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Abstract: A multi-cut rearrangement of a string S is a string S′ obtained from S by an operation called
k-cut rearrangement, that consists of (1) cutting S at a given number k of places in S, making S the
concatenated string X1 · X2 · X3 · . . . · Xk · Xk+1, where X1 and Xk+1 are possibly empty, and (2) re-
arranging the Xis so as to obtain S′ = Xπ(1) · Xπ(2) · Xπ(3) · . . . · Xπ(k+1), π being a permutation on
1, 2, . . . , k + 1 satisfying π(1) = 1 and π(k + 1) = k + 1. Given two strings S and T built on the same
multiset of characters from an alphabet Σ, the SORTING BY MULTI-CUT REARRANGEMENTS (SMCR)
problem asks whether a given number ` of k-cut rearrangements suffices to transform S into T. The
SMCR problem generalizes several classical genomic rearrangements problems, such as SORTING

BY TRANSPOSITIONS and SORTING BY BLOCK INTERCHANGES. It may also model chromoanagenesis,
a recently discovered phenomenon consisting of massive simultaneous rearrangements. In this
paper, we study the SMCR problem from an algorithmic complexity viewpoint. More precisely, we
investigate its classical and parameterized complexity, as well as its approximability, in the general
case or when S and T are permutations.

Keywords: genome rearrangements; sorting; strings; permutations; algorithmic complexity

1. Introduction

Genome rearrangements are large-scale evolutionary events that affect the genome of
a species. They include among others reversals [1], transpositions [2], block interchanges [3]
and many more [4]. Compared to small-scale evolutionary events such as the insertion,
deletion or substitution of single DNA nucleotides, they are considered to be rare and, until
recently, were assumed to happen one after the other. In the recent literature, however, a
new type of event, called chromoanagenesis, has been shown to occur in genomes [5,6]. The
term chromoanagenesis subsumes different types of rearrangements (namely, chromoth-
ripsis, chromoanasynthesis and chromoplexy) whose common ground is the following:
in a single event, the genome is cut into many blocks, and then rearranged. As stated
by Pellestor and Gatinois [6], these are “massive chromosomal rearrangements arising
during single chaotic cellular events”. Chromoanagenesis, and notably chromothripsis, is
suspected to play a role in cancer and congenital diseases [5]. In this paper, we introduce a
new model for genome rearrangements that is general enough to encompass most of the
previously described genome rearrangements [4], as well as chromoanagenesis. In view of
providing fast and accurate algorithms for simulating chromoanagenesis, and following a
long tradition of algorithmic developments in the genome rearrangements community [4,7],
our goal here is to study its properties in terms of computational complexity.

The present article is an extended and enriched version of a paper published by the
same authors in SOFSEM 2021 [8].
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1.1. Notations and Definitions

Given an alphabet Σ, let Σ∗ be the set of all strings over Σ. We say that two strings
S, T ∈ Σ∗ are balanced if S and T are built on the same multiset of characters—in other words,
each character in S also appears in T with the same number of occurrences. We denote by
|S| the length of a string S. Unless otherwise stated, we assume that |S| = |T| = n. We
denote by Si, 1 ≤ i ≤ n, the i-th character of S. Given a string S in Σ∗, we denote by d
the maximum number of occurrences of any character of Σ in S. In the special case where
d = 1 (i.e., when S and T are permutations), and for any 0 ≤ i ≤ n, we say that there
is a breakpoint at position i in S (or, equivalently, that (Si, Si+1) is a breakpoint) if there
is no position 0 ≤ j ≤ n in T, such that the two consecutive characters Si and Si+1 are
consecutive in T, i.e., Tj = Si and Tj+1 = Si+1. For the special cases i = 0 and i = n, we
artificially set S0 = T0 = α0 and Sn+1 = Tn+1 = αn+1, where α0 /∈ Σ and αn+1 /∈ Σ. Thus,
there is a breakpoint at position 0 (resp. n) in S whenever S1 6= T1 (Sn 6= Tn). We also
denote by b(S, T) the number of breakpoints in S with respect to T.

Definition 1. Given a string S ∈ Σ∗ and an integer k, a k-cut rearrangement of S is an
operation consisting of the two following steps: (1) cut S at k locations (thus S can be written as the
concatenation of k + 1 strings, i.e., S = X1 · X2 · X3 · . . . · Xk+1, where any Xi is possibly empty,
and where a cut occurs between Xi and Xi+1, 1 ≤ i ≤ k) and (2) rearrange (i.e., permute) the Xis,
so as to obtain S′ = Xπ(1) · Xπ(2) · Xπ(3) · . . . · Xπ(k+1), π being a permutation on the elements
1, 2, . . . , k + 1, such that π(1) = 1 and π(k + 1) = k + 1. Each of the Xis considered in a given
k-cut rearrangement will be called a block.

In the above model, any block is only allowed to move whenever it is cut at both its
left and right extremities. Hence, moving a prefix of S (resp. a suffix of S) comes at the cost
of an “extra cut” to its left (resp. right), and this corresponds, in the above definition, to the
case where X1 (resp. Xk+1) is empty.

Note also that, although a k-cut rearrangement has been defined as a cut along S at k
locations, it is always possible, if necessary, to perform only k′ ≤ k cuts, by cutting several
times at the same location. Thus, one may mimic a k-cut rearrangement, while actually
realizing a k′-cut rearrangement. Note finally that, in this model, each block Xi can only be
moved, thus no reversal of Xi is allowed, and therefore the strings we consider are always
unsigned. In this paper, we study the following problem.

SORTING BY MULTI-CUT REARRANGEMENTS (SMCR)
Instance: Two balanced strings S and T, two integers k and `.
Question: Is there a sequence of at most ` many k-cut rearrangements that
transforms S into T?

Some examples of k-cut rearrangement scenarii are presented in Figure 1. For conve-
nience, we may also refer to the SMCR problem with parameters k and ` as the (k, `)-SMCR
problem. Note that this notation shall not imply that k or ` are constants. Unless mentioned
otherwise, input strings are considered to have an unbounded alphabet, although most
hardness proofs also hold for constant-size alphabets, as detailed in the tables of results.
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(A.1)

S = a b c e b c d a d c c b
3 1 4 2

a e a d b c b c d c c b
2 4 3 1

a e a d b b c b c c c d
4 1 3 2

T = a e a b b c c b c c d d

(A.2)

a b c e b c d a d c c b
3 5 1 4 2

a e a b b c d c d c c b
4 1 5 3 2

(B.1)

S = 3 5 9 7 10 4 6 1 8 2
4 2 1 3

3 10 9 7 4 5 6 1 8 2
4 2 1 3

1 8 9 7 4 5 6 2 3 10
4 3 2 1

T = 1 2 3 4 5 6 7 8 9 10

(B.2)

3 5 9 7 10 4 6 1 8 2
3 1 4 2

1 2 3 5 9 7 10 4 6 8
2 4 1 3

1 2 3 4 5 6 9 7 10 8
3 1 4 2

the order of the rearranged blocks is indicated by the framed numbers. (A) Example on strings
S = a b c e b c d a d c c b and T = a e a b b c c b c c d d. (A.1) shows a 5-cut rearrangement scenario with
` = 3. (A.2) shows a 6-cut rearrangement scenario with ` = 2. (B) Example on permutations
S = 3 5 9 7 10 4 6 1 8 2 and T = 1 2 3 4 5 6 7 8 9 10 with b(S, T) = 11. (B.1,B.2) show two alternative
5-cut rearrangement scenarii with ` = 3.

1.2. Parameterized Algorithmics

Our goal in this paper is to study the algorithmic properties of SMCR. In particular,
we aim to outline the effect of bounds on k and ` on the complexity of the problem. To
carry out our studies, we use the framework of parameterized algorithmics [9,10] which
has been applied to many hard string problems in the past [11].

An instance of a parameterized problem consists of the (classical) input instance I
and a parameter κ ∈ N. A parameterized problem is fixed-parameter tractable if every
instance (I, κ) can be solved in f (κ) · poly(n) time, where n = |I| is the size of the input,
and f is some computable function. An algorithm with such a running time is called an
FPT-algorithm. Thus, an FPT-algorithm can be considered pratical if f does not grow too
fast and κ takes on relatively small values, for example if f (κ) = 2κ and κ is upper-bounded
by log |I|.

A particularly important technique for obtaining FPT-algorithms is kernelization,
which is a framework for analyzing the power of data reduction rules for parameterized
problems. A parameterized problem admits a kernelization, or simply a kernel, if there
exists a polynomial-time algorithm that transforms every instance (I, κ) into an equivalent
instance (I′, κ′), such that |I′| + κ′ ≤ g(κ). The function g is called the kernel size. For
any decidable parameterized problem L, the existence of a kernel implies that L has an
FPT-algorithm with respect to κ, since the instance (I′, κ′) can be solved in f (κ) time.

In our study, we consider the case that the parameter κ is one of k or `, that κ is the
combined parameter k+ `, or that k and ` are part of the input. Moreover, we consider some
special cases where k or ` take on small constant values. Some of these cases correspond to

(A)

(B)

Figure 1. Examples of k-cut rearrangement scenarii. Cuts are represented by vertical lines and
the order of the rearranged blocks is indicated by the framed numbers. (A) Example on strings
S = a b c e b c d a d c c b and T = a e a b b c c b c c d d. (A.1) shows a 5-cut rearrangement scenario with
` = 3. (A.2) shows a 6-cut rearrangement scenario with ` = 2. (B) Example on permutations
S = 3 5 9 7 10 4 6 1 8 2 and T = 1 2 3 4 5 6 7 8 9 10 with b(S, T) = 11. (B.1,B.2) show two alternative
5-cut rearrangement scenarii with ` = 3.

1.2. Parameterized Algorithmics

Our goal in this paper is to study the algorithmic properties of SMCR. In particular,
we aim to outline the effect of bounds on k and ` on the complexity of the problem. To
carry out our studies, we use the framework of parameterized algorithmics [9,10] which
has been applied to many hard string problems in the past [11].

An instance of a parameterized problem consists of the (classical) input instance I
and a parameter κ ∈ N. A parameterized problem is fixed-parameter tractable if every
instance (I, κ) can be solved in f (κ) · poly(n) time, where n = |I| is the size of the input,
and f is some computable function. An algorithm with such a running time is called an
FPT-algorithm. Thus, an FPT-algorithm can be considered pratical if f does not grow too
fast and κ takes on relatively small values, for example if f (κ) = 2κ and κ is upper-bounded
by log |I|.

A particularly important technique for obtaining FPT-algorithms is kernelization,
which is a framework for analyzing the power of data reduction rules for parameterized
problems. A parameterized problem admits a kernelization, or simply a kernel, if there
exists a polynomial-time algorithm that transforms every instance (I, κ) into an equivalent
instance (I′, κ′), such that |I′| + κ′ ≤ g(κ). The function g is called the kernel size. For
any decidable parameterized problem L, the existence of a kernel implies that L has an
FPT-algorithm with respect to κ, since the instance (I′, κ′) can be solved in f (κ) time.
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In our study, we consider the case that the parameter κ is one of k or `, that κ is the
combined parameter k+ `, or that k and ` are part of the input. Moreover, we consider some
special cases where k or ` take on small constant values. Some of these cases correspond to
well-studied problems, such as computing the transposition distance or the MCSP distance,
as we discuss below. We will separately consider the case where S and T are strings (i.e.,
d > 1 both in S and T) and the case where S and T are permutations (i.e., d = 1 both in S
and T), in Sections 2 and 3, respectively.

1.3. Basic Observations

Both in permutations and strings, the cases k = 1 and k = 2 are trivial, since they do
not allow one to move any block, and thus we are in the presence of a YES-instance if, and
only if, S = T. Additionally, the SMCR problem is a natural generalization and extension
of several problems that have already been defined and studied in the literature before, as
described hereafter.

When k = 3, each k-cut rearrangement is necessarily a transposition of blocks X2 and
X3 (see Figure 2). Thus SMCR in that case is equivalent to the SORTING BY TRANSPO-
SITIONS problem [2], which is NP-hard, even if S and T are permutations [12] or binary
strings [13].

When k = 4, each k-cut rearrangement allows one to move two blocks among X2, X3
and X4, which exactly corresponds to the SORTING BY BLOCK INTERCHANGE problem (see
Figure 2). This problem is known to be in P for permutations [3] and NP-hard for strings
(an NP-hardness proof for binary strings is given in ([14], Theorem 5.7.2)).

It may come as a surprise that the case k = 4 is polynomial on permutations, when the
case k = 3—and all other non-trivial cases—are NP-hard. The original algorithm for k = 4
is based on the cycle graph (see Section 3.1.1 for formal definitions): in this setting, the goal
is to create as many cycles as possible at each step (a block interchange may create at most
two cycles). The key intuition is that such an “efficient” block-interchange always exists
and can be polynomially computed. In other words, efficient block-interchanges commute,
so it is safe to greedily apply the best-available operation at any point. This is in contrast
with k = 3, since transpositions may also create up to two new cycles, but such efficient
transpositions are not always guaranteed to exist and cannot be chosen greedily (applying
one may destroy another). In fact, finding a sequence of such efficient transpositions is
at the core of the NP-hardness proof [12]. On a related note, Lin et al. [15] proposed an
algebraic formulation of the SORTING BY BLOCK INTERCHANGE problem, translating the
cycles into permutation orbits, leading to a linear-time algorithm.

(a)

X1 X2 X3 X4

X1 X3 X2 X4

(b)

X1 X2 X3 X4 X5

X1 X4 X2 X3 X5

(c)

X1 X2 X3 X4 X5

X1 X3 X4 X2 X5

(d)

X1 X2 X3 X4 X5

X1 X3 X2 X4 X5

(e)

X1 X2 X3 X4 X5

X1 X2 X4 X3 X5

(f)

X1 X2 X3 X4 X5

X1 X4 X3 X2 X5

Figure 2. Relationship between classical rearrangements and k-cut rearrangements. Cuts are rep-
resented by vertical lines, while dashed rectangles define blocks that are moved in classical rear-
rangements. (a) when k = 3, a k-cut rearrangement corresponds to a transposition (here of blocks
X2 and X3). (b–f) are the 5 possible cases that we can get with a 4-cut rearrangement, all of them
corresponding to a block interchange of dashed blocks.
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When ` = 1, the SMCR problem comes down to deciding whether k cuts are sufficient
to rearrange S into T in one atomic move (i.e., one k-cut rearrangement). In permutations,
the problem is trivially solved by counting the number b(S, T) of breakpoints between S and
T, since we have a YES-instance if and only if b(S, T) ≤ k. In strings, the SMCR problem
resembles the MINIMUM COMMON STRING PARTITION problem [16]. Both problems are
indeed almost identical, and only differ in their optimum value, depending on whether
S and T share the same prefix and/or suffix. This will be discussed in more detail in
Theorems 5 and 6.

When k and ` are constant, SMCR is trivially polynomial-time solvable, since a brute-
force algorithm, exhaustively testing all possible k-cut rearrangements at each of the `
permitted moves, has a running time of O(nk`+1)—the additional factor of n being needed
to verify that the result corresponds to string T.

It is also natural to wonder whether (k, `)-SMCR and (k`, 1)-SMCR are equivalent.
It can be easily seen that a YES-instance for (k, `)-SMCR is also a YES-instance for (k`, 1)-
SMCR: it suffices for this to aggregate all cuts from the (k, `)-SMCR solution (of which there
are at most k`), and rearrange accordingly. However, the reverse (i.e., from (k`, 1)-SMCR
to (k, `)-SMCR) is not always true. For example, take S = afedcbg, T = abcdefg, k = 3,
and ` = 2. This is a YES-instance for (6, 1)-SMCR: One 6-cut rearrangement on S with the
cuts a|f|e|d|c|b|g (symbolized as vertical segments) suffices to obtain T. In contrast, it is
a NO-instance for (3, 2)-SMCR: The number b(S, T) of breakpoints is equal to 6 and every
3-cut rearrangement is a transposition. In this instance, however, no transposition can
decrease b(S, T) by 3. Thus, at least three 3-cut rearrangements are necessary to transform
S into T.

2. SORTING BY MULTI-CUT REARRANGEMENTS in Strings

In this section, we provide algorithmic results concerning the SORTING BY MULTI-CUT

REARRANGEMENTS problem, in the general case where S and T are strings. Our results are
summarized in Table 1.

Table 1. Summary of the results for SORTING BY MULTI-CUT REARRANGEMENTS in strings. Recall
that d denotes the maximum number of occurrences of any character in the input string S.

`
k O(1) parameter part of the input

1 P FPT (Theorem 6) NP-hard:
O(1) (Section 1.3) for ` = 1 even when d = 2 (Theorem 5)

parameter open for any fixed ` ≥ 1 (Theorem 4)
part of the input for any k ≥ 5 even in k-ary strings (Theorem 1)

for any odd k ≥ 7 even in ternary strings (Theorem 3)
for k = 3, 4 even in binary strings [13,14]

As mentioned in the previous section, we know that SMCR is NP-hard in binary
strings for k = 3, 4 [13,14]. In the following theorem, we extend this result to any value of k,
however, in larger alphabet strings.

Theorem 1. SMCR is NP-hard in k-ary strings for any fixed k ≥ 5.

Proof. By reduction from 3-PARTITION, a problem in which the input is a set A of integers
and an integer B, and the question is whether A can be partitioned into triples such that
the integers of each triple sum up to B. Observe that 3-PARTITION is strongly NP-hard,
that is, it is NP-hard even if all integers are represented as unary numbers [17]. Given an
instance of 3-PARTITION (A, B) withA = {a1, a2, . . . , a3m} and mB = ∑3m

i=1 ai, we construct
an instance of SMCR for any fixed k ≥ 5 as follows. By simple padding arguments,
we may assume that each ai is a multiple of 4m and that B

4 < ai <
B
2 . This implies the

following property: If for some subset I of {1, 2, . . . , 3m} and some δ with 0 ≤ δ ≤ 4m we
have ∑i∈I ai + δ = B + 4, then ∑i∈I ai = B, δ = 4, and |I| = 3. We use a size-k alphabet
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{0, 1, . . . , k − 1}, we denote by X the string k − 1 · k−2 · . . . · 3, and by X′ the reverse of X,
i.e., 3 · 4 · . . . · k − 1. Note that X and X′ have length k− 3 ≥ 2. We define

S = 10a110a2 . . . 10a3m 1(20X0X0X0)m2

and
T = (1X′)3m1(20B+4)m2,

and set ` = 3m. This completes the construction. Before proving its correctness, let us
group length-2 substrings of S and T (hereafter called duos) based on whether they are in
excess in S, in T, or equal in both strings.

• Group 1 contains the duos (0, 1), (1, 0), (0, k − 1), (k − 1, k − 2), . . . , (4, 3), and (3, 0) ,
which each occur 3m times in S and which do not occur in T.

• Group 2 contains the duos (0, 0), which occur Bm− 3m times in S and Bm + 3m times
in T, and the duos (1, 3), (3, 4), . . . , (k − 2, k − 1), (k − 1, 1) which do not occur in S,
and occur 3m times each in T.

• Group 3 contains the duos (0, 2) and (2, 0), which each occur m times in S and in T.

There are no further duos in S or T. To show the correctness of the reduction, we show
that (A, B) is a YES-instance of 3-PARTITION if, and only if, there exists a sequence of at
most ` = 3m many k-cut rearrangements transforming S into T.

(⇒) Pick a solution of 3-PARTITION. For each triple (ai, aj, ap) of the solution, choose
a unique substring 20X0X0X0 of S and perform the following three k-cut rearrangements:
first, cut S around 0ai and around the first copy of X in the chosen subsequence, and cut at
every position inside X. Observe that the number of cuts is exactly k. Now reverse X into
X′ and exchange 0ai and X′. Perform a similar k-cut rearrangement with aj and the second
occurrence of X and with ap and the third occurrence of X in the selected substring. The
selected substring is transformed into 200ai 00aj 00ak 0 = 20B+4 and since each string 0ai is
replaced by X′, the first part of the string is (1X′)3m. Hence, the string obtained by the 3m
many k-cut rearrangements described above is T.

(⇐) There are altogether 6m + (k − 2)3m = 3km duos in Group 1 which are in
excess in S, and 3km duos in Group 2 which are in excess in T. Since ` = 3m, each k-cut
rearrangement cuts k duos in Group 1 (and no duo in Group 2 or 3). In particular, no
00 duo may be cut in a feasible solution, so each subsequence 0B+4 in T is obtained by
concatenating a number of strips of the form 0ai , as well as some number δ of 0 singletons.
Since S has 4m of these singleton 0s, we have 0 ≤ δ ≤ 4m. By the constraint on the values
of ai, each subsequence 0B+4 in T contains four singletons from S and three substrings 0ai

of S whose lengths sum to B. Thus, the m substrings 0B+4 in T correspond to a partition
of A into m sets of three integers whose values sum up to B.

Theorem 1 is improved by the following two theorems, which prove the NP-hardness
of SMCR in ternary strings, but limited to odd values of k with k ≥ 7. More precisely,
Theorem 2 focuses on the specific case k = 7, while Theorem 3 extends the result to any
odd k ≥ 7.

Theorem 2. SMCR is NP-hard for k = 7 in ternary strings.

Proof. The proof is, as the proof of Theorem 1, by reduction from the strongly NP-hard 3-
PARTITION problem, in which the input is a setA of integers and an integer B, and the ques-
tion is whether A can be partitioned into triplets, such that the sum of the integers in each
triplet is equal to B. Given an instance (A, B) of 3-PARTITION with A = {a1, a2, . . . , a3m}
such that (i) B

4 < ai <
B
2 for any 1 ≤ i ≤ 3m and (ii) mB = ∑3m

i=1 ai, we build the following
instance (S, T, k, `) of SMCR:

S = 10a110a2 . . . 10a3m 12m+1

T = 13m+1(20B)m2
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with k = 7 and ` = m. Clearly, S and T are built on an alphabet of cardinality 3. Now, let
us prove the correctness of our reduction.

(⇒) Suppose the instance (A, B) of 3-PARTITION is a YES-instance. Thus, A can be
partitioned in sets A1, A2, . . . , Am, such that Aj = {aj1 , aj2 , aj3} and aj1 + aj2 + aj3 = B for
any 1 ≤ j ≤ m. We now show how to reach T from S, using 7-cut rearrangements, in ` = m
steps: at each step 1 ≤ j ≤ m, cut in S to the right of the 1 preceding 0aj1 (resp. 0aj2 , 0aj3 )
and to the left of the 1 following 0aj1 (resp. 0aj2 , 0aj3 ), for a total of 6 cuts; the last cut is to
the right of the j-th occurrence of 2. The 6 first cuts allow one to move blocks 0aj1 , 0aj2 , 0aj3 ,
which we concatenate so as to obtain 0B (since aj1 + aj2 + aj3 = B by hypothesis). The 7th
cut allows us to insert block 0B between the j-th and the (j + 1)-th copy of 2. An illustration
of the first step of the above described algorithm for solving SMCR is provided in Figure 3.
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A :

S :

S′ :

T :

Figure 3. Example of the proposed reduction starting from the following instance of 3-PARTITION:
A = {6, 4, 4, 7, 4, 5, 4, 7, 5, 5, 4, 5} (thus m = 4) and B = 15. Each ai is represented by a rectangle
containing ai squares. Colors in A describe a way to partition A into triplets, each summing to
B = 15. S and T are built as described in the reduction. Each vertical arrow corresponds to a 7-cut.
The first one, which is the first step of the proposed 7-cut rearrangement scenario, going from S to S′,
is detailed: each red bullet corresponds to a cut, and blocks of 0 that are rearranged are underlined in
green (corresponding to the three “green ais” summing to B).

After every step 1 ≤ j ≤ m is achieved, three of the 0ai blocks (each one being
surrounded by 1s) are removed, while a 0B block is created between two occurrences of 2.
Thus, after step m, we have produced sequence 13m+1(20B)m2 = T. Since every step uses
k = 7 cuts and T is obtained after m = ` steps, we conclude that (S, T, k, `) is a YES-instance
for SMCR.

(⇐) Suppose that the instance (S, T, k, `) that we have built is a YES-instance. First,
we note that S contains exactly 7m duos (i.e., length-2 substrings) that are absent from T,
while T contains 7m duos that are absent from S, as shown in the exhaustive list of duos
provided in Table 2.
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Table 2. Exhaustive list of duos present both in S and T, together with their occurrences.

Duo Occurrences in S Occurrences in T

(0, 0) Bm− 3m Bm−m

(0, 1) 3m 0

(0, 2) 0 m

(1, 0) 3m 0

(1, 1) 0 3m

(1, 2) 1 1

(2, 0) 0 m

(2, 1) 0 0

(2, 2) m 0

Thus, starting from S, and in order to end in T, there are altogether 7m duos to destroy,
and 7m to create. Since k = 7 and ` = m, for each of the m allowed steps, 7 duos need to be
destroyed (and never further created), while 7 duos need to be created (and never further
destroyed). In particular, this implies that we never cut strictly inside a block of the form
0ai , otherwise a (0, 0) duo would be destroyed (whereas the goal is to create altogether
2m = (B− 1)m− (B− 3)m of them). Since, in T, blocks containing 0s all are of the form 0B,
this implies that there is a way to arrange all blocks of the form 0ai from S, by concatenating
them (and never cutting them), so that we obtain m blocks of the form 0B. This shows
that it is possible to partition A into m sets, each achieving a sum equal to B. However, by
hypothesis, each ai satisfies B

4 < ai <
B
2 . Hence, the only way to partition A in the above

described manner is to group the ais by triplets. Consequently, this shows that (A, B) is a
YES-instance for 3-PARTITION.

Proof of Theorem 2 above can be extended so as to prove NP-hardness of SMCR for
any odd k ≥ 7 in ternary alphabets. This is the purpose of the following theorem.

Theorem 3. SMCR is NP-hard for any odd k ≥ 7 in ternary strings.

The proof is heavily based on the arguments developed in proof of Theorem 2. The
idea here is to reduce from a decision problem that we call p-PARTITION (p ≥ 3 being
an integer), which is an extension of 3-PARTITION; second, we slightly modify strings S
and T according to this new problem. First, let us formally introduce p-PARTITION, and
discuss its NP-hardness. The input of p-PARTITION is a set A′ = {a′1, a′2, . . . , a′pm} and an
integer B′, such that mB′ = ∑

mp
i=1 a′i, and the question is whether A′ can be partitioned into

sets A′1, A′2, . . . , A′m, each of cardinality p, and such that, for any 1 ≤ j ≤ m, ∑a′i∈A′j
a′i = B′.

We call BALANCED p-PARTITION the restriction where a′i >
B′

p+1 for all i.

Lemma 1. For any p ≥ 3, BALANCED p-PARTITION is strongly NP-hard.

Proof. First, we show that for any p ≥ 3, p-PARTITION is strongly NP-hard, by re-
duction from 3-PARTITION. Indeed, consider an instance (A, B) of 3-PARTITION, with
A = {a1, a2, . . . , a3m} and B = 1

m ∑3m
i=1 ai. Let N = B + 1. We now construct an instance

(A′, B′) of p-PARTITION as follows: for any 1 ≤ i ≤ 3m, a′i = ai, while a′i = N for all
3m + 1 ≤ i ≤ pm. Let B′ = 1

m ∑
pm
i=1 a′i. Then, B′ = 1

m (∑m
i=1 ai + (p − 3)mN), that is

B′ = B + (p− 3)N. Note that B′ < (p− 2)N.
(⇒) If (A, B) is a YES-instance for 3-PARTITION, then assume thatA can be partitioned

into A1, A2, . . . , Am. Now, for any 1 ≤ j ≤ m, take A′j to be the union of Aj and of any
(p− 3) of the remaining elements among a′3m+1, a′3m+2, . . . , a′pm. The sum of the elements
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in A′j is equal to B′, and sets A′j together form a partition of A′. Hence, (A′, B′) is a
YES-instance for p-PARTITION.

(⇐) If (A′, B′) is a YES-instance for p-PARTITION, then assume that A′ can be parti-
tioned into A′1, A′2, . . . , A′m. Any A′j contains at least three elements among {a′1, a′2, . . . , a′3m},
otherwise the sum of elements of A′j would be at least (p − 2)N > B′. Since there are
3m such elements, we conclude that each A′j must contain exactly three elements of A.
Now, let Aj = A′j ∩A. Let Sj (resp. S′j) be the sum of the elements of Aj (resp. A′j). Then,
we have S′j = Sj + (p− 3)N. Since S′j = B′, we conclude that Sj = B. This shows that
A1, A2, . . . , Am is a partition of A for which each set is of cardinality 3 and sums to B. In
other words, (A, B) is a YES-instance for 3-PARTITION.

Finally, the following argument shows that p-PARTITION remains strongly NP-hard in
the balanced restriction. Indeed, take any instance of p-PARTITION and modify it as follows:
every a′i is increased by B′, and set B′′ = (p + 1)B′. In that case, the sum of all elements
from A′ is m(p + 1)B′, and if a partition A′1, A′2, . . . , A′m exists, the sum of the elements of
each A′j is equal to B′′. Since a′i > B′, we conclude that a′i >

B′′
p+1 and we are done. Note

that each a′i remains bounded by a polynomial on the instance size (since each ai and B is
polynomialy bounded in 3-PARTITION), hence preserving the strong NP-hardness.

Proof of Theorem 3. Now, in order to prove that SMCR is NP-hard in ternary strings for
any odd k ≥ 7, it suffices to adapt the reduction provided in proof of Theorem 2.

Hence, starting from any instance (A′, B′) of BALANCED p-PARTITION, we build the
following instance (S, T, k, `) of SMCR:

S = 10a′110a′2 . . . 10a′pm 12m+1

T = 1pm+1(20B′)m2

with k = 2p + 1 and ` = m. Clearly, S and T are built on an alphabet of cardinality 3.
Correctness of the reduction relies on the same type of arguments, as in proof of

Theorem 2, and are only informally described here: if a partition of A′ exists, this provides
us with a rearrangement scenario where, at each step, 2p + 1 cuts are applied. More pre-
cisely, 2p of these cuts allow one to “disconnect” the p blocks of the form 0a′i corresponding
to a set A′j (of cardinality p) of the partition, while the last cut allows one to insert the

concatenated abovementioned blocks into a single 0B′ block between two occurrences of
character 2. The reverse direction is based on the number of duos that need to be deleted
and created: there are (2p + 1)m duos in S which are not present in T, and (2p + 1)m duos
in T which are not present in S ; besides, (2p + 1)m = k` is the total number of cuts we
are allowed altogether in a rearrangement scenario from S to T. Consequently, no (0, 0)
duo can be deleted during such a scenario, which shows that any block of the form 0B′ in
T must be the concatenation of blocks of the form 0a′i . This in turn proves that A′ can be
partitioned in sets, each of which sums to B′. Moreover, since every a′i >

B′
p+1 , all sets in

that partition are of cardinality at most p. However, since there are m sets and altogether
mp elements to partition, we conclude that each set is necessarily of cardinality exactly p.
Consequently, we are in the presence of a YES-instance for p-PARTITION.

Theorem 3 above shows that SMCR is NP-hard for ternary strings, for any odd k ≥ 7.
We conjecture that this result can be extended in two ways, i.e., that SMCR is NP-hard for
any k ≥ 5 (both odd and even), even in the case of binary strings.

Theorems 1 to 3 are concerned with the complexity of SMCR relatively to parameter k.
We now turn our attention to parameter `.

Theorem 4. SMCR is NP-hard for |Σ| = 5 and any fixed ` ≥ 1.
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Proof. The reduction being very similar to the one of Theorem 1, we only highlight here
the differences that allow us to have a fixed ` instead of fixed k. First assume that m is a
multiple of ` (add up to ` triples of dummy elements otherwise), and let k = 15m

` . Note
that k is a multiple of 5. The reduction is the same as in proof of Theorem 1 using k′ = 5
(i.e., with a size-5 alphabet). In other words, we have X = 43 and X′ = 34.

In the forward direction, use the described scenario using 5-cut rearrangements, but
combine a series of k/5 such rearrangements into a single k-cut rearrangement, as described
at the end of Section 1.3. This gives a total of 3m

k/5 = ` many k-cut rearrangements sorting S
into T. In the reverse direction, the same breakpoint count as in proof of Theorem 1 holds,
namely 3k′m = 15m duos need to be broken using ` many k-cut rearrangements, with
`k = 15m. So, again, no (0, 0) duo may be broken, and by the same argument, we obtain a
valid 3-partition of A.

The previous theorem shows NP-hardness of SMCR for any fixed `. However, a
stronger result can be obtained in the specific case ` = 1.

Theorem 5. SMCR is NP-hard when ` = 1, even when d = 2.

Proof. The proof is obtained by reduction from the MINIMUM COMMON STRING PAR-
TITION (MCSP) problem, which has been proven to be NP-hard in strings, even when
d = 2 [16]. Recall that the decision version of MCSP asks, given two balanced strings
S and T, and an integer p, whether S can be written as the concatenation of p blocks
S = X1 · X2 · . . . · Xp−1 · Xp and T can be written as T = Xπ(1) · Xπ(2) · . . . · Xπ(p−1) · Xπ(p),
where π is a permutation of 1, 2, . . . , p. Note that here, we may have π(1) = 1 and/or
π(p) = p.

Given an instance (S, T, p) of MCSP, we build an instance (S′, T′, k, `) of SMCR by
setting S′ = x · S, T′ = T · x (with x /∈ Σ), k = p + 2 and ` = 1. Clearly, if (S, T, p) is a YES-
instance for MCSP, then (S′, T′, p + 2, 1) is a YES-instance for SMCR: the MCSP solution
uses p − 1 cuts, to which we add one before x, one after x, and one after S for solving
SMCR. Conversely, if (S′, T′, k, `) is a YES-instance for SMCR, and since x occurs only once
in S′, then 2 cuts are used to “isolate” x from S′. Besides, since T′ ends with x, there must
exist a cut after the last character of S′. Hence, since S′ = x · S, at most k− 3 = p− 1 cuts
are used strictly within S, which in turns means that S has been decomposed in p blocks,
which can be rearranged so as to obtain T, since ` = 1. Thus, (S, T, p) is a YES-instance
for MCSP.

Note that MCSP has been proved to be in FPT with respect to the size of the solu-
tion [18]. It can be seen that this result can be adapted for the SMCR problem in the case
` = 1.

Theorem 6. When ` = 1, SMCR is FPT with respect to parameter k.

Proof. Assuming S 6= T, let A (resp. B) be the length of the longest common prefix (resp.
suffix) of S and T. For 0 ≤ a ≤ A and 0 ≤ b ≤ B, let Sa,b and Ta,b be the strings obtained
from S and T by removing the first a and last b characters. Then, T can be obtained from S
by one k-cut rearrangement if and only if, for some pair (a, b), Sa,b and Ta,b admit a common
string partition into k− 1 blocks. Indeed, this is easy to verify by matching the limits of the
blocks in MCSP (including at the end of the strings) with the cuts of the rearrangement. So,
SMCR when ` = 1 can be solved using O(n2) calls to MCSP with parameter k− 1, each
with a different pair (a, b), which itself is FPT for k [18].

Note that it is not sufficient to check only with the longest common prefix and suffix
(i.e., SA,B and TA,B), which can be seen in the following example. When S = xxzyxtyy and
T = xxtyxzyy, then S can be transformed into T via the 3-cut rearrangement with the cuts
x|xzy|xty|y. Moreover, we have A = B = 2, but only S1,1 = xzy xty and T1,1 = xty xzy
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have a common partition into two blocks, whereas S1,1 = zyxt and T2,2 = tyxz do not
have such a partition.

3. SORTING BY MULTI-CUT REARRANGEMENTS in Permutations

In this section, we provide algorithmic results concerning the SORTING BY MULTI-CUT

REARRANGEMENTS problem, in the specific case where S and T are permutations. Our
results are summarized in Table 3.

Table 3. Summary of the results for SORTING BY MULTI-CUT REARRANGEMENTS in permutations.
Additionally, OPT-SMCR admits a 2-approximation algorithm (Theorem 10).

`
k 3 4 O(1) parameter part of the input

1 P (Section 1.3)O(1) NP-hard:
parameter FPT (Theorem 9) FPT (Theorem 9) For ` ≥ 2 (Theorem 8)

part of the input NP-hard [12] For k ≥ 5 (Theorem 7)

We start with showing the NP-hardness for constant k or ` (Theorems 7 and 8). Then,
we show fixed-parameter tractability for the combined parameter k + ` in Theorem 9.
Finally, we provide a 2-approximation result (Theorem 10).

3.1. Hardness for Constant Number of Cuts

We now show that SMCR is also hard in permutations.

Theorem 7. For any k ≥ 5, SMCR in permutations is NP-hard.

Theorem 7 gives a complexity dichotomy with respect to the number of cuts in the
rearrangement, since the case k = 3 is known to be NP-hard [12] and the case k = 4 is
known to be polynomial-time solvable [3].

We show Theorem 7 by reduction from SORTING BY TRANSPOSITIONS on 3-cyclic
permutations [12]. Intuitively, in such permutations, it is straightforward to identify triples
of breakpoints, called 3-cycles, that should be solved together in a transposition. The
difficulty arises in selecting a correct order in which those 3-cycles should be solved. Our
approach consists of extending these 3-cycles into k-cycles, such that any k-cut rearrange-
ment solving the original cycle must solve all k breakpoints together, and still performs a
simple transposition on the rest of the sequence (to this end, k− 3 dummy elements are
created in order to consume the extra blocks in k-cut rearrangements). We first recall the
necessary definitions and properties for breakpoints and cyclic permutations, then show
how to extend a single cycle by only two or three elements, and finally successively apply
this method to extend all cycles to any size k ≥ 5.

3.1.1. Breakpoints and Cycle Graph

See Figure 4 for an illustration of the definitions in this section. For a permutation
S of length n, we assume that the alphabet of S is {1, 2, . . . , n}. We further write S0 = 0
and Sn+1 = n + 1 (they are considered as implicit elements: they may not be part of
rearrangements, but allow all other characters to have another element before and after).
For a rearrangement r transforming S into S′, we write r(S) = S′ and r(S, T) = (S′, T).
The cycle graph C(S, T) of strings S and T is the graph over n + 1 vertices {0, 1, . . . , n} with
arcs Tj → Si if Tj+1 = Si+1. Every vertex has indegree and outdegree 1, so the graph
is a disjoint union of cycles. Self-loops are called trivial cycles (when seen as a cycle) or
adjacencies (when seen as an arc); other arcs are breakpoints. An element (or vertex) x is
an adjacency (resp. breakpoint) according to its outgoing arc (we use transparently the
bijection between a vertex and its outgoing arc). A k-cycle is a cycle of length k. The
next breakpoint of breakpoint x → y in C(S, T) is y (or equivalently, the outgoing arc of y).



Algorithms 2021, 14, 169 12 of 22

We write Cx(S, T) for the cycle of C(S, T) containing element x. A cycle graph (and, by
extension, a pair of sequences generating this cycle graph) is k-cyclic if it contains only
adjacencies and k-cycles. A rearrangement r applied to a permutation S cuts an element x,
0 ≤ x ≤ n, if r cuts between x = Si and Si+1. Furthermore, r solves breakpoint x if r cuts x
and x is an adjacency in r(S). A rearrangement r solves a cycle if it solves all breakpoints
in it. We write db(S, T) for the number of breakpoints of C(S, T). A k-cut rearrangement
is efficient if it solves k breakpoints. A pair (S, T) is k-efficiently sortable if there exists a
sequence of efficient k-cut rearrangements transforming S into T. The following is a trivial
generalization of a well-known lower bound for the transposition distance.

0 • 5 • 2 • 4 • 7 • 3 • 8 • 6 • 1 • 9 • 10

1 3 2 4

efficient 3-cut rearrangement
solving cycle (5, 8, 1)

0 • 5 • 6 • 1 • 2 • 4 • 7 • 3 • 8 • 9 • 10

solve (0, 6, 4)

3 2 41

0 • 1 • 2 • 4 • 5 • 6 • 7 • 3 • 8 • 9 • 10

1 3 2 4

solve (2, 7, 3)

0 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10

Figure 4. Example of a 3-cut rearrangement scenario from S = 5 2 4 7 3 8 6 1 9 to T = 1 2 3 4 5 6 7 8 9
using cycle graphs. From top to bottom: The cycle graph for (S, T) contains three non-trivial cycles
and a trivial one (breakpoint u is depicted to the right of the label for u). Blocks 1 to 4 of a 3-cut
rearrangement (cutting after 5, 8, and 1) are given: it solves cycle 5→ 8→ 1→ 5 (denoted (5, 8, 1)
for short). Two other efficient rearrangements solve cycles (0, 6, 4) and (2, 7, 3), thus reaching T in
three steps. Note that some cycles do not admit efficient 3-cut rearrangement, e.g., (0, 6, 4) in the
original permutation S.

Proposition 1. A k-cut rearrangement may not solve more than k breakpoints, so S needs at least
db(S,T)

k k-cut rearrangements to be transformed into T. Furthermore, the bound is reached if, and
only if, (S, T) is k-efficiently sortable.

Proposition 2. If r solves a breakpoint, it cuts the next breakpoint in the cycle graph.

Proof. Let x → y be an arc of the cycle graph, and let x′ be the successor of x in T as well
as the successor of y in S. If r solves x, then r joins a block ending in x with a block starting
in x′, so x′ is the first element of some block of r. Thus, y is the last element of some block
of r, and r cuts the breakpoint y in C(S, T).
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Proposition 3. If r is efficient, it solves a cycle if, and only if, it solves any breakpoint in it.
Furthermore, r solves all breakpoints in a union of cycles of total size k.

Proof. If r is efficient, then it solves all breakpoints that it cuts (since it may not solve a
breakpoint without cutting them, and it solves and cuts k breakpoints). Due to Proposition 2,
if r solves a breakpoint in a cycle, then it must solve all subsequent arcs in the same cycle.
Hence, r either solves all breakpoints of a cycle or none at all. The size constraint follows
from the fact that all cycles are disjoint.

Cycle C1 is tied to another cycle C2 through the pair of breakpoints (x, y) if x is in C1,
y is in C2, the permutation S has Si = y and Si+1 = x for some i, and T has Tj = x and
Tj+1 = y for some y (for an illustration, see Figure 5). A breakpoint is without ties if no cycle
is tied to the cycle containing it.

(a)

S: · · · 5 • 2 · · · 8 • 6 · · · 1 • 9 · · ·
1 3 2 4

S′: · · · 5 • 6 · · · 1 • 2 · · · 8 • 9 · · ·

(b)

S2: · · · 5 • 2 · · · 8 • 6 · · · 1 • 9 · · ·n+1 • n+2 •
1 4 2 5 3 6

S′
2: · · · 5 • 6 · · · 1 • n+2 • 2 · · · 8 • 9 · · ·n+1 •

(c)

S3: · · · 5 • 2 · · · 8 • 6 · · · 1 • 9 · · ·n+1 • n+2 • n+3 •
1 5 2 6 4 3 7

S′
3: · · · 5 • 6 · · · 1 • n+3 • n+2 • 2 · · · 8 • 9 · · ·n+1 •

Figure 5. (a) The cycle (1, 5, 8) from Figure 4, and how solving it affects the rest of the sequence
(substrings 2 − 8 and 6 − 1, i.e., blocks 3 and 2 are swapped). (b) The 2-extension of S for
breakpoint x = 1, giving cycle (1, n + 1, n + 2, 5, 8). This extended cycle can be solved with a 5-cut
rearrangement having an equivalent effect on the sequence (substrings 2− 8 and 6− 1 are swapped).
The resulting S′2 is the 2-extension of S′ for adjacency x = 1. (c) The 3-extension of S for breakpoint
x = 1, giving cycles (1, n + 2, 5, 8) and (n + 1, n + 3) (the latter being tied to the former: there is no
way of solving breakpoint n + 3 without cutting n + 2). These two cycles can be solved with a 6-cut
rearrangement having an equivalent effect on the sequence (again, substrings 2− 8 and 6− 1 are
swapped). The resulting S′3 is the 3-extension of S′ for adjacency x = 1.

Proposition 4. If C1 is tied to C2, then any efficient rearrangement solving C1 must also solve C2.

Proof. Let r be an efficient rearrangement solving C1 and, in particular, x. Then, r must
place y after x in r(S), although y is before x in S, so r must have a cut somewhere between
y and x, i.e., just after y. So, r cuts breakpoint y, and solves cycle C2.
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3.1.2. One-Cycle Extensions

We now introduce the central technical engine for the reduction of Theorem 7. Let
(S, T) be a pair of permutations. Let x be a vertex of C(S, T) with the following properties
(we say that x is safe): x is either an adjacency or a breakpoint without ties in a cycle of
length kx ≥ 3, and all 2-cycles in C(S, T) are tied. The p-extension of (S, T) on x, with
p ∈ {2, 3}, denoted φ

p
x (S, T) is the pair (S′, T′) such that (see Figure 5 for an example):

• For p = 2:
S′ = (S1, . . . , Si = x, n + 2, Si+1, . . . , Sn, n + 1) if x is an adjacency
S′ = (S1, . . . , Sn, n + 1, n + 2) if x is a breakpoint
T′ = (T1, . . . , Tj = x, n + 2, Tj+1 = Si+1, . . . , Tn, n + 1)

• For p = 3:
S′ = (S1, . . . , Si = x, n + 3, n + 2, Si+1, . . . , Sn, n + 1) if x is an adjacency
S′ = (S1, . . . , Sn, n + 1, n + 2, n + 3) if x is a breakpoint
T′ = (T1, . . . , Tj = x, n + 3, n + 2, Tj+1 = Si+1, . . . , Tn, n + 1)

Note that the implicit rightmost element Sn+1 = n + 1 is always inserted explicitly
(indeed, Sn is followed by n + 1 in both S′ and T′), and becomes S′n+p+1 = T′n+p+1 =

n + p + 1 in the new permutations.

Lemma 2. A p-extension on x has the following effects on the cycle graph:

• if x is an adjacency, it adds p trivial cycles;
• if x is a breakpoint and p = 2, it adds n + 1 and n + 2 to the cycle containing x;
• if x is a breakpoint and p = 3, it adds n + 2 to the cycle containing x and a 2-cycle (n + 1, n +

3) tied to the one containing x.

Other arcs and tied cycles are unchanged.

Proof. If x is an adjacency, the p-extension inserts elements n + 1 to n + p in both strings
in the same order after x, and they are followed by the same element in both strings, since
x is an adjacency, so only trivial cycles are added.

Assume now that x is a breakpoint. Consider first an arc Tj → Si with Tj 6= x in
C(S, T). Since no element is inserted after Tj or Si, Tj → Si also appears in C(S′, T′) (the
case i = j = n is particular, as n + 1 is explicitly introduced in both sequences, but it also
yields the arc Tj → Sj in C(S′, T′)). If a cycle is tied to another one through a pair (x, y) in S
and (y, x) in T, these duos cannot be broken by the p-extension (since x is safe, no cycle can
be tied to Cx(S, T)), so it is still tied after the extension. Similarly, a non-tied cycle cannot
become tied because of the extension.

It remains to describe arcs going out from {x, n + 1, . . . , n + p}. Let y be the head of
the outgoing arc from x.

For j such that T′j = x, we have T′j+1 = n + p = S′n+p, so there exists an arc x →
S′n+p−1 = n + p− 1 in C(S′, T′) (note, in particular, that y no longer has its incoming arc
x → y).

For j such that T′j = n + 1, we have T′j+1 = n + p + 1 = S′n+p+1, so there exists an arc
n + 1→ S′n+p = n + p in C(S′, T′).

For p = 3 and j such that T′j = n + 3, we have T′j+1 = n + 2 = S′n+2, so there exists an
arc n + 3→ S′n+1 = n + 1 in C(S′, T′).

At this point, the outgoing arcs for all vertices except n + 2 have been described, as
well as incoming arcs for all vertices except y, so the last remaining arc is n + 2→ y.

Overall, for p = 2, arc x → y is replaced with the path x → n + 1→ n + 2→ y. For
p = 3, arc x → y is replaced with x → n + 2 → y and a 2-cycle n + 1 ↔ n + 3 is created.
Note that this 2-cycle is tied to Cx(S′, T′) through (n + 2, n + 3).

We now show how efficient rearrangements can be adapted through extensions. Let
r be a k-cut rearrangement of (S, T). We write r′ = ψ

p
x (r) for the k′-cut rearrangement of

(S′, T′) = φ
p
x (S, T) defined as follows:
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• if r does not cut x, then k′ = k, r′ cuts the same elements as r, and rearranges the
blocks in the same order;

• if r cuts x, then k′ = k + p, r′ cuts the same elements as r, as well as n + 1, n + 2 and
n + 3 (when p = 3), and rearranges the blocks in the same way as r, with elements
n + 3 (when p = 3) and n + 2 inserted after x.

The following two lemmas show how efficient rearrangements of (S, T) and those of
φ

p
x (S, T) are related through ψ

p
x .

Lemma 3. If r is an efficient k-cut rearrangement of (S, T), then r′ = ψ
p
x (r) is an efficient k′-cut

rearrangement of (S′, T′) = φ
p
x (S, T). Furthermore, r′(S′, T′) = φ

p
x (r(S, T)).

Proof. If r does not cut x, then k′ = k and r′ solves in (S′, T′) exactly the same breakpoints
as r, so it is efficient. Furthermore, all elements in r′(S′, T′) and φ

p
x (r(S, T)) are in the same

order as in r(S, T), except for n + 1, . . . , n + p, which are inserted, in both cases, at the end
of S and in T as in T′ (since r and r′ do not edit the second string).

If r cuts x, r′ furthermore solves breakpoints n + 1, . . . , n + p, since it rearranges these
elements in the same order as in T′. So, it is an efficient rearrangement as well. Finally,
all elements in r′(S′, T′) and φ

p
x (r(S, T)) are in the same order as in r(S, T), except for

n + p, . . . , n + 2 (which are inserted after x in both strings) and n + 1 (which is inserted as
a last element).

The following claim will be useful for proving Lemma 4.

Claim 1. Either r′ solves all breakpoints in {x, n + 1, . . . , n + p}, or none at all.

Proof. For p = 2, this is a direct application of Proposition 3, since elements x, n + 1 and
n + 2 are in the same cycle of C(S′, T′).

For p = 3, by Lemma 2, Cx = Cx(S′, T′) is a (kx + 1)-cycle containing x and n + 2, and
C(S′, T′) also contains a cycle denoted Cy with elements n + 1 and n + 3. By Proposition 3,
r′ solves any element in Cx (resp. Cy) if, and only if, it solves all elements in the same cycle
(in particular, k′ ≥ kx + 1 if r′ cuts x, so k′ = k + p). Furthermore, Cy is tied to Cx, so if r′

solves Cy, it must also solve Cx (by Proposition 4). Now, all that is left is to check the last
direction: if r′ solves Cx, then it also solves Cy. Indeed, Cx is a (kx + 1)-cycle and r′ solves a
total of kx + 3 breakpoints, so it must also solve some 2-cycle C′y. Aiming at a contradiction,
assume that C′y 6= Cy. Then, C′y is already a 2-cycle of C(S, T), and it is tied to some other
cycle C′x (both in C(S, T) and C(S′, T′)), so r′ also solves C′x. Since C′x may not be equal to
Cx (x was chosen without ties), r′ solves at least |Cx|+ |C′y|+ |C′x| > kx + 3 breakpoints,
which yields a contradiction for a (kx + 3)-cut rearrangement.

Lemma 4. If r′ is an efficient k′-cut rearrangement of (S′, T′) = φ
p
x (S, T) with k′ ∈ {kx, kx + p},

then there exists an efficient k-cut rearrangement r of (S, T) such that r′ = ψ
p
x (r), where k =

k′ − p = kx if r′ cuts x and k = k′ otherwise. Furthermore, r′(S′, T′) = φ
p
x (r(S, T)).

Proof. We build r from r′ using the converse operations of Lemma 3: mimicking the
cuts and reordering of r′, but ignoring cuts after n + 1, . . . , n + p if r′ cuts x. The relation
between k and k′ and the efficiency of r follow from the fact that r′ solves either all of x,
n + 1, . . . , n + p, or none at all, as proven in Claim 1. The ’furthermore’ part follows from
Lemma 3, applied to r.

3.1.3. Extending All Cycles

We use the natural order over integers as an arbitrary total order over the nodes. The
representative of a cycle is its minimum node. We assume (S, T) to be k-cyclic for some
k. A sample for (S, T), where (S, T) is k-cyclic is a list X containing the representative
from each k-cycle, and an arbitrary number of adjacencies. The p-extensions of (S, T) for
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sample X = (x1, . . . , x`) and of a rearrangement r of (S, T) are, respectively, Φp
X(S, T) =

φ
p
x`(. . . φ

p
x2(φ

p
x1(S, T)) . . .) and Ψp

X(r) = ψ
p
x`(. . . ψ

p
x2(ψ

p
x1(r)) . . .).

For xi in the sample, we write nxi = |S|+ p · (i− 1), i.e., nxi is the size of the strings
on which φ

p
xi is applied. Note that the above definition requires each xi to be safe in

φ
p
xi−1(. . . φ

p
x1(S, T) . . .). This is indeed the case by Lemma 2: either p = 2, there are no

2-cycles, and all breakpoints are without ties, or p = 3, all 2-cycles are tied to a single cycle
Cxj(S, T) with j < i, which are all different from Cxi (S, T) (since X is a sample and contains
at most one element per cycle).

Proposition 5. If (S, T) is k-cyclic, then Φ2
X(S, T) is (k + 2)-cyclic.

Proof. This follows from Lemma 2, since the 2-extension adds 2 elements to each k-cycle,
so Φ2

X(S, T) is (k + 2)-cyclic.

Lemma 5. If r is an efficient k-cut rearrangement of (S, T), then r′ = Ψp
X(r) is an efficient k + p

rearrangement of (S′, T′) = Φp
X(S, T). Moreover, in this case, r(S, T) is k-cyclic with sample X,

and Φp
X(r(S, T)) = r′(Φp

X(S, T)).
Conversely, any efficient k + p rearrangement r′ of (S′, T′) = Φp

X(S, T) can be written as
r′ = Ψp

X(r), where r is an efficient k-cut rearrangement of (S, T).

Proof. Given an efficient k-cut rearrangement r, let

(S0, T0) = (S, T), (Sj, T j) = φ
p
xj(S

j−1, Tj− 1) for all 0 < j ≤ `,

r0 = r, rj = ψ
p
xj(rj−1) for all 0 < j ≤ `.

Since r is an efficient k-cut rearrangement of (S, T) and (S, T) is k-cyclic, Proposition 3
implies that r must solve a single cycle of C(S, T). Let x be the representative of this cycle:
x is the only breakpoint of X cut by r, and x = xi for some i. Furthermore, C(r(S, T)) is
also k-cyclic with sample X (with one cycle less than C(S, T)).

By Lemma 3, we have that rj is an efficient k j-cut rearrangement of (Sj, T j) for each
j, where k j = k j−1 if rj−1 does not cut x (i.e., j 6= i) and k j = k j−1 + p otherwise. So,
overall, r′ = r` is a an efficient (k + p)-cut rearrangement of Φp

X(S, T). The relationship
Φp

X(r(S, T)) = r′(Φp
X(S, T)) also follows from Lemma 3.

The converse direction is proven similarly using Lemma 4, with a specific attention
given to the size of the rearrangements: starting from r′ (with k + p cuts), the number of
cuts remains constant, except for ψ

p
xj , where it drops to k and then remains constant again

(so the condition k′ ∈ {k, k + p} in Lemma 4 is indeed satisfied).

Lemma 6. If (S, T) is k-cyclic with sample X, then (S, T) is k-efficiently sortable if, and only if,
Φp

X(S, T) is k-efficiently sortable.

Proof. This is a direct application of Lemma 5: a sequence of efficient k-cut rearrangements
of (S, T) translates into a sequence of efficient (k + p)-cut rearrangements of Φp

X(S, T)
through function Ψp

X (note that X remains a sample of (S, T) throughout the sequence
of rearrangements).

Lemma 7. For any odd k ≥ 5, deciding whether a k-cyclic pair (S, T) is k-efficiently sortable is
NP-hard. For any even k ≥ 6, deciding whether a pair (S, T) is k-efficiently sortable is NP-hard.

Proof. By induction on k. Deciding if a 3-cyclic pair (S, T) is efficiently sortable is NP-
hard (cf. [12], where it is shown that deciding if a permutation can be sorted with db(S,T)

3
transpositions is NP-hard). For any k ≥ 5, take p = 2 if k is odd and p = 3 otherwise, and
consider a (k− p)-cyclic instance (S, T) and a sample X for (S, T) (note that one always
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exists): (S, T) is (k− p)-efficiently sortable if, and only if, Φp
X(S, T) is k-efficiently sortable

by Lemma 6, and Φp
X(S, T) is k-cyclic for p = 2 by Proposition 5. This gives a polynomial

reduction proving hardness for k (even when restricted to k-cyclic permutations when k
is odd).

Theorem 7 is a corollary of Lemma 7, since a k-cyclic pair (S, T) is k-efficiently sortable
if, and only if, S can be rearranged into T with at most db(S,T)

k k-cut rearrangements
(Proposition 1).

3.2. Hardness for Constant Number of Rearrangements

By Theorem 7, SMCR is NP-hard for constant k. We now show that the case with
constant ` is NP-hard for all ` ≥ 2. Since for ` = 1 SMCR is the same as computing the
breakpoint distance between permutations, we thus obtain a complexity dichotomy with
respect to `.

Theorem 8. SMCR in permutations is NP-hard for any constant ` ≥ 2.

We refer to the notions of breakpoint graph, cycles and efficient rearrangements in-
troduced in Section 3.1.1 of the proof of Theorem 7, as well as their first properties
(Propositions 1 to 4). We first give an informal outline of our reduction for ` = 2: we
show that it is NP-hard to check if an input with 2k breakpoints can be solved with two
k-cut rearrangements (i.e., can be sorted efficiently). We build two permutations whose
cycle graph can be decomposed into cycles of specific sizes, and we show that an efficient
sorting scenario needs to satisfy two types of constraints: (i) each cycle must be solved
entirely in the first or in the second rearrangement, so the sum of cycle size for each rear-
rangement must be exactly k, and (ii) some cycles must satisfy precedence constraints, i.e.,
we generalize the notion of ties by building tuples of cycles (C1, . . . , Cp, C′), where some Ci
must be solved before or during the same k-cut rearrangement as C′. We build an instance
with a large cycle that needs to be solved during the first rearrangement by constraint
(i), and that forces one to solve a non-trivial set of cycles in the same rearrangement by
constraint (ii).

Proof. We present a reduction from EXACT 3-SET COVER, where we are given a collection
of sets X = {X1, X2, . . . , Xn}, all of size 3 over a universe U of size 3p, and ask whether
there are p sets in X whose union is exactly U. Further assume that 7n = 8p. This is
without loss of generality: indeed, let δ = 8p− 7n. If δ > 0, duplicate set X1 d δ

7e times,
so n increases by this quantity to become n′, and p is unchanged, so δ decreases by 7d δ

7e,
and now −7 ≤ 8p− 7n′ ≤ 0. If δ < 0, add 3|δ| new elements to the universe, and |δ| sets
to X , covering exactly those new elements, so both n and p increase by |δ| and become
respectively n1 and p1, yielding 8p1 − 7n1 = 8p + 8|δ| − 7n− 7|δ| = δ + |δ| = 0.

The following reduction is for ` = 2; we show how to extend it to any larger ` at the
end of the proof. See Figure 6 for an illustration. Given an instance of EXACT 3-SET COVER,
we build an alphabet of size 8n + 6p + 2, with symbols xi,q for 1 ≤ i ≤ n and 1 ≤ q ≤ 8,
and yi for 1 ≤ i ≤ 2p + 2. Given u ∈ U, let i1, . . . , ik be the indices, such that u ∈ Xij for
all 1 ≤ j ≤ k. Furthermore, let pj be the index of u in Xj (i.e., 1, 2 or 3). Write Su for the
following string:

Su = xi1,2p1+1 xi1,2p1 xi2,2p2+1 xi2,2p2 . . . xik ,2pk+1 xik ,2pk .
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• a1 • a6 • b1 • b6 • c1 • c6 • d1 • d6 •

y1
•y4•a3•a2•b3•b2•y3•y6•a5•a4•c3•c2•y5•y8•d3•d2•y7•y10•b5•b4•c5•c4•d5•d4•y9•y2•

Cy
1

Cy
2

Ca

Cb

Cc

Cd

1 6 11

11 3 2 5 4 8 7 10 9 12

efficient rearrangement solving Ca, Cd and Cy
1

(cutting around blocks 1 to 12 )

•a1 •a2 • b3 • b2 •y3 •y4 •a3 •a4 • c3 • c2 •y5 •y6 •a5 •a6 • b1 • b6 • c1 • c6 •d1 •

d2
•y7 •y8 •d3 •d4 •y9 •y10• b5 • b4 • c5 • c4 •d5 •d6 •y1 •y2 •

efficient rearrangement solving Cb, Cc and Cy
2

(cutting all remaining breakpoints)

•a1 •a2 •a3 •a4 •a5 •a6 • b1 • b2 • b3 • b4 • b5 • b6 • c1 • c2 • c3 • c4 • c5 • c6 •

d1
•
d2

•
d3

•
d4

•
d5

•
d6

•y1 •y2 •y3 •y4 •y5 •y6 •y7 •y8 •y9 •y10•

Figure 6. Illustration of the reduction from a simplified version of EXACT COVER, with size-2 sets
over a size-4 universe U = {1, 2, 3, 4}: A = {1, 2}, B = {1, 4}, C = {2, 4}, D = {3, 4} (for lighter
indices we use a, b, c, d instead of x1, x2, x3, x4; note also that we have ai for 1 ≤ i ≤ 6 instead
of 1 ≤ i ≤ 8 because of the smaller sets). All six non-trivial cycles of C(S, T) are depicted on
the top permutation: Ca = {a1, a3, a5}, Cb, etc. In this example, (S, T) admits an efficient 11-cut
rearrangement corresponding to an exact set cover of U: cut all breakpoints in bold cycles Ca, Cd, Cy

1 ,
followed by an efficient 19-cut rearrangement solving the remaining breakpoints (in the actual
reduction, we consider instances where 7n = 8p to enforce that both efficient rearrangements have
the same size k).

We now build permutations S and T:

S =x1,1x1,8 x2,1x2,8 . . . xn,1xn,8 y1 y4S1y3 y6S2y5 . . . y6p−1 y6p+2S3py6p+1 y2

T =x1,1x1,2 . . . x1,8 x2,1x2,2 . . . x2,8 . . . xn,1xn,2 . . . xn,8 y1 y2 . . . y6p+2

where the suffix of S is the concatenation of y2i−1y2i+2Si for every 1 ≤ i ≤ 3p, followed by
y6p+1y2. Finally, we set k = 7p + 1. Note that strings S and T have n + 1 adjacencies (0, and
each xi,8, 1 ≤ i ≤ n), so they have (8n+ 6p+ 2)+ 1− (n+ 1) = 7n+ 6p+ 2 = 14p+ 2 = 2k
breakpoints. We compute the cycles of C(S, T). To this end, we describe n + 2 cycles
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(denoted Cx
i , 1 ≤ i ≤ n, Cy

1 and Cy
2 ), and check that their total size is indeed equal to the

number of breakpoints.
For each 1 ≤ i ≤ n, let Cx

i be cycle xi,1 → xi,3 → xi,5 → xi,7 → xi,1. There are n such
size-4 cycles, for a total size of 4n breakpoints. Let Cy

1 be the cycle y1 → y6p+1 → y6p−1 →
. . . y5 → y3 → y1. It has size 3p + 1. The remaining arcs in substring y2u+2Suy2u+1
are y2u → xik ,2pk , xij ,2pj → xij−1,2pj−1 for 2 ≤ j ≤ k, and xi1,2p1 → y2u+2. Furthermore,

y6p+2 → y2, so all these arcs form a single cycle, Cy
2 of length 3n + 3p + 1 (3n for all xi,2q,

q ∈ {1, 2, 3}, plus 3p + 1 for all y2q, 1 ≤ q ≤ 3p + 1). The total size of the cycles above is
(4n) + (3p + 1) + (3n + 3p + 1) = 7n + 6p + 2, so all breakpoints have been accounted
for. Clearly, the reduction can be performed in polynomial time; we now prove that the
reduction is correct, i.e.:

S can be transformed into T with 2 k-cut rearrangements⇔ X has an exact
cover of U.

(⇐) Given an exact cover of U, we show that cutting all breakpoints in cycles Cy
1 and

Cx
i where xi is in the set cover yields a k-cut rearrangement solving k breakpoints in S. In

other words, we first cut the following breakpoints: for each i such that Xi is in the cover,
cut between xi,1 and xi,8, as well as between xi,2q+1 and xi,2q for 1 ≤ q ≤ 3. Furthermore,
cut after y2i+1 for each 0 ≤ i ≤ 3p. There are indeed 4p + 3p + 1 = k cuts. At this point,
each substring y2u+2Suy2u+1 is cut into two strings y2u+2S′uxj,2p+1, and xj,2pS′′u y2u+1 (where
j is the index of the only set Xj in the cover, such that u ∈ Xj) merge them together in
reverse order, i.e., create string Xj,p = xj,2pS′′u y2u+1y2u+2S′uxj,2p+1 (note that breakpoint
y2u+1 is now solved). Furthermore, we merge the prefix ending in y1 with y2, solving an
additional breakpoint. Finally, for each j, such that Xj is in the cover, insert strings Xj,1,
Xj,2, Xj,3 between xj,1 and xj,8. This step solves breakpoints xj,1, xj3 , xj5 and xj3 for each j
in the cover, for a total of 4p breakpoints solved. So, overall, k breakpoints of S can be
solved with a single k-cut rearrangement. Note that the resulting S′ thus has k remaining
breakpoints with T: they can all be solved with a single k-cut rearrangement, so S can be
sorted into T in only 2 steps.

(⇒) Permutation S can be sorted into T with ` = 2 k-cut rearrangements if, and only
if, it can be sorted using two efficient k-cut rearrangements (Proposition 1). Each of these
solves a union of cycles of total size k (Proposition 3). In other words, some cycles (of total
size k) are solved first (i.e., with the first rearrangement), the other cycles (of total size k
as well) are solved second. Note that all cycles Cx

i together have a size of 4n < k, so at
least one cycle among Cy

1 , Cy
2 is solved first. They are too large to be solved together, so

in fact exactly one of them is solved first, the other second. We extend the notion of being
solved first to breakpoints and arcs appearing in the cycles solved first. The following
result adapts Proposition 4 to our setting.

Claim 2. If an arc u → v such that v occurs before u in S is solved first, then some breakpoint
strictly between v and u in S is solved first as well.

Proof. Let vw1 . . . wku be the substring of S from v to u. Then, T has uw1 as a consecutive
pair. Solving breakpoint u implies that the rearrangement puts w1 just after u, which is
only possible if there is at least one cut point between w1 and u in S.

Consider any u ∈ U, and element xu,3. This element appears in some substring
zxu,3, xu,2 of S (depending on the position of xu,3, z is either of the form y2q or xu′ ,2p), and
Cy

2 has an arc xu,2 → z. By the lemma above, if Cy
2 is solved first, then the only breakpoint

between z and xu,2, (namely, xu,3) must be solved first, and the cycle Cx
u containing it as

well. So, Cy
2 cannot be solved first, since otherwise, all cycles Cx would be solved first as

well, for a total size of 7n + 3p + 1 > 7p + 1 = k.

Thus, Cy
1 is solved first, as well as k−|Cy

1 |
4 = p cycles of the form Cx

i . Write P for the
size-p subset of {1, .., , n}, such that i ∈ P, if, and only if, Cx

i is solved first. We show that
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⋃
i∈P Xi = U, i.e., P is a solution to the set cover instance. Indeed, let u ∈ U. Recall that

S contains substring y2u−1y2u+2Suy2u+1, with arc y2u+1 → y2u−1 in cycle Cy
1 . Thus, some

other breakpoint z of this substring must be solved first. We have z 6= y2u+2 and z 6= xi,2q,
since otherwise z ∈ Cy

2 , which is solved second. Thus z = xi,2q+1 for some i such that
u ∈ Xi, and since z is solved first, we have i ∈ P, which concludes the hardness proof for
` = 2.

For higher values of `, the following is a reduction of SMCR for ` to SMCR for `+ 1:
given permutations S, T and an integer k (assuming S and T have k` breakpoints), let
S′ = S · z1 . . . zk and T′ = T · zk . . . z1. Then, breakpoints (z1, . . . , zk) form a size-k cycle:
any efficient sorting of (S, T) must use one step to exclusively sort the breakpoints in this
cycle. Thus, (S, T) can be solved with ` many k-cut rearrangements if, and only if, (S′, T′)
can be solved with `+ 1 many k-cut rearrangements.

In many settings, we encounter a class of Center problems, which can be generally
defined as follows: given a set of objects S1, . . . , Sm and a radius k, find an object S∗ at
distance at most k from each Si. In particular, in the context of strings, depending on
the distance measure, this problem is called CONSENSUS STRING (using the Hamming
distance) or CENTER STRING (using the Edit distance). Problems LONGEST COMMON

SUBSEQUENCE and SHORTEST COMMON SUPERSEQUENCE also fit in this setting, where
(non-symmetrical) distances count 1 for deletions (resp. insertions), and forbid all other
operations. See [11] for a review of results on these and related problems. Applying this
framework to permutations, it is natural to consider the BREAKPOINT CENTER problem:
given permutations (S1, . . . , Sm) and an integer k, find a permutation S∗ such that the
breakpoint distance between each Si and S∗ is at most k. Note that this is slightly different
from the BREAKPOINT MEDIAN problem [19], usually defined over m = 3 permutations,
which aims to minimize the sum of distances rather than the maximum. Clearly, for m = 2,
(S1, S2) have a breakpoint center S∗ at distance k if, and only if, S2 can be obtained from S1
using two k-cut rearrangements (using S∗ as an intermediary step). Thus, Theorem 8 can
be restated as follows.

Corollary 1. The BREAKPOINT CENTER problem is NP-hard, even when restricted to two
input permutations.

3.3. Fixed-Parameter Tractability and Approximability

We now show that input instances with bounded k and ` can be solved efficiently.
More precisely, we show that SMCR in permutations is fixed-parameter tractable when
parameterized by k + `. In fact, SMCR admits a kernel with a polynomial size bound.

Theorem 9. SMCR in permutations admits a kernel of size 2k`+ 2.

Proof. The kernel is based on the following reduction rule: if there is a duo (a, b) (i.e., a
substring ab) in both S and T, then remove b from S and T. Before we show the correctness,
observe that the exhaustive application of the rule indeed gives the desired result: any
YES-instance that is reduced exhaustively with respect to the above rule has at most 4k`+ 2
letters: we must cut inside every duo in S. Overall, we may create at most k` cuts via ` many
k-cut rearrangements. Hence, if S has more than k` duos, then (S, T) is a NO-instance. Thus,
after applying the rule exhaustively, we may replace any instance with more than k`+ 1
letters in S (and thus in T) by a trivial NO-instance of constant size. Thus, the correctness
of the rule remains to be proven. Consider an instance consisting of the permutations S
and T to which the rule is applied and let S′ and T′ denote the resulting instance. We show
that (S, T) is a YES-instance if, and only if, (S′, T′) is a YES-instance.

(⇒) If (S, T) is a YES-instance, then there is a sequence of `+ 1 permutations (S =
S1, S2, . . . , S`+1 = T), such that Si+1 can be obtained from Si via one k-cut rearrangement.
Removing b from Si gives a sequence (S′1, S′2, . . . , S′`+1 = T) such that S′i+1 can be obtained
from S′i via one k-cut rearrangement.
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(⇐) If (S′, T′) is a YES-instance, then there is a sequence of `+ 1 permutations (S′ =
S′1, S′2, . . . , S′`+1 = T′), such that S′i+1 can be obtained from S′i via one k-cut rearrangement.
Replacing a by ab in each permutation S′i gives a sequence (S = S1, S2, . . . , S`+1 = T) such
that S′i+1 can be obtained from S′i via one k-cut rearrangement.

In addition, we show that for arbitrary values of k, SMCR has a polynomial-time
approximation algorithm. Let OPT-SMCR be the optimisation version of SMCR, where
we look for the smallest ` that is necessary to obtain T from S by k-cut rearrangements.

Theorem 10. OPT-SMCR in permutations is 2-approximable.

Proof. Let I = (S, T, k) be an instance of OPT-SMCR. We first rewrite S and T into S′ and T′

in such a way that T′ = idn, where idn denotes the identity permutation of {1, . . . , n}. Let
k′ = b k

2c. The algorithm consists of iterating the following three steps, starting from S′:

(a) rewrite S′, by contracting adjacencies so as to obtain a permutation containing
no adjacencies,

(b) cut around (i.e., right before and right after) the first k′ elements 1, 2, 3, . . . , k′ of that
permutation, and

(c) rearrange it so as to obtain idk′ followed by the rest of the permutation.

Steps (b) and (c) above are presented for the case where k is even. If k is odd, (b) and
(c) are slightly modified, since we are left with an unused cut:

(b’) do as (b) and additionally cut to the left of k′ + 1
(c’) do as (c) but rearrange in such a way that k′ and k′ + 1 are consecutive.

Clearly, the optimal value ` for OPT-SMCR satisfies ` ≥ b(S,T)
k . Our algorithm removes

at least k′ (at least k′ + 1) breakpoints at each iteration when k is even (when k is odd), and
thus requires `′ ≤ b(S,T)

k′ (`′ ≤ b(S,T)
k′+1 ) many k-cut rearrangements. Altogether, we have

`′ ≤ `k
k′ if k is even and `′ ≤ `k

k′+1 if k is odd. Since k′ = b k
2c, we conclude that `′ ≤ 2`.

4. Conclusions

We introduced SORTING BY MULTI-CUT REARRANGEMENTS, a generalization of usual
genome rearrangement problems that, however, does not include reversals. We discussed
its classical computational complexity (P vs. NP-hard) and its membership in FPT with
respect to the parameters k and `. For this, we distinguished the case where S and T are
permutations from the case where S and T are strings.

The obvious remaining open problem is the one indicated in Table 1, namely the FPT
status of SMCR with respect to parameter `+ k in strings (including cases where one of k
or ` is constant, with ` > 1). Another question is whether the approximation factor of 2 of
Theorem 10 can be improved. We also recall that we conjecture SMCR to be NP-hard for any
k ≥ 5 in binary strings. It would also be interesting to better understand the comparative
roles of k and ` in SMCR, for instance by studying the following question: assuming k is
increased by some constant c, what impact does this have on the optimal distance?

Extensions or variants of SMCR could also be studied, notably the one allowing rever-
sals (and thus applicable to signed strings/permutations), or the one where T is the lexico-
graphically ordered string derived from S, as studied, for instance, by Radcliffe et al. [13]
in the case of reversals.
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