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Abstract

Moment-of-Fluid (MoF) is a piecewise linear interface reconstruction method that tracks fluid through its
volume fraction and centroid, which are deduced from the zeroth and first moments. We present a method
that replaces the original minimization stage by an analytic reconstruction algorithm on bi-dimensional
Cartesian grids. This algorithm provides accurate results for a lower computational cost than the original
minimization algorithm. When more than two fluids are involved, this algorithm can be used coupled with
the minimization algorithm. Although this paper deals with Cartesian grids, everything remains valid for
any meshes that are made of rectangular cells.
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1. Introduction

Moment-of-Fluid (MoF) [1–12] is a method to represent and reconstruct interfaces in multiphase flow
simulation. This method is the apex of the Volume-of-Fluid (VoF) methods using piecewise linear interface
reconstruction [13, 14]. MoF represents the interfaces with the first two moments of any material subset ω in
a polygonal cell Ω, namely the volume M0(ω) and the first momentum M1(ω).

M0(ω) =

∫
ω

dx M1(ω) =

∫
ω

xdx (1)

Sometimes it is more convenient to use their relative equivalent quantities, namely the volume fraction µ(ω)
and the centroid xc(ω).

µ(ω) =
M0(ω)

M0(Ω)
xc(ω) =

M1(ω)

M0(ω)
(2)

MoF consists in finding a polygonal approximation ω` of a reference subset ω? (see figure 1). The part of the
boundary Γ` = ∂ω` \ ∂Ω is an affine approximation of the reference interface Γ? = ∂ω? \ ∂Ω. Furthermore,
ω` verifies the following minimization problem:

Find ω` = argmin
ω`

|xc(ω
`)− xc(ω

?)|2 such that M0(ω`) = M0(ω?) (3)

In the remainder of this article, we use the following notations: the geometric elements with a ? in exponent
refer to the reference configuration, the geometric elements with a ` in exponent refer to the solution of
problem (3) and the geometric element without an exponent refer to any affine approximation.

Since the seminal publications [1–4], MoF has been adapted to specific applications. For instance, MoF
has been exploited in an adaptive mesh refinement (AMR) context [5], used in arbitrary Lagrangian-Eulerian
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Figure 1: Reference subset (left) and reconstructed subset (right)

(ALE) schemes [6, 8], coupled with level-set representation of multiphase flow [9], used in compressible
multiphase flow [11], and adapted to axisymmetric coordinates [15] or in cylindrical geometry with an ALE
approach [16]. Moreover, the accuracy of MoF has been improved thanks to the symmetric reconstruction
[10] or with the introduction of filament capturing [12].

This article focuses on the implementation of MoF reconstruction on bi-dimensional Cartesian grids or
any meshes composed of rectangular cells, which are widely used in computational fluid dynamics. While
classic implementations use a time consuming minimization algorithm to solve the minimization problem, we
propose a faster analytic reconstruction formula which takes advantage of the shape of the cells. The next
section presents the demonstration of this analytic formula in two steps. First, we propose a parametrization
of the locus of the centroids in a fixed volume. We show that this curve can be parametrized by four parabolas
and four hyperbolas. Second, we find the minimal distance of the reference centroid to the curve with an
orthogonal projection. This involves the computation of the minimal distance from a point to a hyperbola
and to a parabola. In the remainder of this article, in section 3, we propose an analytical algorithm where
we have reduced the search of the minimal distance to two parabolas and one hyperbola. In section 4, we
discuss about existence and uniqueness of a solution. In section 5, we compare the proposed algorithm to the
original minimization algorithm.

2. Analytic reconstruction

2.1. Description
Consider a rectangular cell of dimension (cx, cy) such as represented in the center of figure 2. The locus

of the centroids xc(ω) := (gx, gy) for a given reference volume V := M0(ω?) is a closed convex curve. In
figure 2, we have represented the locus of the centroids for various reference volumes such that V ≤ 0.5cxcy.
We observe 8 different configurations. 4 configurations where the reconstructed polygon is a triangle (odd
numbers on the figure) and 4 configurations where the reconstructed polygon is a quadrangle (even numbers
on the figure). Only the first two configurations can be considered since any other configuration can be
transformed into the first two by symmetry and/or inverting the role of cx and cy. In paragraph §2.2, we prove
that when the reconstructed polygon is a triangle, the locus is a hyperbola H and when the reconstructed
polygon is a quadrangle, the locus is a parabola P. When V > 0.5cxcy, the method can be applied on the
dual (or complementary) configuration ω̃? := Ω \ ω?, that is, we consider the volume M0(ω̃?) = M0(Ω)− V
and the first momentum M1(ω̃?) = M1(Ω)−M1(ω?).

2.2. Parametrization
The reconstructed line segment Γ can be defined with two parameters, namely the interface normal

(nx, ny) and the distance to the origin ξ, that is:

Γ = {(x, y) ∈ Ω / nxx+ nyy = ξ} (4)

2



H P H

P P

H P H

0 cx

cy

cx
3

2cx
3

cy
3

2cy
3

1 2 3

8 4

7 6 5

Figure 2: Representation of the different configurations of the locus of the centroids (cyan) in a rectangular cell of dimension
(cx, cy) for various reference volume V such that V ≤ 0.5cxcy. Depending on the reconstructed polygon, the locus is either a
hyperbola H or a parabola P.

α

β

0 cx

cy

gx

gy ×

Triangle configuration

Γ

γ

δ

0 cx

cy

gx

gy ×

Quadrangle configuration

Γ

Figure 3: Parametrization of triangle and quadrangle configurations.

In the triangle configuration, Γ intersects the bottom edge of the cell in 0 < α ≤ cx and the left edge of the
cell in 0 < β ≤ cy (see figure 3). For a given reference volume V and a normal (nx, ny), the intersection
coordinates are given by:

α =

√
2V

ny
nx

β =

√
2V

nx
ny

(5)

The coordinates of the triangle centroid are given by:

gx =
1

3

√
2V

ny
nx

gy =
1

3

√
2V

nx
ny

(6)

To express gy as a function of gx, we substitute nx/ny which gives an equation of a hyperbola:

gy := H(gx) =
2V

9

1

gx
(7)
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The validity domain of this formula is given for the limit cases when β = cy and when α = cx. Simple
calculations give:

gx ∈
[

2V

3cx
,
cx
3

]
(8)

In the quadrangle configuration, Γ intersects the left edge of the cell in 0 < γ ≤ cy and the right edge of
the cell in 0 < δ ≤ cy (see figure 3). For a given reference volume V and a normal (nx, ny), the intersection
coordinates are given by:

γ =
V

cx
+
nxcx
2ny

δ =
V

cx
− nxcx

2ny
(9)

The coordinates of the quadrangle centroid are given by:

gx =

(
1

2
− c2x

12V

nx
ny

)
cx gy =

(
V

2c2x
+

c2x
24V

n2x
n2y

)
cx (10)

To express gy as a function of gx, we substitute nx/ny which gives an equation of a parabola:

gy := P(gx) =
V

2cx
+

6V

cx

(
1

2
− gx
cx

)2

(11)

The validity domain of this formula is given when the curve is not a hyperbola, i.e.:

gx ∈
[
cx
3
,

2cx
3

]
(12)

Note that it is easy to check that the global curve defined by the union of all the parabola and hyperbola is
continuous and twice differentiable, but the second derivative is not continuous.

We have shown that the locus of the centroid can be parametrized by four parabola and four hyperbola.
In the next paragraph, we present how to find the minimal distance from the reference centroid to the various
parts of the curve to find the global minimum.

2.3. Minimal distance
The minimal distance from any point (px, py) ∈ R2 to the locus of the centroid is its closest orthogonal

projection. Since the curve is defined by parts, we need to express the minimal distance from any point to
each part. The orthogonal projection (gx, gy) = (gx,H(gx)) of the point (px, py) on the hyperbola H verifies

0
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cy
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py

gx

gy
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px

py
gx

gy

Quadrangle configuration

Figure 4: Find the closest point (gx, gy) of a point (px, py) to the locus of the centroid in triangle and quadrangle configurations.

the following equation.
(gx − px,H(gx)− py) · (1,H′(gx)) = 0 (13)
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This equation is the expression of the orthogonality of the vector defined by the point and its orthogonal
projection with the tangent to the curve. Replacing H by its value (7) reveals a quartic equation on the
coordinate gx such that one of the real roots is the closest orthogonal projection.

g4x − pxg3x +
2

9
V pygx −

(
2V

9

)2

= 0 (14)

The same process can be applied to find the orthogonal projection (gx, gy) = (gx,P(gx)) of the point (px, py)
on the parabola P. The orthogonal projection verifies the following equation.

(gx − px,P(gx)− py) · (1,P ′(gx)) = 0 (15)

Substituting P by its expression (11) unveils a cubic equation on gx.

gx − px −
12V

c2x

(
1

2
− gx
cx

)(
V

2cx
− py

)
− 72V 2

c3x

(
1

2
− gx
cx

)3

= 0 (16)

The dependence of equations (14) and (16) on so many parameters (px, py, cx, cy and V ) makes it tricky
to find the root that gives the closest orthogonal projection. The simplest way to find it is to compute all the
roots and eliminate the roots outside their defined domain and find the one that gives the closest orthogonal
projection. In our implementation, we use the algorithms proposed in [17] and [18] to accurately compute
the cubic and quartic roots.

In the following paragraph, we define the transformations to solve the problem on any configuration.

2.4. Generalization to any configuration
As mentioned in paragraph §2.1, we have only considered a "reference configuration" where V ≤ 0.5cxcy

and where the reference centroid belongs to one of the two first configurations (1 and 2) represented on
figure 2. Here, we provide the formulas to transform any configuration into one of these two reference
configurations and to transform the results back to the original configuration. In the following, we denote
xc(ω

?) = (px, py) the reference centroid. All the coordinates are expressed in the cell referential where the
origin corresponds to the bottom left corner.

We consider that we have two algorithms to handle problems 1 and 2 that take the cell dimensions
(cx, cy) and the coordinates of the reference centroid (px, py) as input parameters. The output data are the
coordinates of the normal (nx, ny). Using some transformations, it is possible to use these algorithm to solve
any other problems.

If the reference volume is greater than the half of the cell volume V > 0.5cxcy, consider the dual volume
M0(ω̃?) = cxcy − V and the dual reference centroid xc(ω̃?) = (cxcy(cx/2, cy/2)− V (px, py))/(cxcy − V ).

For problems 3 to 8, use the following transformations for input parameters and output data:

• Problems 3 and 4: cell dimensions (cy, cx), centroid coordinates (py, cx − px), normal (−ny, nx).

• Problems 5 and 6: cell dimensions (cx, cy), centroid coordinates (cx − px, cy − py), normal (−nx,−ny).

• Problems 7 and 8: cell dimensions (cy, cx), centroid coordinates (cy − py, cx), normal (ny,−nx).

In the next section, we use the above preliminary work to propose an algorithm that replaces the original
minimization algorithm to find the minimal distance from the reference centroid to the locus of the centroids.

3. Algorithm

The following algorithm computes the closest point xc(ω
`) = (gx, gy) of any reference centroid xc(ω

?) =
(px, py) on the locus of the centroids for a given volume V .

Step 1. If the volume of fluid is greater than the half of the cell volume V > 0.5cxcy, consider the dual
volume M0(ω̃?) = cxcy − V and the dual reference centroid xc(ω̃

?).
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Step 2. Find the subset of the plane where the reference centroid is located. According to the results listed
below, consider the corresponding problems listed on figure 2:

• if px ≤ 0.5cx and py ≤ 0.5cy consider the problems 1, 2 and 8.

• if px > 0.5cx and py ≤ 0.5cy consider the problems 2, 3 and 4.

• if px > 0.5cx and py > 0.5cy consider the problems 4, 5 and 6.

• if px ≤ 0.5cx and py > 0.5cy consider the problems 6, 7 and 8.

Step 3. Solve one quartic (14) and two cubic (16) equations of the considered problems.
Step 4. Eliminate every root that gives a result which is outside the domain defined in equations (8) and

(12).
Step 5. Find the root that gives the closest orthogonal projection.
Step 6. If the dual problem was solved, transform the result back to the primal problem.

Note that the third step requires performing the transformations defined in §2.4 in order to apply the formula
(14) and (16).

After finding the coordinates of the centroid xc(ω
`), formula (6) and (10) can be used to obtain the

normal (nx, ny) or any other quantity to represent the reconstructed interface.

4. Discussion on existence and uniqueness

In article [1], the authors address a particular attention to uniqueness and existence of a solution. The
method proposed in the present article solves the same minimization problem (3) as defined in [1]. As a
consequence, the results about uniqueness and existence of [1] are also valid for the proposed method, that is,
the solution of MoF interface reconstruction exists and is unique except for a set of reference centroids that
have zero area. Thus, a particular attention must be paid to how multiple solutions are handled and how the
solutions are eliminated in the fourth step of the proposed algorithm.

To the question about how to handle multiple solutions, the answer is implementation dependent. The
proposed algorithm consists in computing all the valid solution for every selected configurations and selects
the solution that gives the closest distance to the reference centroid. In our implementation, if there are two
solutions that give the same closest distance, only the first solution is kept. As regards the minimization, the
choice between multiple solution depends on the initial condition of the minimization algorithm. Therefore,
in both algorithms, the choice is in some ways arbitrary.

To the question about how to eliminate solutions that are outside their definition domain, a particular
attention must be paid when the solutions are close to the border of their definition domain. It is possible
due to the finite precision and numerical errors that a correct solution is eliminated because it lies out, but
very close, to the border of its definition domain. A possible answer to this problem consists in giving a
thickness to the border. That corresponds to accept the solutions that are outside their definition domain,
but close to the border with a given epsilon.

5. Test cases

We have implemented the proposed algorithm in the open-source code Notus (http://notus-cfd.org).
We have tested this implementation on various cases from exact reconstruction to advected cases. We
have compared the computational time with the standard minimization algorithm [1]. We consistently
observe better performances for the analytic reconstruction, which span from 20% to 300% faster than the
minimization method. This large range of performance results from the dependency of the method on a lot
of parameters such as the tolerance value, the shape of the interface, the number of cells, and the number of
fluids.

We have selected two test cases to provide a sample of the performance of this method. The first case is
a static reconstruction on a shape that can be exactly reconstructed, i.e. the reference centroid belongs to
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the locus of the centroids. The second case is dynamic. It is closer to a practical case and will provide a
better hint of the true performance than the static case.

In our implementation of the minimization algorithm, we use the line search algorithm [19] as recommended
by [2]. The speed of the minimization algorithm depends on the Flood Algorithm used to reconstruct the
interface from the normal and the volume fraction. In our implementation, we use the Flood Algorithm
presented in [20] which is similar to the one presented in [1] but behaves better when two sections are very
close to each other. The reader can refer to Appendix A for implementation details.

Remark. The minimization algorithm stops when the error reaches a prescribed tolerance value. Since the
algorithm consists in bracketing the angle, the error is defined as the difference between the upper and lower
bound of the bracketing. Note that this error should not be confused with the centroid defect. In other words,
even if the centroid defect can not be zero, the bracketing error can always be as close as possible to zero, up
to the machine error.

5.1. Static reconstruction
The static case consists in the reconstruction of many disks of radius 0.045 in a unit square domain [0, 1]2

such as represented on figure 5. The disks are discretized such that an exact reconstruction is possible; the
circle is approximated by straight line segments in the cells intersected by the interface. We use a Cartesian
grid composed of 20482 cells to ensure a substantial computational time.

Table 1 presents the time ratio between minimization and analytic reconstruction for tolerance values
10−15, 10−12, 10−9 and 10−6. These tolerance values are based on the angle, as defined in the previous
remark.

Min. 10−15 Min. 10−12 Min. 10−9 Min. 10−6

Ana. 2.59 2.23 1.87 1.44

Table 1: Time ratio minimization/analytic for the static test case on a 20482 Cartesian grid.

In our experiments, we have observed that the centroid defect |M1(ω`)−M1(ω?)| given by the analytic
reconstruction is on the order of the machine precision (10−16). If we compare the computational time of the
minimization process with a tolerance value that gives an equivalent precision for the centroid defect, we
observe that the analytic reconstruction is about 160% faster. With a tolerance value that would be used for
a physical simulation (about 10−6), we observe that the analytic reconstruction is at least 44% faster, but
the centroid defect does not reach the machine error.
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Figure 5: MoF reconstruction of the static test case on a 20482 Cartesian grid.

5.2. Dynamic reconstruction
In this numerical test we consider four disks, all composed of four materials, immersed in a reversible

sheared flow. The domain is the unit square [0, 1]2, the radius of the circles is 0.15 and they are arranged in
a cross form with a distance of 0.25 from the center of the domain as represented in figure 6. The velocity
field is the following:

u(x, y, t) =

[
−2 sin2(πx) sin(πy) cos(πy)
2 sin2(πy) sin(πx) cos(πx)

]
cos

(
π
t

2

)
(17)

The mesh is a Cartesian grid composed of 1282 cells. The total number of iteration is 4,000 and the time
step is 5× 10−4. We use the Lagrangian remap algorithm with a Runge-Kutta 2 scheme to advect the fluids
as presented in [1].

In this numerical test, more than two fluids can be present in one cell. To reconstruct the interface, we
use the serial dissection [4] where the analytic reconstruction is used for the first fluid and the minimization
algorithm is used for the remaining fluids. When four fluids are involved simultaneously in a cell, we use the
B-tree dissection [4] to generate more combinations. As a consequence, the minimization algorithm is always
involved in the reconstruction. To compare the minimization to the analytic reconstruction, we compare the
time to reconstruct the interface with only the minimization algorithm for various tolerance values to the
time to reconstruct the interface with both algorithms involved and for various tolerance values.

Table 2 presents the time ratio between minimization and analytic & minimization reconstruction for
tolerance values of 10−15, 10−12, 10−9 and 10−6. Note that we only measure the time of reconstruction.

Min. 10−15 Min. 10−12 Min. 10−9 Min. 10−6

Ana. & Min. 10−15 2.27 1.95 1.59 1.33
Ana. & Min. 10−12 2.38 2.04 1.67 1.39
Ana. & Min. 10−9 2.52 2.16 1.77 1.47
Ana. & Min. 10−6 2.67 2.29 1.87 1.56

Table 2: Time ratio minimization/{analytic & minimization} for the dynamic test case on a 1282 Cartesian grid.

We observe that the time ratio is always greater than 1 which means that the analytic reconstruction
combined to the minimization is always faster that minimization alone. In the worst case, when we compare
the analytic reconstruction combined to the minimization with a tolerance value of 10−15 to the minimization
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alone with a tolerance value of 10−6, we observe that the proposed method is 33% faster than the classic
minimization with a better precision. If we want to have the same precision with the classic minimization
(10−15), the time ratio becomes 2.67 for the benefit of the proposed method.

Figure 6: MoF reconstruction of the dynamic test case on a 1282 Cartesian grid. The left picture represents the initial and the
final state and the right picture represents the maximal deformation. Magnified zones emphasize the defects at the final state
compared to the initial state represented by dashed lines.

6. Conclusion

We have proposed an analytic MoF algorithm to reconstruct the interfaces on rectangular cells for two
materials without minimization process. This algorithm provides accurate results with a lower computational
cost than the minimization method. When more than two materials are involved, the proposed algorithm
can be applied only to the reconstruction of the first material, the remaining materials are reconstructed
using the original minimization algorithm. However, we have shown that this algorithm is interesting even in
conjunction with the minimization algorithm.

Appendix A. Flood algorithm for convex cells

Consider a convex polygon P composed of N vertices defined in counterclockwise order {p0, · · · ,pN}.
The Flood Algorithm consists in finding a line segment Γ parametrized by its normal n and its distance to
the origin ξ? such that the part of the polygon behind the line segment matches a prescribed volume V , the
flooding direction being given. The algorithm 1 presents the Flood Algorithm we have implemented. The
figure A.7 illustrates the algorithm.
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input :Convex polygon P = {p0, · · · ,pN}, volume of fluid V , flood direction n
output :Distance ξ?

Find the point of the polygon with the minimal signed distance in direction n and call it p0.

l← 1, r ← N ;
|Γ| ← 0, |Γnext| ← 0;
ξ ← 0, ξnext ← 0;
Vtrapezoid ← 0;

for k ← 1 to N − 1 do
if ξr < ξl then

ξnext ← ξr;
r ← r + 1;

else
ξnext ← ξl;
l← l − 1;

end

|Γnext| ← ComputeSection(ξnext, n, P);
Vtrapezoid ← 0.5(ξnext − ξ)(|Γnext|+ |Γ|);
if Vtot + Vtrapezoid ≥ V then

α← V − Vtot
Vtrapezoid

;

β ←

√(
|Γ|

|Γnext|+ |Γ|

)2

+ α
|Γnext| − |Γ|
|Γnext|+ |Γ|

+
|Γ|

|Γnext|+ |Γ|
;

ξ? ← ξ + (ξnext − ξ)
α

β
;

break;
end

Vtot ← Vtot + Vtrapezoid;
Γ← Γnext;
ξ ← ξnext;

end
Algorithm 1: (Flood Algorithm) compute the distance ξ? from the volume of fluid V and the flood
direction n.
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