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Laurent Bulteau Guillaume Fertin Anthony Labarre Romeo Rizzi
Irena Rusu

October 20, 2021

Abstract

Let S = {K1,3,K3, P4} be the set of connected graphs of size 3. We study the problem of partitioning
the edge set of a graph G into graphs taken from any non-empty S′ ⊆ S. The problem is known to be
NP-complete for any possible choice of S′ in general graphs. In this paper, we assume that the input
graph is subcubic (i.e. all its vertices have degree at most 3), and study the computational complexity of
the problem of partitioning its edge set for any choice of S′. We identify all polynomial and NP-complete
problems in that setting.

Keywords— decomposition, edge partition, NP-completeness, subcubic graph

1 Introduction
Given a graph G and a set S of graphs, the S-decomposition problem asks whether G can be represented
as an edge-disjoint union of subgraphs, each of which is isomorphic to a graph in S. The problem has a
long history that can be traced back to Kirkman [13] and has been intensively studied ever since, both
from pure mathematical and algorithmic points of view. One of the most notable results in the area is
the answer of Dor and Tarsi [7] to the long-standing “Holyer conjecture”, which stated that “the problem
of edge-partitioning a graph into subgraphs isomorphic to a fixed graph H is NP-complete for all graphs
H with at least 3 edges” [12]. Dor and Tarsi note that this conjecture as stated is false, and prove that a
slightly modified version holds:

Theorem 1.1. [7] For every graph H, the {H}-decomposition problem is NP-complete whenever H
contains a connected component with three edges or more.

Theorem 1.1 leaves open the cases where all connected components of H contain at most two edges,
which were eventually all shown to be tractable

Theorem 1.2. Let s, t ∈ N. There is a polynomial time algorithm to decide if an instance graph has an
{sP2 ∪ tP3}-decomposition (see Lonc [15] for the case s = 0, Priesler and Tarsi [20] for the case s = 1 and
t ≥ 1, and Bryś and Lonc [4] for all other cases).

Note that single-vertex components can be safely ignored, provided the input graph is large enough, since
we only consider edge-disjoint (not vertex-disjoint) decompositions. Many variants of the S-decomposition
problem have been studied while attempting to prove Holyer’s conjecture or to obtain polynomial-time
algorithms in restricted cases [21], and applications arise in such diverse fields as traffic grooming [19] and
graph drawing [11]. In particular, Dyer and Frieze [8] studied a variant where S is the set of all connected
graphs with k edges for some natural k, and proved the NP-completeness of the S-decomposition problem
for any k ≥ 3, even under the assumption that the input graph is planar and bipartite (see Theorem 3.1
in [8]). They further claimed that the problem remains NP-complete under the additional constraint that
∗This is an extended version of Bulteau et al. [5].
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all vertices of the input graph have degree 2 or 3. Interestingly, if k = 3 and G is a bipartite cubic graph
(i.e., each vertex has degree 3), then G can clearly be decomposed in polynomial time, using K1,3’s only, by
selecting either part of the bipartition and making each vertex in that set the center of a K1,3. This shows
that focusing on the case k = 3 and on cubic graphs can lead to tractable results — as opposed to general
graphs, for which when k = 3, and for any non-empty S′ ⊆ S, the S′-decomposition problems all turn out
to be NP-complete [8, 12].

In this paper, we study the S-decomposition problem on subcubic graphs in the case where S is the
set of all connected graphs on three edges, i.e., S = {K1,3,K3, P4} (respectively known as claws, triangles
and paths). For any non-empty S′ ⊆ S, we settle the computational complexity of the corresponding
S′-decomposition problem. More specifically, we give polynomial-time algorithms for:

• decomposing strictly subcubic graphs into claws, triangles, or both claws and triangles (Proposi-
tions 3.2, 3.3 and 3.6);

• decomposing cubic graphs using only claws (Proposition 4.3; triangles are trivially unusable on their
own, and a polynomial-time approach to path decompositions was previously known) or both paths
and triangles (Proposition 4.2);

and we show that all other decomposition problems on strictly subcubic graphs are NP-complete (Theo-
rems 3.1 and 3.5 and Propositions 3.4 and 3.7), even if the input graph is planar and bipartite. Furthermore,
we prove that deciding whether a cubic graph admits a decomposition into paths and claws (and possibly
triangles) is an NP-complete problem (Theorem 5.6), even if the input graph is K3-free and planar.

Table 1 summarises the state of knowledge regarding the complexity of decomposing subcubic and ar-
bitrary graphs using connected subgraphs of size 3, and puts our results into perspective. Without loss of
generality, the input graph is assumed to be connected; otherwise, separate results can be used on different
components depending on whether they are strictly subcubic or cubic.

Allowed subgraphs Complexity according to graph class
K1,3 K3 P4 strictly subcubic cubic arbitrary
X in P (Proposition 3.2) in P (Proposition 4.3) NP-complete [8, Theorem 3.5]

X in P (Proposition 3.3) O(1) (impossible) NP-complete [12]
X NP-complete (Theorem 3.1) in P [14] NP-complete [8, Theorem 3.4]

X X in P (Proposition 3.6) in P (Proposition 4.6) NP-complete [8, Theorem 3.5]
X X NP-complete (Theorem 3.5) NP-complete (Theorem 5.6) NP-complete [8, Theorem 3.1]

X X NP-complete (Proposition 3.4) in P (Proposition 4.2) NP-complete [8, Theorem 3.4]
X X X NP-complete (Proposition 3.7) NP-complete (Theorem 5.6) NP-complete [8, Theorem 3.1]

Table 1: Known complexity results on decomposing graphs using subsets of {K1,3,K3, P4}.

A large portion of the results in this paper first appeared in a conference version [5]. The main additions
and differences are:

• all results on strictly subcubic graphs (Section 3);

• explicit algorithms (Algorithms 1 to 3) and complexity analyses for the polynomial time solvable cases
(see Table 1);

• a sharper characterisation of hard instances for the problems of decomposing cubic graphs in the case
where {K1,3, P4} ⊆ S′: we now have a proof that those problems are hard on planar graphs, whereas
the previous versions of those results only assumed K3-freeness (see Theorem 5.6);

• and some simplifications and generalisations of previous versions of our results.
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2 Notation and definitions
We follow Brandstädt et al. [3] for notation and terminology. All graphs we consider are simple and nontrivial
(i.e. |V (G)| ≥ 2 and |E(G)| ≥ 1). A cubic graph contains only vertices of degree 3, while a strictly subcubic
graph contains at least one vertex of degree strictly less than 3; a subcubic graph may be either cubic or
strictly subcubic.

Definition 2.1. Given a set S of graphs, a graph G admits an S-decomposition, or is S-decomposable, if
E(G) can be partitioned into subgraphs, each of which is isomorphic to a graph in S.

Throughout the paper, S denotes the set of connected graphs of size 3, i.e. S = {K1,3,K3, P4}. We study
the following problem:

S′-decomposition
Input: a subcubic graph G = (V,E), a non-empty set S′ ⊆ S.
Question: does G admit an S′-decomposition?

During the process of building a decomposition D for a graph G, it will sometimes be convenient to
distinguish between covered edges, i.e. edges that belong to some element of D, and uncovered edges, which
do not belong to any element of D.

Definition 2.2. Given a graph G = (V,E), removing a subgraph H = (W ⊆ V, F ⊆ E) of G consists in
removing edges in F from G as well as the possibly resulting isolated vertices. We use the notation G \H to
denote the graph obtained from G by removing H. For a subset U ⊆ V , we use the lighter notation G \ U
instead of G \ (U, ∅).

We let G[U ] denote the subgraph of G induced by U ⊆ V (G). Recall that a graph G is H-free if there
is no subset U of V (G) such that G[U ] is isomorphic to a given graph H. If G is not H-free, we say that G
contains (a copy of) H.

Definition 2.3. Let G and G′ be two graphs:

• subdividing an edge {u, v} ∈ E(G) consists in inserting a new vertex w into that edge, so that V (G)
becomes V (G) ∪ {w} and E(G) is replaced with (E(G) \ {u, v}) ∪ {u,w} ∪ {w, v};

• attaching G′ to a vertex u ∈ V (G) means building a new graph H by identifying u and some vertex
v ∈ V (G′);

• attaching G′ to an edge e ∈ E(G) consists in subdividing e using a new vertex w, then attaching G′ to
w.

Figure 1 illustrates the process of attaching an edge to an edge of the cube graph, which yields what we
refer to as a buoy graph.

u v u v

Figure 1: Attaching a new edge to {u, v}.

We shall use N(v) to denote the open neighbourhood of a vertex v in a graph, i.e. the set that consists of
all vertices adjacent to v, as opposed to its closed neighbourhood which we denote N [v] = N(v) ∪ {v}. We
use E(v) to denote the set of all edges that are incident with vertex v.
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3 Decomposing strictly subcubic graphs
In this section, we assume that the graph G we seek to decompose is strictly subcubic. Our hardness results
will follow the strategies presented by Dyer and Frieze [8], who use the following well-known NP-complete
problem [9]:

planar exact cover by 3-sets (planar x3c)
Input: a set W and a set of triplets T ⊆W ×W ×W such that the bipartite graph G = (W ∪ T,E)

is planar, where E = ∪t=(r,b,y)∈T {{r, t}, {b, t}, {y, t}}.
Question: is there a subset T ′ ⊆ T which contains all elements of W exactly once?

planar x3c remains NP-complete under the following restriction [9], which we will assume holds for
our reductions: each element of W appears in two or three elements of T . We will find it convenient in our
reductions to view instances of planar x3c immediately as planar embeddings of the bipartite graph G as
described in the problem definition.

3.1 Decompositions with only one type of graph
We start our study of S′-decomposition on strictly subcubic graphs with only P4’s at our disposal. We
show that this first problem is NP-complete.

Theorem 3.1. The {P4}-decomposition problem is NP-complete for strictly subcubic planar bipartite
graphs.

Proof. We transform a planar embedding of an instance G of planar x3c into a new graph G′ by replacing
each vertex w in W with one of the two vertex gadgets described below, depending on its degree. Since we
assume that w has degree either 2 or 3, we replace w with H2 in the former case or with H3 in the latter.
The subgraph of G induced by N [t], for each triplet t in T , is mapped onto a triplet gadget Ht attached to
three gadgets denoted by H(z), where H(z) is either gadget H2 or H3 depending again on the degree of z
in G. Vertices v1 and v2 in H2 (and v3 in the case of H3) will be used for attaching each gadget to Ht, so
the notation vr (resp. vb and vy) corresponds to one of the vi’s in H(r) (resp. H(b) and H(y)). Figure 2
illustrates the transformation

v1 v2

`

e1 e2

v1 v2 v3

`1 `2

e1 e2 e3 e4

t

r b y

t
vr vb vy

x1 x2 x3 x4 x5 x6
H(r) H(b) H(y)

gadget H2 gadget H3 gadget Ht for triplets

Figure 2: The gadgets used in the proof of Theorem 3.1.

The resulting graph G′ is clearly strictly subcubic. We now show that G admits an exact cover by 3-sets
if and only if G′ admits a {P4}-decomposition.

⇒: we map every triplet t in an instance G of planar x3c onto three P4’s in the decomposition D that
we build for G′, in a way that depends solely on whether or not t has been selected as part of a solution
T ′ to G. More specifically, as Figure 3 illustrates:
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1. if t belongs to the solution T ′, then the P4’s G′[{vr, x1, x2, x3}] and G′[{vb, x4, x5, x6}] are added
to D, as well as the P4’s that have two edges in their attached gadget and exactly one edge in
G′[{t, vr, x1, x2, x3, vb, x4, x5, x6, vy}];

2. if t does not belong to the solution T ′, then G′[{t, vr, x1, x2, x3, vb, x4, x5, x6, vy}] decomposes into
three P4’s G′[{t, vr, x1, x2}], G′[{x2, x3, vb, x4}] and G′[{x4, x5, x6, vy}], which are added as such
to D.

t
vr vb vy

x1 x2 x3 x4 x5 x6
H(r) H(b) H(y)

t
vr vb vy

x1 x2 x3 x4 x5 x6
H(r) H(b) H(y)

selected triplet unselected triplet

Figure 3: Expressing triplet selection using P4’s in gadget Ht in the proof of the forward direction of
Theorem 3.1.

To lighten the discussion, we will refer to a P4 in D with only two edges in a vertex gadget as a partial
P4. Note that since T ′ is an exact cover by 3-sets, every vertex gadget contains exactly one partial P4,
which must involve one of its vertices with label v1 or v2 (or v3 for H3).
We now show that the choices we make for each gadget Ht completely determine the rest of D, by
examining their impact on the decomposition of the attached gadgets. We distinguish between the
following cases, illustrated in Figure 4:

(a) (H2): if v1 is the vertex that belongs to the partial P4 in H2 (case v2 is symmetric), then v2 must
be the starting point of a P4 which contains edge e2, which in turn forces us to select the P4 that
starts with ` and contains e1.

(b) (H3): if v1 is the vertex that belongs to the partial P4 in H3 (case v3 is symmetric), then the P4

that starts with `1 must end with e1. This in turn forces the P4 that starts with v2 to end with
e2, which then forces the P4 that starts with `2 to end with e3; and finally, this last choice forces
the selection of the P4 that starts with v3 and ends with e4.

(c) (H3): finally, if v2 is the vertex that belongs to the partial P4 in H3, then this forces the selection
of both the P4 from v1 that ends with e1 and the P4 from v3 that ends with e4. These two choices
then force us to select e2 (resp. e4) as the final edge of the P4 that starts with `1 (resp. `2).

Figure 4 illustrates the above three cases. Arrows indicate implications, i.e. the fact that selecting a
certain P4 forces us to select another P4. As a result, a {P4}-decomposition for G′ can straightforwardly
be derived from any exact cover by 3-sets for G.

⇐: to prove that a {P4}-decomposition for G′ yields an exact cover by 3-sets for G, we first observe
that each gadget’s structure limits our choices for a valid {P4}-decomposition. The following claims
characterise how our gadgets might be decomposed.

Claim 1. If G′ admits a {P4}-decomposition D, then D contains exactly one partial P4 for each
gadget H2 and H3 which must cover either v1 or v2 (or v3 for H3).

Proof. Every {P4}-decomposition of H2 must contain a P4 that starts with its only leaf ` and
contains either e1 or e2. Choosing either edge for that P4 forces us to build another P4 that will
contain the other edge and end with either v2 or v1; the uncovered vertex can then be covered by
a partial P4 using an additional edge from the triplet gadget to which H2 is attached.
The case analysis is similar in the case ofH3: every {P4}-decomposition must contain two P4’s that
start with `1 and `2, respectively, and two edges out of {e1, e2, e3, e4} will then be selected to end
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v1 v2

`

e1 e2

v1 v2 v3

`1 `2

e1 e2 e3 e4

v1 v2 v3

`1 `2

e1 e2 e3 e4

(a) (b) (c)

Figure 4: Expressing triplet selection using P4’s in gadgets H2 and H3 in the proof of the forward direction
of Theorem 3.1.

these two P4’s. Figure 5 illustrates the following four cases, with arrows indicating implications,
i.e. the fact that selecting a certain P4 forces us to select another P4.

(a) Selecting e1 and e3 forces us to build a P4 that contains e2 and ends with v2 and another P4

that contains e4 and ends with v3. In that case, v1 is left uncovered, and covering it with a
P4 will require the use of its other incident edge which does not belong to H3.

(b) Selecting e1 and e4 leads to a partial decomposition which cannot be completed: any P4 that
ends with v2 will leave out either e2 or e3, which therefore cannot be part of a P4.

(c) Selecting e2 and e3 forces us to build a P4 that contains e1 and ends with v1 and another P4

that contains e4 and ends with v3. In that case, v2 is left uncovered, and covering it with a
P4 will require the use of its other incident edge in the triplet gadget to which H3 is attached.

(d) Selecting e2 and e4 forces us to build a P4 that contains e1 and ends with v1 and another P4

that contains e3 and ends with v2. In that case, v3 is left uncovered, and covering it with a
P4 will require the use of its other incident edge in the triplet gadget to which H3 is attached.

v1 v2 v3

`1 `2

e1 e2 e3 e4

v1 v2 v3

`1 `2

e1 e2 e3 e4

v1 v2 v3

`1 `2

e1 e2 e3 e4

v1 v2 v3

`1 `2

e1 e2 e3 e4

(a) (b) (c) (d)

Figure 5: The four cases in the proof of Claim 1 (reverse direction of Theorem 3.1).

(end of Claim 1)

Claim 2. If G′ admits a {P4}-decomposition D, then for every gadget Ht in G′:

1. either G′[{t, vr, x1, x2, x3, vb, x4, x5, x6, vy}] decomposes into three P4’s that belong to D, or

6



2. edges {t, vr}, {x3, vb} and {x6, vy} are the terminal edges of partial P4’s in D that respectively
start in H(r), H(b), and H(y).

Proof. Claim 1 implies that H(r), H(b) and H(y) each contain exactly one partial P4; if a partial
P4 is incident with Ht, then it must be completed using an edge of G′[{t, vr, x1, x2, x3, vb, x4, x5,
x6, vy}]. We show that all three vertex gadgets attached to Ht must be in the same state, i.e.
either vr, vb and vy all belong to partial P4’s in H(r), H(b) and H(y), or none of them do:

∗ if vr belongs to a partial P4 in D, then its last edge must be {t, vr}, which forces the selection
in D of the P4 induced by {vr, x1, x2, x3}. The P4 in H(b) that contains vb must be partial,
otherwise the number of remaining edges to cover in Ht is not a multiple of 3 and they can
therefore not be covered regardless of the state ofH(y). That partial P4 must contain {x3, vb},
which in turn forces the selection in D of the P4 induced by {vb, x4, x5, x6} and thereby also
the selection of a partial P4 in H(y) containing {x6, vy}.

∗ if vr does not belong to a partial P4 inD, thenD must contain the P4 induced by {t, vr, x1, x2}.
The P4 in D that contains x2, x3 and vb cannot end with an edge in H(b), so its last edge is
{vb, x4} and H(b) contains no partial P4 involving vb. This in turn forces the P4 induced by
{x4, x5, x6, vy} to belong to D, and therefore H(y) has no partial P4 involving vy.

(end of Claim 2)

We can now show how to transform any {P4}-decomposition D for G′ into an exact cover by 3-sets
for G: every vertex gadget contains exactly one partial P4 (Claim 1) which is completed using an edge
of the triplet gadget to which it is attached in order to obtain a P4, say P ′, of D. In other words, P ′
“points” to the triplet that must be selected to solve the original instance G of planar x3c. Claim 2
guarantees that either all elements of a triplet or none of them will be selected, and Claim 1 ensures
that no element can be covered by two different triplets. Therefore, the solution we deduce from D is
indeed an exact cover by 3-sets.

We only have two properties left to prove:

1. G′ is bipartite: since the gadgets we introduced are trees, they cannot create any new cycle in G′,
but they will lengthen cycles that were already present in G in two ways.

(a) Since vertices in W are replaced by a copy of H2 or H3, a P3 with edges {ta, w} and {w, tb}
in a cycle of G will now enter gadget H(w) through some vi and exit it through some vj 6= vi.
Depending on the degree of w and the specific entry and exit points in H(w), this adds either 6
or 8 edges to the cycle.

(b) Since vertices in T are replaced by a copy of Ht, a P3 with edges {wc, t} and {t, wd} in a cycle of
G will now enter gadget Ht through some vi and exit it through some vj 6= vi. Depending on the
specific entry and exit points in Ht, this adds either 4 or 8 edges to the cycle.

In all cases, all cycles in G are even to start with, and become longer but remain even in G′. Therefore,
G′ is also bipartite.

2. G′ is planar: let us identify G with any of its planar embeddings. Again, since each gadget is a tree,
each gadget itself admits a planar embedding; and since no two edges connecting two different elements
of W to either the same triplet or different triplets in G cross, the replacement of these elements with
our gadgets will not create any crossing in G′ either.

We now move on to the case of {K1,3}-decompositions, which Algorithm 1 solves in polynomial time.
We prove its correctness below.

Proposition 3.2. The {K1,3}-decomposition problem for strictly subcubic connected graphs is in P.
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Proof. Since the input graph G is strictly subcubic, it contains a vertex v of degree 1 or 2 whose neighbour(s)
must be the center of a K1,3 if a {K1,3}-decomposition exists for G. Since G is connected, the graph G′

obtained from G by removing that K1,3 is also strictly subcubic, and therefore G admits a {K1,3}-decom-
position if and only if G′ does. The decomposition, if it exists, can be found by repeating this claw-removal
strategy until either all edges have been removed, in which case we have found a {K1,3}-decomposition, or
no new claw center can be found, in which case no {K1,3}-decomposition exists.

Algorithm 1 implements the strategy described in the proof of Proposition 3.2 in an iterative way. It
starts by pushing all vertices of degree strictly less than 3 onto a stack S, then keeps popping vertices
and pushing neighbours of the newly created claws in the decomposition, which takes O(1) time. Its time
complexity is O(|V |+ |E|) = O(|V |), since G is strictly subcubic.

Algorithm 1: StrictlySubcubicClawDecomposition(G)
Input: A graph G whose connected components are all strictly subcubic.
Output: A K1,3-decomposition of G if one exists, ∅ otherwise.

1 D ← ∅;
2 S ← stack with all vertices of degree < 3 in G;
3 while S 6= ∅ do
4 x← S.pop();
5 if deg(x) 6= 0 then
6 v ← arbitrary neighbour of x with degree 3;
7 if no such v exists then
8 return ∅;
9 D ← D ∪ E(v); // v must be the center of a K1,3, which we add to D

10 S.push(vertices in N(v)); // push vertices whose degree will decrease
11 G← G \ {v}; // remove recorded K1,3

12 return D;

Connectedness plays a minor role in our algorithms, since the decomposition problems we study can be
solved independently on each connected component. However, we will need to use Algorithm 1 when we
decompose cubic graphs, and we will not be able to guarantee that the input to Algorithm 1 will be connected.
This can only be an issue for cubic components, since we have not yet explained how to decompose them,
which is why we require that all connected components in the input to Algorithm 1 be strictly subcubic. We
conclude this section with the easiest case: decomposing strictly subcubic graphs using only K3’s.

Proposition 3.3. The {K3}-decomposition problem for strictly subcubic graphs is in P.

Proof. Straightforward: a strictly subcubic graph admits a {K3}-decomposition if and only if all its connected
components are K3’s.

3.2 Decompositions with two types of graphs
We now examine decomposition problems on strictly subcubic graphs using two types of graphs, starting
with the following hardness result.

Proposition 3.4. The {K3, P4}-decomposition problem is NP-complete for strictly subcubic planar bipartite
graphs.

Proof. Follows directly from the proof of Theorem 3.1, since our reduction produces a bipartite graph which
is therefore K3-free so only P4’s can be used in a decomposition.

The second hardness result of this subsection requires a more involved proof but which is similar in spirit
to that of Theorem 3.1.
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Theorem 3.5. The {K1,3, P4}-decomposition problem is NP-complete for strictly subcubic planar bipartite
graphs.

Proof. We transform a planar embedding of an instance G of planar x3c by replacing G[N [w]] for each
w in W with either of the gadgets shown in Figure 6, depending on its degree. Since we assume that the
degree of w is either 2 or 3, we replace it with H2 in the former case or with H3 in the latter.

The resulting graph G′ is clearly strictly subcubic. We now show that G admits an exact cover by 3-sets
if and only G′ admits a {K1,3, P4}-decomposition.

w

ti tj ti tj

w

ti tj tk ti tj tk

fi fk

ei ej ek

gadget H2 gadget H3

Figure 6: The gadgets used in the proof of Theorem 3.5.

⇒: every triplet in a solution T ′ to the instance G of planar x3c naturally induces a K1,3 which will be
part of the {K1,3, P4}-decomposition D of G′. Since every element w of W is covered exactly once by
T ′, exactly one edge incident to w in G is part of a K1,3 and therefore exactly one edge incident to
either ti or tj (or tk if w has degree 3) in the corresponding gadget in G′ is part of a K1,3 in D.

Therefore, we only need to show that the remaining edges of each gadget admit a {K1,3, P4}-decom-
position. If w has degree 2, then that decomposition consists of a single P4. For the case where w has
degree 3, we have two cases to distinguish: either ei is unavailable (the case ek is symmetric), or ej is;
in both cases, the rest of the gadget admits a {P4}-decomposition, as shown below. Figure 7 illustrates
both cases, with arrows indicating implications, i.e. the fact that selecting a certain P4 forces us to
select another P4.

ti tj tk

fi fk

ei ej ek

ti tj tk

fi fk

ei ej ek

ei belongs to a K1,3 in D centered in ti ej belongs to a K1,3 in D centered in tj

Figure 7: Propagating triplet selection using P4’s in gadgets H2 and H3 in the proof of the forward direction
of Theorem 3.5.

⇐: to prove that a {K1,3, P4}-decomposition for G′ yields an exact cover by 3-sets for G, we first observe
that each gadget’s structure limits our choices for a valid {K1,3, P4}-decomposition.

Claim 3. If G′ admits a {K1,3, P4}-decomposition D, then no K1,3 in D is a subgraph of a
gadget.
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Proof. A K1,3 appearing as a subgraph of either gadget must use a vertex of degree 3 of that
gadget as its center. This clearly cannot happen for gadget H2, or for the vertices adjacent
to ti and tk in gadget H3, since in all these cases allowing those vertices to be the center of a
K1,3 in D would leave a pendant edge uncovered. The remaining case to handle is that of the
vertex incident to tj in gadget H3, where such a choice would force the partial decomposition of
the gadget shown in Figure 8: whichever choice we make for building the remaining P4’s in the
decomposition necessarily leaves four edges of the gadget uncovered.

ti tj tk

fi fk

ei ej ek

Figure 8: The impossibility of finding a {K1,3, P4}-decomposition for a gadget when using K1,3’s (Claim 3,
reverse direction of Theorem 3.5).

(end of Claim 3)

Claim 4. If G′ admits a {K1,3, P4}-decomposition D, then for every gadget in G′, either ei or
ej (or ek in the case of H3) belongs to an element of D which is not a subgraph of the gadget.

Proof. The claim trivially holds for gadget H2, so we now turn to gadget H3. For this case
analysis, let fi (resp. fk) denote the edge incident to ei (resp. ek) on the unique path in the
gadget between ti and tk. The P4’s in D that are incident to the leaves of H3 will have to use
either ei or fi, on one hand, and either ek or fk, on the other hand. This leads us to the following
four cases, illustrated in Figure 9, with arrows indicating implications, i.e. the fact that selecting
a certain P4 forces us to select another P4.

(a) Selecting ei and ek leads to building a P4-decomposition which is the only possible choice and
leaves only ej uncovered.

(b) Selecting fi and fk leads to building a partial P4-decomposition which cannot be completed:
the only way to cover the uncovered edges of the gadget is to use a P4 that starts at the
endpoint of either black P4, but that P4 will leave at least one edge of the gadget uncovered,
regardless of whether it ends with ej .

(c) Selecting ei and fk leads to building a P4-decomposition which is the only possible choice and
leaves only ek uncovered.

(d) Selecting fi and ek leads to building a P4-decomposition which is the only possible choice and
leaves only ei uncovered.

(end of Claim 4)

We can now show how to transform any {K1,3, P4}-decomposition D for G′ into an exact cover by
3-sets for G: every gadget has exactly one uncovered edge (Claim 4), and that edge is incident to the
triplet t that will be part of the exact cover by 3-sets. Since D is a {K1,3, P4}-decomposition, the
other two edges incident to t are also uncovered in their respective gadgets; therefore, the triplets that
belong to the exact cover by 3-sets are exactly those triplets whose closed neighbourhood induces a
K1,3 that belongs to D, and Claim 3 guarantees that only they can correspond to a K1,3 in D. By
Claim 4, the original vertex w in W is covered by exactly one triplet, so the resulting solution is indeed
an exact cover by 3-sets.
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ti tj tk

fi fk

ei ej ek

ti tj tk

fi fk

ei ej ek

(a) (b)

ti tj tk

fi fk

ei ej ek

ti tj tk

fi fk

ei ej ek

(c) (d)

Figure 9: The four cases in the proof of Claim 4 (reverse direction of Theorem 3.5).

We only have two properties left to prove:

1. G′ is bipartite: since the gadgets we introduced are trees, they cannot create any new cycle in G′,
but they may lengthen cycles that were already present in G. The parts of cycles in G that go through
a vertex of degree 2 in W are not affected by the replacement with gadget H2; those that go through
a vertex of degree 3 will necessarily contain two edges from {{ti, w}, {tj , w}, {tk, w}}, and depending
on the case, gadget H3 will add either 6 or 12 edges to that cycle. Therefore, since all cycles in G are
even, their (possibly lengthened) analogues in G′ are also even, so G′ is indeed bipartite.

2. G′ is planar: let us identify G with any of its planar embeddings. Again, since each gadget is a tree,
each gadget itself admits a planar embedding; and since no two edges connecting two different elements
of W to either the same triplet or different triplets in G cross, the replacement of these elements with
our gadgets will not create any crossing in G′ either.

The only remaining case when two subgraphs are allowed is the case of {K1,3, K3}-decompositions.
Algorithm 2 finds a {K1,3, K3}-decomposition for a strictly subcubic graph G in time O(|V |) if one exists.
We prove its correctness below.

Proposition 3.6. The {K1,3, K3}-decomposition problem for strictly subcubic graphs is in P.

Proof. Since G is strictly subcubic, it contains a vertex v of degree 1 or 2. We have three cases to consider
for G to admit a {K1,3, K3}-decomposition D:

1. if v is a leaf, then it must be adjacent to a vertex of degree 3 which will be the center of a K1,3 in D;

2. if v has degree 2, let e1 = {u1, v} and e2 = {u2, v}:

(a) if {u1, u2} ∈ E(G), the K3 induced by {u1, u2, v} must belong to D, since any other choice will
leave either e1 or e2 uncovered and uncoverable;

(b) if {u1, u2} 6∈ E(G), then v must be the intersection of two K1,3’s in D, otherwise no {K1,3,
K3}-decomposition exists.
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Algorithm 2: StrictlySubcubicClawTriangleDecomposition(G)
Input: A graph G whose connected components are all strictly subcubic.
Output: A {K1,3, K3}-decomposition of G if one exists, ∅ otherwise.

1 D ← ∅;
2 S ← stack with all vertices of degree < 3 in G;
3 while S 6= ∅ do
4 x← S.pop();
5 if deg(x) = 1 then // case 1 in Proposition 3.6
6 v ← unique neighbour of x;
7 if deg(v) 6= 3 then
8 return ∅;
9 D ← D ∪ E(v);

10 S.push(vertices in N(v) \ {x});
11 G← G \ {v};
12 else if deg(x) = 2 then // case 2 in Proposition 3.6
13 u1, u2 ← N(x);
14 if {u1, u2} ∈ E(G) then // case 2.(a) in Proposition 3.6
15 D ← D ∪G[N [x]];
16 S.push(vertices in N(x));
17 G← G \G[N [x]];
18 else // case 2.(b) in Proposition 3.6
19 u← arbitrary neighbour of x with deg(u) = 3;
20 if no such u exists then
21 return ∅;
22 D ← D ∪ E(u);
23 S.push(vertices in N(u) \ {x});
24 G← G \ {u};
25 return D;
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Either one of the above three cases occur and we can produce a graph G′ on which to recurse by removing
a K1,3 or a K3 from G according to the above rules, or no decomposition for G exists. The graph G′, if
non-empty, resulting from this removal is necessarily strictly subcubic: at least one of the vertices concerned
by the removal ensures the connectedness of G, thus it has at least one and at most two incident edges in
G′. We conclude that G admits a {K1,3, K3}-decomposition if and only if G′ does.

The approach implemented in Algorithm 2 uses a stack in the same way as Algorithm 1, and runs in
O(|V |) time. The caveats regarding disconnected graphs that we expressed in the case of Algorithm 1 apply
to Algorithm 2 as well, but can be resolved in exactly the same way.

3.3 Decompositions with three types of graphs
We conclude our analysis of S′-decomposition on strictly subcubic graphs with the case where all connected
subgraphs on three edges are allowed. The hardness of this variant is a direct consequence of our previous
results.

Proposition 3.7. The {K1,3, K3, P4}-decomposition problem is NP-complete for strictly subcubic planar
bipartite graphs.

Proof. Follows directly from the proof of Theorem 3.5, since our reduction produces a K3-free graph and
therefore only P4’s and K1,3’s can be used to decompose G.

4 Decomposing cubic graphs
From this section on, we study our decomposition problems on cubic graphs. We give polynomial-time
algorithms for all subproblems tackled in this section; the next section will be devoted to proving the
hardness of decomposing planar K3-free cubic graphs using only K1,3’s and P4’s.

4.1 Decompositions without a K1,3

In this section, we study decompositions of cubic graphs that use only P4’s or K3’s. Note that no cubic
graph is {K3}-decomposable, since all its vertices have odd degree. According to Bouchet and Fouquet [2],
Kotzig [14] proved that a cubic graph admits a {P4}-decomposition iff it has a perfect matching. However,
the proof of the forward direction as presented in [2] is incomplete, as it requires the use of Proposition 4.1(b)
below, which is missing from their paper. Therefore, we provide the following proposition for completeness,
together with another result which will also be useful for the case where S′ = {K3, P4}.

Proposition 4.1. Let G be a cubic graph that admits a {K3, P4}-decomposition D. Then, in D, (a) no K3

is used, and (b) no three P4’s are incident to the same vertex.

Proof. Partition V (G) into three sets V1, V2 and V3, where V1 (resp. V2, V3) is the set of vertices that are
incident to exactly one P4 (resp. two, three P4’s) in D. Note that V1 is exactly the set of vertices involved in
K3’s in D. Let ni = |Vi|, 1 ≤ i ≤ 3. Our goal is to show that n1 = n3 = 0, i.e. V1 = V3 = ∅. For this, note
that (1) each vertex in V3 is the extremity of three different P4’s, (2) each vertex in V2 is simultaneously the
extremity of one P4 and an inner vertex of another P4, while (3) each vertex in V1 is the extremity of one
P4. Since each P4 has two extremities and two inner vertices, if p is the number of P4’s in D, we have:

• p = 3n3+n2+n1

2 (by (1), (2) and (3) above, counting extremities);

• p = n2

2 (by (2) above, counting inner vertices).

Putting together the above two equalities yields n1 = n3 = 0, which completes the proof.
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The following result immediately follows from the work of Kotzig [14] and Proposition 4.1 above, since
K3’s are not allowed in {K3, P4}-decompositions. As a result, {K3, P4}-decomposition for cubic graphs
is in P.

Proposition 4.2. A cubic graph admits a {K3, P4}-decomposition iff it has a perfect matching.

Micali and Vazirani [17] gave a O(
√
|V ||E|) algorithm for finding a maximum cardinality matching in a

graph; therefore, we can find a {K3, P4}-decomposition for a cubic graph in time O(|V |3/2) by computing a
perfect matching and then — if one exists — converting it into a {P4}-decomposition as described by Kotzig
[14].

4.2 Decompositions without a P4

In this section, we study decompositions of cubic graphs that use only K1,3’s or K3’s.

Proposition 4.3. A cubic graph G admits a {K1,3}-decomposition iff it is bipartite.

Proof. For the reverse direction, select either set of the bipartition, and make each vertex in that set the
center of a K1,3. For the forward direction, let D be a {K1,3}-decomposition of G, and let C and L be the
sets of vertices containing, respectively, all the centers and all the leaves of K1,3’s in D. We show that this is
a bipartition of V (G). First, C∪L = V since D covers all edges and therefore all vertices. Second, C∩L = ∅
since a vertex in C ∩ L would have degree at least 4. Finally, each edge in D connects the center of a K1,3

and a leaf of another K1,3 in D, which belong respectively to C and L. Therefore, G is bipartite.

As a result, {K1,3}-decompositions for cubic graphs are computable in O(|V |) time. We now prove that
{K1,3,K3}-decompositions can be computed in polynomial time. Since bipartite graphs admit a {K1,3}-
decomposition (by Proposition 4.3), we can restrict our attention to non-bipartite graphs that contain K3’s
(indeed, if they were K3-free, then only K1,3’s would be allowed and Proposition 4.3 would imply that
they admit no decomposition). Our strategy consists in iteratively removing subgraphs from G and adding
them to an initially empty {K1,3, K3}-decomposition until G is empty, in which case we have an actual
decomposition, or no further removal operations are possible, in which case no decomposition exists. Our
analysis relies on the following notion: a K3 induced by vertices {u, v, w} in a graph G is isolated if V (G)
contains no vertex x such that {u, v, x}, {u, x, w} or {x, v, w} induces a K3.

Lemma 4.1. If a cubic graph G admits a {K1,3,K3}-decomposition D, then every isolated K3 in G belongs
to D.

Proof (contradiction). If an isolated K3 were not part of the decomposition, then exactly one vertex of that
K3 would be the center of a K1,3, leaving the remaining edge uncovered and uncoverable.

C6 is a minimal example of a cubic non-bipartite graph with K3’s that admits no {K1,3,K3}-decompo-
sition: both K3’s in that graph must belong to the decomposition (by Lemma 4.1), but their removal yields
a perfect matching. The following simple observation will allow us to rely on the algorithms we developed
in Section 3.

Observation 4.1. Let G be a connected cubic graph. Then no sequence of at least one edge or vertex removal
from G yields a cubic graph.

Proof (contradiction). If after applying at least one removal operation on G we obtain a cubic graph G′,
then the graph that precedes G′ in this removal sequence must have had a vertex of degree at least 4, since
G is connected.

Proposition 4.4. For any connected non-bipartite cubic graph G whose K3’s are all isolated, one can decide
in polynomial time whether G is {K1,3,K3}-decomposable.
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Proof. As seen in Lemma 4.1, all isolated K3’s must belong to a {K1,3, K3}-decomposition if one exists, so
we can remove them all from G and add them to an initially empty set D; therefore, G admits a {K1,3,
K3}-decomposition iff the resulting graph G′ admits a {K1,3}-decomposition. Observation 4.1 implies that
all connected components of G′ are strictly subcubic, and Proposition 3.2 then allows us to compute a
decomposition for G′ if one exists, using Algorithm 2.

We conclude with the case where the graph may contain non-isolated K3’s. They will necessarily belong
to a diamond, i.e. a graph isomorphic to a K4 from which an edge has been removed.

Proposition 4.5. If a cubic graph G contains a diamond, then one can decide in polynomial time whether
G is {K1,3,K3}-decomposable.

Proof. The only cubic graph on 4 vertices is K4, which is diamond-free and {K1,3,K3}-decomposable, so
we assume |V (G)| ≥ 6 below. Let H = G[{u, v, w, x}] be a diamond, with {u, x} 6∈ E(G), as Figure 10(a)
shows. H is connected to two other vertices u′ and x′ of G, which are respectively adjacent to u and x, and
there are only two ways to use the edges of H in a {K1,3, K3}-decomposition D, as shown in Figure 10(b)
and (c). If u′ = x′ (as shown in Figure 10(d)), let y be the neighbour of x′ which is neither u nor x. If
the decomposition we choose for H is the one depicted in Figure 10(b), then edges (x′, u) and (x′, y) are
uncovered, while (x′, x) is covered. In that case, no {K1,3, K3}-decomposition can exist. If the decomposition
we choose for H is the one depicted in Figure 10(c), a similar argument applies and leads us to conclude
that no {K1,3, K3}-decomposition can exist either. Altogether, this show that no {K1,3, K3}-decomposition
exists for G in case (d), and therefore, we assume from now on that u′ 6= x′.

As Figure 10(b) and (c) show, either {u, v, w} or {v, w, x} must form a K3 in D, thereby forcing either
{v, w, x, x′} or {u′, u, v, w} to form a K1,3 in D. In both cases, removing the K3 and the K1,3 yields a
strictly subcubic graph, so we can apply the results obtained in Proposition 3.6 as follows: we apply the
decomposition in Figure 10(b) then run Algorithm 2 on G′, and return the union of both decompositions. If
this fails, we try again with Figure 10(c) as a starting point, and return the union of both decompositions,
or ∅ if both tries failed.

v
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x
u′ x′

v
u

w

x
u′ x′

v
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w

x
u′ x′

v

u

w

x

u′

y

(a) (b) (c) (d)

Figure 10: (a) A diamond in a cubic graph, and (b), (c) the only two ways to decompose it in a {K1,3,
K3}-decomposition. (d) The case where u′ = x′.

All the arguments developed in this section lead to the following result.

Proposition 4.6. The {K1,3, K3}-decomposition problem for a cubic graph G can be solved in time
O(|V (G)|).

Proof. Algorithm 3 implements the approach proposed in this section, and its correctness follows from proofs
of Propositions 4.3 to 4.5. We now examine its time complexity: lines 1-4 run in O(|V (G)|) time. A diamond
in a cubic graph can be found by naively searching for a claw {u, v, w, x} with center u and then checking
whether G[{v, w, x}] ' P3, which takes O(|V (G)|) time as well. Lines 8–17 either involve operations running
in O(1) or O(|V (G)|) time, or calls to Algorithm 2 which, as seen in Section 3, runs in O(|V (G)|) time.
Finally, line 18 involves listing all isolated triangles in a cubic graph, which can be done naively by checking
the intersection of N(u) and N(v) for each edge {u, v}. This approach takes O(|E(G)|) = O(|V (G)|) time
since G is cubic.
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Without loss of generality, we require that the input to Algorithm 3 be connected. This is because Algo-
rithm 3 uses Algorithms 1 and 2: they both require that all connected components of their inputs be strictly
subcubic, and we can only guarantee this if the input to Algorithm 3 is connected (see Observation 4.1). Of
course, if the input to Algorithm 3 is not connected, we can simply run it on each connected component of
the input.

Algorithm 3: CubicClawTriangleDecomposition(G)
Input: A connected cubic graph G.
Output: A {K1,3, K3}-decomposition of G if one exists, ∅ otherwise.

1 if V (G) admits a bipartition V1 ∪ V2 then // see Proposition 4.3
2 return {G[N [v]] | v ∈ V1};
3 if G is K3-free then // see Proposition 4.3
4 return ∅;
5 if G ' K4 then
6 return {G[{u, v, w}], G \G[{u, v, w}]};
7 if G contains a diamond then // see Proposition 4.5
8 u, v, w, x← vertices as in Figure 10;

/* try the decomposition in Figure 10(b) as starting point */
9 A← {G[{u, v, w}]};

10 D ← StrictlySubcubicClawTriangleDecomposition(G \A);
11 if D 6= ∅ then
12 return D ∪A;

/* try the decomposition in Figure 10(c) as starting point */
13 B ← {G[{v, x, w}]};
14 D ← StrictlySubcubicClawTriangleDecomposition(G \B);
15 if D 6= ∅ then
16 return D ∪B;
17 return ∅;

/* last case: G is diamond-free (see Proposition 4.4) */
18 T ← all (necessarily isolated) triangles in G;
19 D ← StrictlySubcubicClawDecomposition(G \ T );
20 if D 6= ∅ then
21 return D ∪ T ;
22 return ∅;

5 Decomposing cubic graphs using both K1,3’s and P4’s
In this section, we show that problems {K1,3, P4}-decomposition and {K1,3, K3, P4}-decomposition
are NP-complete, even on planar graphs. Our first hardness proof relies on intermediate problems that we
define below and is structured as follows:

cubic planar monotone 1-in-3 satisfiability

≤P even-faced edge selection (Lemma 5.4)
≡ {K1,3, P4}-decomposition of marked graphs (Lemma 5.3)
≤P {K1,3, P4}-decomposition in K3-free planar graphs (Lemma 5.2)
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5.1 Marking edges
We first define a marked graph as a pair (G,M) where G = (V,E) is a planar, embedded, triangle-free graph
and M ⊆ E is a subset of marked edges. The drawings that illustrate our proofs in this section show marked
edges as thick and solid (i.e. ), and unmarked edges as thin and dashed (i.e. ). We define the
following intermediate decomposition problem on marked graphs:

{K1,3, P4}-decomposition of marked graphs
Input: a cubic marked graph (G,M).
Question: does G admit a {K1,3, P4}-decomposition D in which no edge in M is the middle edge of a

P4?

The proof of Lemma 5.2, which shows how the above problem relates to {K1,3, P4}-decomposition,
uses the following result.

Lemma 5.1. Let e be a bridge in a cubic graph G which admits a {K1,3, K3, P4}-decomposition. Then e
must be the middle edge of a P4 in D.

Proof (contradiction). First note that e = {u, v} cannot belong to a K3 in D. Now suppose e is part of a
K1,3 in D. Without loss of generality, the situation is as shown in Figure 11 (Gu (resp. Gv) denotes the
connected component that contains u (resp. v) in G \ e).

u ve
Gu Gv

Figure 11: A bridge e = {u, v} in a cubic graph G, and the connected component Gu (resp. Gv) of G \ e
that contains u (resp. v).

If we remove from G the K1,3 in D that contains e, then summing the terms of the degree sequence of
Gv yields 2 + 3(|V (Gv)| − 1) = 2|E(Gv)|, which means that |E(Gv)| 6≡ 0 (mod 3) and therefore Gv admits
no decomposition into components of size 3. The very same argument shows that if e belongs to a P4 in D,
then it must be its middle edge, which completes the proof.

Lemma 5.2. Let (G,M) be an instance of {K1,3, P4}-decomposition of marked graphs, where G is
K3-free and planar, and G′ be the graph obtained by attaching a buoy to every edge in M . Then (G,M) is
a yes-instance iff G′ admits a {K1,3, P4}-decomposition.

Proof. First, note that the transformation from G to G′, described in the statement of the lemma, preserves
cubicity, K3-freeness, and planarity. Now, we prove each direction separately.

⇒: we show how to transform a decomposition D of (G,M) into a decomposition D′ of G′. The subgraphs
in D that have no edge in M are not modified. For the other subgraphs, a subgraph containing an
edge of M is either (a) a K1,3 or (b) a P4 whose middle edge is not in M . Figure 12 shows how to
adapt the decompositions in both cases.

⇐: we now show how to transform any {K1,3, P4}-decomposition D′ of G′ into a decomposition of (G,M).
Again, the only parts of D′ that will need adapting are those connected to the buoys that we attached
to each marked edge when transforming G into G′. Since the leaf u of the buoy we attached has a
neighbour x such that {u, x} is a bridge in G′, {u, x} is the middle edge of a P4 in D′ (Lemma 5.1)
and we may therefore assume without loss of generality that our starting point in G′ is as shown in
Figure 13, where {v, w} 6∈ E(G′) since G is simple; we have two cases to consider:
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G′G G′G

(a) (b)

Figure 12: Adapting a {K1,3, P4}-decomposition when attaching a buoy to a marked edge of a graph G.

(a) if {u,w} belongs to a K1,3 in D′, that K1,3 can be mapped onto a K1,3 in D by replacing {u,w}
with {v, w};

(b) otherwise, {u,w} is an extremal edge of a P4 in D′, and that P4 can be mapped onto a P4 in D
by replacing {u,w} with {v, w}. Note that the resulting subgraph may only be a P4, and not a
K3, since G is K3-free; moreover, only the extremal edge of a P4 may be marked in (G,M) by
definition.

u

x v

w

G′

v

w

G

Figure 13: Obtaining a {K1,3, P4}-decomposition for a marked graph G from a {K1,3, P4}-decomposition
for its transformed counterpart G′.

5.2 Equivalence with even-faced edge selection
Recall that a planar embedding of a planar graph partitions R2 into connected components which are referred
to as the faces of the embedding. Inner faces are bounded by edges and vertices of the graph, while the
unbounded face is called the outer face. We represent a face using the set of vertices on its border. A face
is said to be incident with an edge e if it contains at least one of its endpoints.

Definition 5.1. A selection in a marked graph (G,M) with G = (V,E) is a subset E∗ ⊆ E \M such that
no two edges are adjacent. The weight of a face is the number of vertices of degree 3 it contains. A selection
E∗ is even-faced if every inner face of (V,E \ E∗) has an even weight.

Note that equivalently, E∗ is even-faced iff all cycles of (V,E \ E∗) have an even number of vertices of
degree 3. We define the following problem, which will prove helpful in the sequel.

even-faced edge selection
Input: a cubic marked graph (G,M).
Question: does G admit an even-faced selection?

Figure 14 illustrates this problem and its connection to {K1,3, P4}-decomposition.
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Lemma 5.3. The problems even-faced edge selection and {K1,3, P4}-decomposition of marked
graphs are equivalent.

Proof. It suffices to show that a cubic marked graph (G,M) has an even-faced selection if, and only if, G
admits a {K1,3, P4}-decomposition such that no edge in M is the middle edge of a P4. We prove each
direction separately.

⇐: assume first that G admits a {K1,3, P4}-decomposition D. Let E∗ be the set of middle edges of all
P4’s in D. E∗ is clearly a subset of E \M , and no two edges may be incident (such a configuration
would require a vertex of degree 4), therefore it is a selection of (G,M). To show that this selection is
also even-faced, we orient every edge e of E \ E∗ according to D:

• if e belongs to a K1,3, orient it from the center to the leaf of the K1,3;
• if e belongs to a P4, then it must be one of the extreme edges of this path since it cannot be its

middle edge: orient it towards the extremity of the P4.

Note that with this construction, for any node v and any incident edge e, where e belongs to some
subgraph X in D (where X may be a P4 or a K1,3), the degree of v is 1 in X if and only if e is going
towards v.
We now show that there are three types of vertices in G[E \ E∗]:

(a) vertices with 3 outgoing edges,
(b) vertices with 3 incoming edges, and
(c) vertices with 1 incoming and 1 outgoing edges.

If a vertex is shared between 3 distinct parts of D, it may only have degree 1 in each, therefore it
belongs to class (b). If it is shared by 2 distinct parts of D, then it has degree 1 in either one and
degree 2 in the other, therefore it belongs to class (c). Finally, if a vertex is used by a single part of
D, it has degree 3 in that part, and therefore belongs to class (a).
Consider now any cycle C of G[E \E∗]. Summing over all vertices of C, the total number of outgoing
edges in C must equal the total number of incoming edges. Vertices of type (a) contribute 2 to the
first sum, vertices of type (b) contribute 2 to the second sum, and vertices of type (c) contribute one to
each sum. So every cycle contains as many vertices of type (a) as vertices of type (b). Since types (a)
and (b) together represent all vertices of degree 3, every cycle, and in particular every face, contains
an even number of vertices of degree 3.

⇒: Let E∗ be an even-faced selection. Build the (multi-)graph G′ using G[E \E∗] by contracting vertices
of degree 2 (so that induced paths are replaced with single edges). Then all remaining vertices have
degree 3, and by the even faced property, all faces have an even degree. Therefore, G′ is bipartite:
partition its vertices into two independent sets A and B, and orient its edges from A to B. Now, orient
all edges of every induced path of G[E \E∗] according to the orientation of the corresponding edge of
G′. As in the first part of the proof, there are 3 types of vertices in G[E \ E∗]:

(a) vertices with 3 outgoing edges (which belong to A),
(b) vertices with 3 incoming edges (which belong to B), and
(c) vertices with 1 incoming and 1 outgoing edges (which do not appear in G′ since they are con-

tracted).

Build a {K1,3, P4}-decomposition as follows: for every vertex v of type (a), add a K1,3 centered in v.
For every edge e = (u, v) ∈ E∗, u and v have type (c), so they both are the starting point of outgoing
arcs eu, ev respectively: {eu, e, ev} therefore forms a P4, and we add it to the decomposition. For every
vertex of type (a), (b) or (c), every outgoing edge in E \ E∗ belongs to a single part added to the
decomposition, as well as every every edge in E∗. Therefore, this decomposition partitions E.
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Figure 14: Illustration of {K1,3, P4}-decomposition and even-faced edge selection. (a) A marked
cubic graph. Recall that marked edges are indicated as solid thick lines, and unmarked ones as dashed lines.
(b) A {K1,3, P4}-decomposition of this graph, where K1,3’s are represented by thin blue edges with a white
center, and P4’s by thick red edges. In particular, the middle edge of a P4 (dark bold) is never marked. (c)
An even-faced selection for this graph, where selected edges of E∗ are indicated as dashed bold lines, and
vertices of degree 3 in (V,E \ E∗) are black. Circled numbers correspond to the weights of inner faces of
(V,E \E∗). As described in Lemma 5.3, this selection corresponds to the {K1,3, P4}-decomposition: selected
edges are middle edges of P4’s, and, among the remaining vertices, vertices that are at the center of a K1,3

alternate with other vertices, which corresponds to the parity condition.

5.3 The hardness of even-faced edge selection
We prove that even-faced edge selection is NP-complete through an assembly of gadgets. We give a few
formal definitions below to help understand how gadgets interact, after a short outline of the hardness proof
to motivate their introduction. The reduction relies on the cubic planar monotone 1-in-3 satisfiability
problem, which is known to be NP-complete [18]:

cubic planar monotone 1-in-3 satisfiability
Input: a Boolean formula φ = C1 ∧ C2 ∧ · · · ∧ Cn without negations over a set Σ = {x1, x2, . . . , xm},

with exactly three distinct variables per clause and where each literal appears in exactly three
clauses; moreover, the graph with clauses and variables as vertices, and edges joining clauses
and the variables they contain, is planar.

Question: does there exist an assignment of truth values f : Σ → {true, false} such that exactly one
literal is true in every clause of φ?

Since we intend to prove the hardness of even-faced edge selection using a reduction from a variant
of the satisfiability problem, we will need a number of gadgets to encode boolean formulas in a graph-
theoretic language. Those gadgets come in the form of marked graphs whose type will depend on their
function in the reduction: three of them (OR, NAND and ANY) simulate boolean operations, and the
remaining two (VAR and CLAUSE) allow us to encode variables and clauses, while preserving the particular
additional constraints of cubic planar monotone 1-in-3 satisfiability. All these gadgets will need to
be connected in a specific way, which will be achieved using each gadget’s interface edges.

Definition 5.2. A gadget g is a marked graph (G,M) with the following properties:

• all vertices have degree 1 or 3; edges incident with vertices of degree 1 are called interface edges;

• all interface edges are unmarked (i.e. in E(G) \M);

• all interface edges are on the outer face;

• no two interface edges are incident.
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The interface of a gadget g, denoted by I(g), is the set of its interface edges.

Definition 5.3. A subset B ⊆ I(g) is a border for g if there exists an even-faced selection E∗ for g such
that B = E∗ ∩ I(g).

Definition 5.4. An outer path of g for E∗ is a path in the outer face of gadget g, after removing edges from
E∗, starting and ending with interface edges. It is the whole outer face if there is no remaining interface
edge in g after removing E∗. Its weight is the number of vertices of degree 3 it contains.

Definition 5.5. A border is even if B = E∗ ∩ I(g) for some E∗ such that all outer paths for E∗ have an
even weight.

Intuitively, we build an instance as an assembly of gadgets, where adjacent gadgets share interface edges:
vertices of degree 1 are removed in the process, the graph remains planar (since interface edges are on the
outer faces of the gadgets), and it is K3-free. An even-faced selection for the whole graph can be seen as
a collection of even-faced selections, one for each gadget. Conversely, a collection of even-faced selections
for all gadgets yields an even-faced selection for the whole graph, when the borders of adjacent gadgets are
consistent on shared edges and each border is even (this is a sufficient condition ensuring that all faces shared
between several gadgets have an even weight).

Sections 5.3.1 to 5.3.5 are devoted to the introduction of our gadgets and the identification of their borders,
which are all even (as will be proved in Propositions 5.1 to 5.5). We then combine them in Section 5.3.6 to
obtain the hardness proof outlined above.

5.3.1 The OR gadget

The top of Figure 15 shows the OR gadget, which is our basic building block and has interface {α, β, γ, δ}.
It combines two purposes: it serves as a crossing gadget (opposite interface edges are either both selected or
both unselected), and as a logical OR (at least one pair among {α, γ} and {β, δ} is selected).
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Figure 15: Top: Definition of the OR gadget. Bottom: All possible selections (up to symmetry) for this
gadget. Circled numbers indicate the weights of the inner faces.

Proposition 5.1. The possible borders for an OR gadget are {α, γ}, {β, δ}, and {α, β, γ, δ}. They are all
even.
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Proof. The illustrations in Figure 15(a)–(d) each show an even-faced selection for the OR gadget that
corresponds to each of the given sets, so they are indeed borders. Moreover, all outer paths for these
selections have even weight, so these three borders are even.

We now prove that any even-faced selection E∗ has one of the above three borders. Let C be the cycle
of length 4 induced by {α′, β′, γ′, δ′} in the OR gadget. Since no two edges of E∗ may be incident, we have
|E∗ ∩ C| ≤ 2, so we have three cases to check:

1. if |E∗ ∩ C| = 0, then consider the four weight-5 inner faces of the gadget. Each of them has a single
incident unmarked edge excluding C, hence this edge must be selected (otherwise the faces would still
have an odd weight in (V,E \ E∗)). This leads to E∗ = {α, β, γ, δ} (as in Figure 15(a)).

2. if |E∗ ∩ C| = 1, assume first that E∗ ∩ C = {α′}. The graph (V,E \ {α′}) has four inner faces: two
with weight 4, incident to β and δ respectively (so β, δ /∈ E∗), and two with weight 5, incident to α and
γ. Therefore, we must have α, γ ∈ E∗ to reach weight 4 as in Figure 15(b). The same argument shows
that the border must also be {α, γ} if E∗ ∩ C = {γ′}, or {β, δ} if E∗ ∩ C = {β′} or E∗ ∩ C = {δ′}.

3. if |E∗ ∩ C| = 2, then E∗ ∩ C may be either {α′, γ′} or {β′, δ′}. Assume first that E∗ ∩ C = {α′, γ′}.
The graph (V,E \ {α′, γ′}) has three inner faces: two with weight 3, incident to β and δ respectively
(so β, δ ∈ E∗ in order to reach weight 2), and one with weight 6 incident to both α and γ. So either
α, γ ∈ E∗, and this face gets weight 4 (see Figure 15(c)), or α, γ /∈ E∗ (see Figure 15(d)). With the
same argument, the border is either {α, β, γ, δ} or {α, γ} if E∗ ∩ C = {β′, δ′}.

5.3.2 The NAND gadget

The top of Figure 16 shows the NAND gadget, which has interface {α, β, γ, δ}. Similarly to the OR gadget,
it combines two purposes: it serves as a crossing gadget (opposite interface edges are either both selected or
both unselected), and as a logical NAND (at most one pair among {α, γ} and {β, δ} is selected).

Proposition 5.2. The possible borders for a NAND gadget are {α, γ}, {β, δ}, and ∅. They are all even.

Proof. The illustrations in Figure 16(a)–(c) each show an even-faced selection for the NAND gadget that
corresponds to each of the given sets, so they are indeed borders. Any of these selections can be verified to
be even-faced using the fact that all outer paths of the OR gadget have an even weight.

We now prove that any even-faced selection E∗ for the NAND gadget has one of the above three borders.
Consider first the weight-5 face incident to α and α′. To reach an even weight, we have |E∗ ∩ {α, α′}| = 1,
i.e. α ∈ E∗ ⇔ α′ /∈ E∗. The same property applies to β, γ, δ.

Consider now the OR gadget included as a subgraph, with interface {α′, β′, γ′, δ′}. Selection E∗ for the
whole NAND gadget yields an even-faced selection for the OR gadget, so its intersection with the interface
is a border of the OR gadget. Proposition 5.1 then implies that E∗ ∩{α′, β′, γ′, δ′} is one of {α′, γ′}, {β′, δ′}
and {α′, β′, γ′, δ′}, and therefore the border is one of {α, γ}, {β, δ}, and ∅.

5.3.3 The ANY gadget

The top of Figure 17 shows the ANY gadget, which has interface {α1, α2, α3}. Its purpose is to force the
selection of a single interface edge αi among all three, which corresponds to the “1-in-3” constraint of the
satisfiability variant we will reduce from.

Proposition 5.3. The possible borders for an ANY gadget are {α1}, {α2}, {α3}. They are all even.

Proof. Each {αi} is indeed an even border, as can be seen with the even-faced selections depicted in Fig-
ure 17(a)–(c).

We now prove that the only choices for an even-faced selection E∗ for the ANY gadget must be exactly
one of the {αi}. Consider first the weight-4 face incident to edges αi and βi for any i ∈ {1, 2, 3}. For this face
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Figure 16: Top: Definition of the NAND gadget. Bottom: All possible selections for this gadget. Circled
numbers indicate the weights of some inner faces.
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Figure 17: Top: Definition of the ANY gadget. Bottom: All possible selections for this gadget. Circled
numbers indicate the weights of the inner faces.
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to maintain an even weight, we have αi ∈ E∗ ⇔ βi ∈ E∗. Consider now the weight-5 faces incident to all
three edges βi. Since they have an odd weight, E∗ ∩ {β1, β2, β3} 6= ∅. Furthermore, since those three edges
are pairwise incident, |E∗ ∩ {β1, β2, β3}| ≤ 1. Therefore, E∗ contains exactly one edge among {β1, β2, β3},
and thus exactly one edge among {α1, α2, α3}.

5.3.4 The VAR gadget

The top of Figure 18 shows the VAR gadget, which has interface {αi | 1 ≤ i ≤ 6}. Its purpose is to simulate
a boolean variable where either all interface edges are selected, or none at all (as will be seen later on, a
literal in a satisfiability instance will be represented as a pair of edges shared between gadgets, hence a
variable with three occurrences needs an interface of size 6).
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Figure 18: Top: Definition of the VAR gadget. Bottom: All possible selections for this gadget.

Proposition 5.4. The possible borders for a VAR gadget are {α1, α2, α3, α4, α5, α6}, and ∅. They are all
even.

Proof. Figure 18(a) and (b) show two selections creating the mentioned borders. They are indeed even-faced
since for each OR and NAND gadget, they form an even border of these faces (therefore they can be extended
as an even-faced selection of these gadgets, and the weight of any face not entirely included in a smaller
gadget is the sum of the weights of outer paths for these gadgets, so it is even as well). Similarly, the weight
of any outer path is the sum of the weights of outer paths for several gadgets, so it is also even.

We now show that any even-faced selection E∗ for the VAR gadget must be either of the mentioned
borders. Propositions 5.1 and 5.2 imply that βi ∈ E∗ ⇔ βj ∈ E∗ for every 1 ≤ i, j ≤ 6. With the same
properties, α1 ∈ E∗ ⇔ α′1 ∈ E∗ ⇔ α2 ∈ E∗ (and similarly for {α3, α

′
3, α4} and {α4, α

′
4, α5}). Furthermore,

Proposition 5.1 implies that at least one of α′1 and β1 must be in E∗, and Proposition 5.2 implies that at

24



α1

β1

α2

β2

α3

β3
γ2
γ3

ANY

ANY

Nand

CLAUSE

α1

β1

α2

β2

α3

β3
γ2
γ3

ANY

ANY

Nand

(a)

α1

β1

α2

β2

α3

β3
γ2
γ3

ANY

ANY

Nand

(b)

α1

β1

α2

β2

α3

β3
γ2
γ3

ANY

ANY

Nand

(c)

Figure 19: Top: Definition of the CLAUSE gadget. Bottom: All selections yielding a paired border (α1

with β1, α2 with β2, α3 with β3).

most one of them is in E∗. Overall, α1 ∈ E∗ ⇔ β1 /∈ E∗. The same applies for (α3, β3) and (α5, β5), and
since all βi’s are equivalent, either αi ∈ E∗ for all 1 ≤ i ≤ 6, or αi /∈ E∗ for all 1 ≤ i ≤ 6.

5.3.5 The CLAUSE gadget

The top of Figure 19 shows the CLAUSE gadget, which has interface {αi, βi | 1 ≤ i ≤ 3}. Its purpose is to
simulate the behaviour of a “1-in-3” clause, where exactly one pair (αi, βi) of its interface may be selected
(it can be seen as an extension of the ANY interval, where two edges are used for each literal). However, it
does not ensure that the pairs (αi, βi) are selected together (for instance, {α1, β3} is an even-faced border
of this gadget): this constraint will be enforced from outside, by VAR gadgets. This motivates the following
definition: a border B for the CLAUSE gadget is paired if, for each 1 ≤ i ≤ 3, αi ∈ B ⇔ βi ∈ B.

Proposition 5.5. The paired borders for a CLAUSE gadget are {α1, β1}, {α2, β2} and {α3, β3}. They are
all even.

Proof. These sets are indeed even and constitute paired borders for the CLAUSE gadget, since they can be
obtained from the even-faced selections depicted in Figure 19(a)–(c) (just like for the VAR gadget, these
selections are even-faced because they yield even borders of the ANY and NAND subgraphs).

Let E∗ be any even-faced selection of the CLAUSE gadget with a paired border. Proposition 5.3 implies
that E∗ contains exactly one edge among α1, γ2, β3. Proposition 5.2 implies that γ2 ∈ E∗ ⇔ β2 ∈ E∗, so
E∗ contains exactly one edge among α1, β2, β3. Since the border of E∗ is paired, it contains exactly one
pair among {α1, β1}, {α2, β2}, {α3, β3}.

5.3.6 Assembling gadgets

We now combine our gadgets to show that even-faced edge selection is NP-complete.

Lemma 5.4. even-faced edge selection is NP-complete.
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Proof (reduction from cubic planar monotone 1-in-3 satisfiability). We first show how to transform
an instance φ = C1 ∧ C2 ∧ · · · ∧ Cn of cubic planar monotone 1-in-3 satisfiability into an instance
(G,M) of even-faced edge selection. The transformation proceeds by:

1. mapping each clause Cj = {xj,1, xj,2, xj,3} onto a CLAUSE gadget denoted by CLAUSE(Cj), with
interface {αj,1, βj,1, αj,2, βj,2, αj,3, βj,3};

2. mapping each variable xi onto a VAR gadget denoted by VAR(xi), whose interface edges coincide with
the three pairs of edges {αj,h, βj,h} such that xi is the h-th literal of clause j.

Note that G = (V,E) is a cubic planar graph. It is also K3-free; indeed, the gadgets are K3-free by
definition because they are marked graphs. So if a triangle exists it must contain at least two interface edges
from some gadget: this is not possible either as those edges may not be incident according to Definition 5.2.

We now show that φ is satisfiable iff (G,M) admits an even-faced selection.

⇒: We apply the following rules for transforming a satisfying assignment for φ into a selection E∗ for
(G,M):

• if variable xi is set to true, then select the edges of VAR(xi) such that all interface edges are
selected in the border, as in Figure 18(a).

• otherwise, select the edges of VAR(xi) creating an empty border, as in Figure 18(b).

By this construction, for each clause gadget CLAUSE(Cj), exactly two edges {αj,h, βj,h} are selected
in the interface. This pair corresponds to a border for this gadget, and we select the corresponding
edges within the gadget.

It can be seen that this selection is even-faced. In (V,E \ E∗), every face within a VAR or CLAUSE
gadget has an even weight since the selection corresponds to an even-faced selection for each one, and
every face containing vertices from different gadgets can be seen as a concatenation of outer paths of
even weights (since all borders are even), so all faces have an even weight.

⇐: Consider now a selection E∗ for (G,M). For each variable xi, we set xi to true if the border of VAR(xi)
is the whole interface, and xi to false otherwise (i.e. if the border is empty, by Proposition 5.4). For
each clause Cj , 1 ≤ j ≤ n, if a literal xj,h is set to true, then αjh , βj,h ∈ E∗, and αjh , βj,h /∈ E∗

otherwise. Thus the border of every clause gadget is paired, and by Proposition 5.5, exactly one literal
among xj,1, xj,2, xj,3 is set to true. Consequently, clause Cj is satisfied and, overall, the formula is
satisfied by this assignment.

Theorem 5.6. The {K1,3, P4}-decomposition and {K1,3, K3, P4}-decomposition problems are NP-
complete for planar cubic graphs.

Proof. Lemma 5.4 implies that even-faced edge selection is NP-complete. By Lemma 5.3, this problem
is equivalent to {K1,3, P4}-decomposition of marked graphs. Since this problem reduces to {K1,3, P4}-
decomposition restricted to K3-free planar cubic graphs (Lemma 5.2), both {K1,3, P4}-decomposition
and {K1,3, K3, P4}-decomposition are NP-complete, even when restricted to planar cubic graphs.

6 Conclusions and future work
In this paper, we provided a complete computational complexity landscape of the S-decomposition prob-
lem, where the input graph G is subcubic and S is the set of connected graphs of size 3. We identified
all NP-complete subproblems in that setting and provided linear time algorithms for the problems that are
solvable in polynomial time. All hard subproblems are NP-complete even if the input graph is both bipartite
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and planar, with the exception of decompositions of cubic graphs with a set S′ ⊇ {K1,3, P4} where only
planarity is guaranteed (Theorem 5.6).

The only remaining nontrivial connected graph of size at most 3 that could have been used is P3. Lonc
and Pszczoła [16] proved that {P3 ∪ H}-decomposition is in P, where H is a connected graph of odd
size. A closer examination of their results (namely, the comments made in [16, page 6373] right after their
Theorem 3.6) allows us to conclude that {P3 ∪ S′}-decomposition for subcubic graphs is in P for any
S′ ⊆ {K1,3,K3, P4}, because the problem then reduces to finding a subgraph H in G isomorphic to an
element of S′ and such that G \H contains only components of even size. Therefore, all S-decomposition
problems on subcubic graphs involving connected graphs of size at most 3 are solved, complementing the
cases involving disconnected graphs of size at most 3 covered by Theorem 1.2.

A natural generalisation would be to study decompositions of k-regular graphs into connected components
of size k for k > 3. Some partial results exist, which do not use all connected graphs of size k; for instance,
{P4}-decomposition is known to be in P for 4-regular graphs, but is NP-complete for regular graphs of
odd degree ≥ 5 [6]. On the other hand, {P5}-decomposition is known to be in P for K3-free 5-regular
graphs [1], which is obtained by proving a special case of a conjecture stating that if a (2k+1)-regular graph
admits a perfect matching, then it admits a {Pk}-decomposition [10]. We would like to determine whether
our positive results generalise in any way in that setting. It would also be interesting to identify tractable
classes of graphs in the cases where those decomposition problems are hard, and to refine our characterisation
of hard instances, as well as to obtain elegant graph-theoretical characterisations of easy instances.
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