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Abstract

Massive biological datasets are available in various sources. To answer a bi-
ological question (e.g., ”which are the genes involved in a given disease?”),
life scientists query and mine such datasets using various techniques. Each
technique provides a list of results usually ranked by importance (e.g., a list
of ranked genes). Combining the results obtained by various techniques, that
is, combining ranked lists of elements into one list of elements is of paramount
importance to help life scientists make the most of various results and pri-
oritize further investigations. Rank aggregation techniques are particularly
well-fitted with this context as they take in a set of rankings and provide a
consensus, that is, a single ranking which is the ”closest” to the input rank-
ings. However, (i) the problem of rank aggregation is NP-hard in most cases
(using an exact algorithm is currently not possible for more than a few dozens
of elements) and (ii) several (possibly very different) exact solutions can be
obtained. As answer to (i), many heuristics and approximation algorithms
have been proposed. However, heuristics cannot guarantee how far from an
exact solution the consensus ranking will be, and the approximation ratio of
approximation algorithms dedicated to the problem is fairly high (not less
than 3/2). No solution has yet been proposed to help true-users dealing with
the problem encountered in point (ii).

In this paper we present a complete system able to perform rank aggrega-
tion of massive biological datasets. Our solution is efficient as it is based on
an original partitioning method making it possible to compute a high-quality
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consensus using an exact algorithm in a large number of cases. Our solution
is robust as it clearly identifies for the user groups of elements whose relative
order is the same in any optimal solution. These features provide answers to
points (i) and (ii) and lie in mathematical bases offering guarantees on the
computed result. Also, our solution is effective as it has been implemented
into a real tool, ConquR-BioV2 is used for the life science community, and
evaluated at large-scale using a very large number of datasets.

Keywords:
Rank aggregation, Consensus ranking, Massive biological datasets, Kemeny
rule

1. Introduction

Huge amounts of biological data are daily reported in a large number of
public databases. Such data can be mined and queried using a variety of
approaches. While the approach developed in this paper can be applied to
various contexts where ranked lists of elements have to be combined, our
motivating examples will be based on biological sources querying as we have
been working in this concrete setting so far.

Querying biological datasets can be performed using portals as provided
by NCBI1 [1], allowing users to submit a keyword to the portal to then collect
a set of answers. Answers are usually provided as Web pages describing
data items, and they are ranked by relevance, that is, by the number of
occurrences of the keyword in each answer. However, properly querying
such portals remains a difficult task since various formulations of the same
query can be considered. Among other strategies, life scientists make use of
synonymous terms (breast cancer versus carcinoma of the breast), alternative
spellings (tumour versus tumor, ADHD versus Attention deficit hyperactivity
disorder), or describe the concepts involved in their keywords at various levels
of granularity (Lynch syndrome versus colorectal cancer). As a consequence,
life scientists have to deal with several lists of hundreds of answers that need
to be combined into one list to prioritize further investigations.

Rank aggregation techniques are particularly well-fitted with this context
as they take in a set of rankings, that is, a set of ranked elements and provide a
consensus ranking, that is, a single ranking that is the ”closest” to the input

1http://www.ncbi.nlm.nih.gov/Entrez
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rankings. Rank aggregation have been used in various contexts including
aggregating answers returned by several Web engines [2], determining the
winner in a sport competition [3], determining the winner of an election [4]
or gathering answers from several biological queries [5].

However, the problem of rank aggregation is well-known to be NP-hard
in most cases [2, 6, 7]. Computing an optimal consensus ranking is currently
not possible for more than a few dozens of elements. As a consequence,
a plethora of heuristics and approximation algorithms have been designed
[2, 8, 9, 10, 11, 12, 13]. Unfortunately heuristics do not provide any guarantee
with respect to the quality of the returned result and the approximation
algorithms have an approximation ratio actually high (not less than 3/2)
thus are not better-quality in practice than heuristics.

Moreover, many different optimal consensus rankings may exist for a same
set of rankings. It turns out that the positions of some elements can vary a lot
from one optimal consensus to another while the positions of other elements
may be robust among the set of all the optimal consensus. Identifying the
groups of elements whose relative order is the same in all the optimal solution
is very informative and helpful for a user who wants to know how sound the
provided consensus is. This task is though highly challenging.

Additionally, while much research has focused on the case where rankings
are permutations (i.e., total orders) of the same underlying set, real life ap-
plications are facing rankings with ties (elements ranked at the same position
and thus placed in the same bucket). A few works considered the problem
of rankings with ties: for example, [9] and [11] introduced approximation al-
gorithms to the problem while [14] compared of most of the major heuristics
and algorithms adapted to ranking with ties.

We are thus facing three challenges to make the most of rank aggregation
in real settings. The first one is to develop procedures able to quickly com-
pute optimal consensus rankings in real-life applications. The second one is
to provide a way to evaluate the robustness of positions of elements in an
optimal consensus. The third one is to consider solutions for rankings with
ties and able to take into account missing elements.

The purpose of this paper is to tackle these challenges. First, we develop
an efficient solution based on a process able to quickly compute consensus
rankings by decomposing large datasets into much smaller ones where high
quality (possibly exact) algorithms can be run. Second, we provide an al-
gorithm able to draw frontiers between groups of elements such that their
relative order in the whole set of optimal consensus rankings are inviolable,
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thus giving information on the robustness of the positions of elements in the
produced consensus ranking. Our approach lies in mathematical bases pro-
viding guarantees on the results. Third, we make our approach effective by
providing the ConQuR-BioV2 tool where our methods are fully implemented
and available to the life science community. Our approach has been evalu-
ated at large-scale using in a very large number of massive datasets, involving
rankings with ties with possibly missing elements.

The remainder of this paper is organized as follows. Section 2 provides
the definitions of the major concepts underlying rank aggregation. Section 3
introduces a graph representation of the input rankings that will be used by
our approach. Section 4 introduces the algorithm ParCons, an efficient par-
titioning procedure for rank aggregation while section 5 provides ParFront,
an algorithm able to give information on the robustness of the positions of
elements in the consensus ranking produced by ParCons. Section 6 presents
ConQuR-BioV2, the tool we make available to the life science community
where our approach has been fully implemented. Section 7 evaluates our ap-
proach on a very large number of massive biological datasets. Finally, Section
8 places the contribution in the landscape of rank aggregation approaches and
draws conclusions.

2. Preliminaries

In this section we formally introduce the concept of rankings, the rank
aggregation problem, and we present a running example reused all along this
paper to illustrate our approach.

2.1. Definitions

Rankings. Given a set of elements U (e.g., genes), a ranking on U is an
ordered list of pairwise disjoint subsets of U called buckets. A ranking is
complete if the union of its buckets is equal to U . For example, if U =
{A,B,C,D}, then r1 = [{A}, {C}, {B}, {D}], r2 = [{B,A}, {C}, {D}] and
r3 = [{B,A,C,D}] are three complete rankings on U , but the ranking
[{B,A}, {D}] is not a complete ranking on U as C is missing. Finally,
[{B,A}, {C,A,D}] is not a ranking as A is present twice.
Vocabulary. We set that x and y are tied in a ranking r if x and y are in
the same bucket in r, that is, they are equally important in r. We also set
that x is before y in a ranking r if the bucket containing x is strictly before
the bucket containing y in r.
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If b elements are before x in r, then the position of x in r is b + 1. Note
that tied elements share the same position.

Unification process. Rankings in real datasets are usually not all on the exact
same set of elements. They are said to be incomplete. To complete a set
of rankings, the unification process can be applied [15, 12] by appending
at the end of each incomplete ranking r a unification bucket, noted {...}u
containing all the missing elements of the ranking r. This process is used
when the missing elements in rankings are considered as less important than
the present elements (which is a reasonable consideration in our use case).
Illustration. Consider the set of rankingsR = {r, s, t} with r = [{A}, {C,D}],
s = [{B}, {C}] and t = [{A}, {B,C}, {D}]. We observe that B is missing
in r and both A and D are missing in s. Then, the new set of rankings
after the unification process is Ru = [r′, s′, t′] with r′ = [{A}, {C,D}, {B}u],
s′ = [{B}, {C}, {A,D}u] and t

′
= [{A}, {B,C}, {D}] = t as t is already a

complete ranking.

Distance between two rankings. We denote r and s two complete rankings on
U (possibly after a unification process).

As the unification process may induce bias by creating arbitrary ties, a
pseudo-distance has been presented in [5]. This pseudo-distance is well-fitted
with our biological context and will be used in this paper. Given p ∈ [0, 1],
the Kemeny pseudo-distance, denoted Kp, is defined as follows:

Kp(r, s) =
∑
{x,y|x,y∈U}K

p{x,y}(r, s) where Kp{x,y}(r, s) =

• 1 if x is before y in one ranking whereas y is before x in the other one.

• p if x and y are not tied in one ranking but x and y are tied in a bucket
which is not the unification bucket in the other one.

• 0 otherwise.

Note that the unification bucket has a specific treatment: there is no cost
for the operation of untying elements which have been tied in the unification
bucket.

Without loss of generality, for the further examples and experiments of
this paper, we set p = 1. For the sake of readability, we set K(r, s) = K1(r, s).

Illustration. K(s′, t′) = 1{A,B}+1{A,C}+0{A,D}+1{B,C}+0{B,D}+0{C,D} = 3.
Indeed, B is before A in s

′
whereas A is before B in t

′
, C is before A in s

′
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whereas A is before C in t
′

and B is before C in s
′

whereas B and C are
tied in t

′
. Note that even if A is before D in t

′
whereas A and D are tied in

s
′
, the cost is 0 for this pair as A andD are both in the unification bucket of s

′
.

The Rank aggregation problem. Informally, the rank aggregation problem aims
at finding a complete ranking, that is, the closest possible to the input rank-
ings. Such a ranking is called an optimal consensus (also known as a median).
More formally, given a set of complete rankings R and a complete ranking
c, the Generalized Kemeny score, denoted S(c, R), is the sum of the Kemeny
pseudo-distances between c and each ranking in R. An optimal consensus
of R is a complete ranking minimizing the Generalized Kemeny score: if
C is the set of all the complete rankings on U , an optimal consensus of R,
denoted c∗, is a complete ranking on U such that ∀c ∈ C , S(c∗, R) ≤ S(c, R).

We denote consensus a complete ranking which can be an optimal con-
sensus or not.

A pairwise representation. According to the Kemeny pseudo-distance, the
cost (regarding a set of rankings R) of placing x before y in a consensus
ranking is equal to the number of rankings r ∈ R such that x is not before
y in r (excluding the rankings in which x and y are both in the unification
bucket). In a similar way, the cost of tying x and y is equal to the number
of rankings r ∈ R such that x and y are not tied in r.

Such costs are respectively denoted before(x, y) and tied(x, y) in this pa-
per. Finally, the cost of placing x after y is equal to the cost of placing y before
x. We also define min(x, y) = min(before(x, y), before(y, x), tied(x, y)).

For any two pairs of elements x and y, the pairwise cost matrix indi-
cates the cost of placing in a consensus ranking x before, after or tied with
y.

Note that if P is the set of all the ordered pairs of distinct elements of U ,
then the Generalized Kemeny score between a consensus ranking c and a set
of rankings R can be computed using the pairwise cost matrix as follows

S(c, R) =
1

2

∑
(x,y)∈P

Sc(x, y) (1)

where Sc(x, y) =
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• before(x, y) if x is before y in c.

• before(y, x) if y is before x in c.

• tied(x, y) if x and y are tied c.

The next subsection displays the pairwise cost matrix obtained on a given
running example (Table 1).

Optimal consensus and frontiers. As mentioned earlier, an optimal consensus
is not necessarily unique. As a consequence, we will introduce robustness
properties on the set of optimal consensus based on the concept of frontiers.

Definition 1. A frontier is an integer k such that the top-k elements are the
same in all the optimal consensus.

We now present a running example that will be used in the further sections
to illustrate our approach.

2.2. Running example

In this subsection we introduce a running example that we use to illustrate
the data structures introduced in this section (the pairwise cost matrix) but
more interestingly to provide an intuition on the original solution (based on
partitioning) we provide to compute a consensus and to compute frontiers.

Consider the example of Table 1 composed of six rankings (r1 to r6) of
nine elements (A to I). This example is inspired by real use cases encountered
where each ranking is a list of genes obtained from the NCBI Gene database
using a given keyword (e.g., breast cancer). When two genes are returned
with the same score (ex-aequo), they are tied, that is, they are considered as
equally important and placed in the same bucket. This is the case for genes
D and E in the rankings r1, r2, r5, r6.

Illustration of the pairwise cost matrix. Table 2 presents the associated pair-
wise cost matrix. For the sake of readability, all the pairs have not been
represented; the minimal cost for each line has been represented in bold.
Remind that the pairwise cost matrix provides information on the cost in-
duced by placing an element x before, after, or tied with an element y in
a consensus ranking. For example, if we consider only the pair (D,E),
we have tied(D,E) = min(D,E) whereas before(D,E) > min(D,E) and
before(E,D) > min(D,E). We can conclude that it is strictly cheaper to

7



r1 := [{D,E}, {F}, {I}, {A}, {B}, {C}, {G}, {H}]
r2 := [{D,E}, {F}, {I}, {A}, {B}, {C}, {G}, {H}]
r3 := [{E}, {D}, {B}, {C}, {A}, {F}, {I}, {G}, {H}]
r4 := [{D}, {E}, {I}, {B}, {C}, {A}, {H}, {F}, {G}]
r5 := [{I}, {D,E}, {C}, {A}, {B}, {H}, {G}, {F}]
r6 := [{I}, {D,E}, {C}, {A}, {B}, {H}, {G}, {F}]

Table 1: Example of input rankings.

Table 2: Pairwise cost matrix of the running example 1 (fragment).

x y before(x, y) before(y, x) tied(x, y) min(x, y)
D E 5 5 2 2
D F 0 6 6 0
A B 2 4 6 2
A C 4 2 6 2
B C 2 4 6 2
F G 2 4 6 2
I F 3 3 6 3
G H 3 3 6 3

tie D and E in a consensus ranking, rather than having D before E or E
before D. Now if we consider only the pair (I, F ), we have before(I, F ) =
before(F, I) = min(I, F ) whereas tied(I, F ) > min(I, F ). We can conclude
that it is strictly cheaper to have I before F or F before I in a consensus
ranking, rather than having F tied with I.

Intuition of how to compute a consensus following a partitioning approach.
We now give an intuition of how a relevant consensus can be computed.
Three points should be noticed. First, D and E are before A, B, C, F ,
G, H in each ranking and before I in a strict majority of rankings. As
a consequence, a reasonable consensus ranking should then place D and
E at the first two positions. Note that such information is provided with
more precision by the pairwise cost matrix (before(D,F ) = min(D,F ) = 0
whereas before(F,D) > min(D,F ) and tied(D,F ) > min(D,F )). Second,
I is before A, B, C, G, H in a strict majority of rankings and before F in
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a majority or rankings: a reasonable consensus ranking should then place I
before {A,B,C, F,G,H}. Third, A, B and C are always placed before G
and H. Moreover, A, B and C are placed before F in a majority of rankings.
Again, a reasonable consensus ranking should place A, B, C before F , G and
H.

This very first analysis allows to highlight the presence of four possible
groups of genes. Let us name D,E group 1, I group 2, A,B,C group 3 and
F,G,H group 4 in the following.

Determining which genes should be grouped together (that is, identifying
the groups of genes to be considered) and then determining how genes should
be ranked on the obtained partition are the two open questions we want to
consider.

Let us now inspect such four groups at a finer grain level to consider the
possible positions of genes within each group.

Group 1 (D and E). As explained above, placing D and E in the same
bucket in the consensus ranking appears to be a very reliable choice.

Group 2 (I). As I is alone in its group thus ranking this gene within this
group is trivial.

Group 3 (A, B and C). Let us consider pairwise relations between such
genes. In a strict majority of rankings (4 versus 2), A is before B. It thus
may appear natural to expect A before B in a consensus ranking. However,
the following problem occurs: B is before C in a strict majority of rankings
(4 versus 2) and C is before A in a strict majority of rankings (4 versus 2)
but it is impossible to satisfy the three constraints A before B, B before C
and C before A. The question of how to rank these three genes is thus not
trivial.

Group 4 (F , G and H). In a strict majority of rankings, F is before G (4
versus 2). Once again, it may appear natural to expect F before G in a
consensus ranking. Conversely, there is an ”indifference relationship” for the
pair {F,H}: in half of the rankings F is before H and in half of the rankings
H is before F . As a consequence in this case, the relative order between
F and H will somehow be arbitrary. The situation is similar for G and H.
Finally, placing F before G appears to be a reliable choice, and placing H
before F , between F and G or after G appear to be equivalent choices.
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Finally, [{D,E}, {I}, {B}, {C}, {A}, {F}, {G}, {H}] is an optimal con-
sensus of the set of rankings presented in Table 1. The associated score is 34
(2{D,E} + 2{D,I} + 2{E,I} + 1{I,A} + 1{I,B} + 1{I,C} + 3{I,F} + 2{A,F} + 2{B,F} +
2{C,F} + 4{A,B} + 2{A,C} + 2{B,C} + 2{F,G} + 3{F,H} + 3{G,H}).

Intuition of how to compute frontiers. As seen above, the position of H
seems to have more flexibility than the position of D and E. Actually
[{D,E}, {I}, {B}, {C}, {A}, {H}, {F}, {G}] is another possible optimal con-
sensus, with (by definition) the same score of 34. There are a total of 9
optimal consensus for this running example. Highlighting common points
between them is thus particularly important to provide the user with an in-
formation on the robust elements, that is, elements which positions do not
vary a lot in the set of optimal consensus. Remind that a frontier is an in-
teger k such that the same top-k elements are in all optimal consensus. As
both D and E are before all the remaining elements in a strict majority of
rankings, there is an obvious frontier after D and E. Some other frontiers are
much more difficult to catch. For instance, there is another frontier between
{D,E, I} and {A,B,C, F,G,G} as D, E, I are before A, B, C, F , G, H in
all the optimal consensus.

This section has introduced the basis concepts of rank aggregation and
provided an intuition on how partitioning can be exploited to compute a
consensus and how frontier can be obtained. By essence, rank aggregation
approaches consider pairs of elements (placed before, after or tied in the
rankings). Representing rankings using graphs thus appears natural. The
next section introduces graph representations of the input rankings while
Section 4 describes the partitioning process we follow from these structures
to compute a consensus.

3. Graph representation of rank aggregation with ties

In this section, we introduce a graph-based pairwise representation of the
elements to rank. Then, we show that computing the strongly connected
components of this graph allows to form coarse grain groups of elements that
will be used to partition the initial problem into smaller sub-problems and
to place frontiers between groups of elements.
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3.1. Graph-based pairwise representation of the elements
Our challenge is both to (i) partition the initial problem into as many

small sub-problems as possible and (ii) put frontiers between (robust) groups
of elements. To this aim, we define Ge the graph of elements and Re the set
of the robust arcs of Ge.

In this representation, vertices are elements (the genes to rank) and for
each pair of elements {x, y}, the arcs are related to which cost(s) in the
pairwise cost matrix is (are) minimal among before(x, y), before(y, x) and
tied(x, y). More precisely, there is an arc from x to y if placing y before x in
the consensus is more costly than placing x before y or tying x and y. This
does not imply that placing x before y is the best choice: the equality could
be better.

We want to distinguish two kinds of arcs (i) arcs (x, y) such that x and y
could reasonably be tied and (ii) arcs (x, y) such that placing x before y is a
priori the best choice. We call robust arc any arc of case (ii).

Let us now define formally Ge and Re.

Definition 2 (Ge, graph of elements). Let Ge = (Ve, Ee, Re) be the directed
graph such that:

• Ve = U

• Ee = {(x, y) ∈ V 2
e : before(y, x) > min(x, y)}

• Re = {(x, y) ∈ V 2
e : before(y, x) > min(x, y)∧ tied(x, y) > min(x, y)}.

Arcs and Robust arcs in the graph of elements Ge. In Ge, there
is no arc from y to x if and only if before(x, y) is minimal. Moreover, if
before(x, y) is the unique minimum, then there is an arc from x to y, and
this arc is robust (i.e. it is in Re). Intuitively, regular arcs (i.e., not robust)
can be used to find an optimal consensus of the input rankings, and robust
arcs give necessary conditions on all optimal consensus, which then allow
us to place frontiers between groups of elements. Table 3 recaps for a given
pair of elements {x, y} the link between before(x, y), before(y, x), tied(x, y),
min(x, y) and the (robust) arcs between x and y in Ge.

Interestingly, the definition of Ge fits with rankings with ties: if two
elements x and y should be tied, then both placing x before y and placing y
before x in a consensus is costly thus there is both an arc from x to y and
another one from y to x.

11



Table 3: Arcs of Ge according to position of min(x,y) in the pairwise cost matrix.

before(x, y) before(y, x) tied(x, y) in Ge Robust arc

= min(x,y) > min(x, y) > min(x, y) x→ y yes
> min(x, y) = min(x,y) > min(x, y) x← y yes
> min(x, y) > min(x, y) = min(x,y) x� y no
= min(x,y) > min(x, y) = min(x,y) x→ y no
> min(x, y) = min(x,y) = min(x,y) x← y no
= min(x,y) = min(x,y) > min(x, y) x y no
= min(x,y) = min(x,y) = min(x,y) x y no

Remark. In a previous work [16], we used a slightly different notion: we did
not define robust arcs but we defined a second graph Gr named the robust
graph of elements. Information provided by Gr and Re are equivalent: it can
be seen from Table 3 and the similar Table in [16] that Gr is the oriented
graph on U whose arcs are all (x, y) such that (y, x) /∈ Re.

Illustration of the graph of elements in our running example. Figure
1 represents the graph of elements Ge related to the input rankings presented
in Table 1).

Note that all the arcs in Figure 1 are robust except (D,E) and (E,D).
The arcs between D and E indicate that they should be tied.
As before(D,E) > min(D,E) (resp., before(E,D) > min(D,E)), then
before(D,E) (resp., before(E,D)) cannot be the unique minimum for the
pair (D,E). In other words, the arc (D,E) (resp., (E,D)) is not robust.

Interest of Ge. The oriented arcs of Ge give an idea of which element we
would like to put before the other. Indeed, when there is an arc from x to
y but no arc from y to x, then before(x, y) = min(x, y) 6= before(y, x) (see
Table 3). However, we cannot follow every arc of Ge to build a consensus:
when there is a cycle in Ge, it is impossible to respect every arc. To get rid
of cycles, we compute the graph of the strongly connected components of Ge,
introduced in the next section.

3.2. Graph of the strongly connected components

This subsection recalls a few definitions from graph theory, then explains
why it is useful to compute the strongly connected components of Ge.
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D E

A

B

C

F G

HI

Figure 1: Graph of elements Ge for the example presented in Table 1. Solid arcs are
robust, dashed arcs are not. Grey arcs with multiple sources and/or targets indicate that
all pairwise arcs between the corresponding sets of vertices are present in Ge (for example,
there are arcs from each of D,E to all other vertices, but not from I to F ).

Recall that a strongly connected component (SCC) of a directed graph
G = (V,E) is a subset V

′
of V (possibly V itself) such that (i) for any two

vertices (x, y) of V
′
, there exists a directed path from x to y, and (ii) V

′
is

maximal for (i) i.e. there is no subset V
′′

of V such that V
′ ⊂ V

′′
and V

′′

respects (i).

Definition 3 (Gc, graph of the strongly connected components of Ge). We
denote Gc = (V c, Ec) the graph of the strongly connected components of Ge

i.e. the directed graph such that

• V c is the set of the strongly connected components of Ge

• (ci, cj) ∈ Ec if and only if there is at least one element x of ci and one
element y of cj such that (x, y) is an arc of Ge

Computing the strongly connected components of Ge can be done with
Tarjan’s strongly connected components algorithm [17].

By definition, Gc is a directed acyclic graph (DAG). As a consequence,
there is at least one topological sort of Gc i.e. a list T = [T1, T2, . . . , Tk] of
all the vertices of Gc such that Ti is not reachable from Tj for each i < j. A
topological sort can be computed with Kahn’s algorithm [18].
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c1 = {DE} c2 = {I} c3 = {ABC}

c5 = {F}
c4 = {H}

c6 = {G}

{D E} {I} {A B C} {F G H}

Figure 2: Top: Gc, the graph of the strongly connected components of Ge. Below: the
frontiers.

Illustration. Figure 2 represents the graph Gc corresponding to our running
example provided in Table 1. Computing the SCCs of Ge enables the decom-
position of the universe into 6 sets: {D,E}, which should not be separated
as they are tied in a strict majority of rankings, {I}, {A,B,C} which form
an incompatibility difficult to solve, and {F}, {G} and {H}.

Interest of Gc. The graph Gc allows to partition the initial problem into as
many smaller problems as possible. Indeed, vertices of Gc are sets of elements
of U . Since Gc has no cycles, there is a total order on the vertices of Gc which
respect the arcs. This allows to rank these sets of elements with a minimal
cost (since arcs of Ge are built according to minimal costs). To compute a
consensus, it will only remain to rank elements inside the vertices of Gc. This
is proved in the next section.

4. Efficient rank aggregation with ties

This section introduces ParCons, a new rank aggregation procedure to ef-
ficiently provide a consensus ranking. This process is based on a fundamental
property on the graph Gc presented here-after.

4.1. Fundamental property of Gc

The property of Gc presented in this section can be exploited to partition
the initial problem into several sub-problems allowing to compute a high-
quality consensus ranking in a reasonable time.
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Let us first set two points of vocabulary. First, a consensus ranking c
respects an ordered partition T = [T1, T2, ..., Tk] of U if and only if for all
pairs of elements {x, y} such that x ∈ Ti, y ∈ Tj and i < j then x is before
y in c. Second, we denote R(Ti) the set of rankings built from the input set
of rankings R by removing all the elements which are not in Ti.
Illustration. Consider R the set of rankings presented in Table 1 and con-
sider c1 the SCC of Ge which contains D and E. Then, we obtain that
R(c1) = R({D,E}) = [r

′
1, r

′
2, r

′
3, r

′
4, r

′
5, r

′
6] where r′1 := [{D,E}],

r′2 := [{D,E}], r′3 := [{E}, {D}], r′4 := [{D}, {E}], r′5 := [{D,E}],
r′6 := [{D,E}].

Property 1 (Concatenation property). Let T = [T1, T2, . . . , Tk] be a topo-
logical sort of Gc and µi be an optimal consensus for R(Ti) for 1 ≤ i ≤ k.
Then the concatenation µ1.µ2 . . . µk is an optimal consensus for R.

Proof. Let µ be the concatenation µ1.µ2 . . . µk and c be any consensus rank-
ing. We prove that µ is an optimal consensus by showing that S(µ,R) ≤
S(c, R). The score S is defined in (Equation 1 in Section 2) as a sum over
(x, y) ∈ P . We cut this sum in k+1 parts and show that each part is smaller
or equal for µ than for c: for each i from 1 to k, we consider the part of
the sum over (x, y) such that x and y both belong to Ti. Then this part is
smaller or equal for µ than for c since µi is an optimal consensus for R(Ti).
Now consider the remaining part of the sum. It is over (x, y) such that x and
y do not belong to the same Ti. Assume that x ∈ Ti, y ∈ Tj, i < j (the proof
is similar if i > j). As Ti is before Tj in T , there is no arc from y to x in Ge.
By construction of Ge, we can conclude that before(x, y) = min(x, y). In
other words, the cost induced by (x, y) in µ cannot be higher than the cost
induced by (x, y) in c. Finally, S(µ,R) ≤ S(c, R) as claimed.

Corollary 1. For any topological sort T = [T1, ..., Tk] of Gc, there exists an
optimal consensus ranking which respects T .

Remark. The concatenation property proves that there are some optimal
consensus which respect the topological sorts, but there may exist some opti-
mal consensus that do not respect any topological sort. An example is given
below.

Let us inspect the rankings presented in table 4. There are two SCC
({A,B,C} and {D,E, F}) as no element in {D,E, F} can reach an ele-
ment in {A,B,C}. Furthermore, [{A}, {B}, {C}] is an optimal consensus

15



r1 := [{A}, {B}, {D}, {C}, {E}, {F}]
r2 := [{A}, {B}, {D}, {C}, {E}, {F}]
r3 := [{B}, {F}, {D}, {C}, {A}, {E}]
r4 := [{B}, {C}, {A}, {F}, {D}, {E}]
r5 := [{C}, {A}, {B}, {E}, {F}, {D}]
r6 := [{C}, {A}, {B}, {E}, {F}, {D}]

[{A}, {B}, {D}, {C}, {E}, {F}]

C

A

B D

E

F

{DEF}{ABC}

Table 4: On the left side, example of input rankings (above) and an optimal consensus
(below). On the right side, the graph Ge and its graph of components Gc (all arcs between
any of A,B,C and D,E, F are present and robust in Ge, except (C,D)). Note that the
given consensus does not respect the (unique) topological sort of Gc, since D is before C.

for the sub-problem induced by {A,B,C} and [{D}, {E}, {F}] is an opti-
mal consensus for the sub-problem induced by {D,E, F}. As C which is the
last element of [{A}, {B}, {C}] has no arc to D which is the first element
of [{D}, {E}, {F}], then C and D can be switched in the optimal consensus
[{A}, {B}, {C}, {D}, {E}, {F}], thus [{A}, {B}, {D}, {C}, {E}, {F}] is also
an optimal consensus but do not respect any topological sort.

A direct consequence of the concatenation property is that the different
sub-problems R(T1), R(T2), . . ., R(Tk) can be treated independently. This
observation naturally leads to the algorithm ParCons we present now.

4.2. A partitioning algorithm for rank aggregation

Thanks to the concatenation property, we know that having an optimal
consensus for each sub-problem obtained with Gc guarantees an optimal con-
sensus for the initial problem.

The question is now how to treat the elements within each SCC of Ge.
Two cases can be considered. If (case 1), for any pair of elements {x, y} in the
SCC, tied(x, y) = min(x, y) then one optimal consensus for the sub-problem
is a single bucket containing all the elements of the SCC. Otherwise (case 2),
no trivial optimal consensus can be found: an auxiliary ranking algorithm
(depending on the size of SCC, an exact algorithm or rather a heuristic or an
approximation algorithm) should be called to provide a consensus ranking
for the sub-problem induced by the SCC.

Algorithm 1 (ParCons) describes the procedure providing a consensus
ranking. Note that the result of the returned consensus ranking may depend
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on the auxiliary algorithms used to solve the sub-problems. Moreover, if we
never call a heuristic or an approximation algorithm (either if case 1 always
holds or if an exact algorithm is used instead), then the consensus provided
is necessarily optimal.

Algorithm 1: ParCons: Graph-based procedure providing a con-
sensus ranking (with a pre-process and an auxiliary algorithm).

Input: R : set of rankings
begin

M ← PairwiseCostMatrix(R)
Ge ← ComputeGraphGe(M)
Gc ← SCC(Ge)
topolSortGe ← TopologicalSorting(Gc)
nbSccGe ← numberSCCofGe
consensus ← EmptyListOfSets()
for i← 1 to nbSccGe do

if ∃v1 6= v2 in topolSortGe[i] with tied(v1, v2) > min(v1, v2)
then

subProblem ← CopyInput(R)
Remove from subProblem all the elements not in
topolSortGe[i]

subConsensus ← auxiliaryAlgo(subProblem)
Append each bucket of subConsensus to consensus

else
Append topolSortGe[i] to consensus

Result: consensus

Illustration. Let us inspect again the example presented in Table 1. A
possible topological sort for Gc is: [c1, c2, c3, c5, c6, c4] i.e.

[{D,E}, {I}, {A,B,C}, {F}, {G}, {H}]. Given this ordering, it is now
possible to quickly construct several parts of the final consensus ranking
of R. Indeed, we know that: (i) [{D,E}], (ii) {I}, (iii) [{F}], (iv) [{G}]
and (v) [{H}] are optimal consensus rankings for the sub-problem induced
respectively by (i) c1, (ii) c2, (iii) c5, (iv) c6 and (v) c4 (case 1).

Although placing A, B and C is not trivial (case 2), we can already claim
that there exists an optimal consensus in which (i) D and E share the 1st

position ex-aequo ; (ii) I is placed at the 3rd position; (iii) A, B and C share
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the 4rd, 5th and 6th position (still not ordered yet); (iv) F is in 7th position;
(v) G is in 8th position; (vi) H is in 9th position.

Suppose now that the algorithm used to solve the sub-problem induced by
c3 placed A before both B and C and placed B before C. Then, the obtained
consensus ranking for the example presented in Section 1 is [{D,E}, {I}, {A},
{B}, {C}, {G}, {F}, {H}]. Continuing with our running example, we now
provide an intuition of the reasons why there is no trivial optimal consensus
in case 2. Let us notice that there is at least a pair (x, y) of elements in the
SCC such that the transitivity is not respected regarding the minimal costs
of each pair of the triple. For example, in c3 of Figure 2, we have a path from
A to B and a path from B to A. As a consequence, we would like to place
A before B or tied with B, and B before A or tied with A. The only way to
respect these constraints is to tie them. However, tied(A,B) > min(A,B).
As a consequence, we have no guarantee that A and B are tied in an optimal
consensus. Computing an optimal consensus is here intrinsically difficult.

5. Frontiers for Robust Rank Aggregation

While Section 4 was dedicated to the problem of efficiently computing
a consensus, this section focuses on frontiers, used to identify robust areas
in the returned consensus. More precisely, this section first introduces the
ParFront algorithm and the mathematical properties it is based on, and
second it shows that ParFront is able to compute strictly more frontiers than
any other approach of the related work.

5.1. Computing frontiers

Frontiers provide an answer to the problem of multiple (different) optimal
consensus for a given set of input rankings by highlighting sets of elements
whose relative order is the same in all the optimal consensus. Frontiers thus
allow to make the user aware of the areas of the consensus which are robust
and areas which may vary a lot from an optimal consensus to another one.

More precisely this subsection introduces ParFront (Algorithm 2) which
computes an ordered partition P = [P1, P2, ..., Pk] of the set of elements to
rank, such that all the optimal consensus respects P . ParFront is based on
Theorem 1 which provides sufficient conditions for an ordered partition to
be respected by all the optimal consensus.

Theorem 1. Let Ge = (Ve, Ee, Re) be the graph of elements. Let P =
[P1, P2, ..., Pk] be an ordered partition of Ve such that
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1. ∀i < j, ∀x ∈ Pi, ∀y ∈ Pj, (y, x) /∈ Ee , and

2. ∀i, ∀x ∈ Pi, ∀y ∈ Pi+1, (x, y) ∈ Re.

Then each optimal consensus respects P .

Proof. Consider a consensus ranking c which does not respect P . We will
show that c is not optimal. From c, we build a consensus c′ as follows: take
first the elements of P1 in the same order as they are in c, then append the
elements of P2 in the same order as they are in c, and repeat the operation
for the elements of P3, ..., until Pk. By construction, c′ respects P , thus c′ is
different from c. Now, let us compare S(c, R) and S(c′, R) using Equation 1
of Section 2. Each pair of elements (x, y) such that x and y are in the same
relative order in c and c′ induces the same cost for c and c′.

Now consider pairs (x, y) such that x and y are not in the same relative
order in c and c′ (there is at least one such pair). By construction of c′,
x and y are in different groups of P . Suppose x ∈ Pi and y ∈ Pj with
i < j. Then by hypothesis on P , there is no arc from y to x in Ge, i.e.
before(x, y) = min(x, y). Hence, Sc′(x, y) ≤ Sc(x, y).

Moreover, since y ∈ Pj is before x ∈ Pi in c, there exists i ≤ k < j and
z ∈ Pk, z′ ∈ Pk+1 such that z′ is before z in c. But by construction of c′, z is
before z′ in c′. By the theorem hypotheses, (z, z′) ∈ Re, i.e. before(z, z′) is
the unique minimum, hence Sc′(z, z

′) < Sc(z, z
′).

Finally, Sc′(x, y) ≤ Sc(x, y) for every pair (x, y) and there is a strict
inequality for at least one pair, so overall S(c, R) > S(c′, R), hence c is not
optimal, concluding the proof.

Recall that we defined a frontier as an integer k such that the set of
the k first elements is the same in all the optimal consensus. An ordered
partition P = [P1, P2, ..., P`] satisfying the conditions of Theorem 1 allows to
draw ` − 1 frontiers (between each consecutive parts of the partition). The
goal is then to find a partition with as many parts as possible, satisfying the
conditions of Theorem 1. Note that it is not possible to find a partition both
satisfying these conditions and having more parts than the number of strongly
connected components of Ge. Indeed, item 1. of Theorem 1 is satisfied if and
only if the partition P is coarser than a topological sort of Gc (i.e. each part
of P is the union of strongly connected components of Ge, ordered according
to a topological sort). To find a partition with as many parts as possible
satisfying the conditions of Theorem 1, we start with a topological sort of Gc
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(thus satisfying condition 1), and repeatedly merge consecutive parts that do
not satisfy condition 2. This is done by the algorithm ParFront (Algorithm 2
below).

Algorithm 2: ParFront: returns frontiers according to Theorem 1.

Input: T = [T1, ..., Tk]: list of SCC of Ge according to a topological
sort of Gc , Re: set of robust arcs of Ge

begin
/* Part 1: compute the ordered partition P */

P ← T /* P starts as a copy of T: from now on P

satisfies condition 1 */

i← 1
while i < size(P ) do

/* check condition 2 between P[i] and P[i+1] */

if ∃x ∈ P [i], y ∈ P [i+ 1], (x, y) /∈ Re then
P [i]← P [i] ∪ P [i+ 1] /* merge P [i] and P [i+ 1] */

delete P [i+ 1]
i← max(i− 1, 1) /* backtrack one step */

else
i← i+ 1 /* move forward one step */

/* Part 2: use P to compute the frontiers */

frontiers← emptyList()
frontier ← 0
for i← 1 to size(P ) do

frontier ← frontier + size(P [i])
add frontier in frontiers

Result: List of integers (positions of the frontiers)

Remark. Algorithm ParFront can be used in two different ways. First, the
user may want to get a coarse-grained ranking of the elements, then ParFront
can be run alone to provide a robust coarse-grained ranking (the partition P ).
Alternatively, the user may want to get a ”reliability-aware” total ranking of
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the elements, then ParFront is run after Algorithm ParCons to provide a
consensus with robust frontiers.

In the following, we prove that the result of Algorithm 2 is the best possi-
ble following Theorem 1, i.e. it is the unique partition which has the maximal
number of parts among those satisfying the hypotheses of the Theorem.

At first, we recall that an ordered partition P = [P1, . . . , Pk] is a refine-
ment of another P ′ = [P ′1, . . . , P

′
`] if any part of P ′ is a union of consecutive

parts of P . Informally, this means that P is a further fragmentation of P ′.

Property 2. The partition given by Algorithm 2 satisfies the hypotheses of
Theorem 1. Moreover, this partition is a refinement of all other partitions
which satisfy these hypotheses.

Note that this property implies that the result of Algorithm 2 is inde-
pendent of the topological sort given as input (indeed if P refines P ′ and P ′

refines P , then P = P ′).

Proof. We say that an ordered partition P is a frontier-partition if it satisfies
the conditions of Theorem 1.

The proof lies in two parts: first we prove that Algorithm 2 yields a
frontier-partition, then we state that it is a refinement of any frontier-partition.

For the first part, we first prove condition 1: at any point during the
algorithm, there is no arc between P [j] and P [i], with j < i. Indeed, it
is true at the initialisation of P (since we start with a topological sort),
and is not invalidated by merging consecutive parts. Moreover, during the
while loop, condition 2 is satisfied for each pair P [j], P [j + 1], where j is
smaller than the current value of i. As we leave the loop when i = size(P ),
condition 2 is then satisfied for every pair P [i], P [i+1], so Algorithm 2 yields
a frontier-partition.

For the second part, first note that at any point of the algorithm, there
cannot be any path from a vertex of P [j] to a vertex of P [i], with i < j (this
is a consequence of condition 1). We call this property the path property.
We now consider a frontier-partition P ′, and show by induction that at any
point of the algorithm, P is a refinement of P ′. Indeed, P starts as T and T
is a refinement of P ′ (otherwise P ′ would violate condition 1). Now for the
induction step, we prove that each time P is modified, it remains a refinement
of P ′. If P is modified, it means that there is some i and some x, y such that
x ∈ P [i], y ∈ P [i + 1], {x, y} /∈ Re. Since P is a refinement of P ′, there
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are some j, j′ such that P [i] ⊆ P ′[j] and P [i + 1] ⊆ P ′[j′]. Our goal is to
show that j = j′: then when merging P [i] and P [i + 1], the result is still a
refinement of P ′. Aiming at a contradiction, assume that j 6= j′. We have
j < j′ (otherwise, since P ′ satisfies condition 2, there would be a path from
y to x, which is excluded from the path property). If j′ = j + 1, then P ′

violates condition 2 (indeed we assumed {x, y} /∈ Re). So j + 1 < j′. We
consider z ∈ P ′[j + 1]: there exists a robust path (actually an arc) from x to
z and a robust path from z to y, so from the path property, z cannot be in
a part strictly before x in P (i.e. not before P [i]), nor in a part strictly after
y (not after P [i+ 1]). So z is in either P [i] or P [i+ 1], together with either
x or y. This contradicts the induction hypothesis, since at the beginning of
this step P is a refinement of P ′ and z is not in the same part of P ′ as x or y.
We obtained the desired contradiction, showing that when merging P [i] and
P [i+1], the result is still a refinement of P ′. Overall, P remains a refinement
of P ′ throughout the algorithm.

Overall, the algorithm outputs a frontier-partition that is a refinement
of every other frontier-partition: thus it gives a maximum-size frontier-
partition, which is actually unique.

5.2. Comparison with frontiers of the related work

Although we are not aware of any work having introduced means to help
users being aware of robust areas among the variety of optimal solutions,
previous works, notably [3, 19] have introduced algorithms to ”strongly”
partition the elements to be ranked and have thus defined concepts that can
be rethought in terms of frontiers.

In this Section, we show that the frontiers computed by ParFront are the
most general in the sense that it finds strictly more frontiers than all the
frontiers-like defined in previous works.

5.2.1. Non-dirty candidates

Betzler et al. [3] define a ”non-dirty candidate (for 0.75)” as an element
x such that for any element y 6= x, either x is before y in at least 75% of the
rankings, or y is before x in at least 75% of the rankings. Betzler et al. have
proved that:

• all the elements placed before x in at least 75% of the rankings are then
placed before x in all the optimal consensus.
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• all the elements placed after x in at least 75% of the rankings are then
placed after x in all the optimal consensus.

This theorem was obtained for permutations but we can prove that it
remains true for complete rankings with ties with p = 1.

Remark that finding a non-dirty candidate x leads to an ordered partition
B = [B1, B2, B3] of the ranking in three parts:

• B1 is the set of all the elements placed before x in at least 75% of the
rankings

• B2 = {x}

• B3 is the set of all the elements placed after x in at least 75% of the
rankings

Let us perform the following procedure: if there is a non-dirty candidate
x, compute B1 and B3 and recursively search for non-dirty-candidates in B1

and B3 (an element in B1 can be a non-dirty candidate in B1 even if it was
a dirty candidate in B1 ∪B2 ∪B3).

This procedure is deterministic: the order in which we pick the non-dirty
candidates does not affect the partition produced. Indeed, remark that if an
element is a non-dirty candidate in B1∪B2∪B3, then it remains a non-dirty
candidate in B1 or B3.

We denote B = B1, B2, ..., Bb the partition obtained after the recursive
procedure.

Property 3. All the frontiers given by the partition B (non-dirty candidates)
are also given by the partition P computed by ParFront (Algorithm 2).

Proof. From Property 2, the partition P obtained by ParFront refines any
partition satisfying the hypotheses of Theorem 1. So it sufficient to prove
that B respects the hypotheses of Theorem 1.

First, let us prove that B respects condition 1 of Theorem 1. Let i < j,
x ∈ Bi, y ∈ Bj. Let z be the non-dirty candidate which separates x and y
(z may be x or y). Since i < j, we know that either x = z, or x is before z
in at least 75% of the rankings. Similarly, we know that either y = z, or z is
before y in at least 75% of the rankings. In all cases, we have x before y in at
least 50% of the rankings, so before(x, y) = min(x, y), that is, (y, x) /∈ Ee.
Thus B respects hypothesis 1 of Theorem 1.
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Second, let us prove that B respects condition 2 of Theorem 1. Let i < b,
x ∈ Bi, y ∈ Bi+1. By construction of B, either x is a non-dirty candidate
with respect to Bi−1 ∪ Bi ∪ Bi+1, or y is a non-dirty candidate with respect
to Bi ∪Bi+1 ∪Bi+2. In both cases, x is before y in 75% of the rankings, that
is, (x, y) ∈ Re thus B respects condition 2 of Theorem 1. Finally, P refines
B.

5.2.2. Extended Condorcet Criterion

Truchon proves in [19] that for an odd number of complete rankings
(that may have ties), all the optimal consensus respect any ordered parti-
tion X = [X1, X2, ..., Xk] such that ∀i < j, ∀x ∈ Xi, ∀y ∈ Xj, x is before
y in a majority of rankings. This theorem is actually the so-called Extended
Condorcet Criterion. Note that Truchon sets p = 1 for the penalty cost of
creating/breaking ties.

We can (slightly) extend this result so that it remains true for an even
number of rankings. The following condition thus holds: all the optimal
consensus respects any ordered partition X = [X1, X2, ..., Xk] such that
∀i < j, ∀x ∈ Xi, ∀y ∈ Xj, x is before y in a strict majority of rankings.

We now consider that X is the maximal partition (maximal in terms of
number of parts) respecting the condition above.

Property 4. All the frontiers given by the partition X (Extended Condorcet
Criterion) are also given by the partition P computed by ParFront (Alg. 2).

Proof. Let us prove that X respects the two conditions of Theorem 1.
First, let us set i < j, x ∈ Xi, y ∈ Xj. By hypothesis, x is before y in
a strict majority of rankings. We obtain before(x, y) < before(y, x) and
before(x, y) < tied(x, y), then (y, x) /∈ Ee and X respects hypothesis 1 of
Theorem 1. Moreover, as before(x, y) is the unique minimum, (x, y) ∈ Re.
Thus X respects hypothesis 2 of Theorem 1. Finally, P refines X .

5.2.3. Robust graph of elements

In a previous work [16], we defined the robust graph Gr to compute fron-
tiers: Gr = (Vr, Er) is the directed graph such that

• Vr = U

• Er = {(x, y) ∈ V 2
r : x 6= y ∧ (before(y, x) ≥ before(x, y)∨ before(y, x) ≥

tied(x, y)}.
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We proved that all the optimal consensus respect the unique topological sort
T = [T1, T2, ..., Tk] of the graph of strongly connected components of Gr.

Property 5. All the frontiers given by the partition T (strongly connected
components of the robust graph) are also given by the partition P computed
by ParFront (Algorithm 2).

Proof. We prove that T respects the hypotheses of Theorem 1. First, let
i < j, x ∈ Xi, y ∈ Xj. As T is a topological sort of the graph of strongly
connected components of Gr, x and y are in different SCC of Gr and we have
(y, x) /∈ Er. By definition of Er, (y, x) /∈ Er implies before(x, y) is the unique
minimum, that is (x, y) ∈ Re. We can conclude T respects hypothesis 2 of
Theorem 1. Moreover, since before(x, y) = min(x, y), we have (y, x) /∈ Ee

and T respects hypothesis 1 of Theorem 1. Finally, P refines T .

. We have considered related work having defined concepts that can be
rethought in terms of frontiers and proved that ParFront computes all such
frontiers. As far as we know, ParFront is thus currently the most general
approach able to identify robust areas in the consensus.

6. ConQuR-BioV2

This section introduces ConQuR-BioV2 that we have implemented and
which is concretely in-use for the life science community at the following
address: http://conqur-bio.lri.fr.

ConQuR-Bio (initially introduced in [5]) has been designed in close col-
laboration with several members of the life science community. Current
users come from the following institutes: the APHP (Hospitals in Paris area,
https://www.aphp.fr/), the Institut Curie (Hospital and research center in
oncology, https://institut-curie.org/) and the Institute for Integrative
Biology of the Cell (I2BC, https://www.i2bc.paris-saclay.fr/).

The aim of ConQuR-Bio is to provide a list of genes associated with a
disease (expressed as a keyword by users). ConQuR-Bio exploits the fact
that disease names may have various synonyms, each synonym allows to find
a list of genes and eventually provides users with a consensus list of genes.

While ConQuR-BioV1 has been used by several life scientists, it suffered
from two major weaknesses : (i) the number of elements obtained as answer to
a query (genes associated with a keyword) was constantly augmenting, there
were thus a crucial need for an approach able to scale while not systematically

25

http://conqur-bio.lri.fr
https://www.aphp.fr/
https://institut-curie.org/
https://www.i2bc.paris-saclay.fr/)


using heuristics; (ii) ConQuR-Bio has been used to provide new research
hints that may be then confirmed by wet experiments; life scientist users
have expressed their need to be aware of the robustness associated with the
positions of elements.

ConQuR-BioV2 addresses these two key points by introducing two new
key features: (i) the rank aggregation module has been rebuilt to use the
ParCons algorithm and (ii) the user interface has been adapted to exploit and
display the information on the frontiers produced by the algorithm ParFront.

After a brief presentation of the architecture of ConQuR-BioV2, this sec-
tion provides an example of query showing the benefit for a life scientist of
using ConQuR-BioV2.

6.1. Architecture

The architecture of ConQuR-BioV2, described in Figure 3, is composed
of three main modules.

Figure 3: Architecture of ConQuR-BioV2

The first module - the Reformulation Module - takes as input w, the
user keyword (e.g., breast cancer) and generates a set of synonyms of w
({s1, ..., sm}). Such a generation is obtained by automatically using the
UMLS Metathesaurus [20] which queries five databases described below and
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selected with our biologist collaborators to provide synonyms for disease
names.

• MeSH (Medical Subject Headings) [21] contains a large set of medical
keywords as it has been designed to index the keywords associated with
medical publications in PubMed.

• SNOMED CT (SNOMED Clinical Terms) [22] is a collection of med-
ical terms providing terms, synonyms and definitions used in clinical
documentation and reporting.

• The two latest versions of the International Classification of Diseases
(ICD-9-CM and ICD-10-CM) [23, 24], have been developed by the
World Health Organization. ICD-9-CM is the official system of as-
signing codes to diagnoses and procedures for hospital utilization (in
the United States and Europe). ICD-10-CM contains additional codes
for mortality causes.

• The Online Mendelian Inheritance in Man (OMIM) [25] contains a very
rich catalog of all known genetic diseases in the human genome.

The second module - the Querying Module - takes in the user keyword
and the list of synonyms provided by the reformulation module and sends
one query to the NCBI EntrezGene database per keyword and synonym.
For each keyword (and synonym) NCBI EntrezGene provides a list of genes
associated with it. In Figure 3, g1w, ..., gnw is the list of genes associated
with the keyword w. Each list of genes is ranked by NCBI using the number
of occurrences of the keyword (or the synonym) in the NCBI gene entry. As
a result, the querying module outputs several ranked lists of genes (one per
keyword and synonym).

The third module - the Rank Aggregation Module - takes in a set of
gene lists and uses the algorithm ParCons described in Section 4 to compute
a consensus ranking (denominated g1c...gnc in Figure 3) and provide users
with the frontiers (denominated {k1, k2, k3} in Figure 3) computed using
the algorithm ParFront. It is worth noticing that the Rank Aggregation
module has been completely rethought from V1 to V2 making it able to
manage massive datasets (using now ParCons) and to provide users with
precise information on the robustness the consensus area (using ParFront).
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In the example provided in Figure 4 the user has considered the keyword
Williams Syndrome for which 18 synonyms have been found. The ordered
list of genes and frontiers can be visualized by the user.

Figure 4: Interface of ConQuR-BioV2 and results obtained for the Williams Syndrome.

6.2. Interest of using ConQuR-BioV2

We consider here a real use case of ConQuR-BioV2, based on the search
for genes related to the Williams Syndrome, a disorder having clinical man-
ifestations of various kinds including cardiac anomalies and mental retarda-
tion. The Williams Syndrome is a rare disease (still occuring in about 1 birth
out of 7,500) named very differently in the literature (e.g., ”Beuren Syn-
drome”, ”Hypercalcemia Supravalvar Aortic Stenosis”). According to Or-
phanet (orphanet.org), the reference source of information on rare diseases,
eight genes are known to be equally strongly associated with the disease,
namely (in alphabetical order), BAZ1B, CLIP2, ELN, GTF2I, GTF2IRD1,
LIMK1, RCF2, and TBL2.

Using ConQuR-BioV2, the user can type Williams Syndrome and click
on ”search for genes”. The result obtained is provided in Figure 4.

Note that the disease name has automatically been coloured in green as
it is recognized as a MeSH term. Then, the reformulation module has run
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and ,as indicated on the right side of the interface, has obtained 18 reformu-
lations from the UMLS Metathesaurus (that is, 18 alternative names). Last,
the consensus ranked list of genes is provided. The position of each gene
in the original ranking of EntrezGene NCBI, that is, the ranking provided
by NCBI with the user keyword (here ”Williams Syndrome”) is provided
for information. When ConQuR-BioV2 ranked the gene higher (respectively,
lower) than NCBI then a green up arrow (respectively a red down arrow)
is displayed; when ConQuR-BioV2 has provided a gene that NCBI does not
provide then a yellow sun is displayed.

A deeper look at the results shows two very interesting points

• the 8 genes from Orphanet have been retrieved by ConQuR-BioV2
while NCBI has not found TBL2;

• the top-5 (resp., top-10) genes of ConQuR-BioV2 contains 4 (resp., 6)
genes from Orphanet while NCBI has only 2 of such genes in its top-10.

A last point to notice is the information offered by the frontiers: ConQuR-
BioV2 provides users with four frontiers at position 4, 5, 6 and 7, indicating
that genes should be ranked considering the top-4 elements (ELN, MLXIPL,
GTF2I, BAZ1B) first then the 5th (GTF2IRD1) then the 6th (BUD23) and
then 7th (EIF4H) element of the list.
The next section is dedicated to the evaluation of ConQuR-BioV2 in a very
large number of real settings involving massive datasets.

7. Evaluation

The evaluation of our approach is two folds. First, we have performed a
large-scale quantitative series of experiments to evaluate the ability of our
approach to provide consensus on a variety of massive datasets. Second, we
have performed a qualitative series of experiments to evaluate the ability of
our approach to generate consensus of interest for true users.

7.1. Quantitative Evaluation

7.1.1. Experimental setting

Datasets. In this first series of experiments we have considered all the disease
names from the MeSH terminology having at least 4 synonyms and associated
with at least 100 genes according to NCBI EntrezGene. As a result, we have
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considered 1,354 datasets of size 100 to 1,557 (295 in average) having 4 to
120 reformulations (11.5 in average).

Algorithms. Several studies of rank aggregation algorithms have been per-
formed in the past ten years. One of the most recent is [14] which introduced
an exact algorithm (reused in this paper) and concludes on the fact that
three heuristics are considered as the currently most effective namely, Kwik-
Sort [10], Copeland method [26] and BioConsert [12]. We thus considered the
exact algorithm and the three heuristics above that we all slightly adapted
to handle the pseudo-distance described in Section 2 to handle ties and in-
complete rankings properly.

Running time and quality of the results. Experiments were conducted on
a four dual-core processor Intel Core 2.9GHz with 32GB memory desktop
using Java 1.8.0. Each running-time measure was preceded by a warm-up
time to ensure that all classes were already loaded in the JVM memory.
Implementations were single-threaded.

As for the quality of the results obtained, we classically considered the gap
[27], [15] which consists in normalizing the distance to show the additional
disagreement one consensus c has compared to an optimal consensus c∗.

Given a set of rankings R and an optimal consensus c∗, the gap is defined
as follows: gap(c, R) = S(c,R)

S(c∗,R)
−1. The value of the gap is 0 if and only if the

provided consensus is an optimal consensus. If a consensus c1 has a lower
gap than another consensus c2, it means that c1 is better quality than c2.

Biological datasets usually contain too many elements to compute an
optimal consensus with an exact algorithm. In these cases we use as a refer-
ence the consensus ranking with the lowest score that we denote c+(the best
provided by a nonexact algorithm) and use the m-gap [14]: m-gap(c, R) =
S(c,R)
S(c+,R)

− 1. Note that if an optimal consensus is found m-gap(c, R) =

gap(c, R).

7.1.2. Large-scale evaluation on massive biological datasets

We now consider five experiments performed on the 1,354 biological datasets
described above. The first three are related to the evaluation of the parti-
tioning approach while the last two focus on the robustness of the obtained
consensus rankings (frontiers).
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Experiment 1: Interest of the partitioning phase. The first experiment aims
at evaluating the role of the partitioning in the final provided consensus.
Figures 5 and 6 show that a large amount of genes can be ranked by the
partitioning phase without any need of using any algorithm or heuristic.
More precisely, Figure 5 shows that 100% of the genes are placed (that is,
an optimal consensus is found) using only the partitioning in 396 datasets.
Additionally, more than 80% of the genes are placed by the partitioning
in 665 datasets (this number is obtained by considering the 100% and the
80-99% parts of Figure 5, with 665 =269+396 datasets).

Moreover, Figure 6 shows that 67.5 % (representing a total amount of 269
564 genes) of the genes from all the datasets are placed using the partitioning
only.

Figure 5: Number of datasets where the proportion of genes placed in the consensus by
the partitioning is in a given range (0-39%, 40-59%, 60-79%, 60-99%, 100%).

To rank the remaining sets of elements, there are two possibilities. The
first (and obviously preferred when possible) is to use an exact algorithm
which provides best quality results but may be impossible to use if the set of
elements to rank is too large. The second one (default) is to use a heuristic.
The next experiment evaluates the number of cases where ParCons uses the
exact algorithm.

Experiment 2: Ability to use an exact algorithm. ParCons uses the exact
algorithm to compute a consensus ranking for a sub-problem if the number
of genes to rank in the sub-problem is lower than 80 (i.e. the strongly
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Figure 6: Total number of genes placed in the consensus ranking by the partitioning, an
exact algorithm, and a heuristic.

connected component of Ge contains less than 80 genes). This ensures that
the final consensus ranking can be returned to the user in a reasonable time
(a few seconds).

Figure 7 provides the proportion of datasets where the consensus provided
to the user has been obtained using (i) the partitioning only (cf Experiment
1), (ii) the partitioning and one exact algorithm only, (iii) the partitioning
and a heuristic. Note that both (i) and (ii) provide an optimal consensus.
Thanks to the exact algorithm, optimal consensus have been found in 60.4 %
of the datasets (29.2 + 31.2) corresponding to 818 datasets. For information,
a total of 287,531 genes (representing 72% of the total number of genes) can
be positioned by the partitioning and an exact algorithm. Figure 7 indicates
that a heuristic has to be used for 39.6% of the datasets which corresponds
to a number of 536 datasets.

Determining the best heuristic to choose is a key point that we consider
in the next experiment.

Experiment 3: Benching various heuristics with/out partitioning. In this ex-
periment we compare the m-gap and the computation time of the three
heuristics mentioned in subsection 7.1.1, used with and without partition-
ing, on the 1,354 datasets.

Table 5 provides the results of the bench we conducted. Two points can
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Figure 7: Proportion of datasets such that the partitioning was only used (optimal
consensus), the partitioning and an exact algorithm were only used (optimal consensus),
a heuristic was needed (consensus possibly non optimal).

be noticed. First, using the partitioning phase allows to increase the quality
of fast algorithms while not impacting their computation time in a significant
way for the user. More precisely, the m-gap (best value = 0) of KwikSort
has been decreased by 47.0% and the m-gap of CopelandMethod has been
decreased by 59%. Computation time remains very reasonable (less than one
second for KwikSort and Copeland with the partitioning process).

Second, using the partitioning allows to increase the speed of high-quality
algorithms still improving their quality. More precisely, the computation time
of BioConsert has been reduced by 65% while its m-gap has been reduced by
30%.

Based on these experiments, the implementation of ConQuR-BioV2 runs
systematically the exact algorithm and BioConsert in parallel. If the ex-
act algorithm provides the result in less than 5 seconds, this result is used.
Otherwise, the result of BioConsert is used. More generally, our partition-
ing allows us to run in parallel auxiliary algorithms on different connected
components.

Experiment 4: Benefit of using frontiers. Frontiers have been designed to
guide users in the confidence they may have in the provided ranking. The
frontiers found at the beginning of the ranking (top first positions) are of
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Heuristics Mean m-gap Mean time Max time

CopelandMethod 1.14 * 10−2 13 ms 695.5 ms
ParCons using
CopelandMethod

6.74 10−3 60 ms 1.4 s

KwikSort 1.30 * 10−2 3 ms 19.6 ms
ParCons using
KwikSort

6.83 * 10−3 19 ms 983 ms

BioConsert 4.61 * 10−5 207 ms 9.7s
ParCons using
BioConsert

3.23 * 10−5 72 ms 2.94 s

ParCons using
exact(SCC < 80) 2.41 * 10−5 1.0 s 20.5 s
and BioConsert ≤ 5s in 93% of datasets

Table 5: Benchmark: comparison of the quality of the provided consensus (m-gap) and
the computation time. A better-quality consensus has a lower m-gap.

particular interest as most users mainly focus on the first genes of the con-
sensus. Three points can be noticed from our experiments. First, 73% of our
datasets have a frontier at position 1, that is for 73% of the diseases there is
one gene which is ranked at the first position in all the optimal consensus.

The second and third points are shown in Figure 8 which provides the
average number frontiers between 1 and k: our datasets have in average
10 frontiers for k=50 and the number of frontiers is higher in the top first
elements. Such results are particularly interesting as they demonstrate the
ability of computing frontiers useful for the user in real use cases.

Experiment 5: Ability of computing new frontiers of interest. In this second
part of experiments dedicated to frontiers, we consider all the datasets and
compare the number of frontiers obtained by ParFront with the number of
frontiers obtained by the non-dirty elements (NDE) [3], the Extended Con-
dorcet Criterion (ECC) [19] and the robust graph of elements (RGE) [16],
as introduced in Section 5. To be fair towards all methods, we considered
unified rankings: if a gene x is present in a ranking r whereas another gene
y is missing in r, we considered that x is before y in r. This consideration
increases the number of frontiers found using ECC and NDE methods.

Recall that Property 3 states that ParFront necessarily finds all the fron-
tiers given by NDE, ECC and RGE methods (proved in Section 5). This
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Figure 8: Mean number of frontiers between position 1 and k, k = 1 to 50 (all datasets
considered).

experiment aims to quantify how much more frontiers can be obtained using
ParFront. The result, displayed in Figure 9, is remarkable: ParFront (our
approach) finds 1.6 times more frontiers than the RGE method, almost 15.7
times more frontiers than the ECC method and 134.7 times more frontiers
than NDE method. Interestingly, Figure 9 also shows that although the NDE
method provides much less frontiers than the ECC and RGE methods, NDE
is able to find (and characterize) frontiers which are neither found by ECC
nor found by RGE while they are all obtained by ParFront.

7.2. Qualitative study (using a gold standard)

7.2.1. Datasets

This second series of experiments aims at comparing the consensus cur-
rently provided by NCBI EntrezGene with our rank aggregation based ap-
proach. To do so, we have used a very well annotated and curated database,
namely Orphanet [29], as a gold standard. More precisely, we selected the
disease names associated with a MeSH term for which Orphanet was able to
provide at least one gene known to be involved with the disease and available
in EntrezGene. A total of 234 datasets has then been considered. Interest-
ingly, Orphanet provides information on the reason why a gene is associated
with a disease, allowing us to consider three categories of genes: (i) genes of
category 1 are strongly associated with the disease, they correspond to ther-
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Figure 9: Venn diagram indicating the number of frontiers obtained on the dataset by
each of the four methods: NDE non-dirty elements (Betzler et al. [28]), the ECC Extended
Condorcet Criterion (Truchon [19]), RGE (robust graph of elements) and ParFront (robust
arcs) versions.

apeutic targets or disease-causing germline or somatic mutation(s) affecting
the function of the gene, (ii) genes of category 2 corresponds to genes that
modify the clinical presentation of the disorder or used to monitor disorder
activity, (iii) genes of category 3 are candidate genes for which a mutation as-
sociated with a disorder is suspected or genes playing a role in chromosomal
rearrangements that may have a role in the disorder.

7.2.2. Results obtained by ConQuR-BioV2 compared to NCBI EntrezGene

We conducted three experiments to compare the genes belonging to the
Orphanet gold standard (GS) found in the top-20 of ConQuR-BioV2 versus
the top-20 of NCBI EntrezGene. We focus on the top-20 as this is the size of
results provided in the first page of NCBI EntrezGene. Genes of category 1,
2 and 3 have been considered. Experiment (a) focuses on the datasets and
determines whether ConQuR-BioV2 or NCBI provides more genes from the
gold standard in its top-20; experiment (b) sums the number of genes from
the gold standard obtained in all the top-20 of ConQuR-BioV2 and NCBI
while experiment (c) inspects the position of the first gene from the gold
standard found in the top-20 of the two systems.

All these experiments have also been conducted considering the top-40
genes, varying the categories of genes considered, considering a subset of the
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dataset with diseases associated with at least 5 genes in the gold standard.
In all such cases, results obtained were highly similar to the results presented
in this section (thus not displayed).

Experiment (a): Which of ConQuR-BioV2 or NCBI provides more genes
from the GS. Figure 10 shows that ConQuR-BioV2 finds a strictly higher
number of genes from the gold standard in its top-20 than NCBI in 23.1%
of the datasets while NCBI finds a strictly higher number of genes from the
gold standard in its top-20 than ConQuR-BioV2 in only 3.8% of the datasets.
Interestingly, this means that in 95.2 % of the datasets (73,08%+23,08% and
corresponding to 225 datasets) ConQuR-BioV2 finds the same number or a
strictly higher number of genes from the gold standard in its top-20 than
NCBI.

Figure 10: Number of datasets such that (i) the top-20 of ConQuR-BioV2 contains strictly
more genes from the gold standard than the top-20 of NCBI (ConQur-BioV2), (ii) the
top-20 of NCBI contains strictly more genes from the gold standard than the top-20 of
ConQuR-BioV2 (NCBI),(iii) ConQuR-BioV2 and NCBI both have the same number of
genes from the gold standard in their top-20 (Ex-aequo).

Experiment (b): Total number of genes from the GS. Figure 11 provides the
total number of genes from the gold standard (summed on all the datasets)
obtained in the top-20 of ConQuR-BioV2 and NCBI EntrezGene: ConQuR-
BioV2 contains 1,27 times more genes from the gold standard than NCBI.
Additionally, the number of genes found by ConQuR-BioV2 only is actually
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Figure 11: Sum on all the datasets of the number of genes from the gold standard (i) in
the top-20 of both ConQuR-BioV2 and NCBI, (ii) in the top-20 of ConQuR-BioV2 only,
(iii) in the top-20 of NCBI only.

twice more important than the number of genes found by NCBI only. Finally
(not represented in the figure), note that NCBI does not find any gene of the
gold standard in 44 datasets while this is only the case in 12 datasets for
ConQuR-BioV2.

Experiment (c): Position of the best ranked gene from the GS. The last
experiment has considered the position of the best ranked gene from the
gold standard and provides information on whether such a gene is ranked
before, at the same position or after in ConQuR-BioV2 compared to NCBI.
Figure 12 shows that the best ranked gene from the gold standard returned
by ConQuR-BioV2 is ranked strictly better than the best ranked gene from
the gold standard returned by NCBI in 26.5% of the datasets. Interestingly,
Figure 12 means that the best ranked gene of ConQuR-BioV2 from the GS
is ranked equally or higher than the best ranked gene of NCBI from the GS
in 91% of the datasets.

8. Discussion

8.1. Summaries of the contributions

38



Figure 12: Number of datasets such that the position of the first gene of the GS in the
top 20-consensus is (i) better than (ConQur-BioV2), (ii) worse than (NCBI) or (iii) the
same as (Ex-aequo) the position of the first gene of the GS in the top 20-NCBI.

We have considered a problem encountered by most life scientists when
querying biological databases: dealing with several rankings of answers to be
combined into one single ranking. In this paper we provide a system based
on rank aggregation techniques available to the life science community. Our
first contribution consists in providing an efficient solution by introducing
ParCons, an algorithm able to partition the very large set of elements to
be ranked into smaller sets. This contribution is based on a property we
demonstrated that (i) fits with rankings with ties and incomplete rankings (ii)
ensures the concatenation of the solutions obtained on subsets of elements is
a solution of the complete set. Results obtained on real datasets demonstrate
how useful this contribution can be, allowing rank aggregation approaches
to scale and provide high quality results within a reasonable time (a few
seconds) for several hundreds of elements.

Our second contribution allows to provide a robust solution. Here we
tackle the problem of multiple optimal solutions to the rank aggregation
problem by exploring further the concept of frontier defined in [16].

Frontiers lead to highlighting sets of elements in the consensus which are
robust, that is, which position does not vary among the variety of optimal
solutions. In other words, any element placed between a frontier at posi-
tion k1 and a frontier at position k2 is necessarily at a position between k1
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(excluded) and k2 (included) in all optimal solutions. Frontiers give insight
about the level of confidence the user can have on the given result. Here,
we provide ParFront, a new algorithm which ensures the soundness of the
identification of frontiers in datasets.

Interestingly, this new algorithm not only finds (much) more frontiers
than in our previous work [16] (as shown in Figure 9, section 7), but it also
subsumes the two major following previous works: the non-dirty elements [3]
and the Extended Condorcet Criterion [19].

Our last (but not least) contribution relies on providing an effective so-
lution by making the online tool ConQuR-BioV2, where both algorithms
ParCons and ParFront have been implemented, available to the community.
Our experiments demonstrate (i) the efficiency of our algorithms to provide
high-quality results on real data and (ii) the relevance of using rank aggre-
gation techniques on biological datasets for real users.

8.2. Related work

We now place our solution in the landscape of rank aggregation solutions.

General families of algorithms used to tackle the rank aggregation problem.
As seen from the introduction, the rank aggregation problem has been studied
in many fields: algorithmics (e.g., [11]), databases (e.g.,[8]), social choice
theory (e.g., [4]), biology (e.g., [30]), physics (e.g., [31]), statistics (e.g., [32]),
artificial intelligence (e.g., [33]). Works mostly focus on permutations, i.e.
when the rankings to aggregate are complete and without ties [3, 10, 11, 27,
32, 34, 35, 7, 36]. More recently, a few works have addressed rank aggregation
with ties [15, 37] and/or aggregation of incomplete rankings [38, 13, 39] have
also been investigated.

Our contribution belongs to the latter category where rankings with ties
are considered and missing elements are taken into consideration by using a
dedicated score.

Optimality and massive datasets. Faced with the intrinsic complexity of the
rank aggregation problem, many algorithms (heuristics, approximations, ex-
act algorithms) have been developed [2, 12, 9, 10, 11, 26, 8, 35, 13, 40, 41, 3,
15], with different approaches (integer programming, dynamic programming,
local search, etc.), some of them using partitioning procedures.

Exact algorithms can only handle small rankings. Other approaches can
apply to very large datasets, but none of them is able to ensure optimality.
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By contrast, our method allows the user to know the provided consensus
being optimal in many cases (61% of our 1354 datasets), even for a large
number of genes (100 to 1577).

Use of graphs for the rank aggregation problem. Graph methods have natu-
rally been used in the context of rank aggregation. Many results on complex-
ity (including the NP-hardness) have actually been proved using a reduction
to the well-known feedback arc set problem [2, 6, 42, 43, 44]. The feedback
arc set problem has also been used to design exact algorithms, approximation
algorithms and/or heuristics [3, 6, 35, 45, 36]. These works mainly focus on
permutations. We have developed a more general setting for dealing with
incomplete rankings with ties, leading to efficient and effective algorithms.

Dealing with many optimal consensus: frontiers. Very few papers tackle the
problem of multiple optimal consensus. Both [19] and [31] suggest to compute
all the optimal consensus and provide a single consensus ranking using the
mean position of each element in all the optimal consensus. Unfortunately
this kind of solution cannot make sense on datasets with many elements as
the computation time would dramatically increase. To face this problem, we
have defined frontiers that highlight common points between all the optimal
solutions. We proved that the frontiers produced by the ParFront algorithm
include all the frontiers which can be defined using the non-dirty elements [3],
the Extended Condorcet Criterion [19] and the robust graph of elements [16].
Moreover, our experiments show that ParFront draws much more frontiers
than [3, 19, 16] can do.

Therefore, ConQuR-BioV2 allows the user to be aware of the robustness
of the displayed consensus, better than any other approach.

8.3. Perspectives

Ongoing work consists in collecting the feedback of ConQuR-BioV2 users.
We also plan to extend our approach to other kinds of biological datasets:
(i) considering various kinds of datasets from NCBI (including proteins and
SNPs), (ii) considering gene rankings obtained by various omics experiments
(proteomics, micro-arrays). Such new contexts of study may reveal new re-
quirements in particular concerning the distance to consider or the heuristics
to favor.

From a purely theoretical point-of-view, there may be some cases where
Theorem 1 is not able to provide all frontiers. We currently work on this

41



point, hoping to find more general sufficient conditions, or even necessary
and sufficient conditions.
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