
HAL Id: hal-03388503
https://hal.science/hal-03388503

Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partition Aggregation for Budgeting
Laurent Bulteau, Pallavi Jain, Nimrod Talmon

To cite this version:
Laurent Bulteau, Pallavi Jain, Nimrod Talmon. Partition Aggregation for Budgeting. M-PREF2020,
2020, Santiago de Compostela, Spain. �hal-03388503�

https://hal.science/hal-03388503
https://hal.archives-ouvertes.fr

Partition Aggregation for Budgeting
Laurent Bulteau 1 and Pallavi Jain2 and Nimrod Talmon 3

Abstract. Motivated by certain aggregation tasks related to partic-
ipatory budgeting, such as clustering projects and modeling project
interactions, we study several variants of the following aggregation
problem: Given a set P of m projects, and n partitions of P , the
task is to aggregate these n partitions into one aggregated partition.
We consider several aggregation methods for this setting, includ-
ing utility-based methods and Condorcet-based methods and eval-
uate these methods by analyzing their computational complexity and
their behavior with respect to certain relevant axiomatic properties.

1 Introduction
In participatory budgeting (PB) [6] the task is to aggregate voter
preferences over a set of projects, to decide upon a bundle of those
projects to fund. It has received quite extensive recent attention from
the research community, resulting in some aggregation methods to
be used for such settings [11, 3, 12, 5, 2]. One aspect of PB which is
neglected by existing methods is project interactions: E.g., consider
a toy PB instance consisting of 3 projects – one school, s, and two
parks, p1 and p2; in many cases, it is natural to assume that, while
certain voters might wish to have one park built in their city, not
many voters would feel that funding two parks (especially if these
parks are geographically close to each other) is a good use of pub-
lic funds. (The above example is of substitutions, as the two parks
are substitutes for each other. Indeed, there could be other types of
interactions, most notably complementarities, which correspond to
positive interactions between projects; for presentation, we consider
here only substitutions).

In this paper we are interested in figuring out the so-called sub-
stitution structure of the set of projects in a PB instance. E.g., in the
toy example described above, it might indeed be the case that the
two parks p1 and p2 are substitutes for most voters. So, the substitu-
tion structure of this example would be the partition {{s}, {p1, p2}};
each part (i.e., {s} and {p1, p2}) of this partition is referred to a sub-
stitution class). In particular, taking a utilitarian approach, assume
that each voter has a utility for each bundle of projects; so, the util-
ity of a voter from a set of projects P ′ ⊆ {s, p1, p2} is u(P ′).
Then, the substitution structure means that the utility function is
submodular wrt. projects of the same part in the partition: That is,
u({p1, p2}) ≤ u({p1}) + u({p2}).

There are several ways by which an organizer of a PB instance
might tackle this aspect of substitutions:

Dictatorial decision: One possibility would be for the organizer to

1 LIGM, CNRS, Univ Gustave Eiffel, Marne-la-Vallée, France , email: lau-
rent.bulteau@upem.fr

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel, email:
pallavi@post.bgu.ac.il

3 Ben-Gurion University of the Negev, Beer-Sheva, Israel, email: tal-
monn@bgu.ac.il

decide herself upon the substitution structure – then, she might,
e.g., ask voters to approve projects (i.e., define the election to be
an approval one), but do not allow voters to approve more than
one project in each substitution class.

Explicit Exponential Elicitation: Another possibility would be for
the organizer to allow each voter to explicitly specify her utility
from each bundle of projects, however this would mean an expo-
nential explosion and thus is probably not feasible.

Preliminary Election: A yet another possibility would be for the
organizer to perform a preliminary election, in which she asks
from the voters – perhaps only a subset of the voters – to pro-
vide their substitution structures. Then, the organizer can aggre-
gate those partitions provided by the voters and use the aggregated
partition as the global substitution structure.

Here we choose the last option, thus concentrate on the subprob-
lem of aggregating partitions. Here, one would be wondering why do
we want to conduct election in two phases, that is, first asking for
substitution structures from some voters, and then conduct standard
election. The one reason is that elicitation cost is high. Since this is
the preliminary step of participatory budgeting, it is natural that we
only ask some people to give substitution structure, say only secre-
taries of different societies. Of course, the question of how to use the
aggregated partition in the subsequent participatory budgeting elec-
tion is central; we do not tackle it in the current paper, however, to
maintain focus, we leave it as the main future work. We acknowledge
one natural criticism of our approach, namely that we assume that the
substitution structure is somehow global, in the sense that it can be
fixed to be the same for all voters. While, indeed, this might not al-
ways be the case, we believe that in most PB instances it is roughly
global. Verifying this intuition and identifying cases in which this
intuition is true and other cases in which it is violated is, again, an
interesting avenue for future research.

Finally, while here we concentrate on identifying aggregated par-
titions to be used for deciding on substitution structures for PB in-
stances, we briefly mention other motivations for this task:

Visualizing projects: A PB organizer shall distribute a pamphlet
explaining the projects to the voters. On each page only a certain
number of projects can be explained, thus in fact the pamphlet
partitions the projects into pages. Using a partition aggregation
method might help here, in particular, as the presentation affects
the preferences.

Community structure: Consider the task of identifying communi-
ties in a set of agents. One way to achieve this is to request each
voter to provide a partition of the set of agents to communities
and then using an algorithm for aggregating partitions. However,
in some cases, asking people to vote for communities might yield
distorted results.

1.1 Related Work

A special case of the partition aggregation problem is cluster en-
sembles [15] which is also known as cluster aggregation [13] and
consensus clustering [8]. In cluster aggregation, we are given a set of
clusterings, and the goal is to find a clustering which agrees with
the input clusterings as much as possible. Cluster aggregation is
polynomial-time solvable when the input has two partitions, while it
is APX hard when we have three partitions [4]. Strehl and Ghosh [15]
proposed some techniques for cluster aggregation. In one of their ap-
proaches, given a set of clustering, they construct a hypergraph, and
find a hyperedge separator that partitions the hypergraph into k un-
connected components of approximately the same size.

Gionis et al. [13] gave some approximation algorithms. They con-
sidered cluster aggregation problem and correlation clustering. In
cluster aggregation, they measure the dissimilarity between the clus-
terings. Let V be the given set of objects, and C1, . . . , Cm be the
set of clusterings. For two objects u and v in V , and two cluster-
ings C1, C2, du,v(C1, C2) = 1, if u and v are in same part in C1

and different parts in C2, or vice-versa, otherwise 0. The dissimilar-
ity between two clusterings C1 and C2 is defined as d(C1, C2) =∑

u,v∈V du,v(C1, C2). The goal is to find a clustering C such that
the total dissimilarity,

∑m
i=1 d(C,Ci), is minimized. This function

is also known as total Mirkin distance. They also studied the maxi-
mization version of consensus clustering. Towards this, they defined
similarity between two partitions C1 and C2, denoted by s(C1, C2),
as the number of objects which either belong to the same part in both
the partitions or in different parts in both partitions. The goal is to
find a partition C such that

∑m
i=1 s(Ci, C) is maximised.

Dornfelder et al. [8] proved that cluster aggregation is NP-hard
even when every partition contains at most two clusters. They pro-
posed an FPT algorithm for cluster aggregation with respect to pa-
rameter average Mirkin distance. They also studied the local search
variant of the problem, and showed that the problem is W[1]-hard
when parameterized by radius of the Mirkin-distance neighborhood.

We also mention work on aggregating graphs [9], as aggregating
partitions is equivalent to aggregating cluster graphs (graphs that are
a collection of disjoint cliques).

2 Formal Model

Formally, we have a set, P = {p1, . . . , pm}, of projects, (In PB,
there is a cost c(p) for each p ∈ P ; we do not include these in our
formal model as they do not affect the substitution structure) and a
set, V = {v1, . . . , vn}, of voters, where voter vi corresponds to a
partition Pvi of P . A partition Pv is a disjoint set of parts whose
union is P ; i.e., Pv = {p1, . . . , pz}, where for every i, j ∈ [z],
pi ∩ pj = ∅ and ∪j∈[z]p

j = P . Each pj is referred to as a part of
the partition Pv . A partition aggregation method is a function taking
n partitions of P and returning a partition S of P , referred to as the
aggregated partition. (We ignore issues of tie-breaking as they clut-
ter the presentation without adding significant insights.) We denote
an instance of partition aggregation as (P, C), where P is the set of
projects and C is the collection of n partitions of P .

3 A Utilitiarian Approach

The main question we are studying is how to define a “good” parti-
tion. Here we take a utilitiarian approach: We assume that each voter
v, based on her partition Pv , would derive a certain utility from each
possible aggregated partition S. While these utilities are unknown,

they might be estimated (similarly to set extensions, which are used
to estimate utilities over committees based on utilities over single
candidates in multiwinner elections). Given a specific way of esti-
mating such utilities over the set of possible partitions, a natural par-
tition aggregation method would return, as the aggregated partition,
a partition which maximizes the sum – over the voters – of these
utilities. Such a utilitarian approach has been applied successfully
for many social choice settings, including multiwinner elections [10]
and participatory budgeting [11].

Example 1 Consider the set of projects P = {p1, p2, p3, p4}
and a voter v with the partition Pv = {{p1, p2}, {p3, p4}}. It
is natural to assume that the utility of voter v from the parti-
tion S1 = {{p1, p2}, {p3}, {p4}} would be fairly high, as Pv

and S1 are quite similar. Furthermore, the utility of v from S2 =
{{p1}, {p2}, {p3}, {p4}} might be less than her utility from S1, as
S2 seems to be less similar to Pv than S1 is.

Our utilitarian approach is formally defined below.

Definition 1 (Utility function) Let P be a set of m projects and let
P be the set of all partitions of P . A utility function is a function
f : P × P → N. For a voter v and a possible aggregated partition
p, f(v, p) is understood as the utility that voter v gets from p; the
higher the better.

3.1 Two Utility Functions

We consider two utility functions. The PA utility function is perhaps
the first utility function one might think of: The utility of a voter
equals the number of pairs for which her vote agrees with the aggre-
gated vote. The PAM utility function is slightly less natural as the
utility is the number of pairs for which the voter agrees with the ag-
gregated vote, minus the number of pairs not in the same partition
in the voter’s partition but in the same partition in the aggregated
vote. Thus, in essence, we define a larger fine for merging a pair
of projects unnecessarily (a fine of −1), than for splitting a pair of
projects unnecessarily (a fine of 0). The reason for this asymmetry is
our motivation from substitution structures: We believe that an aggre-
gated partition that defines a set of projects as substitutions to each
other, while most voters prefer not to have them defined as such is
more harmful than an aggregated partition that simply fails to define
a substitution in cases in which it should.

Number of pairwise agreements (PA): Let p1, p2 be two projects
in P . For a voter v, and an aggregated partition S, let

δPAv,S(p1, p2) =

1 if p1, p2 are in same (different) part(s)

in both Pv and S ;
0 otherwise .

We define the Number of pairwise agreements (PA) utility function
for voter v from S to be as follows:

f PA(v, S) =
∑

p1,p2∈P

δPAv,S(p1, p2) .

Number of pairwise agreements minus number of mergings
(PAM): Let p1, p2 be two projects in P . For a voter v, and aggre-

gated partition S, let

δPAMv,S(p1, p2) =

1 if p1, p2 are in same(different) part(s)
in both Pv and S ;

0 if p1 and p2 are in same part in Pv

but in different parts in S ;

−1 if p1 and p2 are in different parts in Pv

but in same part in S .

We define the Number of pairwise agreements minus number of
mergings (PAM) utility function for voter v from S to be:

f PAM(v, S) =
∑

p1,p2∈P

δPAMv,S(p1, p2) .

3.2 Aggregation Goals
Given a utility function f , we consider two partition aggregation
goals: Maximizing the sum of utilities (Total) and maximizing the
minimum utility (Egal).

Definition 2 (Total Utility (Total)) Given a set ofm projects, a col-
lection of n partitions, P1, . . . , Pn, and a utility function f , the
goal in Total Utility aggregation is to find a partition S such that∑

i∈[n] f(Pi, S) is maximized.

That is, in Total Utility aggregation we look for a partition that
maximizes the total utility (i.e.,

∑
i∈[n] f(Pi, S)). In the decision

version of the problem, given an integer k additionally, we look for
a partition that has total utility at least k. We use the same problem
name for optimisation as well as decision version of the problem as
it will be clear from the context.

We also consider egalitarian aggregation methods, in which we
care for the least satisfied voter (similarly in spirit to egalitarian com-
mittee scoring rules [1]).

Definition 3 (Egalitarian Utility (Egal)) Given a set ofm projects,
a collection of n partitions, P1, . . . , Pn, and a utility function f , in
Egalitarian Utility aggregation the goal is to find a partition S such
that mini∈[n] f(Pi, S) is maximized.

In the decision version of the problem, given an integer k addition-
ally, we look for a partition that has Egalitarian Utility at least k.

3.3 Illustrating Example
Our two utility functions and two aggregation types define four
aggregation methods: Total-PA, Egal-PA, Total-PAM, and Egal-
PAM. Consider the following set of partitions to illustrate the
difference between these methods. Let Pv1 = {{p1, p2, p3}},
Pv2 = {{p1}, {p2, p3}}, and Pv3 = {{p1}, {p2}, {p3}}. Let
S = {{p1, p2}, {p3}} be an aggregated partition. We first describe
Total-PA. For the pair of projects p1, p2, δPAv1,S(p1, p2) = 1 as p1 and
p2 are in same part in both the partitions; however δPAv1,S(p1, p3) = 0
as p1 and p3 are in same part for v1 and in different parts in S. Sim-
ilarly, δPAv1,S(p2, p3) = 0. Hence, the PA utility for voter v1 from S,
f PA(v1, S), is 1. Similarly, the PA utility for voter v2 and v3 from
S are 1 and 2, respectively. The Total-PA utility from S is 4. The
Egal-PA utility is 1. Next, we describe Total-PAM utility. For the
pair of projects a, b, δPAMS,v1(p1, p2) = 1; however δPAMS,v1(p1, p3) = 0
and δPAMS,v1(p2, p3) = 0. Hence, the PAM utility for v1 from S,

f PAM(v1, S), is 1. Furthermore, δPAMS,v2(p1, p2) = −1 as p1 and p2
are in different parts for v2, while they are in the same part in S;
δPAMS,v2(p1, p3) = 1 and δPAMS,v2(p2, p3) = 0. Hence, the PAM utility for
v2 from S is 0. Similarly, the PAM utility for v3 from S is 1. There-
fore, the Total-PAM utility from S is 2, and the Egal-PAM utility is
0.

4 Computational Complexity
First, we study the computational complexity, and show intractabil-
ity, of our partition aggregation methods.

4.1 Total-PA and Total-PAM
Recall that the problem of finding an aggregated partition with Max-
imum Total-PA is equivalent to the Consensus Clustering problem.
Since Consensus Clustering is known to be NP-hard even for three
partitions [8], we have the following result.

Proposition 1 Total-PA is NP-hard even for three voters.

Consensus Clustering is also known to be NP-hard when every input
partition has at most two parts [8]. Hence, we have following result.

Proposition 2 Total-PA is NP-hard even when every voter has at
most two parts.

We next present our intractability result for Total-PAM.

Theorem 1 Total-PAM is NP-hard even when each partition con-
tains at most two parts.

Proof. We give a polynomial time reduction from the known NP-
hard problem Cluster Deletion (Given a graph G, and an integer k;
we shall decide the existence of at most k-sized set of edges whose
deletion from G results into a cluster graph(i.e., a disjoint union of
cliques)) [14]. Let (G, k) be an instance of the Cluster Deletion prob-
lem. Let |V (G)| = n, |E(G)| = m. Without loss of generality,
assume that n − 2 = 2`, for some positive integer `. We first con-
struct the set of projects P . For each vertex u ∈ V (G), we add
a project u in the set P . Now, we construct a collection of parti-
tions, C, of projects. For every pair of vertices u, v ∈ V (G), we
create a collection of partitions Cuv as follows. If uv ∈ E(G), then
|Cuv| = 3 · 22`−1, otherwise |Cuv| = 3 · 24`−1. If uv ∈ E(G),
then in every partition in Cuv , u and v are in same part; otherwise
u and v are in different parts in every partition in Cuv . For every
pair of vertices x, y ∈ V (G) \ {u, v}, there are |Cuv|/3 partitions in
Cuv in which x and y are in different parts, and 2·|Cuv|/3 partitions in
which x and y are in same part. This collection of partitions C can
be construed in polynomial time, however we skip the justification
due to space constraint. The intuitive idea for such a collection of
partitions is that for a pair of project x, y, the total PAM utility due
to partitions in Cuv , where u, v are distinct from x, y, is 22`−1 for
any aggregated partition, as if x, y are in different parts in the aggre-
gated partition, then the total PAM utility due to these partitions is
2·|Cuv|/3− |Cuv|/3 = |Cuv|/3, otherwise |Cuv|/3. In essence, the utility
of pair of project for Cu,v does not depend on the parts to which x, y
belongs in the aggregated partition. However, for project u, v, total
PAM utility for Cu,v depends on their parts in the aggregated parti-
tion. The set of partitions in our instance is C = ∪u,v∈V (G)Cuv . We
set total PAM utility as

k′ =24`−1
(n(n− 1)

2
−m

)(n(n− 1)

2
+ 2
)

+ 22`−1
(
m
(n(n− 1)

2
−m+ n+ 2

)
− 3k

)

Method Complexity Unanimity Majority-based IIP
Total-PA NP-h even for n = 3 (Prop. 1) or ` ≤ 2 (Prop. 2) Yes Yes No
Egal-PA NP-h No No No

Total-PAM NP-h even for ` ≤ 2 (Theorem 1) Yes No Open
Egal-PAM NP-h Open No Open

Table 1. Summary of Our Results. We denote the maximum number of parts in any partition by `.

Next, we show the equivalence between the instance (G, k) of
cluster deletion and the instance (P, C) of total PAM.

In the forward direction, let X be a subset of edges of size k such
that G′ = G − X is a cluster graph. We construct an aggregated
partition Y for the instance (P, C) as follows. Two projects u, v ∈ P
are in same part in Y if and only if their corresponding vertices inG′

are in same clique. Note that the number of parts in Y is same as the
number of cliques inG′. Now, we show that the total PAM utility for
Y is at least k′. Recall that for any pair of projects u, v ∈ P , for all
collections Cxy , where x, y ∈ V (G)\{u, v},

∑
C∈Cxy

δC,Y (u, v) =
|Cxy|/3. Note that if uv /∈ E(G), then uv /∈ E(G′), as we
only delete edges from G. Therefore, for u, v ∈ P , if (u, v) /∈
E(G), then

∑
C∈C\Cuv

δC,Y (u, v) = 24`−1(n(n−1)/2 −m − 1) +

22`−1m. Furthermore,
∑

C∈Cuv
δC,Y (u, v) = 3 · 24`−1. There-

fore, if uv /∈ E(G), then
∑

C∈C δC,Y (u, v) = 24`−1(n(n−1)/2 −
m + 2) + 22`−1m. We further note that if uv ∈ E(G′), then
uv ∈ E(G), as we do not add any edge to G. Therefore, for
u, v ∈ P , if (u, v) ∈ E(G), then

∑
C∈C\Cuv

δC,Y (u, v) =

24`−1(n(n−1)/2−m)+22`−1(m−1). Furthermore, if uv ∈ E(G′),
then

∑
C∈Cuv

δC,Y (u, v) = 3 · 22`−1. Therefore, if uv ∈ E(G′),
then

∑
C∈C δC,Y (u, v) = 24`−1(n(n−1)/2 −m) + 22`−1(m + 2);

and if uv ∈ E(G) but uv /∈ E(G′), then
∑

C∈C δC,Y (u, v) =

24`−1(n(n−1)/2−m) + 22`−1(m− 1). Since there can be at most k
edges in G which are not in G′, total PAM utility for P is

(
24`−1

(n(n− 1)

2
−m+ 2

)
+ 22`−1m

)(n(n− 1)

2
−m

)
+
(
24`−1

(n(n− 1)

2
−m

)
+ 22`−1(m− 1)

)
m

+3 · 22`−1(m− k) = k′

This completes the proof in the forward direction.
In the reverse direction, let Y be an aggregated partition to (P, C)

such that total PAM utility for Y is at least k′. Let X = {uv ∈
E(G) | u and v are in different parts in Y }.

Claim 1 If u and v belong to same part in Y , then uv ∈ E(G).

Proof. Towards the contradiction, suppose that there exists
projects u and v in a part in Y such that uv /∈ E(G). Then,∑

C∈Cuv
δC,Y (u, v) = −3 · 24`−1 (as u and v are in different parts

in each partition in Cuv). Therefore,

∑
C∈C

δC,Y (u, v) = 24`−1
(n(n− 1)

2
−m−1

)
+22`−1m−3 ·24`−1

Hence, total PAM utility for Y is(
24`−1

(n(n− 1)

2
−m+ 2

)
+ 22`−1m

)(n(n− 1)

2
−m− 1

)
+ 24`−1

(n(n− 1)

2
−m− 1

)
+ 22`−1m− 3 · 24`−1

+
(
24`−1

(n(n− 1)

2
−m

)
+ 22`−1(m− 1)

)
m

+ 3 · 22`−1(m− k1)

= 24`−1
(n(n− 1)

2
−m

)(n(n− 1)

2
+ 2
)
− 6 · 24`−1

+ 22`−1
(
m
(n(n− 1)

2
−m+ n+ 2

)
− 3k1

)
< k′

as k < m ≤ 22`+1 , a contradiction to the assumption that Y is a
solution to (P, C). �
Hence, G − X is a cluster graph. Next, we show the size bound on
X .

Claim 2 |X| ≤ k.

Proof. Towards the contradiction, suppose that |X| > k. Since
G − X is a cluster graph, if uv /∈ E(G), then uv /∈ E(G − X).
Since |X| > k, there are at least k + 1 pairs u, v ∈ V (G) such that
u and v are in same part in each partition in Cuv but in different parts
in Y . We can show that in this case the total PAM utility for Y is less
than k′, a contradiction to that Y is a solution to (P, C). �
The reverse direction follows from Claim 1 and 2.

�

4.2 Egalitarian-PA and Egalitarian-PAM
Proposition 3 Egalitarian-PA and Egalitarian-PAM are NP-hard.

Proof. Due to lack of space, we only give a sketch of the
reduction. We reduce from Unary Bin Packing, seen as a partition
problem (one seeks a partition of [kB] into k parts of size B
where items, represented as disjoint subsets, must be included in
single parts). We use [kB] as the set of projects, and first build
two voters: R := {[kB]} and S := {{1}, . . . , {kB}}. We can
enforce that the solution must have utility at least tR := k

(
B
2

)
with

R and tS :=
(
kB
2

)
− tR with S (tS :=

(
kB
2

)
− 2tR in the PAM

model). These two thresholds yield a partition with k blocks of
size B. Then, for each pair of elements e = (x, y) from the same
item, we enforce that both elements are in the same part using a
partition Qe = {{x}, {y}, [kB] \ {x, y}} with utility threshold
tQ := tR + 2(m − 2B) + 3 (or tQ := tR + 4(m − 2B) + 6 in
the PAM model). Together, these constraints ensure that the target
solution is a valid bin packing of the original instance (we achieve
distinct utility thresholds with additional gadgets appended to each
partition). �

5 Axiomatic Properties
Here we consider various axiomatic properties that are relevant for
partition aggregation methods, and test our partition aggregation
methods against them. While it is possible to define many axiomatic
properties, we chose axioms that seem especially relevant, with the
application of aggregating substitution structures in mind. Our re-
sults, regarding both the computational complexity and the axiomatic
properties of our four partition aggregation methods – Total-PA,
Egal-PA, Total-PAM, and Egal-PAM – are summarized in Table 1.

The axiom of Unanimity, defined next, says that if all voters agree
on whether some two projects shall be in the same part or in different
parts (i.e., all voters are unanimous wrt. to this pair of projects), then
the aggregated partition shall also agree with the voters regarding
these two projects.

Definition 4 (Unanimity) A partition aggregation method R satis-
fies Unanimity if the following hold: Let P1, . . . , Pn be the set of
partitions of projects P = {p1, . . . , pm}. If two projects pi and
pj , i, j ∈ [m], belong to the same part in Pi, for all i ∈ [n], then
pi, pj belong to the same part in the aggregated partition. Similarly,
if pi, pj belong to different parts in Pi, for all i ∈ [n], then pi, pj
belong to different parts in the aggregated partition.

While Unanimity requires that the aggregated partition agrees
with the voters on those pairs of projects for which all voters are
in complete agreement, majority-based aggregation considers pairs
of projects with majority agreement among the voters. As we show
next, such aggregated partitions need not exist; thus, we require an
aggregation method to output such partitions only when they exist.

Definition 5 (Majority based aggregation) An aggregated parti-
tion P̃ is majority-based if any two projects p1, p2 are in the same
part in P̃ if and only if p1 and p2 are placed in the same part for
more than half of the voters. A partition aggregation method R sat-
isfies Majority-based aggregation if it always outputs majority-based
aggregated partitions, whenever such an aggregated partition exists.

Remark 1 One might consider a continuum of axioms between
Majority-based aggregation and Unanimity, by employing superma-
jorities: An aggregated partition p would place a pair of projects in
the same partition iff at least a δ-Supermajority among the voters
does so.

We also consider an adaptation of the fundamental axiom of In-
dependent of Irrelevant Alternatives to our setting of aggregating
partitions: We refer to our adaptation as Independent of Irrelevant
Projects. In essence, it means that if the restriction of some two pro-
files to a pair of projects is the same, then the restriction to this pair
of projects of both aggregated partition shall be the same.

Definition 6 (Independent of Irrelevant Projects) A partition ag-
gregation method R satisfies Independent of Irrelevant Projects if
the following holds: Let P and P′ be two partition profiles and let s
and s′ be their aggregated partitions according to R. Let p1 and p2
be two projects such that the number of voters that places them in
the same part in P and in P′ are the same. Then, s and s′ shall either
both place p1 and p2 in the same part or in different parts.

5.1 Unanimity
Here we compare our four aggregation methods wrt. to the axiom
of Unanimity: We wish to identify which of our methods are Unan-
imous and which are not. First, we note that a unanimous partition
always exists, and can be found in polynomial time:

Observation 1 A unanimous partition always exists, and can be
found in polynomial time.

The proof follows from the fact that we can output any partition that
is provided by some voter. Note that it is unanimous.

Next we show that Total-PA is also Unanimous. This is intuitively
appealing, as, to maximize the total utility, it seems natural for the
aggregated partition to agree with the voters at least on those pairs
of projects for which the voters are in total agreement among them-
selves.

Theorem 2 Total-PA is unanimous.

Proof. Let S be an optimal aggregated partition for a set of voters,
{v1, . . . , vn}, that maximizes total PA. Let p1 and p2 be two projects
that are in same part in all the partitions while in different parts in S.
We claim that there exists an aggregated partition S′ in which p1 and
p2 are in same part and Total-PA utility for S′ is same as that of S.

We first create S′ as follows. Initially, S′ is same as S. Let S1

and S2 be two parts containing p1 and p2, respectively. We delete
p2 from S2, and add it to S1. Next, we prove that Total-PA util-
ity from S′ is larger than that from S. We denote new S1 and S2

as S′1 and S′2, respectively. Consider parts S1 and S2 in the parti-
tion S. Let

∑n
i=1

∑
p∈S1∪S2

δS,vi(p, p1) = n1 (number of pair-
wise agreements between project p1 and the projects in S1 ∪ S2),∑n

i=1

∑
p∈S1∪S2

δS,vi(p, p2) = n2 (number of pairwise agree-
ments between project p2 and the projects in S1 ∪ S2). Now, we
first claim that n1 = n2. Towards the contradiction, suppose that
n1 > n2. Then, when we move p2 from S2 to S1, the utility for p2
and the vertices in S1 ∪ S2 is n1 as p1 and p2 are in same part in all
the partitions. Note that the utility for other pairs of projects do not
change. Therefore, the Total PA for this partition is greater than for
S, a contradiction. Similarly, if n2 > n1, then by moving p1 from S1

to S2, we obtain a partition whose Total-PA is more than that from
S, a contradiction. Therefore, n1 = n2, and hence, total PA utility
for S′ is same as that of S.

Next, we consider the case when p1 and p2 are in different
parts in all the partitions while in the same part, say S1, in
S. Let

∑n
i=1

∑
p∈S1

δS,vi(p, p1) = n1 (number of pairwise
agreements between project p1 and the projects in S1), and∑n

i=1

∑
p∈S1

δS,vi(p, p2) = n2 (number of pairwise agree-
ments between project p2 and the projects in S1). Since p1
and p2 are in different parts for all the voters, if p2 /∈ S1,∑n

i=1

∑
p∈S1

δS,vi(p, p2) = n1. Similarly, if p1 /∈ S1,∑n
i=1

∑
p∈S1

δS,vi(p, p1) = n2. Therefore, if n1 > n2, then
deleting p2 from S1, and adding a part {p2} to S increase the total
PA utility, a contradiction to that S maximises total utility. Similarly,
if n2 > n1, then deleting p1 from S1, and adding a part {p1} to S
increase the total PA utility, a contradiction. Hence, n1 = n2. Thus,
if we create a partition by deleting p2 from S1, and adding a part
{p2} to S, total PA utility remains same. �

In contrast, Egal-PA is not Unanimous. This is also intuitively ap-
pealing, as egalitarian methods care for the least satisfied voter.

Proposition 4 Egalitarian-PA is not unanimous.

Proof. We show this by an example. Suppose that we have
2 voters and 5 projects, p1, p2, p3, p4, p5. Let the partition for
first voter be {{p1, p2, p3, p4, p5}}, and for second voter it is
{{p1, p2}, {p3, p4, p5}}. Let us consider some possible aggregated
partition. In particular, we consider all partitions in which p1 and

p2 are in the same part, and one partition in which p1 and p2 are
in different parts to show that any partition containing p1 and p2
in same part can not be optimal solution of Egal-PA. Note that
partitions {{p1, p2, p3, p4}, {p5}}, {{p1, p2, p3, p4}, {p4}}, and
{{p1, p2, p4, p5}, {p3}} have same PA utility for both the voters;
therefore in Table 2, we only mention one of these. Similarly, we
omit some partitions in the table that contains p1, p2 in same part
but have same utilities as some partition in the table. �

Aggregated Partition PA utility
1st voter 2nd voter

S = {{p1, p2, p3, p4, p5}} 10 4
S = {{p1, p2, p3, p4}, {p5}} 6 4
S = {{p1, p2, p3}, {p4}, {p5}} 3 5
S = {{p1, p2, p3}, {p4, p5}} 4 6
S = {{p1, p2}, {p3}, {p4, p5}} 2 7
S = {{p1, p2}, {p3}, {p4}, {p5}} 1 7
S = {{p1, p2}, {p3, p4, p5}} 4 10
S = {{p1, p3, p4, p5}, {p2}} 6 6

Table 2. Example for non-unanimity of Egalitarian PA (Lemma 4)

Next we consider Total-PAM. While we show that, similarly to
Total-PA, Total-PAM also satisfies Unanimity, we conjecture that
Egal-PAM, similarly to Egal-PA, does not satisfy Unanimity.

Theorem 3 Total-PAM is unanimous.

Proof. Let S be an optimal aggregated partition for a set of voters,
{v1, . . . , vn}. Let p1 and p2 be two projects which are in same part
for all the voters, while in different parts, say S1, S2, respectively,
in S. Let

∑n
i=1

∑
p∈S1∪S2

δS,vi(p, p1) = n1 − n2 (number of
pairwise agreements between project p1 and the projects in S1 ∪ S2

minus number of mergings), and
∑n

i=1

∑
p∈S1∪S2

δS,vi(p, p2) =
n3 − n4. Note that if n1 − n2 > n3 − n4, then moving p2 from S2

to S1 increases the total PAM utility, a contradiction to optimality of
S. Similarly, if n3 − n4 > n1 − n2, then moving p1 from S1 to S2

increases the total PAM utility, a contradiction. Therefore, n1−n2 =
n3 − n4. Thus, moving p1 from S1 to S2 does not change the total
PAM utility. Hence, there exists an optimal aggregated partition in
which p1 and p2 are in same part.

Next, we show that if p1 and p2 are in different parts for all
the voters, then p1 and p2 are not in the same part in any op-
timal aggregated partition. Towards the contradiction, suppose
that there exists an optimal aggregated partition, S, in which
p1 and p2 are in same part, say S1. Note that for a project p,
if
∑n

i=1 δS,vi(p, p1) = n1, then
∑n

i=1 δS,vi(p, p2) = −n1,
and vice-versa. Let

∑n
i=1

∑
p∈S1

δS,vi(p, p1) = n1 − n2, and∑n
i=1

∑
p∈S1

δS,vi(p, p2) = n3 − n4. Using above observation,
n4 = n′4 + n1 and n2 = n′2 + n3. Note that n′2 = n′4. Therefore,
n1−n2+n3−n4 < 0. Let us consider two cases: either n1−n2 < 0
or n1 − n2 ≥ 0. If n1 − n2 < 0, then we delete p1 from S1 and add
it as a singleton in S. Note that now

∑n
i=1 δS,vi(p, p1) ≥ n (as only

merging two projects gives negative terms, not splitting in two parts).
Hence,

∑n
i=1 δS,vi(p, p1) +

∑n
i=1 δS,vi(p, p2) ≥ n + n3 − n4.

Since n1−n2 < 0, the total PAM utility from new partition is larger
than from the former one. Consider the other case. Let n1−n2 ≥ 0.
In this case, we delete p2 from S1 and add it as a singleton in S. As
argued above, here also total utility increases. �

5.2 Majority-Based Aggregation
Next we consider Majority-based partitions. First, we show that, con-
trary to Unanimous partitions, Majority-based partitions do not al-
ways exist.

Proposition 5 A majority based aggregated partition need not exist.

Proof. Consider three voters, v1, v2, v3, and three projects
p1, p2, p3. Let the partitions corresponding to v1, v2, and
v3 be Pv1 = {{p1, p2}, {p3}, Pv2 = {{p1, p2, p3}}, and
Pv3 = {{p1, p3}, {p2}}. According to the property of Majority-
based aggregation, we shall have the following: (1) p1, p3 shall
be in the same part; (2) p1, p2 shall be in the same part; and (3)
p2, p3 shall be in different parts. As the three constraints above
cannot be simultaneously satisfied, we conclude that there is no
Majority-based partition for this profile. �

In a sense, the counterexample in the above proof is similar to
the canonical counterexample showing the existence of Condorcet-
cycles in single-winner elections (i.e., voters a > b > c, b > c > a,
and c > a > b, requiring the contradicting requirements of a > b,
b > c, and c > a as the canonical example of Condorcet paradox.

Nevertheless, Majority-based aggregation exists for some profiles;
for these profiles, it can be found in polynomial time.

Theorem 4 A majority based aggregated partition can be found in
polynomial time, if it exists.

Proof. Let P be the set of projects. Let V be the set of voters. We
construct an aggregated partition S iteratively as follows. Initially, let
S = ∅. In each iteration i, we add a part Si in S as follows: consider
a project x ∈ P \ (∪i−1

j=1Sj) (that is a project that has not been added
in any part in previous iterations); add it in the part Si, and add all
the projects x′ ∈ P \(∪i−1

j=1Sj ∪{x}), such that x and x′ are in same
part for more than half of the voters, in Si. Now, we check whether
every two projects in Si are in same part for more than half of the
voters. If not, then the algorithm returns No. We also check whether
there exists projects y ∈ Si and y′ ∈ Sj , where i 6= j, such that y
and y′ are in different parts for at least half of the voters. If not, then
the algorithm returns No. We repeat until there is a project which is
not placed in any part in S; and return set S. Clearly, the algorithm
runs in polynomial time.

Next we prove the correctness of the algorithm. Indeed, if the
algorithm returns a partition S, then it is a majority based aggregated
partition, as at every step the algorithm checks this property. Now,
we show that if the algorithm returns No, then there is no majority
based aggregated partition for V . Towards the contradiction, let
S′ be a majority based aggregation for V . Note that the algorithm
returns No in two cases: (1) there are two projects, say y, z, in a
part, say Si, in S that are not in same part for more than half of the
voters, or (2) there are two projects, say y, z, in different parts, say
Si, Sj , respectively, of S that are in same part for more than half of
the voters. Consider the case (1). Clearly, y and z are in different
parts in S′. Let the algorithm first added project x to Si. Thus, x, y
and x, z are in same part for more than half of the voters, as the
algorithm added y, z in Si, a contradiction that S′ is majority based
aggregation. Next, consider case (2). Clearly, y, z are in same part
in S′. Let the algorithm first added project x to Si. Then, algorithm
added y to Si but not z. This implies that x, y are in same part for
more thant half of the voters but not x, z. Since the part containing
y, z in S′ does not contain x as x, z are in different parts for at

least half of the voters, a contradiction that S′ is a majority based
aggregation, as x, y are in different parts in S′. �

We have following corollary from the algorithm described above.

Corollary 1 The existence of a Majority-based partition for a given
profile can be decided in polynomial time.

Moreover, note that, if it exists, then a Majority-based aggregated
partition is unique. Next, we check whether our partition aggregation
methods output the Majority-based partition whenever it exists.

Theorem 5 If a majority based aggregated partition exists, then it
maximizes Total-PA.

Proof. Let V be a set of partitions corresponding to all the voters.
Let S be the majority based aggregated partition for V . Let S′ 6=
S be an optimal solution of Total-PA for V . Since majority based
aggregated partition is unique, S′ is not a majority based aggregated
partition. Thus, either (1) there exists a part Si in S′ containing two
projects that are not in same part for more than half of the voters, or
(2) there exists two parts Si, Sj in S′ such that there is a project in
Si and a project in Sj that are in same part for more than half of the
voters.

Consider case (1). Let x and y be two projects in Si that are in
different parts for at least half of the voters. Let Mx be the set of
projects that are in same part with x for more than half of the voters,
and Nx be the set of projects that are not in same part with x for
more than half of the voters. Note that a pair of projects a, b, where
a ∈ Mx and b ∈ Nx are not in same part for more than half of the
voters, otherwise majority based aggregated partition does not exist.
Also, note that every two projects in Mx are in same part for more
than half of the voters, otherwise majority based aggregated partition
does not exist. Now, create a new partition by deleting Nx from Si,
and add a new set of projects Nx to S. Since every pair of project
a, b, where a ∈ {x} ∪Mx and b ∈ Nx, are in different parts for
at least half of the voter; either the total PA utility of new partition
is same as that of S′ or larger than that of S. It can not be larger as
S′ is an optimal solution of Total-PA. We apply this step for all the
parts in Si that contains at least two projects that are not in same part
for more than half of the voters. Note that the total PA utility for new
partition is same as that of S′. Let us denote this new partition by S′′.

Next, we consider case (2). Note that if there exists two parts
Si, Sj in S′ such that there is a project in Si and a project in Sj that
are in same part for more than half of the voters, then such parts
also exist in S′′ (because we have not merged any two parts). Let
Sp and Sq be two parts in S′′ that contains x and y, respectively,
such that x and y are in same part for more than half of the voters.
We merge parts Sp and Sq in the partition S′′. Since S′′ does not
contain any part that violates majority based aggregation property
due to case (1), all the pair of projects in Sp(or Sq) are in same part
for more than half of the voters. Note that every pair of projects a, b
such that a ∈ Sp and b ∈ Sq are in same part for more than half of
the voters, otherwise majority based aggregated partition does not
exist. Therefore, merging Sp and Sq increases the total PA utility,
a contradiction to the optimality of S. Hence, S′ does not contain
parts that satisfies condition in case (2). �

Using the same example as in Lemma 4, we have following result.

Proposition 6 Egalitarian-PA does not satisfy Majority-based ag-
gregation.

We go on to consider Total-PAM and Egal-PAM.

Proposition 7 Total-PAM does not satisfy Majority-based aggrega-
tion.

Proof. We show this by a counterexample. Consider a set of 2
projects, {p1, p2}; and a set of 5 voters. Let the partition for 3 voters
be {{p1, p2}}, and for 2 voters, the partition is {{p1}, {p2}}. Note
that {{p1, p2}} is a majority based aggregated partition; its total
PAM utility is 0. However, the total PAM utility for {{p1}, {p2}} is
1. �

Using the same example as in Lemma 7, we have following result.

Proposition 8 Egalitarian-PAM does not satisfy the property of ma-
jority based aggregation.

5.3 Independent of Irrelevant Projects

Next we consider our adaptation of the axiom of Independence of
Irrelevant Alternatives to our setting.

Proposition 9 Total-PA does not satisfy Independence of Irrelevant
Projects.

Proof. We show this by a counterexample. Let P and P′ be two
profiles, and we have 3 voters. Suppose that the partitions for P

are Pv1 = {{p1, p2, p3}, {p4}}, Pv2 = {{p1, p2, p3}, {p4}},
and Pv3 = {{p1}, {p2, p3}, {p4}}; and for P′, partitions are
P ′v1 = {{p1, p2, p3}, {p4}}, P ′v2 = {{p1, p2, p4}, {p3}}, and
P ′v3 = {{p1, p3}, {p2, p4}}. We consider here pair of project
p1, p2. In both the profiles p1 and p2 are in same part for 2 voters.
Let S and S′ be aggregated partitions for P and P′, respectively.
Since Total-PA is unanimous (Lemma 2), projects p3 and p4 are in
different parts in both the partitions S and S′. Moreover, in S, {p4}
is a singleton, and p2, p3 are in same part. Now, if p1 is in the same
part as in p2, p3; total PA utility for S′ is 16, otherwise 14. Now, let
us consider partition S′. Suppose that p1 and p2 are in same part.
Then, there are three cases: either S′ = {{p1, p2}, {p3}, {p4}} or
S′ = {{p1, p2, p3}, {p4}} or S′ = {{p3}, {p1, p2, p4}}. In all the
case total PA utility is 11. However, if S′ = {{p1, p3}, {p2, p4}},
then total PA utility is 12. �

Observe that, if an aggregation rule is not unanimous, then it can
not satisfy independent of irrelevant projects properties as we can
have one profile in which all the projects are in the same part (or,
equivalently, in different parts) for all voters, and another profile
which is an instance that violates the Unanimity axiom. Hence, due
to Lemma 4, we have following result.

Corollary 2 Egalitarian-PA does not satisfy Independence of Irrel-
evant Projects.

6 Outlook

We have studied several partition aggregation methods for the set-
ting in which each voter provides an arbitrary partition over the same
set of projects, and the aggregation goal is to output a single aggre-
gated partition. Here we discuss few other variants of this setting and
describe some use-cases for each of them.

6.1 Partitions with k Parts
In certain cases it might be desired to require that each input partition,
as well as the output partition, shall consist of at most a given number
k of parts. As a natural use-case, consider a set of projects for par-
ticipatory budgeting where the election organizer wishes to partition
the projects into thematic subjects, to ease the elicitation process. It
is natural to require not-too-many parts, does requiring some upper
bound of k parts. Such scenarios can be modeled as follows: Given
n input partitions, each consisting of at most k parts, the aggregation
method shall output a single aggregated partition, also consisting of
at most k parts.

As a different example, of a different flavor, consider a system
employing liquid democracy, in which the system wishes to cluster
the proposals on the table into predefined subjects (say, education,
health, etc.). Then, one approach would be to ask a subset of the
voters to assign the proposals to the different, given subjects. Such a
scenario can be modeled as follows: We have a set of k types and each
voter shall partition the projects into these types. The aggregation
method shall then output a partition of the projects into these types.

Observe that, in the first example, the k parts are indistinguishable,
while, in the second example, these are distinguishable, as they have
different IDs. We thus refer to the problem corresponding to the first
example as partition into k anonymous parts, and to the problem cor-
responding to the second example as partition into k distinguishable
parts.

k Anonymous Parts: The problem of partitioning a set of projects
into k anonymous parts is formally equivalent to the problem we
mainly study in this paper, with the only difference that we restrict
the input partitions, as well as the output partition, to consist of at
most k parts. Due to NP-hardness of Mirkin Distance Minimization
given by Chen et al. [7], Total PA is NP-hard even for k = 2.

An interesting approach to the problem of aggregating partitions
into k anonymous parts is via clustering: For example, embed the
set of projects into a metric space where each project pi is an ele-
ment and the distance between a pair of projects pi and pj equals
the number of voters placing pi and pj in different parts. Then, one
can use, e.g., k-means algorithm to find k projects acting as centers,
and, viewing each center as a representative of a part, assign to each
center all projects that are the closest to this center among all k cen-
ters. Other option would be to define those k centers as the set of k
projects that, if chosen as centers, would minimize the maximum dis-
tance between any pair of projects assigned to the same cluster; we
mention that this aggregation method does not seem to be definable
via voter-utilities of the sort we consider in this paper. Studying such
clustering algorithm is left for future work.

k Distinguishable Parts: This problem variant is significantly dif-
ferent from the problem we mainly study in this paper, as we are not
interested in standard partitions, but in partitions into distinguishable
parts. In fact, we can view the input votes, as well as the aggregated
output as strings: Each vote is a string of length m (recall that m
is the number of projects) and each character i in such a string is a
number between 1 to k, representing the type of the project pi. Thus,
we have in fact that, for this variant, Egal-PA is equivalent to the
NP-hard problem Closest String.

6.2 Aggregating Signed Partitions
Recall that the main motivation for our study of partition aggrega-
tion methods is of deciding on a substitution structure for participa-
tory budgeting instances. A related task would be to decide upon a

complementarities structure, in which projects inside a complemen-
tarity part in the output partition would enjoy supermodular relations
(in contrast to projects inside a substitution structure, which should
suffer from submodular relations). Indeed one can use our partition
aggregation methods for deciding upon a complementarities struc-
ture as well as for deciding upon a substitution structure.

A more involved task would be to simultaneously aggregate sub-
stitution structures and complementarity structures: That is, given a
set of projects, we would like to partition them into parts, and de-
cide, for each part, whether it is a substitution part or a comple-
mentarity part. Modeling this task would be natural via studying
signed-partitions aggregation methods: Each voter provides a signed-
partition, which is a partition of the set of projects such that each
partition is labeled with, say, either + (for complementarity part) or
− (for substitution part); the task of a signed-partitions aggregation
method would be to output a signed-partition over the same set of
projects.

The problem of aggregating signed-partitions is fundamentally
different than the problem we mainly study here (i.e., aggregation
non-signed partitions), and we leave it as a natural future research
direction.

REFERENCES
[1] Haris Aziz, Piotr Faliszewski, Bernard Grofman, Arkadii Slinko, and

Nimrod Talmon. Egalitarian committee scoring rules. In Proceedings
of IJCAI ’18, pages 56–62, 2018.

[2] Haris Aziz, Barton E Lee, and Nimrod Talmon. Proportionally repre-
sentative participatory budgeting: Axioms and algorithms. In Proceed-
ings of AAMAS ’18, pages 23–31, 2018.

[3] Gerdus Benade, Swaprava Nath, Ariel D Procaccia, and Nisarg Shah.
Preference elicitation for participatory budgeting. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[4] Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Tao
Jiang. On the approximation of correlation clustering and consensus
clustering. Journal of Computer and System Sciences, 74(5):671–696,
2008.

[5] Florian Brandl, Felix Brandt, Dominik Peters, Christian Stricker, and
Warut Suksompong. Donor coordination: Collective distribution of in-
dividual contributions, 2019.

[6] Yves Cabannes. Participatory budgeting: a significant contribution to
participatory democracy. Environment and Urbanization, 16(1):27–46,
2004.

[7] Jiehua Chen, Danny Hermelin, and Manuel Sorge. A note on clustering
aggregation. CoRR, abs/1807.08949, 2018.

[8] Martin Dörnfelder, Jiong Guo, Christian Komusiewicz, and Mathias
Weller. On the parameterized complexity of consensus clustering. The-
oretical Computer Science, 542:71–82, 2014.

[9] Ulle Endriss and Umberto Grandi. Graph aggregation. Artificial Intel-
ligence, 245:86–114, 2017.

[10] Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, and Nimrod Talmon.
Committee scoring rules: Axiomatic classification and hierarchy. pages
250–256, 2016.

[11] Piotr Faliszewski and Nimrod Talmon. A framework for approval-based
budgeting methods. In AAAI ’19, 2019.

[12] Rupert Freeman, David M Pennock, Dominik Peters, and Jennifer
Wortman Vaughan. Truthful aggregation of budget proposals, 2019.

[13] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering
aggregation. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1:4, 2007.

[14] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification
problems. Discrete Applied Mathematics, 144(1-2):173–182, 2004.

[15] Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowl-
edge reuse framework for combining multiple partitions. Journal of
machine learning research, 3:583–617, 2002.

