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Farmers’ use of fungicides and insecticides constitutes a major threat to biodiversity that 
is also endangering agriculture itself. Landscapes could be designed to take advantage 
of the dependencies of pests, pathogens and their natural enemies on elements of the 
landscape. Yet the complexity of the interactions makes it difficult to establish general 
rules. In our study, we sought to characterize the impact of the landscape on pest and 
pathogen prevalence, taking into account both crop and semi-natural areas. We drew 
on a nine-year national survey of 30 major pests and pathogens of arable crops, distrib-
uted throughout the latitudes of metropolitan France. We performed binomial LASSO 
generalized linear regressions on the pest and pathogen prevalence as a function of the 
landscape composition in a total of 39 880 field × year × pest observation series. We 
observed a strong disequilibrium between the number of pests or pathogens favored (15) 
and disadvantaged (2) by the area of their host crop in the landscape during the previous 
growing season. The impact of the host crop area during the ongoing growing season 
was different on pests than on pathogens: the density of most pathogens increased (11 
of 17, and no decreases) while the density of a small majority of pests decreased (7 of 13, 
and four increases). We also found that woodlands, scrublands, hedgerows and grass-
lands did not have a consistent effect on the studied spectrum of pests and pathogens. 
Although overall the estimated effect of the landscape is small compared to the effect of 
the climate, a territorial coordination that generally favors crop diversity but excludes a 
crop at risk in a given year might prove useful in reducing pesticide use.

Short abstract

We sought to identify general rules characterizing the impact of the landscape on the preva-
lence of pests and pathogens of arable crops. We showed that the host crop area is consis-
tently correlated with increased pressure of the pests and pathogens the following growing 
season. Correlations of pests and pathogens with host crop areas in the same year or with 
semi-natural components of the landscape (grasslands, hedgerows and forests) are less con-
sistent and depend on the functional traits of the organisms involved.

Keywords: crop pathogens, crop pests, crop protection, landscape composition

Landscape drivers of pests and pathogens abundance in 
arable crops

Thomas Delaune, Malick S. Ouattara, Rémy Ballot, Christophe Sausse, Irène Felix,  
Fabienne Maupas, Mathilde Chen, Muriel Morison, David Makowski and Corentin Barbu

T. Delaune, M. S. Ouattara, R. Ballot, M. Chen, M. Morison, D. Makowski and C. Barbu (https://orcid.org/0000-0001-6869-5345) ✉ (corentin.
barbu@inrae.fr), Univ. Paris-Saclay, INRAE, AgroParisTech, Agronomie, Thiverval-Grignon, France. – C. Sausse, Terres Inovia, avenue Lucien Brétignières, 
Thiverval-Grignon, France. – I. Felix, ARVALIS Inst. du Végétal, Domaine du Chaumoy, Le Subdray, France. – F. Maupas, Inst. Technique de la Betterave 
– ITB, Paris, France.

Research



1430

Introduction

Yield losses of major arable crops due to animal pests and 
fungal pathogens are estimated at 20–30% worldwide 
(Savary  et  al. 2019). During the past decade, the growing 
awareness of environmental hazards associated with agricul-
tural intensification (Kim  et  al. 2017, Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem 
Services 2018) has motivated abundant studies on alterna-
tive agronomic levers to alleviate crop damage caused by pests 
(Altieri et al. 2018).

The focus of such research has progressively shifted from 
its historical focus on the field, to the landscape (Bianchi et al. 
2006, Plantegenest  et  al. 2007) with an emphasis on 
the opposition between crop and non-crop components 
(Chaplin-Kramer et al. 2013, Karp et al. 2018, Martin et al. 
2019, Sirami et al. 2019) to design integrated pest manage-
ment strategies at the landscape scale (Tscharntke et al. 2005, 
2016, Bianchi et al. 2006, Karp et al. 2018, Yang et al. 2019, 
Tamburini  et  al. 2020b). Complex tradeoffs between the 
impact of such landscape components on both the life cycle 
of animal pests and their natural enemies have often been 
pointed out (Woltz et al. 2012, Tscharntke et al. 2016, Perez-
Alvarez et al. 2018).

Studies opposing cropland to semi-natural habitats have 
failed to define a general rule of thumb regarding the regula-
tion of animal pest epidemics (Veres et al. 2013, Karp et al. 
2018, Martin  et  al. 2019). No clear agreement emerges 
either for the management of crop pathogens, as empirical 
studies are scarce despite repeated calls for landscape-level 
assessments (Plantegenest et al. 2007, Yuen and Mila 2015). 
General principles to quantify the effect of crops and semi-
natural spaces on the prevalence of pests and pathogens are 
yet to be defined (Bianchi et al. 2006, Tscharntke et al. 2016, 
Karp et al. 2018, Yang et al. 2019, Tamburini et al. 2020b).

Here we assume that it is possible to bring to light such 
general rules on landscape impact on the presence of pests 
or pathogens of arable crops by improving the description 
of landscape composition in several respects. First of all, the 
opposition between cultivated and uncultivated land must 
be refined by individualizing the crops that are susceptible 
to the pathogens or pests in question. Secondly, since both 
pests and their natural enemies have multiplication and pos-
sibly dilution dynamics in crops from one year to the next, 
it is necessary to distinguish between areas sensitive to a pest 
in the current year and the previous year (Schneider  et  al. 
2015, Scheiner and Martin 2020). Semi-natural areas are less 
likely to change from one year to the next, but their impact in 
terms of both shelter and nutrition on pests and their natural 
enemies may depend strongly on their precise nature (forests, 
meadows, etc.) (Sarthou et al. 2014). These distinctions are 
also important for generating effective actionable knowledge 
and specifying the most effective semi-natural areas in terms 
of regulation.

Beyond the nature and temporality of landscape compo-
nents, the difficulties encountered in identifying a coherent 
impact of the landscape on pests could also come from the 

small areas under consideration. The effects of different land-
scape components are frequently considered only up to a dis-
tance of 2 km or less (Bianchi et al. 2006, Karp et al. 2018, 
Scheiner and Martin 2020), yet insects, as well as pathogen 
spores, frequently have dispersal distances of several kilome-
ters (Bianchi et al. 2010, Chaplin-Kramer et al. 2011). The 
consideration of much larger landscapes is therefore justified. 
Finally, to establish tendencies, a large number of pests and 
pathogens needs to be studied simultaneously and a large 
amount of data needs to be available for each one of them 
(Karp et al. 2018, Boinot et al. 2019).

French arable farming systems are particularly dependent 
on chemical treatments and two-thirds of the total pesticide 
value are used on cereals and industrial crops (Butault et al. 
2011). In the following, we assessed in France the impact of 
the landscape composition on 30 animal pests and patho-
gens of six arable crops: wheat, barley, corn, oilseed rape, 
potato and sugar beet. The first four were the most cultivated 
in France during the studied years (Agreste 2019). Sugar 
beet and potato were added as they are the most chemically 
treated arable crops in France (Agreste 2019). On these crops, 
we selected the 30 most significant pests and pathogens as 
reflected by their frequency of observation in Vigicultures, 
one of the two databases of the national vegetal epidemic sur-
veillance system. At the time of the analysis, this database 
gathered observations distributed over all latitudes of met-
ropolitan France (Fig. 1) and over eight years (2009–2017).

To assess the impact of the landscape composition, we 
distinguished the host crop during the ongoing growing 
season (i.e. the growing season of the host crop of the pest 
or pathogen observed) and during the previous growing 
season. We also distinguished within semi-natural habitats 
the woodlands, scrublands, hedgerows and grasslands. The 
landscape composition up to 10 km from the pest observa-
tion points was obtained from official map data sets: Registre 
Parcellaire Graphique (RPG) from the Common Agricultural 
Policy (CAP) for crop fields and grasslands, BDTOPO from 
the French National Institute of Geographic, and Forest 
Information (IGN) for forests and hedgerows.

These data allowed us to test if for each of the consid-
ered landscape components there is a tendency toward 
negative or positive correlation among the considered pests  
and/or pathogens. We also test if such tendencies are  
different between pests and pathogens and finally compare 
the effect sizes of the different variables accounted for.

Material and methods

Overview of the analysis

For each landscape component, we considered four distances 
at which their influence can be exerted, that roughly corre-
spond to potential management units: 200 m (the neighbor-
ing field), 1 km (the farm), 5 km (the village) and 10 km (the 
group of neighboring villages). Based on observations from 
the French epidemic-surveillance network (2009–2017), we 
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carried out bootstrapped binomial LASSO generalized linear 
regressions to describe the presence of pests and pathogens as 
a function of the landscape composition in a total of 39 880 
observation series, each series corresponding to a field sur-
veyed a given year for a given pest or pathogen (field × year 
× pest/pathogen) (Supporting information). In these regres-
sions, we controlled for the effects of preceding crops on the 
observed field, and agroclimatic conditions. We also tested 
the robustness of our findings by comparing the results of 
alternative model specifications. Finally, we performed sim-
ple statistical tests on the results of the bootstrapped regres-
sions to confirm the statistical significance of observed trends 
over pests and pathogens.

Pests and pathogens data

Since 2008, the French epidemiological services record and 
centralize observational data of crop pests and pathogens from 
arable field monitoring. In this study, we made use of two epi-
demiological information subsystems: Vigicultures (Sine et al. 
2010) and VIGIBET (ITB – Sugar Beet Research Institute), 
that covered 17 of the 22 former French administrative regions 
including approximately two-thirds of the country over the 

2009–2017 period. From these two databases, we extracted 
information for 30 pests or pathogens on six crops (winter 
wheat, winter barley, corn, oilseed rape, sugar beet, potato).

We eliminated from the data the observations for which 
the reported crop didn’t match the crop indicated in the RPG 
data, considered here as the gold standard as they are tax data 
and have been successfully used to train automated detec-
tion of crops based on satellite imagery (Inglada et al. 2017). 
Depending on the crop, this could affect 5–30% of the field 
× year combinations in the database. Many of these observa-
tions also had little to no observations of pests or pathogens. 
We understand them as monitoring points entered by mis-
take and never really monitored.

Data from the surveys finally used in this study were struc-
tured by crop as follows: winter wheat (eight pathogens and 
four animal pests, 2246 fields × year), winter barley (two 
pathogens, 884 fields × year), maize (one insect pest, 745 
fields × year), rapeseed (two pathogens and eight animal 
pests, 2617 fields × year), sugar beet (four pathogens, 572 
fields × year) and potato (one pathogen, 411 fields × year). 
These crops are the top six most observed in the epidemic-
surveillance database and cover 89% of the arable crop areas 
in France, the main missing crops being the sunflower and 

Figure 1. Spatial distribution of the monitored agricultural fields retained in the analysis for winter wheat, winter barley, corn, oilseed rape, 
sugar beet and potato. Each point represents an individual field surveyed any given year.
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the triticale, respectively 4.8% and 2.7% of the grain crops 
field areas in France (Agreste 2019).

Data were collected each year during the cropping season 
from weekly monitoring of georeferenced fields by technicians 
from various organizations and trained farmers (Supporting 
information). A different set of fields was monitored each 
year, freely chosen by the technicians performing the surveil-
lance. It was requested that the fields be far enough apart to 
reflect the diversity of the territory for which the technicians 
are responsible, but practical access considerations were also 
taken into account. Possible issues with repeated measure-
ments and auto-correlation in the data are discussed in the 
Supporting information.

All fields were conventional farming fields. The head of 
the observation network informed us that some observa-
tions were performed in non-treated spots but we could not 
account for the crop protection practices because the infor-
mation was often missing in the database.

In each field, several observation types assessing the state 
of crop epidemics were retrieved through standardized pro-
tocols for each monitored pest and pathogen (e.g. damage 
severity scale on the plant for pathogens, relative or abso-
lute organism abundance observed on the plant or in traps, 
amount of plants with symptoms, etc.). Not all the observa-
tion types were reported in equal numbers.

Here we kept for each organism considered only the 
observation type with the highest number of field × year 
observed to maximize the spatiotemporal extent of each pest 
or pathogen information. We also expected these widely used 
observation types to be relevant to describe the risk linked to 
the organisms as they are originally used to motivate pesticide 
applications. In total, data for 13 pests of winter wheat, corn 
and oilseed rape, and 17 pathogens of winter wheat, winter 
barley, oilseed rape, sugar beet and potatoes were analyzed. 
Detailed information on the pests and pathogens studied, 
observation periods and observation types we used can be 
found in the Supporting information.

Landscape composition data

The delimitation of all French agricultural fields subsidized 
within the framework of the European Common Agricultural 
Policy is provided through the ‘Registre Parcellaire Graphique’ 
(RPG). For annual crops, it is reputed to be nearly exhaus-
tive. The geometry of the fields is described by farmers based 
on the aerial photographs of the BD Ortho, a departmen-
tal orthophotography of 50 cm resolution provided by the 
French National Institute for Geographic and Forestry 
Information (IGN) (Font 2018, ASP and IGN 2019). From 
2006 to 2014, fields were described by islets, a group of con-
tiguous fields, but 80% of them had only one type of crop. In 
each islet, the detailed areas were given by crop types (28 crop 
types for 329 crops registered). Here we used six of them: 
winter wheat, oilseed rape, winter barley, corn (including 
both silage and grain corn), other industrial crops (mainly 
and considered here to be beet) and flowering vegetables 

(mainly and considered here to be potatoes). From 2015 to 
2017, the description of crops in the RPG was available by 
species (not crop type) and by field (not islet) and we used 
this more precise information.

The semi-natural components considered were woods, 
grasslands, scrublands and hedgerows. The RPG provided 
us with grassland delineations for the year of the observation 
(temporary and perennial grasslands are not distinguished 
here). The BD TOPO (vegetation layer ver. 2.2 2017), a vec-
tor map with a resolution of 1 m (IGN 2016) drawn from the 
BD ORTHO by the French National Institute for Geographic 
and Forestry Information, provided us with the geometry of 
the other components: woods, hedgerows and scrublands, 
considered to be stable over the studied years. From this data-
base, we grouped as ‘woodlands’ the broadleaved, coniferous 
and mixed woodlands, with closed or open canopy.

Variables preparation and control variables

Pest and pathogen abundance measurements were not nor-
mally distributed, often rounded informally and sometimes 
distributed into categories. Also, the number of observations 
of a given pest or pathogen varied by field and year. As a 
result, we simplified the data into two counts per field and 
year: the count of observations above and under the median 
of the observations for all fields and years (Supporting infor-
mation). For half of the organisms, only presence–absence 
data were available (Supporting information) we then used 
the counts of observations with or without the pest or patho-
gen among the observations of the year in a given field. In 
both cases (with/without or above/under median), the two 
counts have by construction, a binomial distribution and 
describe the risk of being above a threshold (presence or 
median), hereafter referred to as the risk.

We quantified the landscape composition by measuring 
the area (m2) of semi-natural components and of the pest or 
pathogen host crop around each observation in buffers with 
radii of 200 m, 1, 5 and 10 km. As the abundance of a crop 
in the landscape could be correlated with its recurrence in the 
rotation at the field level, the field level rotation effect could 
be attributed by the regression models to landscape variables. 
To avoid such confusions we explicitly considered two crop 
rotation variables: the time elapsed in the observed field since 
1) the host crop or 2) grassland, were cultivated. As only two 
years of RPG data were available before the first observations 
of pests and pathogens, we simplified these variables to three 
values: 1, 2 and 3 years or more. We discarded the points 
when the host crop or the grassland was not alone in the islet 
the last time it appeared.

To account for the potential effect of annual weather 
and the heterogeneity of crop management in different sub 
regions, we added two control variables to the pool of vari-
ables: first, a categorical variable by year and region based 
on a supra-regional zonation of agroclimatic conditions 
(Supporting information) aggregating French Départements 
(Lorgeou et al. 2012) and second, a sub-regional zonation of 
homogeneous farming systems (Supporting information), as 
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defined by the French technical institute for cereals Arvalis, 
Inst. du Végétal (Arvalis 2011).

Statistical analysis

Model fitting by LASSO and bootstrap
For each pest, we described the risk of exceeding the thresh-
old by a generalized linear binomial model with a logit link 
(Guisan and Zimmermann 2000). The full model accounted 
for 28 variables (plus an intercept): the six landscape vari-
ables with four scales each: woods, scrublands, hedgerows, 
grasslands, host crop area the previous growing season and 
host crop area the ongoing growing season; the two field level 
variables: time elapsed since the host crop was cultivated in 
the field, time elapsed since grassland was present in the field; 
and two control variables: the year in a given agroclimatic 
region (77 levels at most) and the sub-regional homogeneous 
farming system units (124 levels at most). The two control 
variables were categorical, each level of these could count 
as a variable. As a result, the total number of fitted param-
eters, typically ranging from 100 to 200, depended on the 
spatial extent of pest or pathogen observations (Fig. 1). See 
the Supporting information for a description of the steps 
taken to elaborate this procedure and for a sensitivity analysis 
reflecting the diversity of models and variables tested.

Before the fit, as we used binomial regression with a logit 
link, we took the log of the variables (see the Supporting 
information for more details on the rationale and the impact 
of the transformation). Then, to allow comparison of the fit-
ted coefficients between different parameters, we standard-
ized them: we centered the values by removing the mean of 
the observations over all years and points for a given pest or 
pathogen and then divided them by their standard deviation. 
As we use linear models, this has no impact on the fitted 
models other than rescaling the estimated coefficients.

As the number of parameters was very large, standard lin-
ear regression could be difficult. In addition, the selection 
of relevant variables based on p-values is subject to multi-
ple testing issues and has more generally been criticized by 
the American Statistical Association (Wasserstein and Lazar 
2016), hence we relied on LASSO regressions (Tibshirani 
1996) and a cross-validation procedure to select the most 
influential inputs. The LASSO regression selects the most 
relevant variables given a regularization parameter, the cross-
validation procedure selects the regularization parameters 
parsimoniously based on the predictive ability of the model. 
Here, the LASSO Models were fitted by LASSO penalized 
regressions using the glmnet R package (Friedman  et  al. 
2010). The value of the penalization factor was set conser-
vatively by cross-validation (10 folds) keeping the prediction 
error within one standard deviation of the minimum stan-
dard error (lambda1se in the glmnet R package).

As the LASSO regression does not provide any quantifica-
tion of the precision of the estimates and the selection can 
be inconsistent across replicates, the use of bootstrap with 
LASSO has been deemed essential by some authors (Bach 

2008). To check the robustness of our results we hence per-
formed a 1000 bootstrap replicates (Horowitz 2001) of the 
whole procedure: for each replicate and for a dataset of n 
observations, we selected n observations with replacement 
(duplicating some observations but losing others) and then 
as described above we evaluated the relevant penalization fac-
tor by cross-validation and retrieve the corresponding esti-
mates. Hereafter, whenever we refer to quantiles, usually on 
values estimated on the replicates of the bootstrap, we refer  
to the default type (type 7) in the quantile function of the R 
‘stats’ package.

Observation of tendencies in the sign and scales of 
correlations
To determine if there are tendencies over the spectrum of 
pests and pathogens, we counted the pests or pathogens 
whose median estimate for a variable over the bootstrap rep-
licates is above, under or at zero (Fig. 2). For the landscape 
components, several scales can be selected by the LASSO for 
a pest or a pathogen. Here we considered the dominant scale 
to be the one with the largest median effect size over the boot-
strap replicates. The normalization of the variables before the 
fit assured that the largest effect size corresponds to the largest 
effect on the variance of the dependent variable in the dataset. 
We used the coefficients of the dominant scales in the counts 
of positive versus negative correlations.

We used binomial two-sided tests to compare the counts 
of pests or pathogens negatively and positively correlated 
with a given landscape or field level variable. We also used 
binomial two-sided tests to compare the dominant scales for 
pests and pathogens: the numbers of correlations with domi-
nant scale at 200 m or 1 km to the number of correlations 
with dominant scale at 5 km or 10 km. We did this test for 
all the landscape components together but also separately on 
host crop components and on semi-natural components.

We expected the spatial correlation with host crop areas 
during the previous growing season to happen on larger 
scales than spatial correlations with host crop areas during 
the ongoing growing season. We tested this hypothesis with 
a Fisher test on the count of correlations happening during 
the ongoing versus previous growing season at 200 m or 1 km 
versus 5 or 10 km.

We used Fisher tests throughout the interpretation of 
the results to evaluate the statistical significance of observed 
associations, for example, to test if positive correlations with 
landscape components are more common for pests rather 
than for pathogens.

We provide in the supplementary information (Supporting 
information) the median, 2.5% and 97.5% distribution of 
the counts of pests or pathogens positively, negatively or not 
correlated as well as the corresponding selected scales over the 
1000 replicates of the bootstrap. This representation provides 
an alternate way to determine the statistical significance of 
the difference between the counts of pests or pathogens posi-
tively and negatively correlated based on the diversity in the 
replicates (see the Supporting information for more details).
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Individual pests or pathogens estimates
We provide in the supplementary materials the detail of the 
estimates for the dominant scale by pest and pathogen and 
by landscape or field level variable (Supporting informa-
tion). For each variable, we provided the median and the 
quantiles 2.5% and 97.5% of the estimate (which might be 
corresponding to different scales of a landscape component 
for the different replicates). These variation intervals allowed 
us to distinguish components with a consistent positive or 
negative correlation with the pest or pathogen, but should 

not be understood as classical ‘confidence intervals’ of such 
estimates would anyway be problematic in a bootstrap of 
LASSO models (Chatterjee and Lahiri 2011). We distin-
guished four levels of evidence for a direction of the corre-
lation: No support (null median of the estimates over the 
replicates), weak support (median not null but 95% variation 
interval including both positive and negative values), support 
for a direction of the correlation (median not null and 95% 
variation interval including zero but otherwise only positive 
or only negative), and strong support for a direction of the 

Figure 2. Number of organisms for which the risk of exceeding the abundance thresholds is correlated positively (orange), negatively (blue) 
and unaffected (grey) by each of the variables for (a) pests, (b) pathogens and (c) all organisms confounded (median over 1000 bootstrapped 
fits). Spatial variables (all but ‘time since crop’ and ‘time since grassland’) are assessed in four buffers: 200 m, 1, 5 and 10 km but only the 
dominant scale across replicates is accounted for. Host crop area (y) refers to the host crop area during the ongoing growing season of the 
observation, and (y − 1) refers to the previous growing season. Time since crop or grassland corresponds to the number of years (1, 2 or 
more) since the host crop or grassland was grown in the same field. The geometric average, the minimum and the maximum of the scales 
(buffer radii) with the highest effect size over the different organisms are indicated above the bars. p-value levels for the two-sided binomial 
test comparing the numbers of organisms positively and negatively correlated with a component are indicated by: ‘.’: p < 0.1, ‘*’: p < 0.05, 
‘**’: p < 0.01 and, ‘***’: p < 0.001.
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correlation (95% variation interval strictly positive or strictly 
negative). Readers focusing on the results at the level of indi-
vidual pests or pathogens should probably focus on the high-
est level of evidence. The median, 2.5% and 97.5% quantiles 
of the scales selected for each landscape component are also 
provided when the median estimate is not null.

Comparisons of effect sizes between explanatory variables
To compare effect sizes between landscape variables and with 
other variables, we calculated the standard deviations gener-
ated, according to the model, by variables or groups of vari-
ables. For each pest or pathogen, we first set the non-assessed 
variables to their mean over the observations. Second, we used 
the median of the coefficients, including the intercept, over 
all the bootstrap replicates to predict the risk with these trans-
formed observations. Finally, we represented the standard devi-
ation of these predictions over all the observations of the pest 
or pathogen. This allowed us not only to look at the strength 
of the estimate for a given variable but also at the strength of 
groups of variables, e.g. four scales of a landscape component, 
accounting for the possible correlations between variables.

Results

General observations

The variable selection left only 1 (Helminthosporium spp. on 
wheat) of the 30 considered organisms without any percep-
tible influence from a landscape component (median of the 
estimates over 1000 bootstrap replicates different from 0). The 
correlations with the landscape components are dependent on 
the pest or pathogen. The detail of the estimates for the scales 
with the most impact for each pest and pathogen is given in 
supplementary information (Supporting information).

When looking at the counts of pests or pathogens with at 
least weak support for correlation with each landscape or field 
level variable (Fig. 2) we noted that all landscape components 
were correlated with several pests, often in opposite ways. This 
highlighted the relevance of considering the impact of land-
scape composition over a large range of pests and pathogens.

In Fig. 2, we counted pests as correlated with a landscape 
feature when the median of the LASSO estimate over the 
bootstrap replicates is different from 0. In the supplemen-
tary materials, details are given by pest or pathogen on the 
distribution of the estimates over the bootstrap replicates 
(Supporting information). Using more stringent criteria to 
consider a pest correlated with a landscape feature (e.g. 95% 
of replicates with an estimate of the same sign) reduces quan-
titatively but not qualitatively the tendencies commented 
hereafter (Supporting information). These tendencies are also 
confirmed by the significance of the difference between the 
numbers of positively and negatively correlated pests over the 
bootstrap replicates (Supporting information).

We also found coherent results between models with dif-
ferent specifications (Supporting information). The detec-
tion of most landscape effects on pests and pathogens was 

only possible when climatic variability was accounted for (see 
Supporting information).

Directions and scales for the correlations in pest 
and pathogens models

To assess the coherence of the landscape composition impact 
over the pool of organisms studied, we compared the num-
ber of organisms positively and negatively impacted by each 
landscape component (Fig. 2).

Correlations with the host crops in the landscape
The risk of being above the abundance thresholds tended to 
be correlated with the host crop area the previous growing 
season for pests and pathogens together (two-sided bino-
mial test: 15 to 2, p < 0.01, Fig. 2c) and to a lesser extent 
separately (two-sided binomial tests for pests: 8 to 2, test: 
p = 0.11, Fig. 2a; and pathogens 7 to 0, p = 0.016, Fig. 2b). 
For half of the organisms (Fig. 2c), epidemics were more 
likely to occur if the host crop was largely represented in the 
surrounding landscape the previous growing season. Two 
animal pests (Sitobion avenae and Brevicoryne brassicae) were 
nevertheless negatively correlated with the area of their host 
crop in the immediate neighborhood (200 m) during the pre-
vious growing season.

Host crop areas during the ongoing growing season 
showed contrasting results between pathogens, generally 
positively correlated (11 positively to 0 negatively, binomial 
test: p < 0.001, six not correlated Fig. 2b) and pests, often 
negatively correlated (7 to 4, binomial test: p = 0.55, Fig. 2a). 
This resulted in a statistically significant difference between 
pests and pathogens regarding the effect direction (Fisher test 
on pests less associated than pathogens with the host crop in 
the landscape the ongoing growing season OR = 0 [0, 0.42], 
p = 0.004). The selected distances for correlation of pests 
and pathogens with the host crops areas (ongoing or previ-
ous year) were smaller than expected by chance for pathogens 
(binomial test: 78% [0.52, 0.94] of the correlations at 200 m 
or 1 km, p = 0.03) and for pests (binomial test: 86% [0.64, 
0.97], p = 0.0015), suggesting that underlying causal mecha-
nisms usually play out at fairly local scales (< 5 km).

The average distance at which pathogens were most cor-
related with the host crop area was larger for the previous 
growing season (3.1 km range across pathogens from 1 to 
10 km, 3 at 1 km, 4 at 5 or 10 km, Fig. 2b and Supporting 
information) than for the ongoing growing season (0.6 km 
range 0.2–1 km, 11 at 200 m or 1 km, none above, Fig. 2b 
and Supporting information); the corresponding Fisher test 
associating scales 200 m and 1 km with the host crop the 
ongoing growing season in contrast with distances 5 km and 
10 km associated with the host crop the previous growing 
season yields (OR = 0 [0–0.71], p = 0.012). Such a differ-
ence was not observed for pests (Fisher test: OR = 1.94 [0.09, 
130.77]) very local for both years, reinforcing the contrast 
between pathogens and pests in their response to the host 
crop areas in the landscape.
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The six coleopteran tested (Psylliodes chrysocephala, 
Phyllotreta nemorum, Ceutorhynchus picitarsis, Ceutorhynchus 
assimilis, Ceuthorhynchus napi and Meligethes aeneus) which 
are univoltine species, were negatively correlated with the 
host crop area during the ongoing growing season. On the 
other hand, only one (Brevicoryne brassicae) of the four aphid 
species, also multivoltines, was negatively correlated with 
the host crop area during the ongoing growing season, one 
was positively correlated (Rhopalosiphum padi, also with 
short distances selected) and the other two were not corre-
lated (Sitobion avenae and Myzus persicae). See Supporting 
information for the estimates and the detail of the pests and 
pathogens tested.

Correlations with the field level rotation
The time elapsed since the host crop was cultivated on the 
observed field consistently reduced the risk only for patho-
gens (binomial test: 6 to 0, p = 0.03, Fig. 2b). None of the 
organisms were affected by the time elapsed since grassland 
was present in the field. Overall, the variables related to the 
field level rotation were selected strikingly less often than the 
variables related to the host crop in the landscape. This was 
particularly true for pests (0 to 21, two-sided binomial test 
p = 9.5e-7), less for pathogens (18 to 6, two-sided binomial 
test, p = 0.023). Nevertheless, one should keep in mind that 
the four scales tested by landscape level variables increased the 
probability of selecting landscape level variables compared to 
the field level variables. The link between the six pathogens 
(Oculimacula spp., Sclerotinia sclerotiorum, Gaeumannomyces 
graminis, Helminthosporium on wheat, Uromyces betae and 
Puccinia striiformis) and the time elapsed since the host 
crop was cultivated in the same field should then be deemed  
very strong.

Correlations with semi-natural components
The area of semi-natural components in the agricultural 
landscape was very often correlated with the risk (Fig. 2c). 
At least one semi-natural component was selected by the 
bootstrapped LASSO procedure for all organisms but 
Helminthosporium on wheat with comparatively more 
relationships for pests (40 with, 12 without) than for 
pathogens (38 with, 30 without; Fisher test: OR = 2.6 
[1.1, 6.5], p = 0.021). No trends emerged in the direction 
of these relationships other than a possible tendency of 
woods to increase the risk (15 to 7, two-sided binomial 
test: p = 0.134), a tendency more strongly supported by the 
test based on the bootstrap replicates (Supporting informa-
tion) but that is reversed when not using the log of the 
areas in the models (Supporting information).

In contrast with distances selected for correlations with the 
host crop areas in the landscape, the correlations with semi-
natural habitats were not significantly smaller than expected 
by chance both for pests (55% [0.38, 0.71], p = 0.63 of dis-
tances under 5 km, when it was 86% [0.64, 0.97] for crops) 
or for pathogens (66% [0.49, 0.8], p = 0.07 compared to 
78% [0.52, 0.94] for crops).

Strength of the relationship between landscape 
components and organisms abundance

To compare the variations of the risk induced by the different 
variables according to the model, we looked for each pest or 
pathogen at the standard deviation of the predictions when 
setting all other variables than the ones of interest to their 
mean over the observations (Fig. 3, 4). The generated stan-
dard deviations were visually more variable between pests and 
pathogens for a given landscape component than between 
landscape components. The area of the host crop during the 
previous growing season and the area of woodlands had the 
most impact across the spectrum of organisms. The host crop 
during the ongoing growing season and the grassland area 
followed. Finally the hedgerows and scrublands induced only 
about half the generated standard deviation of the host crops 
during the previous growing season. The time elapsed since 
the host crop was cultivated in the observed field has the 
same average effect over the studied organisms as the scru-
bland area in the landscape. Though, for the small number of 
organisms impacted, the generated standard variations were 
comparable to the ones of woods or of the host crop during 
the previous growing season.

The risk diversity generated by the semi-natural compo-
nents together (Fig. 3, SNH) was greater but comparable to 
the diversity generated by the host crop, whether accounting 
only for the host crop in the landscape or also accounting for 
the proximity of the host crop in the field rotation. Together, 
the landscape variables generated a diversity of risk larger but 
still comparable to the diversity generated by semi-natural 
habitats or the host crop alone. This indicates partial com-
pensations between different correlated landscape factors.

We also compared the standard deviation generated by 
all the landscape components of the model to other types of 
variables and to the standard deviation in the data (Fig. 4). 
The average standard deviation generated by the landscape 
components in the model was about a tenth of the aver-
age standard deviation in the data, a third of the standard 
deviation generated by the full model and less than half the 
standard deviation generated by the Year-Region factor, the 
different years in a region, the different regions a given year 
or the farming system sub-regions. Our models in general 
explained only a fraction of the variability in the observations 
and the landscape variables explained only a small fraction of 
the variability explained by the models.

Discussion

Importance of the host crop in the landscape

The area allocated to the crop susceptible to a pest or patho-
gen in the year preceding the observation is the studied land-
scape component that had the most consistent impact across 
the spectrum of studied pests and pathogens. On average, it 
also had the strongest impact on pests and pathogens pres-
ence variability.
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The dominant and positive effect of the host crop in the 
landscape the previous growing season suggests that, at the 
scale of the landscape, there is bottom–up control by the 
resource – here specifically by the host crop, a substrate 
for pathogens and often both food and habitat for animal 
pests. More specifically, it suggests a dominance of bottom–
up control over top–down control for herbivores of arable 
crops, contrary to what has been observed more generally 
for herbivores (Vidal and Murphy 2018). Nevertheless, two 
aphids (Sitobion avenae and Brevicoryne brassicae) were nega-
tively correlated with the host crop area during the previous 
growing season. This could be interpreted as an occasional 
top–down regulation by previously attracted natural enemies, 
particularly as the dominant scale of this negative correlation 
was very small (200 m). The clear and consistent response 
of animal pests to the host crop the previous growing sea-
son may seem contradictory with the absence of consistent 
response to the area of cultivated crops in the landscape in 
former studies (Veres et al. 2013, Karp et al. 2018), never-
theless, such studies did not usually account for the area of 
the host crop specifically nor did they usually differentiate 
the year before the observation and the year of the observa-
tion. The presence of the animal pests tended to be negatively 
correlated with the host crop area during the ongoing grow-
ing season while the opposite was observed for pathogens. 
This contrast may be explained by two mechanisms. First, 

pests can be active in their dispersal, enabling them to cluster 
in the fields of their host crop (Thies et al. 2008). Second, 
some pests only perform one life cycle per growing season, 
preventing epidemic propagation within the growing season 
(Jourdheuil 1960, Eickermann  et  al. 2014). Here the uni-
voltine coleoptera species were negatively correlated with the 
host crop area in the landscape in a given year, suggesting 
dilution in the resource (Scheiner and Martin 2020). This 
dilution was less clear or there might even be concentration 
for the multivoltine aphids, and the pests with an uncertain 
number of cycles per year: the slugs and the European corn 
borer Ostrinia nubilalis. Such modulations of the abundance 
by concentration and dilution mechanisms are also char-
acteristic of a bottom–up control of the pests (Root 1973, 
Grez and González 1995). It is also strikingly similar to an 
independent study on a complex of pests of cabbage, show-
ing a dilution effect of areas of the host crop on coleopteran 
and lepidopteran leaf-chewing insects while aphids were not 
affected (Scheiner and Martin 2020). The orange wheat blos-
som midge Sitodiplosis mosellana might be the main exception 
to this bottom–up control of the pest by the host crop in our 
study as it is univoltine and nevertheless positively correlated 
with the host crop area during the ongoing growing season.

Pathogens cannot be diluted in the resource as they only 
rely on passive dispersal and are often multivoltine, allow-
ing epidemic propagation facilitated by the abundance of the 

Figure 3. Standard deviation generated by landscape and field level groups of variables according to the fitted model. For each pest (grey 
dot, n = 13) and pathogen (white dot, n = 17), the standard deviation generated by a variable or group of variables corresponds to the stan-
dard deviation of the infestation predicted for the data by the fitted model when setting all other variables to their average value. When 
assessing the standard deviation generated by a landscape feature, all corresponding scales are kept to their original values. Blue diamonds 
are the means over all pests and pathogens. Green squares are the means over all pests and pathogens with generated standard deviations not 
null. Host crop: the area of the host crop of the organism during the same growing season as the observation (y) or the previous growing 
season (y − 1) or both variables (in landscape), time in years since the host crop was cultivated in the field of the observation (time since) 
or all three variables (y, y − 1 and time) if not specified. SNH: all the semi-natural habitats (woods, scrubland, hedgerows and grasslands) 
together. Landscape: All the SNH and host crops in the landscape variables. The x coordinates within each class are jittered for easier read-
ing. The effect of grassland in the field rotation is always null and not represented here.
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resource during the ongoing growing season. When corre-
lated with the host crop area during the ongoing growing 
season, the correlation was always positive. This correlation 
occurred at smaller scales on average than the correlations 
with the host crop during the previous growing season. This 
was not observed for the pests, mostly correlated at short dis-
tances with the host crop both during the ongoing and the 
previous growing season.

As pathogens propagate in space with time, their correla-
tion with the host crop during the previous growing season 
was expected to be maximal for larger distances than for the 
host crop during the current growing season. It came more 
as a surprise that the correlation of pests with the host crop 
area was maximal at the same distance for the current and 
the former growing seasons. However, the correlations of the 

pests with the crop area of the current growing season, was 
negative and not positive like for pathogens. This would in 
particular be expected for a pest population coming directly, 
without reproduction or overwintering in a distant habitat, 
from crop fields of the former growing season and dilut-
ing in the crop fields of the current growing season. In this 
case, it is the same colonization event, hence over the same 
distance, which leads to positive correlation with crop areas 
during the former growing season and negative correlation 
with the host crop during the current growing season. The 
focus on landscapes within 2 km in former studies on the 
influence of landscapes on animal pests (Bianchi et al. 2006, 
Karp et al. 2018, Scheiner and Martin 2020) seems justified 
by the dominance of small scales for animal pests. This might 
not be enough though to correctly account for the effect of 

Figure 4. Standard deviation generated by different types of variables according to the fitted model. For each pest (grey dot, n = 13) and 
pathogen (white dot, n = 17), the standard deviation generated by a type of variable corresponds to the standard deviation of the infestation 
predicted for the data by the fitted model when setting all other variables to their average value. When assessing the standard deviation 
generated by the landscape variables, all corresponding scales are kept to their original values. Blue points are the mean standard deviations 
over all pests and pathogens. Green squares were the means over all pests and pathogens with generated standard deviation not null. Data: 
standard deviation in the observed rate of observations above the threshold. Full Model: standard deviation in the prediction of the full 
models. Year–Region: uses all the Year × Region factor levels. Year: uses a transformation of the Year × Region coefficients to focus on the 
effect of the year: in each agroclimatic region, we took the predicted standard deviation of the Year × Region factor over the years then we 
averaged over the regions before taking the standard deviation. Region: focus on the effect of the agroclimatic region doing the reverse of 
the Year transform. FSR: Farming system region, uses all factor levels corresponding to the farming system regions. Landscape: uses all the 
SNH and host crop variables (same as in Fig. 3 for the sake of comparability). Local rotation: uses the time since the host crop was cultivated 
in the same field and the time since grassland was cultivated in the same field.
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semi-natural habitats on pests or pathogens nor to account 
for the impact on the host crop during the previous growing 
season on pathogens.

Despite the complexity of the systems studied, the main 
trends that emerged were easily understandable and are prob-
ably applicable to other pests and pathogens of annual crops 
accounting for the nature of the pest or pathogen and their life 
cycle. Our study also makes it possible to propose hypotheses 
to be explored on the life cycles of poorly known pests and 
pathogens, particularly on the role of semi-natural spaces that 
may shelter part of the cycle. For example, Ceuthorhynchus 
assimilis and C. picitarsis are positively correlated with the 
presence of woods, in a similar way to M. aeneus, another 
coleopteran for which such a relationship is well-known due 
to its need to overwinter in the leaf litter inducing a clear 
spatial dependency to the proximity of woods (Rusch et al. 
2012, Juhel et al. 2017).

Our results should not be extrapolated too quickly to 
perennial crops as the areas of the host crops are largely stable 
over the years. The opposite effects of the host crop's area 
during the previous and during the ongoing growing season 
make the sign of the net effect of the crop area on the pests 
unpredictable. This is all the more so as the stability of the 
resource favors the development of natural enemies if they 
are not massively eliminated by insecticides (Lechenet et al. 
2017). Nevertheless, pathogen dynamics, influenced in the 
same direction by crop area in the previous and current grow-
ing seasons, should generally be enhanced in perennial crops 
with increasing host crop area.

Semi-natural habitats are not a universal 
solution against pests

The importance of the correlation with the host crop compo-
nent in the landscape calls into question the emphasis placed 
on the importance of semi-natural habitats as a source of reg-
ulation for the control of pests and pathogens at the landscape 
level (Bianchi et al. 2006, Tscharntke et al. 2016, Karp et al. 
2018, Martin et al. 2019, Yang et al. 2019, Tamburini et al. 
2020b). The semi-natural components were often correlated 
or anti-correlated with the risk but without a consistent trend 
across pests and pathogens. This observation already made 
on animal pests (Veres  et  al. 2013, Tscharntke  et  al. 2016, 
Karp  et  al. 2018, Yang  et  al. 2019) was here extended to 
pathogens. Theoretical research on pathogens showed that 
these areas can serve as barriers but can also present wild 
hosts facilitating transmission (Plantegenest  et  al. 2007, 
Ratnadass  et  al. 2012). For pests, some reviews have sug-
gested an increased presence of the natural enemies with 
semi-natural habitats (Bianchi et al. 2006, Rusch et al. 2016, 
Tscharntke  et  al. 2016) though a more recent meta-analy-
sis did not find such an effect with semi-natural areas but 
only with edge densities (Martin  et  al. 2019). In any case 
our results, as well as the most recent research (Karp et  al. 
2018, Martin et al. 2019, Yang et al. 2019), suggested that 
semi-natural components could be just as much a needed 

resource for pests as for their natural enemies. The result 
may highly depend on species functional traits (Martin et al. 
2019, Tamburini  et  al. 2020a) but our results suggest that 
semi-natural elements should not a priori be considered as 
a protection of crops against pests and pathogens. In addi-
tion, the variability induced by semi-natural habitats, alone 
or together, is limited compared to the variability induced by 
the host crop alone. Given the relative stability of the semi-
natural components considered and the low and inconsistent 
impact they have across the spectrum of pests and pathogens, 
it would seem reasonable, at the landscape scale, to focus on 
the management of the host crop.

The impact of the landscape is limited but may be 
underestimated

The consistency of the response of pests and pathogens to 
landscape composition could be used to limit the impact 
of pests and pathogens on arable crops. In the current state 
of agriculture in France, the landscape components seemed 
on average to have more impact on the variability of the 
studied pests and pathogens than field level crop rotation. 
Nevertheless, the risk variations induced by the landscape 
seemed on average sizably smaller than those induced by 
weather conditions (year and regional effects) or the farming 
system sub-regions. These control variables might neverthe-
less not be exempt from landscape effects as they may account 
for aspects of the landscape not accounted for in our analysis 
like field margins.

The estimated effect sizes were likely suboptimal as the data 
were heterogeneous (quality of the positioning, multiplicity 
of the experimenters) and the models were simple (neither 
interactions nor non-linear effects). In particular, though we 
scanned the data for inconsistencies, some localization errors 
might remain in the dataset, limiting the ability to assign the 
observed variability in pest presence to landscape compo-
nents. As a consequence the real impact of the landscape on 
the pests might be underestimated here. Lack of statistical 
power might prevent us from observing some correlations for 
the pests and pathogens of the less abundant crops (beet and 
potato), particularly affecting the selection of lower impor-
tance landscape-related variables. Weather conditions might 
also have reduced the abundances during the studied period 
below thresholds where correlations with the landscape could 
be observed. Finally, the generalized use of pesticides in 
France as in many developed countries (Lechenet et al. 2017) 
might further mask correlations and even modulate the equi-
librium between pests and natural enemies.

Limitations

The causality of the observed correlation was not explicitly 
addressed in our study. In particular, even if the correlations 
were causally related to the dispersal, it might be due not only 
to intrinsic dispersal capacity but also to passive dispersal by 
anthropic activities (Aubertot and Robin 2013). Partially 
repeated measurements and autocorrelation in the data might 
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have reduced the effective sample size of our data (Supporting 
information). We believe that the uncommonly large size of 
our dataset and the robustness of our results to alternate spec-
ifications of the models (Supporting information) make our 
qualitative results fairly immune to such potential issues.

Despite the cross-validation strategy adopted 
(Friedman et al. 2010), the number of tested features increased 
the risk of selection of spurious correlation or at least errors 
in the selection of the most correlated spatial scales for any 
of the 30 individual organisms. We have therefore focused on 
interpreting significant trends across organisms, rather than 
organism specific correlations (Fig. 2, 3) and the results by 
pest or pathogen (Supporting information) should be inter-
preted with care, especially regarding the absence of an effect.

A species level analysis could benefit from a better con-
sideration of organism functional traits. In particular, one 
might consider the diversity of host crops of generalists such 
as Rhopalosiphum padi here observed on wheat but a pest 
of most cereals (Chiverton 1987, Dong et al. 2020). More 
advanced models could on one hand improve the description 
of the landscape by considering interactions between land-
scape components as well as their configuration (Martin et al. 
2019, Haan et al. 2020). The lack of information on other 
landscape components, in particular flower strips, prevented 
us from accounting for these features though they might play 
an important role in pest regulations (Albrecht et al. 2020).

Implications for arable crop management

Could the trends we identified be used to reason the protec-
tion of arable crops at the landscape level? Early warning tools 
based on this approach may modulate risk estimates at the 
field level and thus limit the systematic use of preventive treat-
ments (Lacasella et al. 2017). As for active landscape design, 
the management of host plant areas seems both the most influ-
ential and the easiest aspect to handle (Schneider et al. 2015). 
The first operational answer could be to diversify the crops to 
make them less recurrent in space and time. This is difficult 
as it requires a modification of the entire storage and down-
stream processing chain (Meynard et al. 2018) but it would 
also benefit biodiversity in the agroecosystems (Sirami et al. 
2019). Beyond increasing the diversity of cultivated crops in 
the landscape, a rising pest or pathogen pressure on a crop 
might be answered by excluding the crop during a growing 
season over a large area (several kilometers of diameter). Such 
dynamic recommendations of a ‘blank’ year without a specific 
crop should not be confused with landscape-scale rotations 
on all crops that could have catastrophic effects on non-pest 
biodiversity (Rusch et al. 2016). Organizing at such scales all 
the stakeholders who often mismatch in terms of objectives 
and perceptions regarding potential benefits of ecosystem ser-
vices (Kleijn et al. 2019) is a demanding challenge but not 
without precedent. Taking it up could for example benefit 
from the experience gained in watershed supply manage-
ment to improve the quality of drinking water (Grolleau and 
McCann 2012, Hellec et al. 2013).
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