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Abstract This article provides a methodology to perform discrete
Helmholtz-Hodge decomposition on three-dimensional polyhedral meshes us-
ing structure-preserving schemes: the Compatible Discrete Operator schemes.
We propose to extract the decomposition components independently with one
equation to solve per component or potential. The key of the method is the
choice of a discrete Hodge operator that makes a compromise between con-
vergence rate and computational cost. Numerical experiments are performed
to evaluate the convergence rate and the computational cost on various poly-
hedral meshes, in particular, on the FVCA benchmark meshes. We also in-
vestigate some linear solver capabilities to solve our equations. blueThe main
contribution of this paper is the application of the CDO schemes to the Hodge
decomposition and the required solvers.
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1 Introduction

Computational physics often generates a lot of data that need to be processed
to reveal features relevant to the phenomena studied. For instance, we can
mention the detection of vortex centers in a turbulent flow, or the detection of
the point of maximal curvature of a fingerprint. This can be achieved efficiently
by the Discrete Helmholtz-Hodge Decomposition (DHHD). Helmholtz-Hodge
decomposition consists in separating an initial vector field into an irrotational
field, a solenoidal field and a harmonic field (1).

u = uθ + uψ + uh
= grad θ︸ ︷︷ ︸

compression

+ curlψ︸ ︷︷ ︸
rotation

+ uh︸︷︷︸
harmonic

(1)

Moreover, irrotational and solenoidal parts are derived from potential fields.
The extrema of the rotation potential ψ are the location of vortex centers
and the extrema of the compression potential θ are the location of sources
and sinks. These properties have been used in [1], [2] and [3] to perform the
previously mentioned feature detections. The DHHD is not only a tool to
analyze data. It can also be used in computational fluid dynamics for solving
the Navier-Stokes equations, especially in the vector projection step [4]. The
reader can refer to the survey of Bhatia et al. [5] for more applications. The
versatility of this tool interests us to develop efficient methods to perform the
decomposition.

Many authors such as Hyman & Shashkov [6] or Tong et al. [1] have empha-
sized the necessity to use structure preserving schemes (or mimetic, or compat-
ible schemes) to ensure an exact discrete decomposition. That is, the irrota-
tional term must be curl-free and the solenoidal term must be divergence-free
to the unit roundoff. These schemes are designed to preserve some properties
of the differential operators at the discrete level. For instance, these schemes
guarantee that the identities curl grad = 0 and div curl = 0 are preserved at
the discrete level. blueIn this article, we choose to use the Compatible Discrete
Operator (CDO) schemes introduced by Bonelle & Ern [7] which belong to the
family of structure-preserving schemes. These schemes come from the seminal
ideas of Bossavit [8]. The reader can also refer to [9,10,11] for similar ideas.

While the DHHD has been widely explored by many authors, few have
proposed a method to perform the DHHD on three-dimensional polyhedral
meshes. For instance, Polthier & Preuß [3], Guo et al. [12] or Bluck &Walker [13]
designed a method to perform the DHHD on triangular meshes. As shown in
[14], the key to the problem is the choice of a suitable discrete Hodge operator,
or equivalently, a discrete inner-product. Most of the discrete Hodge operators
found in the literature are designed for tetrahedral or hexahedral meshes and
those designed for polyhedral meshes require generally a minimization process
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or an explicit matrix inversion (e.g. [15]). The computational cost of these
operators is the limiting factor for applications on dense meshes. blueFollow-
ing the idea of Bonelle & Ern [7], we chose the Hodge operator designed by
Codecasa et al. [16] which can be computed explicitly without minimization
or matrix inversion.

blueIn this paper, we explore many ways to perform the DHHD with a
set of four equations, one per field of the decomposition (uθ, uψ, θ, or ψ).
The novelty of this proposal consists in the exploration of various algorithms
to extract these fields on polyhedral meshes with the CDO schemes and in
the numerical study of the behaviors of these algorithms using various linear
solvers.

The remainder of this paper is organized as follows. In section 2, we present
the CDO framework. In section 3, we introduce the algorithms used to perform
the DHHD. In section 4, numerical results on computational cost and conver-
gence rate are presented. Finally, future works are envisaged and conclusions
are drawn in section 5.

2 Compatible Discrete Operators

This section presents the CDO framework. The notations used in this article
are widely based on [7]. The reader can refer to this article for more information
about CDO schemes.

2.1 Discrete domain

The discrete domain is a polyhedral tessellation of a continuous domain Ω
composed of the elements M = {V,E, F,C}. V is the set of vertices, E is the
set of edges, F is the set of faces, and C is the set of cells. The numbers of
elements of each kind are denoted {#V,#E,#F,#C}. We denote by the small
characters v, e, f or c the elements of V , E, F or C. In the remainder, we will
refer to this discrete domain by the words cell-complex or primal mesh.

In addition to this cell-complex, we consider a barycentric dual mesh M̃ =
{Ṽ , Ẽ, F̃ , C̃}. Each element of the initial (or primal) cell-complex is associated
with a unique element of the dual mesh. Namely, a primal vertex v is associated
with a dual cell c̃(v), a primal edge e is associated with a dual face f̃(e),
a primal face f is associated with a dual edge ẽ(f), and a primal cell c is
associated with a dual vertex ṽ(c). Figure 1 presents a cell-complex composed
of two polyhedral primal cells: a dodecahedron and a prism.

Note that we write "dual mesh" and not "dual cell-complex". To be a cell-
complex, the dual mesh must have all its elements homeomorphic to a closed
k-ball. By construction, the dual elements near the boundary of the domain are
not closed. The closure of these elements provides a way to impose boundary
conditions. This will be discussed in §2.3.
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ṽ(c)
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Fig. 1: blueExample of a cell-complex composed of prisms and a pyramid.
Primal elements are emphasized in blue and their dual elements in red.

blueThe dual elements can be built using a collection of subsets of the
primal mesh. Consider {x0, · · · ,xk} a set of k+ 1 vertices with k ∈ J0, 3K. We
denote s(x0, · · · ,xk) the interior of the simplex of dimension k generated by
these vertices. Now consider ca the barycenter of the primal element a. The
dual elements are defined by the following formulas:

∀c ∈ C ṽ(c) := cc (2a)

∀f ∈ F ẽ(f) :=
⋃

c∈Cf

s(cc, cf ) (2b)

∀e ∈ E f̃(e) :=
⋃

f∈Fe

⋃

c∈Cf

s(cc, cf , ce) (2c)

∀v ∈ V c̃(v) :=
⋃

e∈Ev

⋃

f∈Fe

⋃

c∈Cf

s(cc, cf , ce, cv) (2d)

blueWhere Fe denotes the set of faces that contain the edge e in their boundary.

2.2 Degrees of freedom

The degrees of freedom (DoF) are defined by the de Rham map RA : S → A
where S denotes a suitable space and A denotes the resultant DoF space or
cochain space. We denote by {V, E ,F , C} the set of DoF associated with the
elements {V,E, F,C}. Consider p as a scalar field and u as a vector field. The
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DoF are defined by the following formulas:

∀v ∈ V (RV(p))v := p(v), ∀c ∈ C (RC(p))c :=
∫

c

p,

∀e ∈ E (RE(u))e :=
∫

e

u · te, ∀f ∈ F (RF(u))f :=
∫

f

u · nf
(3)

Note that these formulas involve the tangent vectors te of edges and the nor-
mal vectors nf of faces. That means that the geometric elements need to be
(arbitrary) oriented. This orientation is represented in figure 1 by little arrows.

To understand what these DoF represent, we can use the metaphor of
Tonti [17]: the mesh elements can be seen as a set of sensors that are sensitive
to specific physical quantities. For instance, the DoF on the edges can be seen
as sensors of circulations along lines and those of the faces can be seen as
sensors of fluxes across surfaces. In general, scalar fields can be discretized (or
measured) on points or cells and vector fields can be discretized on edges or
faces. The de Rham maps (3) measure the physical quantities with the right
sensor, that is, the right geometric element. This right geometric element is
given by the nature of the physical quantity. The reader can refer to the article
of Tonti [17] for a classification of the physical variables and their relation to
the geometric elements.

We also emphasize that the DoF are not defined on some points of the
geometric elements or approached by a polynomial approximation like in the
finite volumes method or the finite elements method. To distinguish the nature
of the DoF of the CDO schemes from those of the other methods, we choose
to use the word cochain, borrowed from the vocabulary of algebraic topology,
instead of DoF.

These definitions can be naturally extended to dual elements to build the
dual cochain spaces {Ṽ, Ẽ , F̃ , C̃}.

2.3 Discrete operators

The CDO schemes define discrete differential operators as applications between
cochain spaces, such as:

GRAD : V → E , CURL : E → F , DIV : F → C (4)
The Stokes formulas allow these operators to be expressed in terms of a matrix
composed only of the elements {−1, 0, 1}. For instance, the Stokes formula
applied to the divergence on a cell c for any vector field φ gives

∫

c

divφ =
∑

f∈F

ıf,c

∫

f

φ · nf (5)

where ıf,c is the incidence matrix between faces and cells. It is given by

ıf,c =





0 if f does not belong to ∂c
1 if nf points towards n
−1 otherwise

(6)
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where n denotes the outward normal of the cell c, nf the arbitrary oriented
normal of face f and ∂c the boundary of the cell c. Rewrite (5) using the de
Rham map, we define the discrete divergence operator as

(DIV RF(φ))c := (RC(divφ))c =
∑

f∈F

ıf,c(RF(φ))f (7)

Similarly, the three discrete differential operators of the equation (4) can be
expressed with incidence matrices. Consider p ∈ V, u ∈ E and ψ ∈ F , the
discrete differentials operators are defined by:

∀e ∈ E (GRAD p)e =
∑

v∈V
ıv,epv, ∀f ∈ F (CURL u)f =

∑

e∈E
ıe,fue,

∀c ∈ C (DIVψ)c =
∑

f∈F

ıf,cψf
(8)

The reader can check that, by construction, we have the following identities:

∀p ∈ V CURL ·GRAD p = 0 ∀u ∈ E DIV ·CURL u = 0 (9)

One possibility to define discrete differential operators on the dual mesh
is to introduce the discrete duality product. Consider two cochain spaces A
and B̃, the discrete duality product between u ∈ A and φ ∈ B̃ is given by

Ju,φKAB̃ =
∑

a∈A
uaφb̃(a) (10)

blueWhere ua denotes the value of cochain u on the primal element a ∈ A
and φb̃(a) denotes the value of cochain φ on the dual element b̃(a) ∈ B̃.

Thus, the discrete differential operators are defined by adjunction

∀(p,φ) ∈ V × F̃
r

p, D̃IVφ
z

VC̃
:= − JGRAD p,φKEF̃ ,

∀(ψ,u) ∈ E × Ẽ
r
ψ, C̃URL u

z

EF̃
:= JCURLψ,uKFẼ ,

∀(φ,ρ) ∈ F × C̃
r
φ, G̃RADρ

z

FẼ
:= − JDIVφ,ρKVC̃

(11)

To build second order operators such as div grad or curl curl, we need op-
erators that link primal cochains to dual cochains. This is the purpose of the
discrete Hodge operator. In a three-dimensional cell-complex, we have four
discrete Hodge operators:

HVC̃ : V → C̃ HEF̃ : E → F̃

HFẼ : F → Ẽ HCṼ : C → Ṽ
(12)

The design of these operators is the main issue of CDO schemes. Namely, these
operators govern the convergence rate and the computation cost of the method.
blueIn short, we require these operators to be symmetric definite positive. The
discrete Hodge operators we use in our simulations are presented in section 4.



Title Suppressed Due to Excessive Length 7

All the discrete operators can be summed using the discrete de Rham
complex represented in figure 2.

V E F C

C̃ F̃ Ẽ Ṽ

GRAD CURL DIV

G̃RADC̃URLD̃IV

HVC̃ HEF̃ HFẼ HCṼ

Fig. 2: Discrete de Rham complex

By construction, the dual mesh is not closed on the boundary. Thus, the
dual operators require boundary conditions to be computed. For instance,
consider a dual cell c̃(v) near the boundary. The dual divergence operator D̃IV
can be closed by addition of an extra flux φf̄ on the closing face f̄ represented
in figure 3c:

(D̃IVφ)c̃ =
∑

f̃∈F̃

ιf̃ ,ṽφf̃ + φf̄ (13)

The same way, an extra vertex v̄ and an extra edge ē (figures 3a and 3b) are
used to impose boundary conditions for the operators G̃RAD and C̃URL.

×̄v

(a) v̄

ē

(b) ē

f̄

(c) f̄

Fig. 3: Closure of dual discrete operators
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3 Discrete decomposition strategies

In this section, we give a description of the way the DHHD can be carried
out. The starting point comes from the fact that the de Rham operator can
discretize any vector field in two ways. The vector fields can be discretized on
edges and considered as circulations, or they can be discretized on faces and
considered as fluxes. These two discretizations lead to two families of DHHD:
edge-based and face-based that we will present in the following sections. For
the sake of clarity, we add, as an exponent, the space to which the cochains
belong.

3.1 Edge-based DHHD

The edge-based decomposition considers the initial discrete vector field uE as
a set of circulations. The degrees of freedom are located on the edges E. The
following equation denotes the DHHD for circulations:

uE = GRADθV + (HEF̃ )-1 · C̃URL ·HFẼ ψF + uh
E

= uθE + uψE + uh
E (14)

Note that we can also consider the vector potential as a cochain on the dual
mesh, that is ψẼ = HFẼ ψF .

The two potentials and their derivatives can be extracted independently
using the following equations:

(HVC̃)-1 D̃IV HEF̃ GRADθV = (HVC̃)-1 D̃IV HEF̃ uE (15)

CURL (HEF̃ )-1 C̃URL HFẼ ψF = CURL uE (16)

GRAD (HVC̃)-1 D̃IV HEF̃ uθE = GRAD (HVC̃)-1 D̃IV HEF̃ uE (17)

(HEF̃ )-1 C̃URL HFẼ CURL uψE = (HEF̃ )-1 C̃URL HFẼ CURL uE (18)

The harmonic field uh
E is deduced by subtraction:

uh
E = uE − uθE − uψE (19)

Equations (17) and (18) were proposed by Angot et al. [4] to perform the
DHHD. They introduced these equations with an extra penalization term εId,
where ε is a small real number. In a following section, §4.2, we will discuss
how to get rid of it by using suitable linear solvers.

Concerning the boundary conditions, we distinguish two cases. If the first
operator acting on the unknown discrete field is a primal operator, both primal
and dual boundary conditions are available. For instance, in equation (15), we
can impose the value of θV on the primal boundary or the flux generated by the
gradient HEF̃ ·GRADθV on the closure of the dual mesh, as in figure 3c. While,
if the first operator acting on the unknown discrete field is a dual operator,
only dual boundary conditions are available. Table 1 summarizes the boundary
conditions available for equations (15) to (18).
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Equation Primal Location Dual Location

θV θ primal vertices grad θ · n dual faces
ψF n/a ψ · t dual edges
uθE n/a uθ · n dual faces
uψE uψ · t primal edges curluψ · t dual edges

Table 1: Boundary conditions available for the edge-based equations written
in terms of continuous variables and their locations.

Note that the decomposition is unique up to the given boundary conditions
(e.g. see [5]). Furthermore, some boundary conditions are not sufficient to give
the uniqueness of the potentials. For instance, the discrete scalar potential
θV , obtained with equation (15), is unique up to a constant when using dual
or periodic boundary conditions while it is unique when primal boundary
conditions are applied. The other operators (16), (17), and (18) have a null
space of large dimension, we will see in §4.2 how to find a solution which does
not belong to the kernel.

3.2 Face-based DHHD

The face-based decomposition considers the initial discrete vector field uF as a
set of fluxes. The degrees of freedom are located on the faces F . The following
equation denotes the DHHD for fluxes:

uF = (HFẼ)-1 · G̃RAD ·HCṼ θC + CURLψE + uh
F

= uθF + uψF + uh
F (20)

The two potentials and their derivatives can be extracted independently using
the following equations:

DIV (HFẼ)-1 G̃RAD HCṼ θC = DIV uF (21)

(HEF̃ )-1 C̃URL HFẼ CURLψE = (HEF̃ )-1 C̃URL HFẼ uF (22)

(HFẼ)-1 G̃RAD HCṼ DIV uθF = (HFẼ)-1 G̃RAD HCṼ DIV uF (23)

CURL (HEF̃ )-1 C̃URL HFẼ uψF = CURL (HEF̃ )-1 C̃URL HFẼ uF (24)

The harmonic field uh
F is deduced by subtraction:

uh
F = uF − uθF − uψF (25)

Table 2 summarizes the boundary conditions available for equations (21) to (24).
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Equation Primal Location Dual Location

θC n/a θ dual vertices
ψE ψ · t primal edges curlψ · t dual edges
uθF uθ · n primal faces divuθ dual vertices
uψF n/a uψ · t dual edges

Table 2: Boundary conditions available for the face-based equations written in
terms of continuous variables and their location.

4 Numerical Results

We start this section by defining the various discrete norms we will use to
evaluate the errors and we explain the choice of the iterative methods to
solve the algebraic systems issued from the DHHD. Finally, we present some
numerical results to validate our approach.

4.1 Discrete norms

To measure errors at the discrete level, a discrete norm must be designed. We
could use the discrete duality product defined on equation (10) with a discrete
Hodge operator to create an inner product and use this inner product to build
a discrete norm. For example:

norm(u) =
√r

u,HEF̃ u
z

EF̃
(26)

However, this norm depends on a discrete Hodge operator. Instead, we chose
a Hodge-independent discrete norm based on a generic partition of the whole
domain. The following equations define the discrete p-norms for all the cochain
spaces:

∀θV ∈ V |||θV |||p,V :=
(∑

c∈C

∑

v∈Vc

|pv,c||θV
c |p
)1/p

(27)

∀uE ∈ E |||uE |||p,E :=
(∑

c∈C

∑

e∈Ec

|pe,c|
(
|uE
e |
|e|

)p)1/p

(28)

∀ψF ∈ F |||ψF |||p,F :=


∑

c∈C

∑

f∈Fc

|pf,c|
( |ψF

f |
|f |

)p


1/p

(29)

∀ρC ∈ C |||ρC|||p,C :=
(∑

c∈C
|c|
(
|ρC|
|c|

)p)1/p

(30)
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In these equations, the errors are computed and summed cell by cell. We
use the notation Vc to denote the set of all the vertices which belong to a
cell c. This notation is also used for the set of edges and faces which belong
to a cell c: Ec and Fc. Each geometric element of the cell is associated to
a subvolume of the cell to which it belongs. These subvolumes are built to
ensure a partition of unity of the cell. They are denoted p with the associated
geometric element and the cell where it belongs to in subscript. For instance,
the subvolume associated to an edge e of a cell c is denoted pe,c. Some examples
of subvolumes are represented in figure 4.

◦

�
× �

× �× ×

•
v

(a) pv,c

◦
× ×

�e

(b) pe,c

◦ ×f

(c) pf,c

Fig. 4: Subvolumes associated with mesh elements

Consider a field φ and a cochain φA ∈ A which approaches φ at the discrete
level. The cochain space A can be any of the spaces {V, E ,F , C}. The discrete
L2 error on φ is defined by:

ErA(φ) := |||φA − RA(φ)|||2,A (31)

Consider a sequence of meshes of increasing density indexed with integers. The
convergence rate r between two meshes i− 1 and i is given by

r := −3 log
(

EriA
Eri−1

A

)
/ log

(
#Ai

#Ai−1

)
(32)

bluewhere EriA is the discrete error relative to mesh i and #Ai is the number of
geometric elements of type A in mesh i. Note that coefficient 3 depends on the
dimension of the cell-complex. For instance, in a planar case, the coefficient
will be 2. The reader can refer to [18] for this definition.

4.2 Linear solvers

blueWe have seen in section 3 above that most of the components of the DHHD
can be extracted using singular linear systems. Without loss of generality,
consider the extraction of the solenoidal field. This problem consists in finding
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a cochain uψ in Im((HEF̃ )-1 C̃URL HFẼ) ⊂ E with respect to the following
equation:

(HEF̃ )-1 C̃URL HFẼ CURL uψE = (HEF̃ )-1 C̃URL HFẼ CURL uE (33)

blueWe distinguish at least three ways to resolve this problem. The first con-
sists in solving a constrained problem involving a Lagrange multiplier. The
second consists in approaching the solution using regularization, such as the
VPP an RPP methods proposed by Angot et al. [19]. The third way consists in
using well designed discrete operators coupled with an iterative linear solver.
This is the way we choose to perform the DHHD.

blueEquation (33) can be rewritten Ax = b, where:

A = (HEF̃ )-1 C̃URL HFẼ CURL

b = (HEF̃ )-1 C̃URL HFẼ CURL uE

x = uψE

(34)

blueNotice that Im(A) ⊂ Im((HEF̃ )-1 C̃URL HFẼ) and b ∈ Im((HEF̃ )-1 C̃URL HFẼ).
If we make an initial guess x that belongs to Im((HEF̃ )-1 C̃URL HFẼ) and choose
an iterative method that performs only linear combinations or matrix-vector
products of these elements, the solution will remain in Im((HEF̃ )-1 C̃URL HFẼ).
For instance, we can consider Krylov-based linear solvers. blueThe matrix in-
volved in our linear systems are non-symmetric. Thus, we need to use suit-
able Krylov-based linear solvers. In this paper, we focus on three of them:
BiCGStab2 [20], BiCGStab(l) [21] and (Full GMRES) FGMRES [22].

blueHowever, HEF̃ and HFẼ are not diagonal on polyhedral meshes. Thus,
their inverses are not sparse. We have found to ways to manage this problem
depending on the position of the inverse of the Hodge operator in the operator
A. If the inverse is at the extremity of the operator — such as in equations (18),
(22) and (23) — we use the preconditioning trick. Otherwise, if the inverse is
in the middle of the operator — such as in equations (16), (21) and (24) —
we use the saddle-point trick.

blueThe preconditioning trick consists in considering the Hodge opera-
tor as a left preconditioner M of the linear system A′x = b′. Where A′ =
C̃URL HFẼ CURL and b′ = C̃URL HFẼ CURL uE . That is M−1A′x = M−1b′, with
M = HEF̃ . Note that we cannot simply remove (HEF̃ )-1 by multiplying by HEF̃ .
If we do so, the approached solution x will not remain in Im((HEF̃ )-1 C̃URL HFẼ)
since Im(A′) 6⊂ Im((HEF̃ )-1 C̃URL HFẼ). However, for evident performance rea-
sons, we refuse to explicitly compute an inverse matrix and we refuse to solve
a linear system for each iteration of the Krylov-based linear system. Fortu-
nately, the Hodge operator is a sparse symmetric definite positive matrix.
Thus, we can compute a permuted Cholesky decomposition M = PLL>P>
that remains sparse. This decomposition can be performed at the start of the
iterative method. Then, at every iteration, we have just to perform a fast
bottom-up operation to apply preconditioning where it is required.
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blueThe saddle-point trick involves less computation than the precondi-
tioning trick but involves a bigger linear system. For instance, the extraction
of the scalar potential can be equivalently rewritten in the following saddle-
point problem: find (θṼ ,uθF) ∈ Ṽ × F such that

{
HFẼ ·uθF − G̃RADθṼ =0Ẽ

DIV uθF = DIV uF
(35)

blueNote that this linear system allows the extraction of the irrotational com-
ponent too.

blueAnother way to explore this is the implementation of the algebraic
multigrid proposed by Bell [23].

4.3 Numerical experiments

To illustrate the efficiency of our approaches, we performed several numerical
experiments that we split into two families. First, we attempted to find the
best linear solver to compute the DHHD. This step was carried out on Carte-
sian meshes with periodic boundary conditions. Then, we used this solver to
compute the DHHD on polyhedral meshes with boundary conditions different
than periodic. Each of the numerical results will be computed on some mesh
sequences of increasing density.

4.3.1 Cartesian meshes

The table 3 depicts the mesh sequence used for our tests. These meshes comes
from tessellation of the hexahedron [−1, 1]× [−2, 2]× [−3, 3].

X
Y

Z

Fig. 5: Cartesian 16

Mesh #V #E #F #C

cart 8 512 1,344 1,176 343
cart 16 4,096 11,520 10,800 3,375
cart 32 32,768 95,232 92,256 29,791
cart 64 262,144 774,144 762,048 250,047
cart 128 2,097,152 6,242,304 6,193,536 2,048,383

Table 3: Cartesian mesh sequence
The following periodic potentials are used for our tests:

ψ = − 1
π




sin3(πy) cos3(πz)
sin3(πz) cos3(πx)
sin3(πx) cos3(πy)


 θ = − 1

π
cos3(πx) cos3(πy) cos3(πz) (36)

We also introduce the following harmonic field:

uh =
(
1 1 1

)ᵀ (37)
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Thus, the initial vector field writes:

u = curlψ + grad θ + uh (38)

This field is discretized onto the edges and faces using the de Rham maps:

uE = RE(u) uF = RF(u) (39)

In practice, we use high order quadrature formulas to approximate the de
Rham map near the unit roundoff.

For the Cartesian meshes we use the following diagonal Hodge operators:

∀(a, a′) ∈ A2 (HAB̃)a,a′ =





|b̃(a)|
|a|

if a = a′

0 otherwise
(40)

where A denotes any cochain space and B̃ its dual. The measure of a vertex
is considered as equal to 1.

For the tests, we set the maximum number of iterations to 128 for both
FGMRES and BiCGStab2. The time taken to extract the components of the
DHHD are reported in the figure 6. Note that BiCGStab2 is about 5 times
faster than FGMRES. Some issues have been experienced with BiCGStab2.
The solver becomes unstable once the minimal residual is reached. We had
to modify the solver to select the solution with the minimum residual. This
behavior is not encountered for the FGMRES. However, the dimension of the
Krylov basis for the FGMRES solver has to be set large enough to not produce
a restart, since any restart causes the divergence of the solver. We also recall
that FGMRES has a memory cost proportional to the number of iterations,
which means that it has a memory cost much larger than BiCGStab2. Concern-
ing the BiCGStab(l) solver, it provides results similar to those of BiCGStab2
for l = 2. With l = 4, we observe that one iteration of BiCGStab(4) is equiv-
alent to two iterations of BiCGStab(2) with no performance gain.
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Fig. 6: Comparison of the times elapsed between FGMRES and BiCGStab2
for the extraction of the various components for the edge-based decomposition
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The number of iterations for both solvers are reported in figure 7. Note
that the extraction of the scalar potential θV requires as many iterations as
the other fields. This result is counter-intuitive because of the system size.
The other systems seem better-conditioned than the extraction of θV , but the
memory cost is about 3 times greater (see table 3 for the number of degrees of
freedom). This behavior for the system conditioning has already been observed
in [24] and [19]. The maximum number of iterations is reached for uθE with
112 iterators using FGMRES and for θV with 56 iterations using BiCGStab2.

0

20

40

60

80

100

120

140

8 16 32 64 128

It
er

at
io

ns

Points per direction

Number of iterations using FGMRES

θ
ψ
uθ
uψ

0

20

40

60

80

100

120

140

8 16 32 64 128

It
er

at
io

ns

Points per direction

Number of iterations using BiCGStab2

θ
ψ
uθ
uψ

Fig. 7: Comparison between the number of iterations used by FGMRES and
BiCGStab2 for the extraction of the various components for the edge-based
decomposition

As expected, table 4 shows a convergence rate of 2. Note that the errors
on uψ are not represented since they are the same as the errors on uθ up to
the unit roundoff.

Mesh ErV(θ) r ErF (ψ) r ErE(uθ) r

cart 8 3.5 × 10−1 2.3 × 10−1 1.1 × 100

cart 16 7.5 × 10−2 2.3 1.2 × 10−1 0.9 4.4 × 10−1 1.4
cart 32 1.1 × 10−2 2.7 2.8 × 10−2 2.1 9.9 × 10−2 2.2
cart 64 2.5 × 10−3 2.2 6.9 × 10−3 2.0 2.4 × 10−2 2.1
cart 128 5.9 × 10−4 2.1 1.7 × 10−3 2.0 5.8 × 10−3 2.0

Table 4: Discrete errors and convergence rates for the Cartesian mesh sequence
for the edge-based decomposition

The same parameters as the edge-based decomposition are used for the
face-based decomposition. We only have to adjust the maximum number of
iterations to 150. We found similar results as those obtained with edge-based
decomposition for time (figure 8) andi for the number of iterations (figure 9).
The maximum number of iterations is reached for uψF with 135 iterations us-
ing the FGMRES solver and also for uψFa with 61 iterations using BiCGStab2.
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As well as edge-based schemes, a convergence rate of 2 is observed for these
schemes (table 9).
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Fig. 8: Comparison of the elapsed times between FGMRES and BiCGStab2
for the extraction of the various components for the face-based decomposition
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Fig. 9: Comparison between the number of iterations used by FGMRES and
BiCGStab2 for the extraction of the various components for the face-based
decomposition

Mesh ErE(ψ) r ErF (uθ) r ErC(θ) r

cart 8 4.7 × 10−2 2.1 × 10−1 4.5 × 10−2

cart 16 1.6 × 10−2 1.5 1.1 × 10−1 0.8 3.4 × 10−2 0.4
cart 32 2.9 × 10−3 2.4 2.9 × 10−2 2.0 9.5 × 10−3 1.8
cart 64 6.7 × 10−4 2.1 7.1 × 10−3 2.0 2.4 × 10−3 2.0
cart 128 1.6 × 10−4 2.0 1.8 × 10−3 2.0 5.9 × 10−4 2.0

Table 5: Discrete errors and convergence rates for the Cartesian mesh sequence
for the face-based decomposition
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For both edge-based and face-based decompositions, the errors on the har-
monic terms uh

E and uh
F are observed being equal to the unit roundoff. The

properties of extracted fields (zero curl and divergence) are also verified to the
unit roundoff.

Figure 10 summarizes the errors for both edge-based and face-based meth-
ods.
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Fig. 10: Numerical errors on extracted components. Plain lines denote errors
on edge-based method and dashed lines denote errors on face-based method

For the sake of completeness, we provide the gain offered by preconditioners
for the extraction of the discrete scalar potentials in figure 11. We can see
that ILU0 decreases at least by a factor of 3 the number of iterations of the
BiCGStab2 solver in comparison with BiCGStab2 without preconditioner.
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Fig. 11: Comparison between the number of iterations for various precondi-
tioners using BiCGStab2.

This first series of numerical experiments confirms that the numerical
schemes provide correct results. We have seen that BiCGStab2 is efficient
to solve our equations. We will use this numerical solver in the remainder to
present the DHHD on polyhedral meshes.
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4.3.2 Polyhedral meshes

For the polyhedral meshes, we chose the discrete Hodge operators designed
by [16] for the Discrete Geometry Approach (DGA) schemes. These operators
allow an explicit reconstruction of gradients and fluxes without minimization
or explicit matrix inversion. According to [7], these operators require some
regularities of the primal mesh. For instance, the primal faces must be planar.
Since these operators are only designed for gradients and fluxes (HEF̃ and
HFẼ), we keep the diagonal Hodge operators for HVC̃ and HCṼ .

To evaluate our method on polyhedral meshes, we use the meshes provided
by the FVCA benchmark [25]. For the sake of clarity, we present only two of
the mesh sequences (figures 12 and 13). These mesh sequences summarizes the
two convergence behaviors using DGA Hodge operators. The characteristics
of the mesh sequences are provided in tables 6 and 7.

Fig. 12: BLS 10

Mesh #V #E #F #C

bls 10 1,331 4,730 5,400 2,000
bls 20 9,261 34,860 41,600 16,000
bls 30 29,791 114,390 138,600 54,000
bls 40 68,921 267,320 326,400 128,000

Table 6: Prism mesh sequence

Fig. 13: Checkerboard 4

Mesh #V #E #F #C

chkb 4 625 1,536 1,200 288
chkb 8 4,417 11,520 9,408 2,304
chkb 16 33,025 89,088 74,496 18,432
chkb 32 254,977 700,416 592,896 147,456

Table 7: Checkerboard mesh sequence
Since these polyhedral meshes are not periodic, we use the discrete fields (36)

introduced for the Cartesian mesh sequence without the constant field (37). We
also need boundary conditions. We recall that the components of the DHHD
depend on these boundary conditions. Unsuitable boundary conditions lead to
a different decomposition (e.g. see [5]). To retrieve our analytical components,
we need to impose the exact solution on the boundary using primal or dual
boundary conditions.

In equations (16), (21) and (24), we observe that the inverse of a DGA
Hodge operator is required. To avoid explicit matrix inversion, we propose to
solve equation (16) using a saddle-point problem. Considering only the dual
vector potential ψẼ and introducing uψE = (HEF̃ )-1 ·ψẼ , we rewrite equa-
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tion (16) to obtain the following saddle-point problem: find (uψE ,ψẼ) ∈ E × Ẽ
such that

{
−HEF̃ ·uψE + C̃URLψẼ =0F̃

CURL uψE = CURL uE
(41)

This problem allows the vector potential and the solenoidal component to
be computed at the same time. We impose dual boundary conditions on ψẼ

to obtain the results presented in figure 14. Table 8 shows that we obtain a
first order of convergence for the vector potential ψẼ . However, the solenoidal
component uψE presents two convergence behaviors depending on the mesh
regularity. We also find two different convergence behaviors for the irrota-
tional component uθE while the scalar potential θV reaches the second order
of convergence. This behavior is in line with the results found by [7].
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Fig. 14: Error measurements for the polyhedral mesh sequences for the edge-
based DHHD. ◦ denotes the checkerboard and × denotes the prism mesh.
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Mesh ErV(θ) r ErẼ(ψ) r ErE(uθ) r ErE(uψ) r

bls 10 9.8 × 10−5 1.1 × 10−1 7.8 × 10−4 6.9 × 10−3

bls 20 2.9 × 10−5 1.9 4.8 × 10−2 1.2 2.9 × 10−4 1.5 2.3 × 10−3 1.7
bls 30 1.4 × 10−5 1.9 3.1 × 10−2 1.1 1.5 × 10−4 1.7 1.1 × 10−3 1.8
bls 40 8.1 × 10−6 1.9 2.5 × 10−2 0.8 9.0 × 10−5 1.8 6.5 × 10−4 1.9

chkb 4 8.3 × 10−4 2.1 × 10−2 6.0 × 10−3 2.1 × 10−2

chkb 8 2.1 × 10−4 2.1 1.3 × 10−2 0.7 3.3 × 10−3 0.9 1.3 × 10−2 0.7
chkb 16 5.6 × 10−5 2.0 6.8 × 10−3 1.0 1.7 × 10−3 0.9 6.8 × 10−3 0.9
chkb 32 1.4 × 10−5 2.0 3.4 × 10−3 1.0 8.9 × 10−4 1.0 3.4 × 10−3 1.0

Table 8: Discrete errors and convergence rates for the polyhedral mesh se-
quences for the edge-based decomposition

For the face-based schemes, we also need to solve a saddle-point problem
to extract the scalar potential θṼ . By introducing the irrotational component
uθF = (HFẼ)-1 ·θṼ , equation (21) can be transformed in the following saddle-
point problem: find (θṼ ,uθF) ∈ Ṽ × F such that

{
HFẼ ·uθF − G̃RADθṼ =0Ẽ

DIV uθF = DIV uF
(42)

We endow this system with Dirichlet boundary conditions. The discrete errors
and convergence rates for the face-based DHHD are presented in figure 15 and
table 9.

103 104 105

10−4

10−3

#C

E
r Ṽ
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Fig. 15: Error measurements for the polyhedral mesh sequences for face-based
DHHD. ◦ denotes the checkerboard and × denotes the prism mesh.
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Mesh ErṼ(θ) r ErE(ψ) r ErF (uθ) r ErF (uψ) r

bls 10 4.3 × 10−4 2.1 × 10−4 6.3 × 10−3 3.3 × 10−3

bls 20 1.2 × 10−4 1.8 5.6 × 10−5 2.0 1.9 × 10−3 1.8 1.2 × 10−3 1.5
bls 30 5.6 × 10−5 1.9 2.5 × 10−5 2.0 9.0 × 10−4 1.8 5.7 × 10−4 1.8
bls 40 3.8 × 10−5 1.4 1.4 × 10−5 2.0 5.4 × 10−4 1.8 3.3 × 10−4 1.9

chkb 4 2.4 × 10−3 6.3 × 10−3 3.6 × 10−2 1.8 × 10−2

chkb 8 3.0 × 10−4 2.9 1.9 × 10−3 1.9 1.4 × 10−2 1.3 1.0 × 10−2 0.8
chkb 16 9.9 × 10−5 1.6 9.0 × 10−4 2.2 5.4 × 10−3 1.4 4.7 × 10−3 1.1
chkb 32 2.9 × 10−5 1.8 5.4 × 10−4 2.0 2.4 × 10−3 1.1 2.3 × 10−3 1.1

Table 9: Discrete errors and convergence rates for the polyhedral mesh se-
quences for the face-based decomposition

We measure a second order of convergence for all the vector components
and potentials on the prism mesh sequence. A second order of convergence is
also found for the potentials on the checkerboard mesh sequence but only a
first order is found on the vector components.

During our numerical experiments, we observe that the vector potential
is harder to extract than the other components. The equations and methods
to extract ψ are extremely sensitive to boundary conditions and numerical
perturbations. Great caution must be taken in the implementation of the CDO
schemes and solvers to avoid disturbing this extraction.

We use BiCGStab2 to solve our equations. The number of iterations re-
quired for this solver are close to those of the Cartesian mesh sequence (<100)
to reach the same residual. However, the FGMRES solver is unusable on poly-
hedral meshes. Our numerical experiments have shown that we cannot con-
verge in a reasonable number of iterations with this solver.

5 Conclusion

We propose a methodology to perform the discrete Helmholtz-Hodge decompo-
sition on polyhedral meshes using numerical schemes that preserve the prop-
erties of the decomposition at the discrete level, namely curluθ = 0 and
divuψ = 0. We have chosen the Compatible Discrete Operator schemes de-
signed by Bonelle & Ern [7] to ensure these properties. These schemes lead to
two kinds of DHHD, edge-based and face-based, depending on the discrete rep-
resentation of the discrete vector field. We can identify four components (two
vector fields and two potentials) plus a harmonic field in each kind of DHHD.
We propose four algorithms to extract these components independently. Most
of these algorithms lead to singular linear systems, but we have shown that
we can treat them as regular linear systems using Krylov-based linear solvers
to get the expected solution.

We performed a two-step numerical validation. First, we performed valida-
tions on Cartesian meshes with periodic boundary conditions to check that our
algorithms can effectively extract the various components of the DHHD and
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to find the most suitable linear solver. Our numerical experiments show that
the BiCGStab2 is a good linear solver, better than the FGMRES in terms of
time and memory cost. Then, we use this linear solver to perform the DHHD
on polyhedral meshes with boundary conditions other than periodic. This sec-
ond step involved a choice of discrete Hodge operators required by the CDO
schemes. Since we focus on performance, we chose the discrete Hodge oper-
ators designed by Codecasa et al. [16], given by an explicit formula without
minimization or explicit matrix inversion. For many reasons intrinsic to these
operators, we only reached a first order of convergence for some components
of the decomposition. However, for most of the components, we were able to
reach the second order of convergence whatever the mesh, as long as the primal
faces were planar. In both validation steps, we checked that the properties of
the DHHD are verified to the unit roundoff.

Future investigations to improve the methods may focus on finding other
Hodge operators to reach an optimal convergence rate for all the components.
To improve the performance in terms of computational time, the implementa-
tion of the algebraic multigrid of Bell [23] seems to be unavoidable.
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