VOF-PLIC).
MOF involves a computationally intensive minimization problem that needs to be solved on every cell
containing several materials. We propose a new fast and robust reconstruction algorithm to tackle this
problem on rectangular hexahedral cells. Our approach uses explicit analytic formulas of the objective
function that does not use any geometric computations such as half-space–polyhedron intersections. The
numerical results show that the proposed method is more robust and more than 200 times faster than the
original approach. Additionally, we propose a faster reconstruction algorithm on convex polyhedral cells. All
the methods presented in this article have been implemented and verified on the open-source code Notus.
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1. Introduction

Common engineering problems involve several materials interacting with each other. The numerical
simulations of these phenomena require the tracking of the location of the materials over time. Across the
interface between two materials, some physical phenomena must be described such as the heat or mass
transfer. Any numerical errors on the location of the interface have an impact on the physics of the whole
problem. As a result, the numerical simulations require accurate tracking methods. In this article we only
consider numerical methods designed for the Eulerian framework where the velocity field is defined on the
whole domain and where the motion of the materials is independent of the underlying mesh.

A lot numerical strategies have been developed to track the materials in this context such as the level-set
method [1], the front-tracking method [2], and the volume-of-fluid method with piecewise linear interface
construction (VOF-PLIC). For the latter, any cell containing two materials is partitioned by a linear interface
such that the volume of each part contains exactly the same volume as the real location of the material. The
most common application of the VOF-PLIC method is the advection of the materials which is composed of
two steps. In the first step, the geometry of the partition is advected with a Lagrangian method, and then
the volume of each material is computed from the intersection of the geometry with the underlying mesh. In
the second step, named reconstruction, a new partition is computed using the volume in each cells and their
neighborhood.

Recently the moment-of-fluid method (MOF) [3–22] was introduced as a second-order accurate extension
of the VOF-PLIC method for multi-material reconstruction. Besides the volume of the materials, MOF
involves the centroids of each material which allows to reconstruct the partition with only the information
contained in the cell. Furthermore, this method offers a straightforward way to represent n ≥ 2 materials in
the same cell [5, 6]. The improved accuracy of this method is at the expense of the time to partition the
cell which involves a computationally intensive minimization problem. In this article, we present a fast and
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robust reconstruction strategy to solve this minimization problem on rectangular hexahedrons. Note that we
only address the problem of the reconstruction, the advection can be done, for instance, using a Lagrangian
remapping method [4] or a directional splitting method [12].

The currently proposed method falls under the continuity of the improvements made to MOF during
the past decade. MOF was originally introduced in 2D on polygonal cells [3, 4]. It was quickly extended to
multi-material reconstruction in 3D by Ahn & Shashkov [5] and in 2D by Dyadechko & Shashkov [6]. Note that
the latter defines a convenient error criterion and provides a convergence study of the MOF reconstruction.
Another effort to extend MOF to any coordinate system was made by Anbarlooei & Mazaheri [8] who have
extended MOF to axisymmetric meshes. As MOF is a PLIC method, it is vulnerable to filaments that can
not be advected. Jemison et al. [16] solved this problem by adapting MOF to filament capturing which can
be done in a straightforward way by using a n-material reconstruction and allowing two materials to be
identical in one cell. To improve the robustness of MOF, many solutions were proposed, such as the one
advanced by Hill & Shashkov [13] which consists in changing slightly the minimization problem of MOF to
minimize the centroid difference on both the material and its complementary. Since the objective function of
MOF contains local minima where the minimization algorithms are prone to fall into, Qing et al. [22] have
proposed a method in 2D that finds all the minima of the MOF problem and selects the best one. This gain
of robustness is at the expense of the runtime of the algorithm.

MOF was designed to be used in conjunction with other methods. Ahn & Shashkov [7] proposed an
interaction of MOF with an adaptive mesh refinement (AMR) strategy where the centroid difference is used
as a criterion for mesh refinement. The coupling with an Arbitrary Lagrangian-Eulerian (ALE) strategy
is also found among many authors [9, 11, 14]. Valuable implementation details can be found in many
publications, for instance, in [10] MOF was coupled with a code based on the finite element method (FEM)
and in [15] MOF is used in a compressible context. In [12] and [21], MOF is coupled with the levelset method
(CLSMOF) and more recently, Kikinzon et al. [20] proposed a data structure to represent the partition of
the multi-material reconstruction to simplify the interaction with other methods.

The most expensive part of the MOF reconstruction is the evaluation of the objective function and its
partial derivatives at each iteration of the minimization algorithm which involves computationally intensive
geometrical manipulations. To tackle this problem, Chen & Zhang proposed analytic formulas for the partial
derivatives of the objective function on convex polyhedral cells [17] and convex polygonal cells [19]. However,
their methods requires a prior evaluation of the objective function with a geometric approach that still
remains expensive. To completely avoid these computationally intensive geometric manipulations, another
approach is to express the objective function with analytic formulas. This has been addressed by Lemoine et
al. [18] in 2D for rectangular cells as we will discuss in section 2.3. In this paper, we propose a 3D extension
of this method to rectangular hexahedral cells. This method can be applied to geometry tracking on any
meshes composed of this kind of cells such as rectilinear grids with or without AMR.

2. The moment-of-fluid method

2.1. The moment-of-fluid problem
The MOF problem can be summarized as follows. Consider Ω ⊂ R3 a portion of space, for instance a

polyhedral cell and M ⊂ Ω the location of a given material in Ω, as depicted on the left of figure 1. Where
the VOF-PLIC method requires the information of the volume of material from the cell and its neighborhood,
MOF embeds all the information within the cell. Besides the volume of material, the MOF reconstruction
involves the centroid of M denoted by C(M) and defined by:

C(M) =
1

vol(M)

∫
M

xdx (1)

As a PLIC method, MOF approximates the location of the material M with a linear interface between the
materials in Ω. The resulting volume is the intersection of a half-space with Ω. A half-space can be defined
by two parameters, namely the outgoing unit normal n of its boundary and the shortest signed distance d
of its boundary to the origin. We denote H(n, d) =

{
x ∈ R3

∣∣ x · n ≤ d
}
a half-space parametrized by n
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and d. As a result, the approximation of M is equal to H(n, d) ∩ Ω (right of figure 1) with n and d to be
determined. Like the VOF methods, MOF enforces the volume conservation on its reconstruction, that is
vol(H(n, d) ∩ Ω) = vol(M). In summary, the set of all the approximations of M in Ω can be defined by:

A =
{

H(n, d) ∩ Ω
∣∣ n ∈ S2, d ∈ R and vol

(
H(n, d) ∩ Ω

)
= vol(M)

}
(2)

The moment-of-fluid problem consists in finding the best approximation ω∗ ∈ A of M such that its centroid is
as close as possible to the centroid of the real — or reference — material location M denoted by C? = C(M).
Written in mathematical terms, the MOF problem becomes:

Find ω∗ ∈ A such that ω∗ = argmin
ω∈A

∣∣C(ω)− C?
∣∣2 (3)

Note that the solution may be not unique, but as proved in [3], the set of reference centroids for which the
problem is non-unique has zero area.

Ω

M C(M)

nH(n, d) ∩ Ω

H(n, d)

Figure 1: Illustration of the notations used to define the MOF problem.

2.2. General method to solve the moment-of-fluid problem
To solve the MOF problem (3), various iterative minimization algorithms have been proposed. For

instance, Ahn & Shashkov [5] use a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, while other
authors, such as Jemison et al. [12], prefer a Gauss-Newton method. The minimization algorithms require
several evaluations of the objective function and its partial derivatives. The evaluation of the objective
function requires to compute the centroid of the approximation C(ω) and, therefore, the approximation ω
itself. From (2), each approximation ω is defined by a direction n and a distance d. In practice, each step of
the minimization algorithm provides a new direction n and the distance d is determined using a volume
enforcement algorithm. Following Dyadechko & Shashkov [4], such an algorithm will be referred to as a flood
algorithm. It consists to find the distance d of a half-space such that the volume of the intersection of this
half-space and the cell is exactly equal to the prescribed volume. For instance, there is the Brent’s-based
method [23] or the more recent algorithm proposed by Diot & François [24] in 2016. All these algorithms
involve to compute the intersection of a plane and a polyhedron which makes this algorithm computationally
intensive.

The classic strategy to evaluate the partial derivatives consists to use a finite-difference scheme. With a
centered scheme, two computations of the centroid are required per direction which makes a total of four
calls to the flood algorithm in 3D. Dyadechko & Shashkov [3] proposed a formula to compute the derivative
of the objective function on 2D polygonal cells using the prior evaluation of the objective function. This
formula reduces the number of reconstructions to only one per evaluation of the objective function and its
partial derivatives. Furthermore, this formula gives an exact value where the finite-difference scheme only
gives an approximation. In [19], Chen & Zhang proposed a proof of this formula and, in a second article [17],
they have derived some formulas for 3D to compute the partial derivatives on convex polyhedral cells that
are summarized in Appendix A.

Another approach to solve the MOF problem (3) consists to express the objective function with analytic
formulas. This can be done by finding the locus of the centroids C(ω(n)) for a given fixed volume and for all
the normals n. This locus is a closed curve in 2D and a closed surface in 3D. Finding a parametrization of
this locus is a very difficult task on general polygonal or polyhedral cells. However, on rectangular cells, this
approach has been successfully applied for the first time by Lemoine et al. [18] as presented below.
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2.3. Analytic method to solve the moment-of-fluid problem in 2D on rectangular cells
Consider a rectangular cell Ω = [0, c1] × [0, c2]. In [18], Lemoine et al. proved that the locus of the

centroids is the reunion of 4 arcs of parabolas and 4 arcs of hyperbolas as depicted in figure 2. To find a
global parametrization of the locus of the centroids, we introduce the angle θ defined such that the normal
verifies n(θ) = [cos(θ), sin(θ)] and we denote by CV(θ) the centroid of the approximation C(ω(n(θ))). The
MOF problem (3) can be reinterpreted as finding the angle θ∗ such that:

θ∗ = argmin
θ∈[0,2π]

∣∣CV(θ)− C?∣∣2 (4)

Taking the derivative of the objective function in (4), the minimum verifies the following relation where u · v
denotes the dot product between two vectors u and v:(

CV(θ∗)− C?
)
· ∂θCV(θ∗) = 0 (5)

It is shown that this equation is a third degree polynomial for the parabola or a fourth degree polynomial for
the hyperbola. Remark that beyond finding a parametrization of the locus of the centroids, this method
gives a fully analytic solution of the MOF problem.

n(θ1)
n(θ2)

Parabola Hyperbola

CV(θ1)

CV(θ2)
x

y

c1

c2

Figure 2: Illustration of the locus of the centroids (the curve) on rectangular cells for a fixed volume V. The curve is composed
of 4 arcs of parabolas and 4 arcs of hyperbola. The yellow region corresponds to an approximation shaped as a quadrangle.
Its centroid is on a parabola. The purple region corresponds to an approximation shaped as a triangle. Its centroid is on a
hyperbola. The purple and the yellow regions share the same area.

In this article, we have applied this methodology in 3D to rectangular hexahedrons. We will see that
instead of two different configurations — triangle and quadrangle — there are five different configurations.
The solution of the MOF problem verifies equation (8) which is the 3D equivalent of equation (5). In two of
the five configurations, this equation reduces to two polynomial equations of fifth and twelfth degree without
trivial roots, and because of the Abel–Ruffini theorem there are no general algebraic formulas to express
these roots. Furthermore, in the three remaining configurations, the solution cannot be expressed as a root
of a polynomial. Therefore, there is no fully analytical solution of the MOF problem (3) on rectangular
hexahedron. Instead, we use a minimization algorithm where the objective function and its partial derivatives
are expressed as a set of analytic formulas.

The remainder of this article is organized as follows. Section 3 describes our method as a black-box to
compute the centroid and the partial derivatives for a given normal n. The proof of these formulas are given
in Appendix C. Section 4 presents a set of numerical tests to measure the efficiency and the robustness of our
method compared to three geometric approaches. Two of them are detailed in Appendix A and Appendix B.
Section 5 presents the conclusions and the future work.
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3. Analytic method on rectangular hexahedrons

3.1. Description
In the remainder of this article, we consider a rectangular hexahedron Ω = [0, c1]× [0, c2]× [0, c3]. Recall

that MOF consists in finding the best approximation of the material location M ⊂ Ω. We define V = vol(M)
as the volume of M — or reference volume — and C? as its centroid — or reference centroid. From the
definition of the set of the approximations A in equation (2), any element of this set shares the same volume
V as the material location M. We introduce in the following equation the normal n(θ, φ) of the half-space
parametrized by the spherical coordinates θ and φ.

n(θ, φ) =

sin(φ) cos(θ)
sin(φ) sin(θ)

cos(φ)

 (6)

Consider an approximation ω(n) ∈ A generated by the direction n as defined in section 2. We denote
CV(θ, φ) the centroid of the approximation C(ω(n(θ, φ))). In equation (7), we define the objective function of
the minimization problem (3) using the spherical coordinates.

F(θ, φ) =
∣∣CV(θ, φ)− C?

∣∣2 (7)

The minimization algorithm requires to evaluate the objective function (7) and its partial derivatives given
by the following formulas:

∂θF(θ, φ) = 2
(
CV(θ, φ)− C?

)
· ∂θCV(θ, φ) ∂φF(θ, φ) = 2

(
CV(θ, φ)− C?

)
· ∂φCV(θ, φ) (8)

Our method consists in finding a global parametrization of the locus of the centroids (θ, φ) 7→ CV(θ, φ) denoted
by LV and defined in the following equation:

LV =
{
CV(θ, φ)

∣∣ θ ∈ [−π, π] and φ ∈ [0, π]
}

(9)

To simplify the problem, we assume that the reference volume V is less than half of the volume of the cell:
V ≤ vol(Ω)/2. The case where V > vol(Ω)/2 can be treated by considering the complementary Ω \M. In
the remainder of this article, we will refer to the volume fraction χ = V/ vol(Ω) as the ratio between the
reference volume and the volume of the hexahedron.
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Figure 3: Five ways to intersect a rectangular hexahedron with a half-space: Triangle, QuadEdge, QuadFace, Penta and Hexa.

The shape of the locus of the centroids depends on how the half-space intersects the hexahedron, and
as shown in figure 3, a half-space can intersect a hexahedron in five different ways. We denote Triangle,
QuadEdge, QuadFace, Penta and Hexa the five possible configurations. We define P the surface defined as
the intersection of the boundary of the half-space and the hexahedron Ω.

P =
{
x ∈ Ω

∣∣ x · n = d
}

(10)

In the Triangle configuration, which exists if χ ≤ 1
6 , the half-space contains one vertex of the hexahedron

and the surface P is a triangle. In the QuadEdge configuration, the half-space contains one edge of the
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hexahedron and the surface is a quadrangle. In the QuadFace configuration, the half-space contains one face
of the hexahedron and the surface is also a quadrangle. In the Penta configuration, the half-space contains
two edges of the hexahedron and the surface P is a pentagon. In the Hexa configuration, which exists if
χ > 1

6 , the half-space contains three edges of the hexahedron and the surface P is a hexagon. Overall,
the locus of the centroids is the combination of 50 configurations composed of 8 Triangle or Hexa (one
per vertex), 6 QuadFace (one per face), 12 QuadEdge (one per edge) and 24 Penta (four per face). In the
remainder of this article, we use the same colors as in figure 3 to depict all the configurations (refer to the
web version of this article to see the colors).

Figure 4 depicts the locus of the centroids LV for χ = 0.1 (left) and χ = 0.4 (right) where the dimensions
of the hexahedron are (c1, c2, c3) = (1, 3, 2). We observe that the Triangle surface is only present on the
locus of the left, whereas the Hexa surface is present on the locus of the right. When χ = 1

6 , there are no
Triangle or Hexa surfaces. The shape of the QuadEdge and Penta surfaces also depends on the volume
fraction. When χ < 1

6 , the boundary of the QuadEdge surface is composed of 6 curves and the boundary
of the Penta surface is composed of 3 curves, while when χ > 1

6 , the boundary of the QuadEdge surface
is composed of 4 curves and the boundary of the Penta surface is composed of 4 curves. In the extreme
case, when χ = 1

2 , the QuadFace and the Hexa surfaces are the only surfaces that remain on the locus of the
centroids.

In the remainder of this section, we give a parametrization of the surface LV in terms of the spherical
coordinates (θ, φ). There is no point to provide the equations of the 50 pieces of the surface, since only 4
are sufficient to describe the whole surface (remember that the Triangle and the Hexa configurations are
mutually exclusives). The symmetry of the hexahedron allows to describe the other pieces by rotations or
reflections of the hexahedron, and some permutations of (c1, c2, c3).

0

c1

c2

c3
e1

e2
e3

0

c1

c2

c3
e1

e2
e3

QuadEdge

QuadFace

Penta

Triangle
Hexa

Figure 4: Locus of the centroids for the volume fractions χ = 0.1 (left) and χ = 0.4 (right). The dimensions of the hexahedron
are c1 = 1, c2 = 3 and c3 = 2.

3.2. Parametrization of the locus of the centroids in the local chart
The number of configurations can be reduced by remarking that the locus of the centroids is symmetric

about the three planes {x = c1/2}, {y = c2/2} and {z = c3/2}. Thus, we choose to reduce the global chart
[−π, π] × [0, π] to the region [0, π/2]2, referred to as local chart, as depicted in figure 5. The consequence
of using the definition (6) for the normal to the half-space is that the basis of the Cartesian coordinates
(e1, e2, e3) corresponds to e1 = n(0, π/2), e2 = n(π/2, π/2), and e3 = n(θ, 0) for all θ. In terms of surface,
the considered region corresponds to the part of the locus LV such that xi ∈ [0, ci/2] for i ∈ {1, 2, 3}. Note
that the origin of the coordinates corresponds to one of the vertices of the hexahedron as depicted in figure 4.
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Figure 5 represents the local charts in θ and φ corresponding to the locus of the centroids for the volume
fractions χ = 0.1 (left) and χ = 0.25 (right). With this parametrization, the distances and the areas of the
configurations are highly distorted when φ approaches 0. At the limit, the line φ = 0 maps to a single point
which corresponds to the south pole of the locus (remember that the centroid is inside the half-space, in the
opposite direction of the normal like in 2D as depicted in figure 2). In these local charts, 10 pieces are still
involved in the description of the locus LV .

As shown in figure 5, the local chart is decomposed in three regions — Left, Right, and Bottom —
arranged around a Triangle (or a Hexa if χ > 1

6 ). Each region contains exactly one Penta, one QuadEdge,
and one QuadFace. These regions are delimited by the curves φlim

? defined in section 3.2.1. We will see in
section 3.3.1 that any coordinates (θ, φ) in the global chart can be transformed to the local chart by some
symmetries as depicted in figure 6.
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Figure 5: Local charts of the locus of the centroids reduced to [0, π/2]2 for the volume fractions χ = 0.1 (left) and χ = 0.25
(right). The dimensions of the hexahedron are c1 = 2, c2 = 1.5 and c3 = 1. Note that Triangle and Hexa are mutually exclusive.

In the remainder of this section, we present how to compute the centroid and its partial derivatives from
any point of the local chart. First, in section 3.2.1, we present the equations of the limit curves φlim

? . Then,
in section 3.2.2, we present the parametrization of the centroid and its partial derivatives in the local chart.

3.2.1. Limits of the local chart
We introduce the notations in equation (11) to simplify the formulas given in this section. The proof of

the formulas presented in this section is given in Appendix C.

`ij =
2V
cicj

f ijV (x) =
−x+

√
12`ijx− 3x2

2
T l2 = c2 tan(θ) T l3 = c3 cot(φ) sec(θ)

T r2 = c3 cot(φ) csc(θ) T r3 = c1 cot(θ) T b2 = c1 tan(φ) cos(θ) T b3 = c2 tan(φ) sin(θ)

(11)

In the Triangle configuration, the limit curves are given by equations (12). Note that arccot(x) =
π
2 − arctan(x) when x > 0, which is verified in all our formulas. We recommend to use the formulas with
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arctan instead of arccot or check that arccot(0) = π
2 to machine precision.

φlim
t1 (θ) = arccot

(√
3`23T l2

cos(θ)

c3

)
φlim

t2 (θ) = arccot

(
(T r3 )2

3`13

sin(θ)

c3

)
φlim

t3 (θ) = arccot

(
(c2 sin(θ))2

3`12(c1 cos(θ))

)
(12)

In the PentaL configuration, the limit curves are given by the equations (13a), (13b), and (13c).

φlim
pl1(θ) = arccot

((
`23 − T l2

) cos(θ)

c3

)
(13a)

φlim
pl2(θ) = arccot

((
T l2 − f23

V (T l2)
) cos(θ)

c3

)
(13b)

φlim
pl3(θ) = arccot

((
`23 + T l2 +

√(
`23 + T l2

)2 − 4

3
(T l2)2

)
cos(θ)

2c3

)
(13c)

In the PentaR configuration, the limit curves are given by the equations (14a), (14b), and (14c).

φlim
pr1(θ) = arccot

(
(`13 − T r3 )

sin(θ)

c3

)
(14a)

φlim
pr2(θ) = arccot

((
T r3 − f13

V (T r3 )
) sin(θ)

c3

)
(14b)

φlim
pr3(θ) = arccot

((
`13 + T r3 +

√
(`13 + T r3 )

2 − 4

3
(T r3 )2

)
sin(θ)

2c3

)
(14c)

In the PentaB configuration, the limit curves are given by the equations (15a), (15b), and (15c).

φlim
pb1(θ) = arccot

(
(c2 sin(θ) + c1 cos(θ))

1

`12

)
(15a)

φlim
pb2(θ) = arccot

((
c2 sin(θ)− c1 cos(θ) +

(c1 cos(θ))2

3c2 sin(θ)

)
1

`12

)
(15b)

φlim
pb3(θ) = arccot

((
c1 cos(θ)− c2 sin(θ) +

(c2 sin(θ))2

3c1 cos(θ)

)
1

`12

)
(15c)

In the Hexa configuration, the limit curves are given by equations (16a), (16b), and (16c).

φlim
h1 (θ) = arccot

((
c1 − 2

√
`23T l2 cos

(
1

3
arccos

(
3c1(c1 − `23 − T l2) + (T l2)2

2`23

√
`23T l2

)
+

4π

3

))
cos(θ)

c3

)
(16a)

φlim
h2 (θ) = arccot

((
c2 − 2

√
`13T r3 cos

(
1

3
arccos

(
3c2(c2 − `13 − T r3 ) + (T r3 )2

2`13

√
`13T r3

)
+

4π

3

))
sin(θ)

c3

)
(16b)

φlim
h3 (θ) = arccot

((
c1 + T l2 + 2

√
(2c1 − `23)T l2 cos

(
1

3
arccos

(
3(c1 − `23)(c1 + T l2)

2(2c1 − `23)
√

(2c1 − `23)T l2

)
+

4π

3

))
cos(θ)

c3

)
(16c)

3.2.2. Centroids and derivatives in spherical coordinates in the local chart
The parametrization of the centroid locus CV(θ, φ) is defined as a piecewise function on each configuration.

Inside the local chart, it is given by equations (17) to (22). As in section 3.2.1, the notations defined in (11)
are used to simplify the formulas in this section.
In the Triangle configuration, the parametrization is given by equation (17) which is defined for χ < 1

6 .

CVt (θ, φ) =
1

4
(3`23T

l
2T

l
3)

1/3

 1
c2/T l

2

c3/T l
3

 (17)
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In the QuadFace configurations, the parametrizations are given by:

QuadFaceL CVqfl(θ, φ) =
1

12`23

3 (`23)
2

+ (T l2)2 + (T l3)2

2c2
(
3`23 − T l2

)
2c3
(
3`23 − T l3

)
 (18a)

QuadFaceR CVqfr(θ, φ) =
1

12`13

 2c1 (3`13 − T r3 )

3 (`13)
2

+ (T r2 )2 + (T r3 )2

2c3 (3`13 − T r2 )

 (18b)

QuadFaceB CVqfb(θ, φ) =
1

12`12

 2c1
(
3`12 − T b2

)
2c2
(
3`12 − T b3

)
3 (`12)

2
+ (T b2 )2 + (T b3 )2

 (18c)

In the QuadEdge configurations the parametrizations are given by:

QuadEdgeL CVqel(θ, φ) =
1

108`23


1
T l
2

(
6`23T

l
2 + (T l3)2

)
Xqel

c2
(T l

2)2

(
6`23T

l
2 + (T l3)2

)
Xqel

3c3

(
18`23 − T l

3

T l
2
Xqel

)
 Xqel =

√
36`23T l2 − 3(T l3)2 (19a)

QuadEdgeR CVqer(θ, φ) =
1

108`13

 3c1

(
18`13 − T r

3

T r
2
Xqer

)
1
T r
2

(
6`13T

r
2 + (T r3 )2

)
Xqer

c3
(T r

2 )2

(
6`13T

r
2 + (T r3 )2

)
Xqer

 Xqer =
√

36`13T r2 − 3(T r3 )2 (19b)

QuadEdgeB CVqeb(θ, φ) =
1

108`12


c1

(T b
2 )2

(
6`12T

b
2 + (T b3 )2

)
Xqeb

3c2

(
18`12 − T b

3

T b
2
Xqeb

)
1
T b
2

(
6`12T

b
2 + (T b3 )2

)
Xqeb

 Xqeb =
√

36`12T b2 − 3(T b3 )2 (19c)

In the Penta configurations, the parametrizations are given by:

F0
p(x, y) = 2(x2 + y2) + 3xy F1

p(x, y, `ij) = 3
√

2xy
(
3(x+ y) + `ij

)
F2

p(x, y, `ij) = 6`ij − (4x+ 3y) F3
p(x, y, `ij) = 6

√
y

2x

(
`ij − (5x+ y)

) (20)

PentaL

CVpl(θ, φ) =
1

6`23

 F0
p(T l2, T

l
3) + F1

p(T l2, T
l
3, `23)Xpl + 24T l2T

l
3(Xpl)

2

c2
(
F2

p(T l2, T
l
3, `23) + F3

p(T l2, T
l
3, `23)Xpl − 24T l3(Xpl)

2
)

c3
(
F2

p(T l3, T
l
2, `23) + F3

p(T l3, T
l
2, `23)Xpl − 24T l2(Xpl)

2
)


Xpl = cos

(
1

3
arccos

(
3
(
T l2 + T l3 − `23

)
4
√

2T l2T
l
3

)
+

4π

3

) (21a)

PentaR

CVpr(θ, φ) =
1

6`13

c1 (F2
p(T r3 , T

r
2 , `13) + F3

p(T r3 , T
r
2 , `13)Xpr − 24T r2 (Xpr)

2
)

F0
p(T r2 , T

r
3 ) + F1

p(T r2 , T
r
3 , `13)Xpr + 24T r2 T

r
3 (Xpr)

2

c3
(
F2

p(T r2 , T
r
3 , `13) + F3

p(T r2 , T
r
3 , `13)Xpr − 24T r3 (Xpr)

2
)


Xpr = cos

(
1

3
arccos

(
3 (T r2 + T r3 − `13)

4
√

2T r2 T
r
3

)
+

4π

3

) (21b)

PentaB

CVpb(θ, φ) =
1

6`12

c1 (F2
p(T b2 , T

b
3 , `12) + F3

p(T b2 , T
b
3 , `12)Xpb − 24T b3 (Xpb)2

)
c2
(
F2

p(T b3 , T
b
2 , `12) + F3

p(T b3 , T
b
2 , `12)Xpb − 24T b2 (Xpb)2

)
F0

p(T b2 , T
b
3 ) + F1

p(T b2 , T
b
3 , `12)Xpb + 24T b2T

b
3 (Xpb)2


Xpb = cos

(
1

3
arccos

(
3
(
T b2 + T b3 − `12

)
4
√

2T b2T
b
3

)
+

4π

3

) (21c)
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In the Hexa configuration, the parametrization is given by the following equation which is defined for χ ≥ 1
6 :

CVh (θ, φ) =
1

96`23


1
T l
2
F0

h(c1, T
l
2, T

l
3)− 24(c1 − `23)

(√
T l4Xh + 2c1

)
+ 12(Xh)2

T l
2T

l
3
F1

h(c1, T
l
2, T

l
3, T

l
4)

c2

(
1

(T l
2)2
F0

h(T l2, c1, T
l
3)− 24(c1 − `23)

(√
T l
4

T l
2
Xh + 2

)
+ 12(Xh)2

(T l
2)2T l

3
F1

h(T l2, c1, T
l
3, T

l
4)

)
c3

(
1
T l
2
F2

h(c1, T
l
2, T

l
3)− 24(c1 − `23)

(√
T l
4

T l
3
Xh + 2

)
+ 12(Xh)2

T l
2(T l

3)2
F1

h(T l3, c1, T
l
2, T

l
4)

)


F0
h(x, y, z) =

(x− y)3(3x+ y)

z
− (8x3 + z3 − 4y(y2 + z2 + 9x2) + 6z(y2 − x2))

F1
h(x, y, z, t) = (2(x2 − (y − z)2)− t)t F2

h(x, y, z) = − (x− y)4

z2
+ 6((x+ y)2 + 4xy)− 8(x+ y)z + 3z2

T l4 = 4c1T
l
3 − (c1 − T l2 + T l3)2 Xh = cos

(
1

3
arccos

(
6(c1 − `23)T l2T

l
3

(T l4)
3
2

)
+

4π

3

)
(22)

The partial derivatives can be easily computed for the Triangle, the QuadEdge, and QuadFace configu-
rations by applying the chain rule to the aforementioned formulas. Since these are essentially polynomial
functions or square roots, we do not provide them in this article. However, due to the complexity of the
expressions of the centroid of the Penta and Hexa configurations, we prefer to use the analytical derivatives
given by Chen & Zhang presented in Appendix A. Their formula requires the coordinates of the vertices
of the interface P given in a compatible order with the outgoing normal as presented in figure A.8. For
these configurations, the coordinates of the vertices represented in figures C.15 and C.16 are given in
equations (C.36) and (C.45).

3.3. Algorithm to evaluate the objective function and its partial derivatives
3.3.1. Introduction

In the former section we presented the formulas to compute the centroid and its partial derivatives in the
local chart. In this section we will present the computation of the objective function and its gradient in the
global chart that are required by the minimization algorithm. We denote T as the application that maps the
coordinates from the global chart (θ, φ) to the local chart (θ̃, φ̃) and is defined by:

(θ̃, φ̃) = T (θ, φ) (23)

From figure 4, it is clear that any point in the global chart can be transformed to the local chart with the
following operations. First, if the point lies in the northern hemisphere, it is transformed to the southern
hemisphere by a reflection with respect to the plane {z = c3

2 }. The point is then mapped into the local
chart with one or two quarter turns around the third axis. To keep track of these transformations during the
algorithm we chose to use a set of signs denoted by s = {s1, s2, s3}. For the set of signs, each element verifies
the relation si = ±1. To illustrate these notations, consider the following three examples. A reflection with
respect to the plane {z = c3

2 } is represented by s = {1, 1,−1}. A quarter turn of +π
2 around the third axis is

represented s = {−1, 1, 1}.
From these definitions, the transformation T is found by solving the following equation for θ̃ and φ̃ where

n is defined in equation (6).
n(θ̃, φ̃) = s ◦

(
σ · n(θ, φ)

)
(24)

The ◦ symbol represents a term by term multiplication and σ is the permutation of the two first axes made in
the transformation from the global chart to the local chart. The later can only be equal to the permutation
of the first and the second coordinates denoted by τ12 when the rotation is a quarter turn or the identity
permutation denoted by id otherwise. It is easy to check that the set of signs can be used to encode the
permutation. Thus, σ = id if s1s2 > 0 and σ = τ12 if s1s2 < 0.
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Since the transformation of the hexahedron preserves the distances, the objective function can be written
in the local chart:

F(θ, φ) = |CV(θ, φ)− C?|2 = |CV(T (θ, φ))− C?loc|2 = Floc(T (θ, φ))

where C?loc denotes the reference centroid transformed to the local chart. It is obtained by applying the
permutation to the coordinates of the reference centroid C?loc ← σ · C? and then by applying the reflection
(C?loc)i ← ci − (C?loc)i if si = −1. As a result, the value of the objective function in the global chart is equal to
the value of the objective function in the local chart. The computation of the gradient in the global chart is
a little more tricky and is given by ∇(θ,φ)F = [∇(θ,φ)T ]T∇(θ̃,φ̃)Floc. For the considered transformation, it
can be shown that: [

∂θF(θ, φ)
∂φF(θ, φ)

]
=

[
∂θ̃Floc(θ̃, φ̃)

s3∂φ̃Floc(θ̃, φ̃)

]
(25)

We propose a 2-stage algorithm to evaluate the objective function and its gradient. The first stage
consists to find σ and s to transform the given coordinates (θ, φ) from the global chart to the local chart
(θ̃, φ̃). The second stage consists to evaluate the centroid, its partial derivatives, and the gradient of the
objective function in the local and global charts.

3.3.2. Stage 1: Transformation to local chart

0

π
2

π
−π − π

2 0
π
2 π

1

2 3

ReflectionReflectionReflection

RotationRotationRotation

Figure 6: Illustration of the transformation of a point (θ, φ) from the global chart to the reference chart. (1) The initial point.
(2) The coordinate φ is restricted to [0, π

2
] with a reflection on the {z = c3

2
} plane. (3) The coordinate θ is restricted to [0, π

2
]

with a rotation around the third axis.

The first stage of the algorithm consists to transform the spherical coordinates (θ, φ) to the local chart.
The output of this algorithm is the transformed coordinates (θ̃, φ̃), the permutation σ, and the set of signs s.
This transformation must be seen as a composition of reflections and rotations of the hexahedron. Imagine a
point inside of a hexahedron on the locus of the centroids represented in figure 4. This point follows the
transformation applied to the hexahedron. We would like to rotate the hexahedron in such a way that the
point lies in the region close to the corner of the origin. This region corresponds approximately to the location
of the local chart. To better understand this procedure, consider the example presented in figure 6. This
figure represents the global chart for χ = 0.1, c1 = 2, c2 = 1.5 and c3 = 1. The spherical coordinates of the
point (θ, φ) denoted by 1 are located in the [−π2 , 0]× [π2 , π] region. The set of signs and the permutation are
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initialized to the identity s = {1, 1, 1} and σ = id. To construct the point 2, the coordinate φ of the point 1
is restricted to the interval [0, π2 ] with a reflection of the hexahedron on the {z = c3

2 } plane. The set of
signs becomes {1, 1,−1}. The point 3 is constructed by a rotation of π2 around the third axis. This rotation
corresponds to a permutation of the first axis and the second axis and by reversing the direction on the first
axis. Thus, the permutation becomes τ12 and the sign becomes {−1, 1,−1}. Note that, at this point, figure 6
no longer represent the global map. The hexahedron has been rotated but the frame of spherical coordinates
has not been changed. Thus, the representation in spherical coordinates should be redrawn by permuting the
dimensions c1 and c2 of the hexahedron. The point 3 is now located in the local chart defined in figure 5.

We propose the following 7-step algorithm to transform the coordinates from the global chart to the local
chart.

Step 1. Set θ̃ ← θ and φ̃← φ.

Step 2. Translate θ̃ and φ̃ such that (θ̃, φ̃) ∈ [−π, π]× [0, 2π[ by adding ±π as many times as necessary.

Step 3. Initialize s← {1, 1, 1}

Step 4. Crop φ̃ to [0, π2 ] with the following instructions:

• If φ̃ ∈ ]π, 2π[: φ̃← 2π − φ̃ and s3 ← −1.

• If φ̃ ∈ ]π2 , π], make a reflection on the third axis: φ̃← π − φ̃ and s3 ← −s3.

Step 5. Crop θ̃ to [0, π2 ] with the following instructions:

• If θ̃ ∈ ]π2 , π], rotate by −π2 around the third axis: θ̃ ← θ̃ − π
2 and s← {1,−1, s3}.

• If θ̃ ∈ [−π,−π2 [, rotate by π around the third axis: θ̃ ← θ̃ + π and s← {−1,−1, s3}.

• If θ̃ ∈ [−π2 , 0[, rotate by π
2 around the third axis: θ̃ ← θ̃ + π

2 and s← {−1, 1, s3}.

Step 6. Set the permutation: If s1s2 < 0, σ ← τ12 Else σ ← id.

Step 7. Apply the permutation to the dimensions of the hexahedron {c1, c2, c3} ← σ · {c1, c2, c3}.
At the end of this stage, we have determined σ, s, and (θ̃, φ̃) which belong to the local chart.

3.3.3. Stage 2: Compute the objective function and its gradient
The second stage of the algorithm consists to evaluate the centroid and its partial derivatives in the

local chart and to compute the gradient of the objective function. First, determine in which configuration —
Triangle, Penta, QuadEdge, QuadFace, or Hexa — the transformed coordinates belong to using the internal
limits φlim

? (12) to (16). Note that θh
4 can be placed before or after θ5 when χ > 1

6 depending on the
dimensions of the hexahedron. However, they are always greater than θ3. Note that θ1 and θh

2 have the same
behavior but are always smaller than θ3. In particular, the sign of θh2 − θ1 is the same as the sign of θ5 − θh4 .
Once the configuration is determined, evaluate accordingly the centroid and the derivatives in the local chart
using the formulas defined in section 3.2.2. Finally, compute the gradient of the objective function in the
global chart using relation (25). For the implementation, we recommend to prefer any configuration over the
Penta and Hexa configurations and to prefer the Penta configuration over the Hexa in the inequalities of
the limit curves. Furthermore, we recommend to treat the case χ = 1

2 using only the limits of the Penta
configuration which are the same as those of the Hexa configuration but are numerically more accurate.

Although it is not required by the algorithm, the centroid given in the local chart can be transformed to
the global chart by applying the inverse of the permutation to its coordinates C ← σ−1 · Cloc and to the set
of signs s← σ−1 ◦ s, and then by applying the correction Ci ← ci − Ci if si = −1, where the ci correspond to
the non-permuted dimensions of the cell. Here σ−1 = σ since σ = id or τ12.

At the end of this stage, we have determined F(θ, φ), ∂θF(θ, φ) and ∂φF(θ, φ) which will be used in the
optimization algorithm.

12



4. Numerical results

4.1. Introduction
In this section, we demonstrate that the proposed analytic method outperforms the geometric approaches.

Two criteria are evaluated: the runtime and the robustness. The former criterion is essential to reduce the
wall clock time and total CPU time, especially for high performance computers while the latter is necessary
to evaluate the consistency of the accuracy of the results.

Three geometric approaches are compared to our proposed method. The first, referred to as finite
differences gradient, consists to reconstruct an approximation ω ∈ A (2) in the direction n using the flood
algorithm proposed by Diot & François [24]. The centroid of this approximation is computed using a formula
for convex polyhedrons as presented in [25]. The partial derivatives of the centroid are evaluated with a
centered finite-difference scheme which requires two more reconstructions per direction. The gradient of
the objective function is then computed using formula (8). Overall, five calls to the flood algorithm are
required to compute the objective function and its gradient. The second method, referred to as geometric
gradient, consists to use only one call of the flood algorithm to compute the centroid and to evaluate the
gradient by the method of Chen & Zhang [17], which we have summarized using our notations in Appendix
A. To compute the centroid of the reconstructed polyhedron, this second method requires to construct the
vertex–face connectivities of the polyhedron at the term of the flood algorithm. The third method, referred
to as optimized centroid, is an improvement of the second detailed in Appendix B.

In [24], the polyhedron is rotated such that the flood direction n corresponds to the axis e3. Two special
cases must be treated if n = ±e3. When the partial derivatives are evaluated by finite differences near the
poles, the singularity of the rotation creates some non-negligible perturbations in the values of the partial
derivatives. Since the minimization algorithm relies on the accuracy of the derivatives, it is necessary to
avoid the rotation. In Appendix B, we describe how to adapt the algorithm for any flood direction. This
improvement is used in any geometric method tested in this paper.

All of these methods are implemented in the massively parallel open-source code Notus [26] which is
dedicated to the modelization and simulation of incompressible fluid flows. Its numerical framework is the
finite volume method on Cartesian staggered grids with a methodological focus on interfaces treatment
(multi-material interface advection [18], surface tension computation [27], immersed boundary methods [28],
etc.). The verification cases are conducted on a supercomputer with Intel Xeon E5-4640 processors and on a
supercomputer with Intel Xeon Gold 6130 processors. The code was compiled with Intel Fortran Compiler
18.0. Although the runtime ratios given in this article are implementation-dependent and may vary with the
architecture and the compilers, they are representative of the general behavior of the methods.

4.2. Robustness and runtime ratios of the computation of the objective function and its gradient
4.2.1. Robustness

To verify the proposed method, the centroid and the gradient computed by the formulas given in section 3
have been compared to those given by the finite differences gradient method and the geometric gradient
method for a large number of configurations. The parameters varied are the cell dimensions {c1, c2, c3},
the direction n, and the volume fraction χ. Although the position of the reference centroid C? does not
matter, it is wise to select a position far away from the locus of the centroids LV to avoid to nullify the
term CV(θ, φ)− C? in the gradient of the objective function which may hide potential errors in the partial
derivatives of the centroid. The center of the hexahedron is a good choice for the reference centroid.

Regardless of the parameters, the distance between two centroids given by the two different methods
is close to the machine precision. However, the gradient of the objective function does differ between the
methods. As expected, the difference between the gradients given by finite differences and the proposed
method is the highest. We found that the optimal value for the finite differences step is ∆θ = ∆φ = 10−9

that results in a difference of about 10−8 in magnitude. With the method of Chen & Zhang [17], described
in Appendix A, and the optimized centroid method discussed in Appendix B, this difference drops to the
machine precision.

Although we verified our method on a large number of configurations, we have to challenge it on extreme
cases. These include large aspect ratios of the hexahedron, small volume fractions, and the particular case

13



χ = 1
2 . Moreover, we have to verify our method when the interface passes through one or more vertices

of the hexahedron which correspond to the case when the interface is between two or more configurations,
that is when φ = φlim

? (θ). For each extreme case, the accuracy is measured by computing the `∞ norm of
the difference between the values (objective function and gradient) given by the proposed method and the
optimized centroid method on a large sampling of the local chart and the limit curves. Note that we took
care to sample the end points of the limit curves which correspond to the cases where the interface passes
through two, three, or four vertices of the hexahedron. Typically, we used 1000 samples per direction on the
local chart and 1000 points per limit curve.

The results on these extreme cases show the importance of the inequalities used to determine the
configuration on the local chart during the stage 2 of the algorithm (see 3.3.3). For numerical stability on
the limit curves, we recommend to use any configuration over the Penta and Hexa configurations and to use
the Penta configuration over the Hexa. For the cases with large aspect ratios, we have tested our method
for various volume fractions on plate-like cells where two lengths are equal and the third one is 1000 times
smaller and on needle-like cells where two lengths are equal and the third one is 1000 larger. Compared
to the optimized centroid method, we found an error close to machine precision. For the case χ = 1

2 , only
the QuadFace and Hexa configurations remain. We found that the formulas of the limit curves of the Penta
configurations are more numerically accurate that the formulas of the limit curves of the Hexa configuration
although they are the same analytically. For small volume fractions χ → 0, the difference between our
method and the geometric method is very close until χ ≈ 10−10. For smaller χ, the difference increases for
the gradient but it is difficult to tell which method gives the right result.

4.2.2. Runtime ratios
To determine the performances of the various methods, the evaluation of the objective function and its

gradient are computed for a large number of configurations. The ratio between the runtime of the methods
and the runtime of our proposed method is then calculated. To generate the different cases, the direction n
and the volume fraction χ are evenly sampled. We found that the dimensions of the cell do not change the
runtime ratios.

We use an exponential sampling for the volume fraction χ in the range 10−10 to 1
2 which means that

log(χ) is uniform in [log(10−10), log( 1
2 )]. To sample the direction n, we cannot use a linear sampling on θ

and φ as it does not evenly distribute the points on the unit sphere since the poles are more densely sampled
than the equator. Instead, the points on the sphere are generated along a spherical Fibonacci grid [29] which
gives a good approximation of an evenly distribution of points on the sphere. The coordinates of these points
are given in equation (26) for 2N + 1 samples.

∀k ∈ J−N,NK θk = 2π
mod(k, ϕ)

ϕ
φk = arccos

(
2k

2N + 1

)
where ϕ =

1 +
√

5

2
(26)

The results are presented in table 1 for 1000 samples of χ and 25 001 samples of n which makes a total of
25 001 000 cases. Increasing the number of samples does not significantly change the runtime ratios.

Method Runtime ratio

Finite differences gradient 237
Geometric gradient (Appendix A) 63
Optimized centroid (Appendix B) 43
Analytic reconstruction 1

Table 1: Runtime ratios between geometric methods and analytic method for the computation of the objective function and its
gradient.

From table 1, we observe that the geometric gradient method is almost 4 times faster than the finite
differences gradient method. This result is expected since it replaces four calls to the flood algorithm
with simple a calculation on a polygon (see Appendix A). The optimized centroid method that is proposed
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in Appendix B is 1.5 times faster than the geometric gradient method. This gain is obtained by computing the
centroid directly during the flood algorithm instead of reconstructing a polyhedron structure to subsequently
compute its centroid. Also, using the method of Chen & Zhang [17] to compute the gradient makes the
optimized centroid method 5.5 faster than the finite differences gradient method. Drastic increases in
performance is further obtained through our proposed analytic method which is 237 times faster than the
finite differences method and 43 times faster than the most competitive geometric method. These results
show that the proposed method should be used to improve the numerical simulation runtime.

4.3. Robustness and runtime ratios for reconstructions with a minimization algorithm
Although we verified our method on the computation of the objective function and its gradient, we also

tested the behavior of the various methods coupled with a minimization algorithm to further analyze their
behavior. In this article, we chose the BFGS algorithm along with the line-search algorithm described in [30].
We use the classic initial guess based on the centroid of the cell C(Ω) and the reference centroid C? defined in
the following equation:

n(θ0, φ0) =
C? − C(Ω)

|C? − C(Ω)| (27)

The objective function (7) contains several local minima and sometimes several global minima, such as
the case where the reference centroid is at the center of the cell. We will exploit this property to measure the
robustness of our proposed method compared to the others since the less robust methods are more likely to
make the minimization algorithm fall into local minima.

For the line-search algorithm proposed in [30] we use the currently optimized parameters: ρ = 0.25,
σ = 0.5, τ1 = 3, τ2 = 0.1 and τ3 = 0.5. The minimization algorithm is the same for all the tested methods
and stops when it reaches a maximum number of iterations or the norm of the gradient of the objective
function falls below a prescribed tolerance value.

We have conducted the robustness study on two sets of one million random-generated cases. In both
sets, the dimensions of the cell for each case are computed with the formula ci = αi · 10β where αi ∈ [0.1, 1[
and β ∈ [−3, 3] are randomly-generated with a uniform distribution. The volume fractions χ ∈ [10−7, 1

2 ]
are generated with a exponential distribution. The two sets differ by the way the reference centroids are
generated. In the first set, the reference centroids lie on the locus of the centroids. That means that the
minimum value of the objective function (7) is zero. This set will be referred to as the exact reconstruction
cases. To generate this set, a direction n is randomly generated with a uniform distribution and a flood
algorithm is used to compute the reference centroids. In the second set, the reference centroids are randomly
generated over the cell with a uniform distribution. This set will be referred to as the random reconstruction
cases. The tolerance value of the BFGS algorithm — the norm of the gradient of the objective function — is
set to 10−14 and the maximum number of iterations is set to 400. These parameters can be relaxed for a
practical use of MOF, but here, we want to detect whether one of the methods prevents to reach a small
residual.

4.3.1. Robustness on exact reconstructions with a BFGS algorithm
On the exact reconstruction cases, the four methods — finite differences gradient, geometric gradient,

optimized centroid, and analytical reconstruction — give the same statistical results. Note that each iteration
of the BFGS algorithm requires one evaluation of the gradient and several iterations of the line-search
algorithm. Each iteration of the line-search algorithm requires one evaluation of the gradient and at least
one more for the bracketing phase. The median of the number of gradient evaluations in the BFGS is 11, the
median of the number of gradient evaluations in the line-search algorithm is 53 and the median of the sum of
gradient evaluations in the BFGS and line-search is 62.

To understand the similarity of the statistics, we have evaluated the quality of the computed minimum
for each pair of methods by comparing the final values of the objective function. With this criterion, we
are not able to differentiate the methods since they give the same results with no apparent differences. We
explain this behavior by remarking that the term CV(θ, φ)− C? in the gradient vanishes when the BFGS gets
closer to the minimum and, as a result, the numerical errors on the partial derivatives are reduced by this
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term. Furthermore, the initial guess makes this term quite small from the initial step of the algorithm. For
the random reconstruction cases, this term does not vanish and we are able to see the differences.

4.3.2. Robustness of the random reconstructions with a BFGS algorithm
On the random reconstruction cases, the behavior of the BFGS differs depending on the method used.

Table 2 presents the median of the number of gradient evaluations in the BFGS, the line-search, and the sum
of the BFGS and the line-search algorithms.

Method BFGS line-search BFGS + line-search

Finite differences gradient 19 167 188
Geometric gradient (Appendix A) 20 160 181
Optimized centroid (Appendix B) 19 152 171
Analytic reconstruction 18 150 168

Table 2: Median of the number of calls of the gradient in the different parts of the minimization algorithm and for the different
reconstruction methods.

This time, the term CV(θ, φ)− C? does not vanish in the gradient of the objective function and the errors
in the approximation of the partial derivatives deteriorates the convergence of the BFGS algorithm. The
exponential sampling guarantees an uniform distribution of log(χ) in the range [log(10−7), log( 1

2 )]. This
implies that a lot of cases have small volume fractions for which the objective function if very flat with
sudden and abrupt variations. As a consequence, more iterations of the minimization algorithm are required
to reach its convergence criteria which explains the large values obtained for the median number of calls of
the gradient. We observe that the analytic methods requires less calls to the gradient compared to other
methods. We explain this result by the smoothness of the analytic formulas compared to the geometric
methods. However, we note that the results of the optimized centroid method are close to the results of the
proposed method.

4.3.3. Runtime ratios for reconstructions with a BFGS algorithm
For these exact and random sets of cases, the runtime ratios between the various methods and the

proposed method have been computed and summed up in table 3.

Method Runtime ratio
exact random

Finite differences gradient 104 193
Geometric gradient (Appendix A) 28 51
Optimized centroid (Appendix B) 19 28
Analytic reconstruction 1 1

Table 3: Runtime ratios between geometric methods and analytic method using the BFGS algorithm.

These results differs from table 1 since the runtime cumulates of the evaluation of the gradient and the
BFGS itself. Anyway, we observe that the analytic reconstruction method still outperforms the geometric
methods.

4.4. Reconstruction of a face-centered cubic arrangement of spheres
To complete the set of numerical tests, we compared the behavior of the various methods on two more

actual cases composed of a face-centered cubic (FCC) arrangement of spheres in a unit cube. The first case
presented in the left of figure 7 represents the elemental chunk of a FCC arrangement of 14 spheres. This
case was performed in a randomly perturbed rectilinear grid composed of 64 cells per direction. The volume
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and the centroid of each cells have been initialized using a sampling method and the polyhedrons have been
reconstructed with the MOF method using the analytic centroid method.

Figure 7: Face-centered cubic arrangement of spheres reconstructed using the analytic centroid method. Left: one chunk of the
face-centered cubic arrangement reconstructed on a perturbed 643 rectilinear grid. Right: 263 chunks loosely initialized and
tiled in a perturbed 1283 rectilinear grid.

Measuring the runtime ratios of the various methods requires a large computation for the results to be
considered as statistically converged. To increase the number of reconstructions, we present a second case
where the chunk was shrunk and tiled 26 times per direction in the unit cube. The volumes and the centroids
have been initialized with a coarse sampling in each cells. The randomly perturbed rectilinear grid was
generated starting from a regular rectilinear grid composed of 128 cells per direction. In each directions, the
position of each faces are randomly shifted by a step αh0 where h0 = 1

128 is the original space step and α is
a random number in the range [−0.2, 0.2]. This configuration contains 74 439 spheres and required 3 354 272
calls to the BFGS algorithm to be reconstructed. The right of figure 7 represents a close-up view of the
polyhedrons reconstructed by the MOF method for this second test. The runtime measures were conducted
on a single CPU to increase the accuracy of the ratio and are presented in table 4. To give an idea of the
time saved, this case with our analytic method ran in 273 s and in 24 485 s with the finite differences gradient
method.

Method Runtime ratio

Finite differences gradient 89
Geometric gradient (Appendix A) 22
Optimized centroid (Appendix B) 17
Analytic reconstruction 1

Table 4: Runtime ratios between geometric methods and analytic method for the reconstruction of a face-centered cubic
arrangement of spheres in a 1283 randomly perturbed rectilinear grid.

This time, the runtime cumulates the evaluation of the gradients, the minimization algorithm and the
whole MOF algorithm on all the cells. As before, we observe that the analytic reconstruction method still
performs better than the other methods.

To conclude, all the methods except the finite differences gradient method offers approximately the same
accuracy. This is due to the absence of approximations in the evaluation of the partial derivatives of the
objective function. These methods can be differentiated by their runtime and, as shown in tables 1, 3, and 4,
our analytic reconstruction method outperforms the other methods.
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5. Conclusion

In this article we have developed a new fast and robust approach to solve the minimization problem of the
moment-of-fluid method in 3D on rectangular hexahedrons. The key idea is to find a global parametrization
in spherical coordinates of the locus of the centroids at fixed volume. This allows to compute the objective
function and its gradient with fully analytical formulas which avoid the use of a computationally intensive
geometric flood algorithm. The numerical results show that our analytical method is up to 200 times
faster than the geometric approaches. We have also adapted and improved the flood algorithm [24] for the
moment-of-fluid method for general convex cells. In future work, we will extend our methodology of the
centroid locus parametrization to other cell shapes, for instance, in 2D on convex polygons or in 3D on
tetrahedrons.

Appendix A. Analytic gradient from the geometric approach

xG uθ

uφ
n

p1

p2

p3

p4

p5

O

e1

e2

e3

Figure A.8: Example of a top polygon (Penta configuration, χ = 0.9). The points pi denote the vertices of the polygon and
xG denotes the centroid of the top polygon. The Cartesian frame and the spherical frame are represented in there respective
positions.

In this section, we present the formulas to compute the gradient of the objective function proposed by
Chen & Zhang [17]. The input data of this algorithm is the surface of the intersection of a half-space with
the polyhedron given by the flood algorithm. This surface will be denoted by P and will be referred to as
top polygon. Figure A.8 gives an example of a top polygon in the Penta configuration. The top polygon is
composed of n vertices denoted by pi for i ∈ J1, nK. The algorithm to compute the gradient of the objective
function can be decomposed in four steps.

Step 1. Compute the surface S and the centroid xG of the top polygon P in the Cartesian frame (O; e1, e2, e3)
with equations (A.1) and (A.2).

S =
1

2

n−1∑
i=2

∣∣(pi − p1)× (pi+1 − p1)
∣∣ (A.1)

xG = p1 +
1

6S

n−1∑
i=2

∣∣(pi − p1)× (pi+1 − p1)
∣∣((pi − p1) + (pi+1 − p1)

)
(A.2)

Step 2. Transform the points into the spherical frame (xG;uθ,uφ,n) where the origin is set to the centroid
of the top polygon. The unit vectors of the spherical basis can be expressed in the Cartesian basis with
equation (A.3).

uθ = − sin(θ)e1 + cos(θ)e2

uφ = cos(θ) cos(φ)e1 + sin(θ) cos(φ)e2 − sin(φ)e3

n = cos(θ) sin(φ)e1 + sin(θ) sin(φ)e2 + cos(φ)e3

(A.3)
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Any point p in the Cartesian frame can be transformed into a point p̃ in the spherical frame by the
relation (A.4).

p̃ =

(p− xG) · uθ
(p− xG) · uφ
(p− xG) · n

 (A.4)

Step 3. Calculate three quadratic integrals over the top polygon. Consider any polynomial function
ϕ : R3 → R of degree at most two. The integral of ϕ over the top polygon can be exactly computed using the
sum of a 3-point Gauss quadrature, as defined in formula (A.5). This formula comes from the decomposition
of the polygon into triangles as represented by dotted lines in figure A.8. Note that the points must be
transformed into the spherical frame using the previous relation (A.4).

Iϕ =
1

6

n−1∑
i=2

∣∣(p̃i − p̃1)× (p̃i+1 − p̃1)
∣∣(ϕ( p̃i + p̃1

2

)
+ ϕ

(
p̃i + p̃i+1

2

)
+ ϕ

(
p̃i+1 + p̃1

2

))
(A.5)

Compute the quantities Ixx, Ixy and Iyy which correspond, respectively, to ϕ = x2, ϕ = xy and ϕ = y2. In
these formulas, x, y and z are the coordinates of any point in the spherical frame given by xuθ + yuφ + zn.

Step 4. Finally, compute the partial derivatives in the spherical frame and the gradient of the objective
function. The partial derivatives in the spherical frame are computed using relation (A.6).

∂θC̃V(θ, φ) = − sin(φ)

V [Ixx, Ixy, 0]

∂φC̃V(θ, φ) = − 1

V [Ixy, Iyy, 0]

(A.6)

The gradient of the objective function is computed with formula (A.7). Note that the centroid and the
reference centroid must be transformed into the spherical frame using relation (A.4).

∂θF(θ, φ) = 2
(
C̃V(θ, φ)− C̃?

)
· ∂θC̃V(θ, φ)

∂φF(θ, φ) = 2
(
C̃V(θ, φ)− C̃?

)
· ∂φC̃V(θ, φ)

(A.7)

Appendix B. Improvements of the flood algorithm for the moment-of-fluid method

In this section, we present some optimizations related to the flood algorithm proposed by Diot &
François [24]. The first optimization consists in getting rid of the rotation of the polyhedron in the reference
frame since it induces some singularities in the derivative when n = ±e3. The second optimization consists
in evaluating the centroid during the reconstruction.

= + −

Figure B.9: Decomposition of a prismatoid in the sum of three terms. First, add a right prism. Second, add some tetrahedron
and triangular prisms (in green). Third, subtract some tetrahedron and triangular prisms (in red). The arrows denote the unit
tangent of the edges of the prismatoid.

The method proposed by Diot & François consists in bracketing the position of the interface between two
parallel slices of the polyhedron. Each slice corresponds to a plane that passes through, at least, one vertex
of the polyhedron. The slices are sorted in such a way that the distances of the planes on the flood axis n are
in increasing order. The shape between two consecutive planes is a polyhedron called a prismatoid. All the
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vertices of a prismatoid are contained in one or the other plane as show by the example in figure B.9. The
flood algorithm consists in computing the volume of the prismatoids one after the other until the reference
volume is exceeded. Once the reference volume exceeded, the position of the interface is found inside the last
prismatoid (refer to [24] for the method). Here, we propose an alternative method to compute the volume of
the prismatoids for any direction n instead of n = e3 in the original article. Then we present new formulas
to evaluate their centroids.

In the article of Diot & François, the volume of a prismatoid is computed as the volume of a right prism
plus the volume of some tetrahedrons and triangular prisms minus the volume of some tetrahedrons and
triangular prisms (refer to figure B.9). In figure B.10, we present the notations of the known quantities
during the computation of the volume. The base of the right prism is composed of n vertices (pi)i∈J1,nK that
forms the bottom plane of the prismatoid and its height is denoted by h. The tetrahedron is generated by
three unit vectors u, v and n. The triangular prism is generated by the flood direction n and the normal of
one of its face nf .

n

u v
p

n

nf

p1

p2
hh

p1

p2

p3

p4

p5

n

Figure B.10: Decomposition of the prismatoid. Left: right prism. Middle: tetrahedron. Right: triangular prism.

The volume of a tetrahedron and its centroid can be computed using equation (B.1).

Vtetra =
h3

6

( u

u · n ×
v

v · n
)
· n Ctetra = p +

h

4

(
n +

u

u · n +
v

v · n
)

(B.1)

The volume of a triangular prism and its centroid can be computed using equation (B.2).

Vtri = −h
2

2

(
|p2 − p1|

n · nf
|n× nf |

)
Ctri =

p1 + p2

2
+
h

3

(
nf × (p2 − p1)

|n× nf ||p2 − p1|

)
(B.2)

The volume of a right prism and its centroid can be computed using equations (B.3a) and (B.3b).

S =
1

2

n−1∑
i=2

∣∣(pi − p1)× (pi+1 − p1)
∣∣ (B.3a)

Vprism = hS Cprism =
h

2
n + p1 +

1

6S

n−1∑
i=2

∣∣(pi − p1)× (pi+1 − p1)
∣∣((pi − p1) + (pi+1 − p1)

)
(B.3b)

The centroid of a prismatoid and the centroid of the final polyhedron are computed using the additivity of
the first momentum, that is, using the pseudo-formula (B.4).

C =

∑VtetraCtetra +
∑VtriCtri +

∑VprismCprism∑Vtetra +
∑Vtri +

∑Vprism
(B.4)

Remark that it is more efficient to write the algorithm in terms of first momentum instead of centroid. The
centroid of the final polyhedron can be easily computed by dividing its first momentum by the total volume
which is equal to the reference volume.
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Appendix C. Proof of the formulas for the parametrization of the locus of the centroids

In this appendix, we give a proof of the formulas given in section 3. For each configuration — Triangle,
QuadEdge, QuadFace, Penta, and Hexa — the same methodology is used to obtain the analytic formulas.
First, we remark that the surface of the half-space intersects between three and six edges of the hexahedron.
In each configuration, we denote A, B, and C three of these intersection points. The other points, when they
exist, can be deduced from the coordinates of these points since they belong to the same plane. We define α,
β, and γ the coordinates of the points A, B, and C on the respective directions of their edges. The volume
and the centroid of the intersection of the half-space and the rectangular hexahedron is then computed by a
tetrahedral decomposition and by using the additivity of the volume and the first momentum. We recall that
the centroid of a tetrahedron is equal to the centroid of its vertices. Then, some inequalities between α, β,
and γ are established from the geometric constraints of the different configurations. Next, the volume V is
imposed to give a relation β = β(α, γ,V). At this step, the centroid is described locally as a function of α
and γ for a fixed volume V. The definition domain DV? of the local parametrization and its limit curves in
(α, γ) are given for each configuration. The concatenation of these domains is illustrated in figure C.11 for
χ ≤ 1

6 and χ > 1
6 . These domains are mapped in the (θ, φ) chart (figure 5) and the domain enclosed by the

bold lines corresponds to the left configurations. Finally, we give the parametrizations and the associated
limit curves in spherical coordinates (θ, φ) defined in section 3.
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Figure C.11: Local charts in (α, γ) of all the configurations. The bold region corresponds to the left configurations of the local
chart in (θ, φ). (left) χ ≤ 1

6
. (right) χ > 1

6
.

Appendix C.1. Definitions and notations
In the same way as for equation (6), the normal to the plane is defined as:

n =
1√

a2
1 + a2

2 + a2
3

a1

a2

a3

 =

sin(φ) cos(θ)
sin(φ) sin(θ)

cos(φ)

 (C.1)

where θ ∈ [−π, π] and φ ∈ [0, π] are the spherical coordinates. The interface P defined in (10) can be
alternatively defined by:

P =
{

(x, y, z) ∈ R3
∣∣ a1x+ a2y + a3z = 1

}
(C.2)

The coefficients a1, a2, and a3 will be referred to as coefficients of the plane. We restrict θ to [0, π/2] and φ
to [0, π/2] by symmetry, hence, cos(φ), cos(θ), tan(φ), tan(θ), a1, a2, and a3 are positive. From (C.1), we
have the relations:

a2

a1
= tan(θ)

a3

a1
= cot(φ) sec(θ) (C.3)

In this appendix, we will provide the details of the parametrizations of the limit curves and centroids for
the Left region. The equation (C.3) will give the two following important quantities involved in the Left
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region: T l2 = c2 tan(θ) and T l3 = c3 cot(φ) sec(θ). The parametrizations associated to the Right and Bottom
regions can be easy deduced from the Left region with a circular permutation of the axes. For the Right
region the permutation x→ y → z → x is applied and leads to

ar2
ar1

=
a3

a2
= cot(φ) csc(θ)

ar3
ar1

=
a1

a2
= cot(θ) (C.4)

which correspond to the two following important quantities involved in the Right region: T r2 = c3 cot(φ) csc(θ)
and T r3 = c1 cot(θ). For the remaining Bottom region the permutation x→ z → y → x is applied and leads
to

ab2
ab1

=
a1

a3
= tan(φ) cos(θ)

ab3
ab1

=
a2

a3
= tan(φ) sin(θ) (C.5)

that correspond to the two following important quantities involved in the Bottom region: T b2 = c1 tan(φ) cos(θ)
and T b3 = c2 tan(φ) sin(θ). The parametrizations in the Right (respectively Bottom) region are then computed
by replacing T li by T ri (respectively T bi ) and by applying a circular permutation of the coordinates as in (14)
to (15) and (18) to (21). We will now detail how to obtain limit curves and centroids in the Left region.

We consider a rectangular hexahedron Ω = [0, c1]× [0, c2]× [0, c3]. We recall that the reference volume
is denoted by V and the associated volume fraction V

c1c2c3
is denoted by χ. We make the assumption that

χ ≤ 1
2 since the case χ > 1

2 can be treated by considering the complementary problem. In this appendix, we
use the following notations (i, j ∈ {1, 2, 3}) already defined in (11):

`ij =
2V
cicj

T r3 = c1 cot(θ) T l2 = c2 tan(θ) T l3 = c3 cot(φ) sec(θ)

The following functions will be used in the definition of the limit curves of the local charts. The roots of the
following second degree polynomial in γ given by γ2 + αγ + α2 − 3`ijα = (γ − f ijV (α))(γ − f̃ ijV (α)) are equal
to:

f ijV (x) =
1

2

(
−x+

√
12`ijx− 3x2

)
f̃ ijV (x) =

1

2

(
−x−

√
12`ijx− 3x2

)
(C.6)

The function f ijV is well defined and positive on [0, 3`ij ], monotonically increasing on [0, `ij ] and monotonically
decreasing on [`ij , 3`ij ]. It verifies the identities f ijV (0) = 0, f ijV (`ij) = `ij , and f ijV (3`ij) = 0. We also
introduce gV as:

gV(α) = c1
2α2 + (2c3 − 3`12)α− c23 +

√
(2α2 + (2c3 − 3`12)α− c23)2 + 4(c3 − α)2(3`12c3 − (c23 + c3α+ α2))

2(c3 − α)2

(C.7)
The function gV is well defined, positive and decreasing on [0, f12

V (c3)]. It verifies the identities gV(0) = f23
V (c1)

and gV(f12
V (c3)) = 0. We also introduce h13

V as:

h13
V (α) = c1

2α3 + 3(c3 − α)(c3(c3 − `12) + `12α)−
√

3(c3 − α)2(3(c3(c3 − `12) + `12α)2 + 4(c3 − `12)α3)

2α(α2 + 3c3(c3 − α))
(C.8)

The function h13
V is well defined, positive and monotonically increasing on [0, c3]. It verifies the identities

h13
V (0) = 0 and h13

V (c3) = c1. The angles of the local chart of figure 5 are given by:

θ1 = arctan

(
`23

c2

)
θt

2 = arctan

(
3`23

c2

)
θ3 = arctan

(
c1
c2

)
θt

4 = arctan

(
c1

3`13

)
θ5 = arctan

(
c1
`13

)
θh

2 = arctan

(
c1 − f23

V (c1)

c2

)
θh

4 = arctan

(
c1

c2 − f13
V (c2)

)
Consider the third-degree polynomial x3 + px + q = 0. When the discriminant ∆ = 4p3 + 27q2 ≤ 0, the
polynomial has three real roots given by (k ∈ {0, 1, 2}):

xk = 2

√
−p
3

cos

1

3
arccos

 −q
2

√(
−p3
)3
+

2kπ

3

 (C.9)
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Appendix C.2. Parametrization of the Triangle configuration
Appendix C.2.1. Parametrization in (α, γ)
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Figure C.12: Triangle configuration (left) and definition domain DV
t with χ < 1

6
(right).

In the Triangle configuration, the plane — the surface P defined in (C.2) — intersects the cell as
presented on the left of figure C.12. The coordinates of the points are given by A = (α, 0, 0), B = (0, β, 0),
and C = (0, 0, γ). The coefficients of the plane (C.2) are given by:

a1 =
1

α
a2 =

1

β
a3 =

1

γ
(C.10)

The volume of the tetrahedron OABC is given by Vt(α, β, γ) = αβγ
6 . Its centroid is given by Ct(α, β, γ) =

1
4 [α, β, γ]. By imposing the fixed reference volume V, we obtain:

βt(α, γ,V) =
6V
αγ

CVt (α, γ) =
1

4

[
α,

6V
αγ

, γ

]
(C.11)

In closed form, the centroid verifies the equation Y = 3V
32XZ which is a portion of a hyperboloid. When

the parameters α ∈ [0, c1] and γ ∈ [0, c3] are fixed, we have βt ∈ [0, c2], so, 0 ≤ 6V
αγ ≤ c2. The domain DVt ,

represented on figure C.12, is given by:

DVt =

{
(α, γ) ∈ [0, c1]× [0, c3]

∣∣∣∣ γ ≥ 6V
c2α

}
Its three limit curves are given by Γ3

t : α 7→
(
α, 6V

c2α

)
with α ∈ [3`23, c1], Γ2

t : γ 7→ (c1, γ) with γ ∈ [3`12, c3]
and Γ1

t : α 7→ (α, c3) with α ∈ [3`23, c1].

Appendix C.2.2. Parametrization of the centroid and the limit curves in (θ, φ)

From equations (C.3), (C.10) and relation (C.11), we get tan(θ) = α
β = α2γ

6V and cot(φ) = α
γ cos(θ). We

solve these equations for α and γ to obtain:

γt(θ, φ,V) =

(
6V tan(θ)

(cot(φ) sec(θ))2

) 1
3

αt(θ, φ,V) = γt(θ, φ,V) cot(φ) sec(θ) (C.12)

We obtain the final parametrization (17) by replacing α and γ in (C.11) by their expression given in (C.12).
The limit curves in (θ, φ) are obtained from the limit curves in (α, γ). For the curve Γ3

t , we have γ = 6V
c2α

.
Hence, tan(θ) = α

c2
and cot(φ) = c2α

2

6V cos(θ). When solved for (θ, φ), we obtain φlim
t3 (θ) (12) defined on

[θt
2, θ3]. For the curve Γ2

t , we have α = c1. Hence, tan(θ) =
c21γ
6V and cot(φ) = c1

γ cos(θ). We obtain φlim
t2 (θ)

(12) defined on [θ3, θ
t
4]. For the curve Γ1

t , we have γ = c3. Hence, tan(θ) = c3α
2

6V and cot(φ) = α
c3

cos(θ). We
obtain φlim

t1 (θ) (12) defined on [θt
2, θ

t
4].
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Appendix C.3. Parametrization of the QuadFaceL configuration
Appendix C.3.1. Parametrization in (α, γ)

QuadFaceL

•
O

•
A

α

β

γ

δ

z

y

x
c1

c2

c3

•B

•
C

•D

α

γ

c1

c1

`23

`23

DV
qfl

Figure C.13: QuadFaceL configuration (left) and definition domain DV
qfl (right).

In the QuadFaceL configuration, the plane intersects the cell as presented on the left of figure C.13. The
coordinates of the points are given by A = (α, 0, 0), B = (β, c2, 0), C = (γ, 0, c3), and D = (δ, c2, c3). The
coefficients of the plane (C.2) are given by:

a1 =
1

α
a2 =

α− β
c2α

a3 =
α− γ
c3α

(C.13)

Since the point D belongs to the plane, we have δ = β + γ − α. The plane can be parametrized by
x = ζqfl(y, z) = α+ β−α

c2
y + γ−α

c3
z. The volume of the approximation is given by:

Vqfl(α, β, γ) =

∫ c3

0

∫ c2

0

∫ ζqfl(y,z)

0

1 dx dy dz =
c2c3(β + γ)

2
(C.14)

The centroid of the approximation is given by:

Cqfl(α, β, γ) =
1

Vqfl(α, β, γ)

∫ c3

0

∫ c2

0

∫ ζqfl(y,z)

0

xy
z

dx dy dz =
1

6(β + γ)

2γ2 + 3βγ + 2β2 − α(β + γ) + α2

c2(3γ + 4β − α)
c3(4γ + 3β − α)


By imposing the fixed reference volume V in (C.14), we obtain:

βqfl(α, γ,V) = `23 − γ CVqfl(α, γ) =
1

6`23

2(`23)2 − `23(α+ γ) + α2 + γ2

c2(4`23 − (α+ γ))
c3(3`23 − (α− γ))

 (C.15)

In closed form, the centroid verifies the equation X = V
2c32c

3
3

(
12c23(Y − c2

2 )2 + 12c22(Z − c3
2 )2 + c22c

2
3

)
which

is a portion of a paraboloid. When the parameters α, γ ∈ [0, c1] are fixed, we have βqfl, δqfl ∈ [0, c1], so
0 ≤ `23 − γ ≤ c1 and 0 ≤ `23 − α ≤ c1. Hence, using the relation `23 ≤ c1 (as V ≤ c1c2c3/2), we get
(α, γ) ∈ [0, `23]2. The definition domain DVqfl, represented on figure C.13, is then given by:

DVqfl =
{

(α, γ) ∈ [0, c1]2
∣∣ γ ≤ `23 and α ≤ `23

}
Appendix C.3.2. Parametrization of the centroid in (θ, φ)

From (C.3), (C.13) and relation (C.15), we obtain tan(θ) = α−β
c2

= α+γ−`23
c2

and cot(φ) = α−γ
c3

cos(θ).
We solve these equations for α and γ to obtain the following relations:

γqfl(θ, φ,V) =
1

2

(
c2 tan(θ) + `23 − c3 cot(φ) sec(θ)

)
αqfl(θ, φ,V) = γqfl(θ, φ,V) + c3 cot(φ) sec(θ) (C.16)

After simplifications, we obtain the final parametrization (18a) by replacing α and γ in (C.15) with their
expression given in (C.16). For the limit curves, we will use those given by the Penta configuration.
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Appendix C.4. Parametrization of the QuadEdgeL configuration
Appendix C.4.1. Parametrization in (α, γ)

In the QuadEdgeL configuration, the plane intersects the cell as presented on figure C.14. The coordinates
of the points are given by A = (α, 0, 0), B = (0, β, 0), C = (γ, 0, c3), and D = (0, δ, c3). The coefficients of
the plane (C.2) are given by:

a1 =
1

α
a2 =

1

β
a3 =

α− γ
c3α

(C.17)
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•
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x
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c3

α

β

γ

δ
•
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•
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•
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c1
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γ = f23
V (α)

α = f23
V (γ)

`23

`23

DV
qel

α

γ
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`23

c1

c1

γ = f23
V (α)

α = f23
V (γ)

f23
V (c1)

f23
V (c1)

DV
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Figure C.14: QuadEdgeL configuration (left), definition domain DV
qel for χ <

1
6
(middle) and for χ > 1

6
(right).

Since point D belongs to plane P, we have δ = βγ
α . We introduce the points O3 = (0, 0, c3) and

P3 = (0, 0, h3) where h3 = c3α
α−γ . The last point corresponds to the intersection of the planes {x = 0}, {y = 0},

and the interface. The volume and the centroid of the domain OABO3CD are computed using the additivity
of the volume and the first momentum of the tetrahedrons OABP3 and O3CDP3, which gives:

Vqel(α, β, γ) =
c3β(α2 + αγ + γ2)

6α
Cqel(α, β, γ) =


α3+α2γ+αγ2+γ3

4(α2+αγ+γ2)
β(α3+α2γ+αγ2+γ3)

4α(α2+αγ+γ2)
c3(3γ2+2αγ+α2)

4(α2+αγ+γ2)

 (C.18)

Note that the volume and the centroid are continuous between the QuadEdgeL and the Triangle configurations
since Vqel(α, β, 0) = Vt(α, β, c3) and Cqel(α, β, 0) = Ct(α, β, c3). By imposing a fixed reference volume V in
(C.18), we get:

βqel(α, γ,V) =
6Vα

c3(α2 + αγ + γ2)
(C.19)

When the parameters α, γ ∈ [0, c1] are fixed, we have βqel ∈ [0, c2] so 0 ≤ 6Vα
c3(α2+αγ+γ2) ≤ c2. The right

inequality writes γ2 +αγ+α2− 3`23α ≥ 0 or equivalently γ ≥ f23
V (α) using (C.6) where we keep the positive

solution because γ ≥ 0. We have also δqel ∈ [0, c2] so 0 ≤ 6Vγ
c3(α2+αγ+γ2) ≤ c2 and hence we obtained similarly

that α ≥ f23
V (γ). The definition domain DVqel represented in figure C.14 is then given by:

DVqel =
{

(α, γ) ∈ [0, c1]2
∣∣ γ ≥ f23

V (α) and α ≥ f23
V (γ)

}
Appendix C.4.2. Parametrization of the centroid in (θ, φ)

From equations (C.3), (C.17) and relation (C.19), we get tan(θ) = α
β = c3(α2+αγ+γ2)

6V and cot(φ) =
α−γ
c3

cos(θ). We obtain a second degree polynomial equation in γ and we get the following relations — keeping
the positive root — with T l2 = c2 tan(θ) and T l3 = c3 cot(φ) sec(θ):

γqel(θ, φ,V) =
1

6

(
−3T l3 +

√
36`23T l2 − 3(T l3)2

)
αqel(θ, φ,V) = γqel(θ, φ,V) + T l3 (C.20)
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After simplifications, we obtain the final parametrization (19) by replacing α, β, and γ in (C.18) by their
expressions given in (C.19) and (C.20).

Appendix C.5. Parametrization of the PentaL configuration
Appendix C.5.1. Parametrization in (α, γ)
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Figure C.15: PentaL configuration (left), definition domain DV
pl with χ <

1
6
(middle) and χ > 1

6
(right).

In the PentaL configuration, the plane intersects the cell as presented on the left of figure C.15. The
coordinates of the points are given by A = (α, 0, 0), B = (β, c2, 0), C = (γ, 0, c3), D = (0, δ, c3), and
E = (0, c2, ε). The coefficients of the plane (C.2) are given by:

a1 =
1

α
a2 =

α− β
c2α

a3 =
α− γ
c3α

(C.21)

Since the points D and E belong to the plane, we have δ = c2γ
α−β and ε = c3β

α−γ . Furthermore, we have
α, β, γ ∈ [0, c1]. δ ∈ [0, c2], ε ∈ [0, c3], thus 0 ≤ c2γ

α−β ≤ c2. The left inequality is satisfied if α ≥ β and the
right one is satisfied if α ≥ β + γ. We also have 0 ≤ c3β

α−γ ≤ c3. The left inequality is satisfied if α ≥ γ and
the right one is satisfied if α ≥ β + γ. Therefore, only one inequality stands:

β ≤ α− γ (C.22)

We introduce the points O3 = (0, 0, c3), O2 = (0, c2, 0), and P2 = (0, h2, 0) where h2 = c2α
α−β . The point

P2 is the intersection of the planes {x = 0}, {z = 0} and the interface P. We also introduce the point
P3 = (0, 0, h3) where h3 = c3α

α−γ as the intersection of the planes {x = 0}, {y = 0} and the interface P. The
volume and the centroid of the domain OABO2EDCO3 are computed using the additivity of the volume and
the first momentum of the tetrahedrons OAP2P3, O2BEP2 and O3CDP3, so:

Vpl(α, β, γ) =
c2c3(α3 − (β3 + γ3))

6(α− β)(α− γ)
Cpl(α, β, γ) =


α4−(β4+γ4)

4(α3−(β3+γ3))
c2(α4−(β4+γ4)−4β3(α−β))

4(α−β)(α3−(β3+γ3))
c3(α4−(β4+γ4)−4γ3(α−γ))

4(α−γ)(α3−(β3+γ3))

 (C.23)

Note that the volume and the centroid are continuous between the QuadEdgeL and the PentaL configurations
since βpl = 0 is equivalent to βqel = c2 and we verify that Vpl(α, 0, γ) = Vqel(α, c2, γ) and Cpl(α, 0, γ) =
Cqel(α, c2, γ). Similarly, the volume and the centroid are continuous between the PentaL and the QuadFaceL
configurations since δqf = β + γ − α = 0 is equivalent to δpl = c2γ

α−β = c2, that is βpl = βqfl = α− γ, and by
verifying that Vpl(α, α− γ, γ) = Vqfl(α, α− γ, γ) and Cpl(α, α− γ, γ) = Cqfl(α, α− γ, γ).
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For a given reference fixed volume we get with (C.23) that β is the root of the following third degree
polynomial:

Ψpl(α, β, γ) = β3 − 3`23(α− γ)β − (α− γ)
(
α2 + αγ + γ2 − 3`23α

)
= 0 (C.24)

Let us find the definition domain of the Penta configuration:

DVpl =
{

(α, γ) ∈ [0, c1]2
∣∣ 0 ≤ βpl(α, γ,V) ≤ c1 and βpl(α, γ,V) ≤ α− γ

}
where βpl(α, γ,V) is solution of (C.24). To find this domain, let us first find its boundaries. If β = c1, we
have c1 ≥ α ≥ c1 + γ and therefore (α, γ) = (c1, 0). With (C.24) and using (C.6) we have:

For β = 0 Ψpl(α, 0, γ) =
(
γ − α

)(
γ − f23

V (α)
)(
γ − f̃23

V (α)
)

= 0 (C.25)

For β = α− γ Ψpl(α, α− γ, γ) = 3γ(α− γ)(`23 − α) = 0 (C.26)

Therefore, the possible boundaries of the domain DVpl are necessary in the following list: α = 0, α = c1, γ = 0,
γ = c1, γ = α, γ = f23

V (α), or α = `23. The root γ = f̃23
V (α) is excluded since it is negative, so outside of

[0, c1]2. These curves partition [0, c1]2 in six regions as represented in figure C.15. Thus DVpl is the reunion of
some — possibly only one — of these regions. It is easy to check numerically by picking one value in these
regions that five of them do not verify all the constraints. In each of these regions, the three roots of (C.24)
verifies either β ∈ C or β < 0 or β > α− γ, which violates the conditions. Therefore the definition domain of
the PentaL is necessarily given by the remaining region:

DVpl =
{

(α, γ) ∈ [0, c1]2
∣∣ α ≥ `23 and γ ≤ f23

V (α)
}

The limit curves are given by Γ1
pl : α 7→ (`23, γ) where γ ∈ [0, `23], Γ2

pl : α 7→ (α, f23
V (α)) where α ∈

[`23,min(3`23, c1)] and Γ3
pl : α 7→ (α, 0) where α ∈ [`23,min(3`23, c1)]. When χ > 1

6 , there is another curve
Γ1

h : γ 7→ (c1, γ) common to the Hexa configuration where γ ∈ [0, f23
V (c1)].

In Appendix C.7.2, we have proved that the discriminant of the third-degree equation (C.24) is negative
on DVpl, so there are three real roots βk for k ∈ J0, 2K that can be expressed by formula (C.9). In Appendix
C.7.2, we have also shown that the only solution that verifies 0 ≤ β ≤ α − γ on DVpl is the root for k = 2
given by:

βpl(α, γ,V) = 2
√
`23(α− γ) cos

(
1

3
arccos

(
α2 + αγ + γ2 − 3`23α

2`23

√
`23(α− γ)

)
+

4π

3

)
(C.27)

In the Penta configuration, we can find the following simpler formulas for the limits Γ1
pl, Γ2

pl and Γ3
pl:

For Γ1
pl ∀γ ∈ [0, `23], βpl(`23, γ,V) = `23 − γ

For Γ2
pl ∀α ∈ [`23,min(3`23, c1)], βpl(α, f

23
V (α),V) = 0

For Γ3
pl ∀α ∈ [`23,min(3`23, c1)], βpl(α, 0,V) = f23

V (α)

(C.28)

When χ > 1
6 , we did not find a simpler expression of the fourth limit Γ1

h.
To obtain these formulas, we insert the equations of the limits into equation (C.24):

On Γ1
pl Ψpl(`23, β, γ) =

(
β − f23

V (`23 − γ)
)(
β − f̃23

V (`23 − γ)
)(
β − (`23 − γ)

)
(C.29)

On Γ2
pl Ψpl(α, β, f

23
V (α)) =

(
β −

√
3`23(α− f23

V (α))

)(
β +

√
3`23(α− f23

V (α))

)(
β − 0

)
(C.30)

On Γ3
pl Ψpl(α, β, 0) =

(
β − α

)(
β − f̃23

V (α)
)(
β − f23

V (α)
)

(C.31)

On each boundaries, there are three roots for β. It can proved by a direct computation that the first root of
each expression corresponds to the root k = 0 of (C.24). The second term in each expression is negative since
f̃23
V < 0, so it corresponds to the root k = 1 which is always negative as proved in proposition 1. Therefore
the third term in each expression is the root k = 2 that we are looking for.
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Appendix C.5.2. Parametrization of the centroid and the limit curves in (θ, φ)

From equations (C.3) and (C.21), we get tan(θ) = α−β
c2

and cot(φ) = α−γ
c3

cos(θ). These non-linear
equations are difficult to solve directly because of the expression of β in (C.27). Instead, we express α
and γ as a function of β, θ, and φ to obtain a third degree polynomial on β using the expression of the
volume (C.23). We introduce the following notations:

α = β + T l2 γ = β + T l2 − T l3 where T l2 = c2 tan(θ) T l3 = c3 cot(φ) sec(θ) (C.32)

We replace these expressions in (C.23) to obtain the following third degree polynomial equation on β:

(β − T l3)3 − 6T l2T
l
3(β − T l3)− 3T l2T

l
3(T l2 + T l3 − `23) = 0 (C.33)

We already know that the three roots are real. To find the suitable root, we can extend the proposition 1 to
the case where 0 ≤ X ≤ 1. In this case, β0 ≥ 0 and β1, β2 ≤ 0. Note that we have to compute the lines
{Y = − 1

2} and {Ψ = 0} which are crucial for the inequalities. Using this extended proposition with K = 0,
K = c1 and K = α− γ, we can show that the only solution that verifies β ≤ α− γ, 0 ≤ α ≤ c1, 0 ≤ β ≤ c1,
and 0 ≤ γ ≤ c1 is given by the root k = 2. The root can be expressed by:

βpl(θ, φ,V) = T l3 + 2
√

2T l2T
l
3Xpl Xpl = cos

(
1

3
arccos

(
3
(
T l2 + T l3 − `23

)
4
√

2T l2T
l
3

)
+

4π

3

)
(C.34)

where Xpl verifies the following equation:

(Xpl)
3 − 3

4
Xpl −

3(T l2 + T l3 − `23)

16
√

2T l2T
l
3

= 0 (C.35)

To obtain the final parametrization (21), we replace α, β and γ in (C.23) by their expressions given in (C.32)
and (C.34). We obtain a fourth degree polynomial in Xpl for each component. Then we use equation (C.35)
to get a second degree polynomial in each component. Finally, after some simplifications, we obtain
equation (21).

To compute the partial derivatives of the centroid using the formula of Chen & Zhang [19], use the
coordinates of the vertices of the interface given in order by A = (αpl, 0, 0), B = (βpl, c2, 0), E = (0, c2, εpl),
D = (0, δpl, c3), and C = (γpl, 0, c3) using (C.34) and the relations:

αpl = βpl + T l2 γpl = αpl − T l3 δpl =
c2γpl

T l2
εpl =

c3βpl

T l3
(C.36)

For the PentaR (respectively PentaB) configuration, use a circular permutation of the coordinates and replace
T li by T ri (respectively T bi ).

For the limit curve Γ1
pl, α = `23 hence, with formulas (C.28), we have c2 tan(θ) = `23 − βpl(`23, γ,V) = γ

and c3 cot(φ) = (`23−γ) cos(θ). We obtain φlim
pl1(θ) (13a) defined on [0, θ1]. For the limit curve Γ2

pl, γ = f23
V (α)

hence, with formulas (C.28), we have c2 tan(θ) = α−βpl(α, f
23
V (α),V) = α and c3 cot(φ) = (α−f23

V (α)) cos(θ).
We obtain φlim

pl2(θ) (13b) defined on [θ1, θ
t
2]. If χ > 1

6 , we have α ∈ [`23, c1]. Hence φlim
pl2(θ) is defined on [θ1, θ3].

For the limit curve Γ3
pl, we have γ = 0 hence, with equations (C.28), we have c2 tan(θ) = α− βpl(α, 0,V) =

α− f23
V (α) and c3 cot(φ) = α cos(θ). The equation α− f23

V (α) = T l2 is a second degree polynomial in α. We
obtain the limit φlim

pl3(θ) (13c) defined on [0, θt
2]. If χ > 1

6 , we have α ∈ [`23, c1]. Hence φlim
pl3(θ) is defined on

[0, θh
2 ].
For the limit curve Γ1

h, α = c1 hence, we have c2 tan(θ) = c1−βpl(c1, γ,V) and c3 cot(φ) = (c1− γ) cos(θ).
In order to find γ as a function of θ, we replace β = c1 − T l2 and α = c1 in the formula of the volume (C.24)
to obtain the following equation:

γ3 − 3`23T
l
2γ + (c1 − T l2)3 − c31 + 3c1`23T

l
2 = 0
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Using the property of symmetry Ψpl(α, β, γ) = Ψpl(α, γ, β), the above formula writes Ψpl(c1, c1 − T l2, γ) =
0. As previously, we take the root k = 2 to get γ ≤ α − β. Hence, after some simplifications, we
obtain formula (16a) defined on [θh

2 , θ3]. Note that we have used the relations βpl(c1, 0,V) = f23
V (c1) and

βpl(c1, f
23
V (c1),V) = 0 coming from (C.28).

For the limit curve Γ2
h we chose the points (0, α, 0), (0, β, c3) and (c1, γ, 0) to get a1 = α−γ

c1α
, a2 = 1

α ,
a3 = α−β

c3α
and the limit is on (c2, γ) with γ ∈ [0, f13

V (c2)]. We have γ = c2−T r3 and c3 cot(φ) = (c2−β) sin(θ).
In order to find β as a function of θ, we replace γ = c2 − T r3 and α = c2 in the formula of the volume (C.24)
where `23 is replaced `13 to obtain the following equation:

β3 − 3`13T
r
3 β + (c2 − T r3 )3 − c32 + 3c2`13T

r
3 = 0

Hence we obtain formula (16b) defined on [θ3, θ
h
4 ].

For Γ3
h we chose the points (0, 0, α), (c1, 0, β) and (0, c2, γ) to get a1 = α−β

c1α
, a2 = α−γ

c2α
, a3 = 1

α and the
limit is on (c3, γ) with γ ∈ [0, f12

V (c3)]). We can prove that T l2(c3 − β) = c1(c3 − γ) and cot(φ) sec(θ) = c1
c3−β .

In order to find β as a function of θ, we replace γ = c3 +
T l
2

c1
(β − c3) and α = c3 in the formula of the

volume (C.24) where `23 is replaced `12 to obtain the following equation:(
1

c3 − β
− c1 + T l2

c1c3

)3

+ 3T l2
`12 − 2c3
c1c33

(
1

c3 − β
− c1 + T l2

c1c3

)
+ 3T l2

(`12 − c3)(c1 + T l2)

c21c
4
3

= 0

Hence using c3 − `12 = c3
c1

(c1 − `23) we obtain equation (16c) defined on [θh
2 , θ

h
4 ].

Appendix C.6. Parametrization of the Hexa configuration
Appendix C.6.1. Parametrization in (α, γ)
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Figure C.16: Hexa configuration (left) and definition domain DV
h with χ > 1

6
(right).

In the Hexa configuration, the plane intersects the cell as presented in figure C.16. The coordinates of the
intersection points are given by A = (c1, 0, α), B = (β, c2, 0), C = (γ, 0, c3), D = (0, δ, c3), E = (0, c2, ε), and
F = (c1, λ, 0). The coefficients of the plane (C.2) are given by:

a1 =
c3 − α

c1c3 − αγ
a2 =

c3(c1 − β) + α(β − γ)

c2(c1c3 − αγ)
a3 =

c1 − γ
c1c3 − αγ

(C.37)

Since the pointsD, E, and F belongs to the plane, δ = c2γ(c3−α)
c3(c1−β)+α(β−γ) , ε = β(c3−α)

c1−γ , and λ = c2α(c1−γ)
c3(c1−β)+α(β−γ) .

We have β, γ ∈ [0, c1], δ, λ ∈ [0, c2] and α, ε ∈ [0, c3]. Therefore 0 ≤ c2γ(c3−α)
c3(c1−β)+α(β−γ) ≤ c2. The left

inequality is satisfied if c3β+αγ ≤ c1c3 +αβ and the right inequality is satisfied if c3(β+γ) ≤ c1c3 +αβ. The
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second inequality implies the first one because c3β+αγ ≤ c3(β+γ) and α ≤ c3. We also have 0 ≤ β(c3−α)
c1−γ ≤ c3.

The left inequality is always satisfied and the right inequality is satisfied if c3(β + γ) ≤ c1c3 + αβ. We
also have 0 ≤ c2α(c1−γ)

c3(c1−β)+α(β−γ) ≤ c2. The left inequality is satisfied if c3β + αγ ≤ c1c3 + αβ and the right
inequality is always satisfied because (c1 − β)(c3 − α) ≥ 0. Therefore only one inequality stands:

β ≤ c3(c1 − γ)

c3 − α

We introduce three points P1 = (h1, 0, 0), P2 = (0, h2, 0), and P3 = (0, 0, h3) where h1 = c1c3−αγ
c3−α , h2 =

c2(c1c3−αγ)
c3(c1−β)+α(β−γ) , and h3 = c1c3−αγ

c1−γ . P1 corresponds to the intersection of the planes {y = 0} and {z = 0}
with the interface, P2 corresponds to the intersection of the planes {x = 0} and {z = 0} with the interface
and P3 corresponds to the intersection of the planes {x = 0} and {y = 0} with the interface. The volume
and the centroid of the domain AFO1BEO2DCO3O are computed using the additivity of the volume and
the first momentum of the tetrahedrons OP1P2P3, O1AFP1, O2BEP2, and O3CDP3. Therefore, the volume
is given by:

Vh(α, β, γ) =
c2(c3 − α)2(c31 − β3 − γ3) + 3c1c2α(c1 − γ)(c1c3 − αγ)

6(c1 − γ)(c3(c1 − β) + α(β − γ))
(C.38)

The centroid is given by:

Ch(α, β, γ) =


(c3−α)2(c41−β4−γ4)+2c21α(c1−γ)(2(c1c3−αγ)+α(c1−γ))

4((c3−α)2(c31−β3−γ3)+3c1α(c1−γ)(c1c3−αγ))
c2((c3−α)3(c41−β4−γ4)+2c1α(c1−γ)(2(c1c3−αγ)2−c1α(c3−α)(c1−γ))−4β3(c3−α)2(c3(c1−β)+α(β−γ)))

4(c3(c1−β)+α(β−γ))((c3−α)2(c31−β3−γ3)+3c1α(c1−γ)(c1c3−αγ))
(c3−α)3(c41−β4−γ4)+2c1α(c1−γ)(2(c1c3−αγ)2−c1α(c3−α)(c1−γ))−4γ3(c3−α)2(c3(c1−γ))

4(c1−γ)((c3−α)2(c31−β3−γ3)+3c1α(c1−γ)(c1c3−αγ))


(C.39)

Note that the volume and the centroid are continuous between the Penta and the Hexa configurations since
Vh(0, β, γ) = Vp(c1, β, γ) and Ch(0, β, γ) = Cp(c1, β, γ). By imposing a reference fixed volume V in (C.38), β
is the solution of the following third degree polynomial:

Ψh(α, β, γ) = β3 − 6V(c1 − γ)

c2(c3 − α)
β − (c1 − γ)

c2(c3 − α)2

(
c2(c3 − α)2(c21 + c1γ + γ2) + 3(c1c3 − αγ)(c1c2α− 2V)

)
= 0

(C.40)
Let us find the definition domain of the Hexa configuration:

DVh =

{
(α, γ) ∈ [0, c3]× [0, c1]

∣∣∣∣ 0 ≤ βh(α, γ,V) ≤ c1 and βh(α, γ,V) ≤ c3(c1 − γ)

c3 − α

}
where βh(α, γ,V) is solution of equation (C.40). To find this domain, let use first find its boundaries. From
equation (C.40), we have:

For β = 0 Ψh(α, 0, γ) = −(c1 − γ)(γ − gV(α))(γ − g̃V(α)) = 0

For β =
c3(c1 − γ)

c3 − α
Ψh

(
α,
c3(c1 − γ)

c3 − α
, γ

)
=
α(c1 − γ)(α2 + 3c3(c3 − α))

(c3 − α)3
(γ − h13

V (α))(γ − h̃13
V (α)) = 0

For β = c1 Ψh (α, c1, γ) =
γ(γ2 + 3c1(c1 − γ))

(c3 − α)2
(α− h31

V (γ))(α− h̃31
V (γ)) = 0

where g̃V and h̃13
V are the conjugate roots of gV and hV defined in equation (C.7) and (C.8). These functions

are well defined, but outside of the domain [0, c3] × [0, c1]. Furthermore, h31
V is the same function as h13

V
where c1 and c3 are swapped.

The possible limits of the domain DVh are necessary in the following list: α = 0, α = c3, γ = 0, γ = c1,
γ = gV(α), γ = h13

V (α), or α = h31
V (γ). These curves form a partition of the domain [0, c3] × [0, c1] in six

regions such as presented in figure C.16. Thus DVh is the reunion of some — possibly only one — of these
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regions. It is easy to check numerically by picking one value in these regions that three of these domains can
not correspond since β /∈ R, β /∈ [0, c1] or β > c3(c1−γ)

c3−α in these domains. Therefore, the definition domain of
the Hexa is necessarily given by:

DVh =
{

(α, γ) ∈ [0, c3]× [0, c1]
∣∣ γ ≤ gV(α)

}
The limit curves are given by Γ1

h : γ 7→ (0, γ) where γ ∈ [0, f23
V (c1)], Γ2

h : α 7→ (α, gV(α)) where α ∈ [0, f12
V (c3)]

and Γ3
h : α 7→ (α, 0) where α ∈ [0, f12

V (c3)].
We can show that the discriminant of the third degree polynomial (C.40) is negative on DVh and the only

root that verifies 0 ≤ β ≤ c1 and β ≤ c3(c1−γ)
c3−α is given by:

βh(α, γ,V) = 2

√
2V(c1 − γ)

c2(c3 − α)
cos

(
1

3
arccos

(
c2(c3 − α)2(c21 + c1γ + γ2) + 3(c1c3 − αγ)(c1c2α− 2V)

4V
√

2V(c1 − γ)(c3 − α)/c2

)
+

4π

3

)
(C.41)

The proof of this formula follows the same line as for the PentaL configuration. The discriminant ∆h can be
seen as a third degree polynomial in the volume V instead of a fourth degree polynomial in α or γ using a
suitable change of the quantifiers. Then, we compute the roots of the derivative of ∆h and show appropriate
inequalities that prove the desired result. Afterwards, we use the proposition 1 with K = c1 and K = c3(c1−γ)

c3−α
to prove that only the root k = 2 verifies 0 ≤ β ≤ c1 and β ≤ c3(c1−γ)

c3−α . Nevertheless, the proof required the
computation and the comparison of the curves {Yh = 1

2} and {Ψh = 0} because Ψh is not of constant sign on
DVh like in the PentaL case.

Appendix C.6.2. Parametrization in (θ, φ) of the centroid and the limit curves in (θ, φ)

From equations (C.3) and (C.37), we get tan(θ) = c3(c1−β)+α(β−γ)
c2(c3−α) and cot(φ) = c1−γ

c3−α cos(θ). These
equations are difficult to solve directly because of the expression of β in (C.41). Instead, the trick is to
express α and γ with respect to β, θ, and φ and to get a third degree polynomial on β from the equation of
the volume (C.38). We introduce the following notations:

α = c3
β − c1 + T l2

T l3
γ = β + T l2 − T l3 T l2 = c2 tan(θ) T l3 = c3 cot(φ) sec(θ) (C.42)

We replace these expressions in (C.38) to obtain the following third degree polynomial in β:(
β − 1

2

(
c1 − T l2 + T l3

))3

− 3

4
T l4

(
β − 1

2

(
c1 − T l2 + T l3

))
− 3

2
T l2T

l
3(c1 − `23) = 0

where T l4 = 4c1T
l
3 − (c1 − T l2 + T l3)2. We already know that the three roots are real. Like for the Penta

configuration, we can apply the extended proposition with K = 0, K = c1, and K = c3(c1−γ)
c3−α to α, β and γ

and show that the only root that verifies β ≤ c3(c1−γ)
c3−α , 0 ≤ α ≤ c1, 0 ≤ β ≤ c1, and 0 ≤ γ ≤ c1 is given by

the root k = 2:

βh(θ, φ,V) =
1

2

(
c1 − T l2 + T l3

)
+
√
T l4Xh Xh = cos

(
1

3
arccos

(
6T l2T

l
3(c1 − `23)

(T l4)
3
2

)
+

4π

3

)
(C.43)

where c1 ≥ `23 and where Xh verifies the equation:

(Xh)3 − 3

4
Xh −

3T l2T
l
3(c1 − `23)

2(T l4)
3
2

= 0 (C.44)

To obtain the final parametrization (22), we replace α, β and γ in (C.39) by their expressions given in (C.42)
and (C.43). We obtain a fourth degree polynomial in Xh for each component. Then we use equation (C.44)
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to get a second degree polynomial in each component. Finally, after some simplifications, we obtain
equation (22).

To compute the partial derivatives of the centroid using the formula of Chen & Zhang [19], use the
coordinates of the vertices of the interface given in order by A = (c1, 0, αh), F = (c1, λh, 0), B = (βh, c2, 0),
E = (0, c2, εh), D = (0, δh, c3), and C = (γh, 0, c3) using (C.43) and the relations:

γh = βh + T l2 − T l3 αh = c3
βh − c1 + T l2

T l3
δh =

c2γh

T l2
εh =

c3βh

T l3
λh = c2

βh + T l2 − c1
T l2

(C.45)

Appendix C.7. Technical lemmas
Appendix C.7.1. General inequality
Proposition 1. Let Ψ(β) = β3+pβ+q a third degree polynomial in β. If the discriminant ∆ = 4p3+27q2 ≤ 0,
which implies p ≤ 0, the roots of Ψ(β) are real and given by:

∀k ∈ J0, 2K βk = 2

√
−p

3
cos

1

3
arccos

 −q
2

√(
−p3
)3
+

2kπ

3


Then, the sign of β −K is the same as cos( 1

3 arccos(X) + 2kπ
3 )− Y where X = −q

2
√

(−p/3)3
and Y = K

2
√
−p/3

.

Furthermore, suppose that −1 ≤ X ≤ 0. Then, the three roots verify β1 ≤ 0, β0, β2 ≥ 0 and we have the
following inequalities where Ψ stands for Ψ(K):

Y ≤ 0 0 ≤ Y ≤ 1
2

1
2 ≤ Y ≤ 1 Y ≥ 1

β0 ≥ K β0 ≥ K if Ψ ≤ 0 β0 ≥ K β0 ≤ K
if Ψ ≥ 0 β0 ≤ K

β2 ≥ K if Ψ ≤ 0 β2 ≤ K β2 ≤ K β2 ≤ K
if Ψ ≥ 0 β2 ≥ K

Proof. We have the following identities for x ∈ [0, 2π]:

cos
(
arccos(x)

)
= x arccos

(
cos(x)

)
=

{
x if 0 ≤ x ≤ π
2π − x if π < x < 2π

(C.46)

It is easy to check that:

X − cos
(
3 arccos(Y )

)
= X − (4Y 3 − 3Y ) = − Ψ(K)

2
√

(−p/3)3
(C.47)

We have the inequalities (4k+1)π6 ≤ 1
3 (arccos(X)+2kπ) ≤ (4k+2)π6 , so β1 ≤ 0 and β0, β2 ≥ 0. In the first part

of the proof, we use only the hypothesis −1 ≤ X ≤ 0 and not the expression ofX and Y . If 0 ≤ Y ≤ 1
2 , we have

π
6 ≤ 1

3 (arccos(X)) ≤ π
3 ≤ arccos(Y ) ≤ π

2 . Since the cosine function is monotonically decreasing on
[
π
6 ,

π
2

]
, we

get by composition β0 ≥ K. If 1
2 ≤ Y ≤ 1, we have −π2 ≤ 1

3 (arccos(X)−2π) ≤ −π3 ≤ − arccos(Y ) ≤ 0. Since
the cosine function is monotonically increasing on

[
−π2 , 0

]
we get by composition β2 ≤ K. In the second part

of the proof, we will use the identity (C.47). First, we suppose that Ψ ≤ 0. Since arccos is monotonically
decreasing, using (C.47), we get arccos(X) ≤ arccos(cos(3 arccos(Y ))). If 1

2 ≤ Y ≤ 1, from (C.46), we get
arccos(X) ≤ 3 arccos(Y ), so π

6 ≤ 1
3 arccos(X) ≤ arccos(Y ) ≤ π

3 . Since the cosine function is monotonically
decreasing on

[
π
6 ,

π
3

]
, we get β0 ≥ K. If 0 ≤ Y ≤ 1/2, from (C.46), we get arccos(X) ≤ 2π − 3 arccos(Y ), so

π
3 ≤ arccos(Y ) ≤ 1

3 (2π − arccos(X)) ≤ π
2 . Since the cosine function is monotonically decreasing on

[
π
3 ,

π
2

]
,

we get β2 ≤ K. If Ψ ≥ 0, the proof is the same but the inequalities are reversed because of (C.47).
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Appendix C.7.2. Analytical expression for the PentaL configuration of βpl on DVpl

We want to find an analytical expression of β that verifies 0 ≤ β ≤ α− γ on DVpl. The discriminant of the
third degree polynomial (C.24) is given by ∆ = 27(α− γ)2∆p where:

∆p(α, γ, `23) =
(
α2 + αγ + γ2 − 3`23α

)2 − 4(α− γ) (`23)
3

First, let us show that ∆p is negative on the definition domain of the Penta DVpl which writes:

∀c1 > 0, ∀`23 ∈ [0, c1], ∀α ∈ [`23,min(c1, 3`23)], ∀γ ∈ [0, f23
V (α)], ∆p(α, γ, `23) ≤ 0

This expression is a fourth degree polynomial in α and γ. To prove that ∆p is negative appears to be a
complicated task. Instead we can see ∆p as a third degree polynomial in `23. As illustrated in figure C.17, it
is equivalent to show that:

∀c1 > 0, ∀α ∈ [0, c1], ∀γ ∈ [0, α], ∀`23 ∈ [`min
23 (α, γ), `max

23 (α, γ)], ∆p(α, γ, `23) ≤ 0 (C.48)

where `min
23 (α, γ) = α2+αγ+γ2

3α and `max
23 (α, γ) = α.

`23

α

0
0

c1

c1

c1
3

`23

γ

0
0

α

α

α
3

`23 7→ f23
V (α)

Figure C.17: Illustration of the inversion of the quantifiers.

The partial derivative of ∆p with respect to `23 writes:

∂∆p

∂`23
= −6

(
2(α− γ)(`23)2 − 3α2`23 + α(α2 + αγ + γ2)

)
The roots of second degree polynomial ∂∆p

∂`23
are given by `±23(α, γ) =

3α2±
√
α4+8αγ3

4(α−γ) . We have the following
inequalities:

`min
23 (α, γ) ≤ `−23(α, γ) ≤ `max

23 (α, γ) ≤ `+23(α, γ) (C.49)

The right and the middle inequalities are equivalent to 8αγ(α − γ)2 ≥ 0. The left one is equivalent to
16(α3 − γ3)2 ≥ 0. We also have:

∆p

(
α, γ, `min

23 (α, γ)
)

= −4(α−γ)
(
`min
23 (α, γ)

)3 ≤ 0 ∆p(α, γ, `
max
23 (α, γ)) = −(α−γ)(3α+γ)γ2 ≤ 0 (C.50)

The second degree polynomial ∂∆p

∂`23
is positive on the interval [`−23, `

+
23] and negative outside. Hence `23 7→

∆p(α, γ, `23) is monotonically increasing on [`−23, `
+
23] and monotonically decreasing elsewhere. Therefore,

together with (C.50) and the inequalities (C.49), we get equation (C.48). The three solutions of (C.24) are
then real and given by:

β̃k = 2
√
`23(α− γ) cos

(
1

3
arccos (Xpl) +

2kπ

3

)
Xpl =

α2 + αγ + γ2 − 3`23α

2`23

√
`23(α− γ)
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where k ∈ {0, 1, 2}. Now, let us show that the root k = 2 is the only one which verifies 0 ≤ β̃2 ≤ α− γ. We
introduce K = α− γ and the notations:

Ypl =
α− γ

2
√
`23(α− γ)

=

√
α− γ
4`23

On DVpl, we have −1 ≤ Xpl ≤ 0 — since ∆p ≤ 0 — and 0 ≤ Ypl ≤
√

3
2 ≤ 1 since γ ≥ α− 3`23. We also have:

Ψpl(α, α− γ, γ) = 3γ(α− γ)(`23 − α) ≤ 0

Using the proposition 1, we get β̃0 ≥ α− γ, β̃1 ≤ 0, and β̃2 ≤ α− γ. Therefore, we obtain the formula of the
PentaL configuration (C.27).
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