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Given an undirected graph G = (V , E) the NP-hard Strong Triadic Closure (STC) problem 
asks for a labeling of the edges as weak and strong such that at most k edges are weak and 
for each induced P3 in G at least one edge is weak. We study the following generalizations 
of STC with c different strong edge colors. In Multi-STC an induced P3 may receive two 
strong labels as long as they are different. In Edge-List Multi-STC and Vertex-List Multi-STC 
we may restrict the set of permitted colors for each edge of G . We show that, under the 
Exponential Time Hypothesis (ETH), Edge-List Multi-STC and Vertex-List Multi-STC cannot 
be solved in time 2o(|V |2). We proceed with a parameterized complexity analysis in which 
we extend previous algorithms and kernelizations for STC [11,14] to the three variants or 
outline the limits of such an extension.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Social networks represent relationships between humans such as acquaintance and friendship in online social networks. 
One task in social network analysis is to determine the strength [13,34,35,41] and type [6,37,42] of the relationship signified 
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by each edge of the network. One approach to infer strong ties goes back to the notion of strong triadic closure due to 
Granovetter [12,13] which postulates that, if an agent has strong relations to two other agents, then these two should have 
at least a weak relation. Following this assertion, Sintos and Tsaparas [35] proposed to find strong ties in social networks 
by labeling the edges as weak or strong such that the strong triadic closure property is fulfilled and the number of strong 
edges is maximized.

Sintos and Tsaparas [35] also formulated an extension where agents may have c different types of strong relationships. 
In this model, the strong triadic closure property only applies to edges of the same strong type. This is motivated by 
the observation that agents may very well have close relations to agents that do not know each other if these relations 
themselves arise in segregated contexts. For example, it is quite likely that one’s rugby teammates do not know all of one’s 
close colleagues. The edge labellings with up to c strong colors that model this variant of strong triadic closure and the 
corresponding problem are defined as follows.

Definition 1. A c-labeling L = (S1
L , . . . , S

c
L, W L) of an undirected graph G = (V , E) is a partition of the edge set E into c + 1

color classes. The edges in Si
L , i ∈ {1, . . . , c}, are strong and the edges in W L are weak; L is an STC-labeling if there exists no 

pair of edges {u, v} ∈ Si
L and {v, w} ∈ Si

L such that {u, w} /∈ E . We say that such a pair of edges violates STC for a c-labeling 
understood from the context.

Multi Strong Triadic Closure (Multi-STC)

Input: An undirected graph G = (V , E) and integers c ∈ N and k ∈ N.
Question: Is there a c-colored STC-labeling L with |W L | ≤ k?

We refer to the special case c = 1 as Strong Triadic Closure (STC). STC, and thus Multi-STC, is NP-hard [35]. We study the 
complexity of Multi-STC and two generalizations of Multi-STC which are defined as follows.

The first generalization deals with the case where one restricts the set of possible relations for some agents. Assume, 
for example, that strong edges correspond to family relations or professional relations. If one knows the profession of some 
agents, then this knowledge can be modeled by introducing different strong colors for each profession and constraining the 
sought edge labeling in such a way that each agent may receive only a strong edge corresponding to a familial relation or to 
his profession. In other words, for each agent we are given a list of allowed strong colors that may be assigned to incident 
relationships. Formally, we arrive at the following extension of STC-labellings.

Definition 2. Let G = (V , E) be a graph, � : V → 2{1,2,...,c} a mapping for some c ∈ N, and L = (S1
L , . . . , S

c
L, W L) a c-colored 

STC-labeling. We say that an edge {v, w} ∈ E satisfies the �-list property under L if {v, w} ∈ W L or {v, w} ∈ Sα
L for some 

α ∈ �(v) ∩ �(w). We call a c-colored STC-labeling �-satisfying if every edge e ∈ E satisfies the �-list property under L.

Vertex-List Multi Strong Triadic Closure (VL-Multi-STC)

Input: An undirected graph G = (V , E), integers c ∈ N and k ∈ N, and vertex lists � : V → 2{1,2,...,c} .
Question: Is there a �-satisfying STC-labeling L with |W L | ≤ k?

Multi-STC is the special case where �(v) = {1, . . . , c} for all v ∈ V .
The second generalization deals with the case where one restricts the set of possible relationship types for each relation. 

For example, if two rugby players live far apart, it is unlikely that they play rugby together. We may model this knowledge by 
restricting the number of relationship types for this specific relationship. In other words, for each relationship we are given 
a list of possible strong colors that may be assigned with to this relationship. Observe that this is an actual generalization 
of VL-Multi-STC: Consider three agents v1, v2, and v3 that are pairwise related in the network. Assume the relationship 
between v1 and v2 and the relationship between v1 and v3 are both restricted to ‘rugby’ and ‘colleagues’. If now the 
relationship between v2 and v3 is restricted to ‘ballet class’ and ‘drinking buddies’, this situation cannot be expressed with 
vertex lists. This more general constraint is formalized as follows.

Definition 3. Let G = (V , E) be a graph, � : E → 2{1,2,...,c} a mapping for some value c ∈ N and L = (S1
L , . . . , S

c
L, W L) a c-

colored STC-labeling. We say that an edge e ∈ E satisfies the �-list property under L if e ∈ W L or e ∈ Sα
L for some α ∈ �(e). 

We call a c-colored STC-labeling �-satisfying if every edge e ∈ E satisfies the �-list property under L.

This leads to the most general problem of this work.

Edge-List Multi Strong Triadic Closure (EL-Multi-STC)

Input: An undirected graph G = (V , E), integers c ∈ N and k ∈ N and edge lists � : E → 2{1,2,...,c} .
Question: Is there a �-satisfying STC-labeling L with |W L | ≤ k?

From a more abstract point of view, in STC we need to cover all induced P3s, the paths on three vertices, in a graph by 
selecting at most k edges, a natural graph-theoretic task. Moreover, as we discuss later, all STC-problems studied here have 
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Table 1
An overview of the parameterized complexity results for the parameters number k of 
weak edges, number c of colors, and number k1 of weak edges for c = 1.

Parameter Multi-STC VL-Multi-STC EL-Multi-STC

k FPT if c ≤ 2, NP-hard for k = 0 for all c ≥ 3
k1 4k1-vertex kernel (Corollary 5) W[1]-hard (Theorem 4)

O((c + 1)k1 · (cm + nm)) time (Theorem 3)
(c,k1) 4k1-vertex kernel (Corollary 5) no polynomial kernel (Corollary 4)

2c+1k1-vertex kernel (Corollary 5)

close ties to finding proper vertex colorings in a related graph, the Gallai graph [10,29,36] of the input graph G . Finally, 
in triangle-free graphs every pair of incident edges forms an induced P3. Consequently, on triangle-free graphs Multi-

STC is equivalent to the Edge-Colorable Subgraph problem which asks to determine whether we can delete at most k
edges from G such that the resulting graph has a proper edge-coloring with at most c colors. Hence, a study of Multi-

STC and its two proposed generalizations is motivated not only by the known applications of Multi-STC in social network 
analysis [35,20] or plausible applications of the two generalizations, but also from a pure combinatorial and computational 
complexity point of view.

Related work So far, most algorithmic work has focused on STC [11,14,24,35,25]. For example, STC is NP-hard even on 
graphs with maximum degree four [24]. Motivated by this NP-hardness, the parameterized complexity of STC was studied. 
The two main parameters under consideration so far are the number k of weak edges and the number � := |E| − k of 
strong edges in an STC-labeling with a minimal number of weak edges. The fixed-parameter tractability for k follows from 
a reduction to Vertex Cover [35]. Moreover, STC admits a 4k-vertex kernel [14]. For �, STC is fixed-parameter tractable but 
does not admit a polynomial kernel [11,14]. Golovach et al. [11] considered a further generalization of STC where the aim is 
to color at most k edges weak such that each induced subgraph isomorphic to a fixed graph F has at least one weak edge. 
Another variant of STC asks for a labeling in which some prespecified communities are connected via strong edges [20,39]. 
In recent work, it was shown that Multi-STC admits kernels for parameters that measure the distance of the input graph 
to a class of low-degree graphs for which Multi-STC can be solved in polynomial time [15].

Our results We study the classic, fine-grained, and parameterized complexity of Multi-STC and its two generalizations. 
In a nutshell, we obtain strong hardness results for VL-Multi-STC and EL-Multi-STC, showing that they cannot be solved 
in 2o(n2) time on n-vertex graphs when assuming the Exponential Time Hypothesis (ETH) [21]. On the positive side, we 
show that previous fixed-parameter tractability and kernelization results for STC [35,11,14] can be extended even to the 
most general problem EL-Multi-STC when c is an additional parameter. In detail, we obtain the following results.

First, we observe that previous results on the Edge Coloring problem give, for every fixed c, a dichotomy of Multi-STC

into NP-hard and polynomial-time solvable instances with respect to the maximum degree of the input graph. In particular, 
for all c ≥ 3, Multi-STC is NP-hard even if k = 0. For VL-Multi-STC and EL-Multi-STC, we then show that even an algorithm 
that is single-exponential in the number n of vertices of the input graph is unlikely. More precisely, we show that, assuming 
the ETH, there is no 2o(n2)-time algorithm for VL-Multi-STC and EL-Multi-STC even if k = 0 and c ∈ O(n). This result is 
achieved by a compression of 3-CNF formulas φ where each variable occurs in a constant number of clauses into graphs 
with O(

√|φ|) vertices. The NP-hardness of Multi-STC even if k = 0 implies that for all three problems, there is presumably 
no polynomial-time approximation algorithm. Furthermore, for VL-Multi-STC and EL-Multi-STC it is not even possible to 
compute an approximation within 2o(n2) time unless ETH fails.

We then proceed to a parameterized complexity analysis for the three problems; see Table 1 for an overview. Since all 
variants are NP-hard even if k = 0, we consider a structural parameter related to k. This parameter, denoted by k1, is the 
minimum number of weak edges needed in an STC-labeling for c = 1. Thus, if k1 is known, then we may immediately 
accept all instances with k ≥ k1; in this sense one may assume k ≤ k1 for Multi-STC. For VL-Multi-STC and EL-Multi-STC

this is not necessarily true since some lists might be empty which enforces weak edges.
The parameter k1 is relevant for two reasons: First, it allows us to determine to which extent the FPT algorithms for

STC carry over to Multi-STC, VL-Multi-STC, and EL-Multi-STC. Second, k1 has a structural interpretation: it is the vertex 
cover number of the Gallai graph of the input graph G . We believe that this parameterization is of independent interest 
and might be useful for other problems. The specific results are as follows. We provide an O((c + 1)k1 · (c|E| + |V | · |E|))-
time algorithm for the most general problem, EL-Multi-STC. We then use this algorithm to show that Multi-STC is fixed-
parameter tractable when parameterized by k1 alone. In contrast, VL-Multi-STC and EL-Multi-STC parameterized by k1
alone are W[1]-hard as we show. Moreover, both problems are unlikely to admit a kernel that is polynomial in c + k1. We 
do, however, obtain a kernel that is exponential in c and polynomial in k by extending the 4k1-vertex kernelization [14]
from STC. More precisely, we obtain a 2c+1 · k1-vertex kernel for VL-Multi-STC and EL-Multi-STC. In the case of Multi-STC

the kernelization gives a kernel with at most 4k1 vertices, thus extending the linear-vertex kernel from c = 1 to arbitrary 
values of c.
77



L. Bulteau, N. Grüttemeier, C. Komusiewicz et al. Journal of Computer and System Sciences 120 (2021) 75–96
This work is organized as follows. In Section 2, we present our notation and specify the relation of STC and its variants 
to vertex coloring problems in Gallai graphs. This will provide some first running-time upper bounds and explains why k1
is a natural structural parameter. In Section 3, we provide the NP-hardness results and the ETH-based lower bound for
EL-Multi-STC and VL-Multi-STC. In Section 4, we provide fixed-parameter tractability and intractability results, including 
the kernelization algorithms.

2. Preliminaries

Notation We consider undirected graphs G = (V , E) where n := |V | denotes the number of vertices and m := |E| denotes 
the number of edges in G . For a vertex v ∈ V we denote by NG(v) := {u ∈ V | {u, v} ∈ E} the open neighborhood of v and 
by NG [v] := N(v) ∪ {v} the closed neighborhood of v . For any two vertex sets V 1, V 2 ⊆ V , we let EG(V 1, V 2) := {{v1, v2} ∈ E |
v1 ∈ V 1, v2 ∈ V 2} denote the set of edges between V 1 and V 2. For any vertex set V ′ ⊆ V , we let EG(V ′) := EG(V ′, V ′) be the 
set of edges between the vertices of V ′ . We may omit the subscript G if the graph is clear from the context. The subgraph 
induced by a vertex set S is denoted by G[S] := (S, EG(S)). A subset S ⊆ V is called vertex cover in G , if every edge e ∈ E has at 
least one endpoint in S . In the Vertex Cover problem, the input is an undirected graph G and an integer k and the question 
is, whether there exists a vertex cover of size at most k in G . A proper vertex coloring with c colors for some c ∈ N is a 
mapping a : V → {1, . . . , c} such that there is no edge {u, v} ∈ E with a(u) = a(v). Throughout this work we call a c-colored 
STC-labeling L optimal (for a graph G and lists �) if L is �-satisfying and the number of weak edges |W L | is minimal.

Parameterized complexity In parameterized complexity [5,8,9,31] we measure the running time of algorithms depending on 
the total input size n and a problem parameter k. A problem is called fixed-parameter tractable (FPT) if it can be solved 
in f (k) · poly(n) time for some computable function f . An important tool in the development of parameterized algorithms 
is problem kernelization. A problem kernelization is a polynomial-time preprocessing of the input data by data reduction rules. 
Given an instance I with parameter k, the goal is to compute an equivalent instance I ′ with parameter k′ ≤ k in polynomial 
time where I ′ has size g(k) for some computable function g . The instance I ′ is called problem kernel and g(k) is called the 
size of the kernel. If g is a polynomial, then the problem kernelization is called polynomial.

A parameterized reduction maps any instance (I, k) of some parameterized problem L in FPT time to an equivalent in-
stance (I ′, k′) of a parameterized problem L′ such that k′ ≤ f (k) for some computable function f . If the reduction can be 
performed in polynomial time and f is a polynomial, the parameterized reduction is a polynomial parameter transformation. 
If a problem is W[1]-hard for a parameter k, then it is assumed to be not fixed-parameter tractable for k. If there is a 
parameterized reduction from a W[1]-hard problem L parameterized by k to a problem L′ parameterized by k′ , then the 
problem L′ parameterized by k′ is W[1]-hard. Some problems that are fixed-parameter tractable do not admit a polynomial 
kernel unless NP ⊆ coNP/poly. By using polynomial parameter transformations we can transfer these kernel lower bounds 
to other problems [2]. The Exponential Time Hypothesis (ETH) is a standard complexity theoretical conjecture used to prove 
lower bounds. It implies that 3-CNF-SAT cannot be solved in 2o(|φ|) time where φ denotes the input formula [21].

Gallai graphs, c-colorable subgraphs, and their relation to STC Multi-STC can be formulated in terms of so-called Gallai 
graphs [10,29,36].

Definition 4. Given a graph G = (V , E), the Gallai graph G̃ = (Ṽ , Ẽ) of G is defined by Ṽ := E and Ẽ := {{e1, e2} |
e1 and e2 form an induced P3 in G}.

The Gallai graph of an n-vertex and m-edge graph has O(m) vertices and O(mn) edges. Gallai graphs do have restricted 
structure in the sense that not every graph is a Gallai graph of some other graph. However, for every graph H , there is 
a Gallai graph which contains H as subgraph [29]. For c = 1 (in other words for STC), the relation to Gallai graphs is as 
follows: A graph G = (V , E) has an STC-labeling with at most k weak edges if and only if its Gallai graph has a vertex 
cover of size at most k [35]. This gives an O(1.28k + nm)-time algorithm by using the current fastest algorithm for Vertex 
Cover [3]. More generally, a graph G = (V , E) has a c-colored STC-labeling with at most k weak edges if and only if the 
Gallai graph of G has a properly c-colorable induced subgraph on m − k vertices [35].

In the following, we extend this relation to EL-Multi-STC by considering list-colorings of the Gallai graph. The special 
cases VL-Multi-STC, Multi-STC, and STC nicely embed into the construction. First, let us define the problem that we need 
to solve in the Gallai graph formally. Given a graph G = (V , E), we call a mapping χ : V → {0, 1, . . . , c} a subgraph-c-
coloring if there is no edge {u, v} ∈ E with χ(u) = χ(v) �= 0. Vertices v with χ(v) = 0 correspond to deleted vertices. The
List-Colorable Subgraph problem is now as follows.

List-Colorable Subgraph

Input: An undirected graph G = (V , E) and integers c ∈ N, k ∈ N and lists � : V → 2{1,...,c} .
Question: Is there a subgraph-c-coloring χ : V → {0, 1, . . . , c} with |{v ∈ V | χ(v) = 0}| ≤ k and χ(w) ∈ �(w) ∪ {0} for 
every w ∈ V ?

EL-Multi-STC and List-Colorable Subgraph have the following relationship.
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Proposition 1. An instance (G, c, k, �) of EL-Multi-STC is a yes-instance if and only if (G̃, c, k, �) is a yes-instance of List-

Colorable Subgraph, where G̃ is the Gallai graph of G.

Proof. To prove the proposition we first describe how to transform c-colored �-satisfying labeling L for G into a coloring χL
for G̃ that satisfies χL(v) ∈ �(v) ∪ {0} for every vertex v of G̃ and vice versa, such that the number of weak edges under L
and the number of vertices that receive color 0 under χL are the same. Afterwards, we show that L is an STC-labeling if 
and only if χL is a subgraph-c-coloring.

For any c-colored labeling L we set χL(e) := i for each edge in Si
L , 1 ≤ i ≤ c, and χL(e) = 0 for each edge in W L . 

By definition, the c-colored labeling χ is �-satisfying if and only if χL satisfies the list constraints in the List-Colorable 
Subgraph instance, that is, χL(v) ∈ �(v) ∪ {0} for each vertex v . Moreover, the number of weak edges in L is precisely the 
number of vertices in G̃ that receive color 0. By symmetric arguments, each subgraph-c-coloring χ that satisfies � and has 
k vertices v such that χ(v) = 0 defines a c-colored labeling Lχ of G that is �-satisfying and has k weak edges.

(⇒) Let L be an STC-labeling. We show that for all adjacent vertices u and v in G̃ either χL(u) �= χL(v) or χL(u) = 0
or χL(v) = 0. Assume that χL(u) �= 0 and χL(v) �= 0. Then, the corresponding edges u and v in G are colored with some 
strong colors Si

L and S j
L . Since u and v are adjacent in G̃ , u and v form a P3 in G and since L is a c-colored STC-labeling, 

we have i �= j. Thus, χ(u) �= χ(v).
(⇐) Let χ be a subgraph-c-coloring. We show that Lχ is an STC-labeling. Consider a pair of incident edges u and v

that form a P3 in G . If χ(u) = 0 or χ(v) = 0, then one of the two edges is weak in Lχ . Otherwise, we have χ(u) �= χ(v)

because u and v are adjacent in G̃ . Thus, Lχ assigns u and v to different strong colors. Hence, Lχ is an STC-labeling. �
The correspondence from Proposition 1 means that we can solve EL-Multi-STC by solving List-Colorable Subgraph on 

the Gallai graph of the input graph. To this end we give a running time bound for List-Colorable Subgraph. The algorithm 
for obtaining this running time is a straightforward dynamic program over subsets. Since we are not aware of any concrete 
result in the literature implying this running time bound, we provide a proof for the sake of completeness.

Proposition 2. List-Colorable Subgraph can be solved in O(3n ·c2(n +m)) time. EL-Multi-STC can be solved in O(3m ·c2mn) time.

Proof. We define a dynamic programming table D with entries of the type D[S, i] where S ⊆ V and i ∈ {1, . . . , c}. The aim 
is to fill D such that for all entries we have D[S, i] = ‘true’ if there is a subgraph-c-coloring χ for G[S] such that χ(v) ∈
{1, . . . , i} ∩�(v) for all v ∈ S and D[S, i] = ‘false’ otherwise. Then, the instance is a yes-instance if and only if D[S, c] = ‘true’
for some S such that |S| ≥ n − k.

The table is initialized for i = 1 and each S ⊆ V by setting

D[S,1] :=
{

‘true’ if S is an independent set ∧ ∀v ∈ S : 1 ∈ �(v),

‘false’ otherwise.

For i > 1, the table entries are computed by the recurrence

D[S, i] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‘true’ if ∃S ′ ⊆ S such that S ′ is an independent set

∧ ∀v ∈ S ′ : i ∈ �(v)

∧ D[S \ S ′, i − 1] = ‘true’,

‘false’ otherwise.

The correctness proof is straightforward and thus omitted. The running time is dominated by the time needed to fill table 
entries for i > 1 and can be seen as follows. For each i ∈ {2, . . . , c} we consider all partitions of V into S ′ , S \ S ′ , and V \ S . 
These are 3n many. For each of them, we check in O(c · (m +n)) time whether S ′ is an independent set and whether i ∈ �(v)

for all v ∈ S ′ .
The running time for EL-Multi-STC follows from Proposition 1 and the fact that the Gallai graph of a graph G with n

vertices and m edges has O(m) vertices and O(mn) edges. �
3. Hardness results

3.1. NP-hardness of Multi-STC

We first observe that Multi-STC is NP-hard for every fixed c even on bounded-degree graphs. It was claimed that Multi-

STC is NP-hard for every fixed c since in the Gallai graph this is exactly the NP-hard problem Odd Cycle Transversal (in 
case of c = 2) or Vertex c-Coloring (in case of c ≥ 3) [35]. It is not known, however, whether these problems are NP-hard 
on Gallai graphs. Instead, the NP-hardness can be observed from hardness results for Edge Coloring. In Edge Coloring one 
is given a graph G and a number of colors c and the question is whether we can assign the colors 1, . . . , c to the edges 
such that no two incident edges receive the same color. This gives the following dichotomy of the complexity of Multi-STC

on bounded-degree graphs.
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Fig. 1. A graph consisting of edges {u, v}, {y, z}, {v, wi}, {y, xi}, and {wi , x j} for every i, j ∈ {1, . . . , c −1}. It is easy to see that in every proper edge-labeling 
with colors 1, . . . , c, the edges {u, v} and {y, z} must receive the same color. The graph can thus be used as a gadget to transform an instance of Edge-List 
Coloring into an equivalent triangle-free instance: we replace every edge e with list �(e) by such gadget, set �({u, v}) := �({y, z}) := �(e), and assign 
full lists to the other edges of the gadget.

Theorem 1. Multi-STC exhibits the following complexity-dichotomy on bounded-degree graphs:

a) For c = 1, Multi-STC is NP-hard on graphs with maximum degree at least four and solvable in polynomial time when the maxi-
mum degree is at most three.

b) For c = 2, Multi-STC is NP-hard on graphs with maximum degree at least three and solvable in polynomial time when the 
maximum degree is at most two.

c) For every c ≥ 3, Multi-STC is NP-hard on instances with maximum degree at least c even if k = 0 and it can be solved in polyno-
mial time if the maximum degree is at most c − 1.

Proof. Statement a) is a known result for STC [24]. For statement c), the NP-hardness follows from the classic result 
that Edge Coloring is NP-hard for every fixed c even if the input graph is triangle-free [30]. Furthermore, due to Vizing’s 
Theorem, every graph with maximum degree 	 can be edge-colored with 	 + 1 colors such that no two incident edges 
receive the same color [40]. Thus, instances with maximum degree at most c − 1 are trivial yes-instances for Multi-STC. 
To show statement b) we reduce from Edge Coloring, which is NP-hard even if c = 3 and the input graph is cubic and 
triangle-free [18].

Let I := (G, c) be an instance of Edge Coloring where c = 3 and G is a cubic and triangle-free graph. Note that G has 
an even number of vertices. We define J := (G, 2, k) with k := n

2 and show that I is a yes-instance of Edge Coloring if and 
only if J is a yes-instance of Multi-STC.

(⇒) Let I be a yes-instance of Edge Coloring. Hence, one can assign the colors 1, 2, and 3 to the edges of G in 
a way that no two incident edges receive the same color. Then, the fact that G is cubic implies that each color class 
is a perfect matching in G . We let L := (S1

L , S
2
L , W L) be a labeling where S1

L contains the edges that are assigned with 
color 1, S2

L contains the edges that are assigned with color 2, and W L contains the edges that are assigned with color 3. 
Note that |W L | = n

2 = k. Furthermore, L is an STC-labeling since no two incident edges in G received the same color. 
Consequently, J is a yes-instance of Multi-STC.

(⇐) Let J be a yes-instance of Multi-STC. Then, there exists an STC-labeling L := (S1
L , S

2
L , W L) for G such that |W L | ≤ n

2 . 
Note that the strong color classes S1

L and S2
L each form a matching in G , since G is triangle-free. We next show that the 

edges in W L also form a matching. Assume towards a contradiction that there are two edges in W L that share an endpoint. 
Then, |W L | ≤ n

2 implies that there is one vertex v that is not incident with some edge in W L . Since G is cubic, this implies 
that v is incident with two edges of the same strong color. This contradicts the fact that S1

L and S2
L are matchings in G . 

Consequently, W L is a matching. Then, since the edges of G can be partitioned into three pairwise disjoint matchings, I is 
a yes-instance of Edge Coloring. �

Note that, for c = 2, Multi-STC parameterized by k is fixed-parameter tractable since we can solve Odd Cycle Transversal

in the Gallai graph G̃ which is fixed-parameter tractable with respect to k [33]. Thus, the dichotomy from Theorem 1 is also 
tight with regard to the complexity for instances with constant k.

3.2. Fine-grained complexity

We now provide a stronger hardness result for VL-Multi-STC and EL-Multi-STC: we show that they are unlikely to 
admit a single-exponential-time algorithm with respect to the number n of vertices. Thus, the simple algorithm behind 
Proposition 2 is optimal in the sense that m cannot be replaced by n in dense graphs.

We remark that for List-Edge Coloring an ETH-based lower bound of 2o(|V |2) has been shown recently [27]. In List-Edge 
Coloring one is given a graph G , a number c of colors, and a list �(e) of possible colors for each edge e. The question is, 
whether the colors 1, 2, . . . , c can be assigned to the edges of G such that no two incident edges receive the same color 
and each edge receives a color that is on its list. While List-Edge Coloring and EL-Multi-STC with k = 0 correspond if the 
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Fig. 2. An example of the construction. The rectangles in U X represent vertices α
(r,r′)
t with the same value of t , ⊗ a clique, and � an independent set. The 

edge {ηupC (C j )
, θ

downC (C j )
} represents a clause C j = (x1 ∨ x2 ∨ x3) with �(C j , x1) = 1 and �(C j , x2) = �(C j , x3) = 4. The edge {γ 1

midX (x1)
, δdownX (x1)

} has 
strong color T 1

1 which models an assignment where x1 is true, which satisfies C j . Note that, due to the compression, we may have mid(x1) = mid(x2) and 
therefore x1 and x2 may share the four middle vertices.

input graph is triangle-free, the construction behind the lower bound of 2o(|V |2) contains triangles with edge lists that can 
not be easily modeled with vertex lists. We are not aware of any direct reduction from List-Edge Coloring to VL-Multi-STC

that would transfer the desired lower bound to VL-Multi-STC.
Note that there is a natural reduction that transforms an instance of List-Edge Coloring into an equivalent instance 

where the input graph is triangle-free: Replace all edges with the gadget shown in Fig. 1. However, this reduction 
adds �(cm) vertices and therefore does not imply the desired lower bound since the ETH reduction for List-Edge Col-

oring outputs a graph where the number of edges is quadratic in the number of vertices [27].
We provide a strong lower bound for VL-Multi-STC that is based on a reduction from 3-SAT. This reduction is inspired by 

a reduction used to show that Rainbow Coloring cannot be solved in 2o(n3/2) time under the ETH [26]. Rainbow Coloring is 
a mildly related problem where the input is a graph and an integer k and the question is, whether the edges can be colored 
with k distinct colors such that every pair of vertices is connected by a rainbow path, that is, a path where all edges on the 
path have distinct colors. We remark that for Rainbow Coloring another ETH-based lower bound of 2o(m)nO(1) has been 
shown recently [1]. The compression of the variable part in our reduction works mostly analogously to the reduction to
Rainbow Coloring. However, in VL-Multi-STC we have vertex lists that need to be defined carefully. For the clause part of 
the reduction, we use equitable colorings [17,23] to achieve an even stronger compression and thus a lower bound with a 
quadratic function in the exponent for VL-Multi-STC.

Theorem 2. If the ETH is true, then VL-Multi-STC cannot be solved in 2o(|V |2) time even if restricted to instances with k = 0.

Proof. We give a reduction from 3-SAT to VL-Multi-STC such that the resulting graph has O(
√|φ|) vertices, where φ is the 

input formula and |φ| is the number of variables plus the number of clauses. By the Sparsification Lemma [21], a 2o(|φ|)-time 
algorithm for 3-SAT defeats the ETH and, hence, a 2o(|V |2)-time algorithm for VL-Multi-STC defeats the ETH as well.

Below, we use n for the number of variables in φ. We can furthermore assume that, in the formula φ, each variable 
occurs in at most four clauses, since arbitrary 3-CNF formulas can be transformed in polynomial time to an equivalent 
3-CNF formula fulfilling this restriction while only increasing the formula length by a constant factor [38]. Observe that in 
such instances the number of clauses in φ is at most 4

3 n.

Let φ be a 3-CNF formula with a set X = {x1, . . . , xn} of n variables and a set C := {C1, . . . , Cm} of m ≤ 4
3 n clauses. Let 

C j be a clause and xi a variable occurring in C j . We define the occurrence number �(C j, xi) as the number of clauses in 
{C1, C2, . . . , C j} that contain xi . Note that �(C j, xi) is only defined if xi occurs in C j . Intuitively, �(C j, xi) = r means that 
the rth occurrence of variable xi is the occurrence in clause C j . Since each variable occurs in at most four clauses, we 
have �(C j, xi) ∈ {1, 2, 3, 4}.
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Fig. 3. The variable-representation and the variable-soundness gadget for one variable xi ∈ X such that downX (xi) = upX (xi) = t and midX (xi) = t′ with the 
possible colors for the edges {δt , γ 1

t′ }, {δt , γ 4
t′ }, {α(4,1)

t , γ 1
t′ }, and {α(4,1)

t , γ 4
t′ }. Note that labeling {δt , γ 1

t′ } with the strong color F 1
i and labeling {δt , γ 4

t′ } with 
the strong color T 4

i causes a P3 with some strong color.

We describe in three steps how to construct an equivalent instance (G = (V , E), c = 9n + 4, k = 0, �) for VL-Multi-STC

such that |V | ∈ O(
√

n). First, we describe the variable gadget. Second, we describe the clause gadget. In a third step, we 
describe how these two gadgets are connected. Before we present the formal construction, we give some intuition.

The strong colors 1, . . . , 8n represent the truth assignments of the occurrences of the variables. Throughout this proof 
we refer to these strong colors as T r

i , F
r
i with i ∈ {1, . . . , n} and r ∈ {1, 2, 3, 4}. The idea is that a strong color T r

i rep-
resents a ‘true’-assignment and F r

i represents a ‘false’-assignment of the rth occurrence of a variable xi ∈ X . The strong 
colors 8n + 1, . . . , 9n + 4 are auxiliary strong colors which we need for the correctness of our construction. Throughout this 
proof we refer to these strong colors as R1, . . . , Rn and Z1, Z2, Z3, Z4. In the variable gadget, there are four distinct edges 
e1, e2, e3, e4 for each variable xi representing the (at most) four occurrences of the variable xi . We define vertex lists that 
ensure that every such edge er can only be labeled with the strong colors T r

i and F r
i . The coloring of these edges represents 

a truth assignment to the variable xi . In the clause gadget, there are m distinct edges such that the coloring of these edges 
represents a choice of literals that satisfies φ. The edges between the two gadgets make the values of the literals from the 
clause part consistent with the assignment of the variable part. The construction consists of five layers of vertices. In the 
variable gadget we have an upper layer, a middle layer, and a down layer (U X ,M X and D X ). In the clause gadget we have 
an upper and a down layer (UC and DC ). Fig. 2 shows a sketch of the construction.

The Variable Gadget. The vertex set of the variable gadget consist of an upper layer, a middle layer and a down layer. The 
vertices in the middle layer and the down layer form a variable-representation gadget, where each edge between the two 
parts represents one occurrence of a variable. The vertices in the upper layer form a variable-soundness gadget, which we 
need to ensure that for each variable either all occurrences are assigned ‘true’ or all occurrences are assigned ‘false’. For an 
illustration of the variable-representation and the variable-soundness gadget for some variable xi see Fig. 3.

We start by describing the variable-representation gadget. Let

M X := {γ r
t | t ∈ {1, . . . , �√n �}, r ∈ {1,2,3,4}} be the set of middle vertices, and

D X := {δt | t ∈ {1, . . . , �√n � + 9}} be the set of down vertices.

We add edges such that D X becomes a clique in G . To specify the correspondence between the variables in X and the 
edges in the variable-representation gadget, we define below two mappings midX : X → {1, . . . , �√n �} and downX : X →
{1, . . . , �√n � + 9}. Then, for each xi ∈ X we add four edges {γ r

midX (xi)
, δdownX (xi)

} for r ∈ {1, 2, 3, 4}. We carefully define the 

two mappings midX , downX and the vertex lists �(v) for every v ∈ M X ∪ D X of the variable-representation gadget.
Intuitively, the chosen truth assignment for each variable will be transmitted to a clause by edges between the variable 

and clause gadgets. To ensure that each such transmitter edge is used for exactly one occurrence of one variable, we first 
define the variable-conflict graph H X

φ := (X, ConflX ) by ConflX := {{xi, x j} | xi and x j occur in the same clause C ∈ C}, which 
we use to define midX and downX . Since every variable of φ occurs in at most four clauses, the maximum degree of H X

φ is 
at most 8. Hence, there is a proper vertex 9-coloring χ : X → {1, 2, . . . , 9} for H X

φ which we compute in polynomial time by 
a folklore greedy algorithm. We end up with 9 color classes χ−1(1), . . . , χ−1(9). Then, we partition each color class χ−1(i)
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into |χ−1(i)|
�√n � groups arbitrarily such that each group has size at most �√n �. Let s be the overall number of such groups 

and let S := {S1, S2, . . . , Ss} be the family of all such groups of vertices in H X
φ (each corresponding to a pair of a color 

i ∈ {1, . . . , 9} and a group in χ−1(i)). The following claim is directly implied by the definition of S (for part (b) observe that 
at most �√n � new groups are introduced during the partitioning of the color classes).

Claim 1. For the family S := {S1, S2, . . . , Ss} of groups of vertices in H X
φ , it holds that

(a) |Si | ≤ �√n � for each i ∈ {1, . . . , s}, and
(b) s ≤ �√n � + 9.

For any given xi ∈ X we define downX (xi) := j as the index of the group S j that contains xi . The mapping is well-defined 
since S forms a partition of the set of variables.

Claim 2. If xi, x j ∈ X occur in the same clause C ∈ C , then downX (xi) �= downX (x j).

Proof . By definition, xi and x j are adjacent in H X
φ . Hence, xi and x j are in different color classes and therefore elements of 

different groups of S . �
Next, we define the mapping midX : X → {1, . . . , �√n �}. To this end, consider the finite sequence Seqn := (downX (x1),

downX (x2), . . . , downX (xn)) ∈ {1, . . . , �√n � + 9}n . We define midX (xi) as the number of occurrences of downX (x1) in the 
partial sequence Seqi := (downX (x1), . . . , downX (xi)). From Claim 1 (a) we conclude midX (xi) ∈ {1, 2, . . . , �√n �} for ev-
ery xi ∈ X .

Claim 3. Let xi, x j ∈ X and r ∈ {1, 2, 3, 4}. If xi �= x j , then

{γ r
midX (xi)

, δdownX (xi)
} �= {γ r

midX (x j)
, δdownX (x j)

}.

Proof . Without loss of generality, assume i < j. Obviously, the claim holds if downX (xi) �= downX (x j). Let downX (xi) =
downX (x j). Then, there is at least one more occurrence of downX (xi) in the partial sequence Seq j

1 compared to Seqi
1. 

Therefore, midX (xi) �= midX (x j). �
Thus we assigned a unique edge in E(M X , D X ) to each occurrence of a variable in X . Furthermore, the assigned edges 

of variables that occur in the same clause do not share an endpoint in D X (Claim 2).
We complete the description of the variable-representation gadget by defining the vertex list �(v) for every v ∈ M X ∪ D X . 

We set

�(γ r
t ) :=

⋃
xi∈X

midX (xi)=t

{T r
i , F r

i , Ri} for every γ r
t ∈ M X , and

�(δt) :=
⋃

xi∈X
downX (xi)=t

{T 1
i , T 2

i , T 3
i , T 4

i , F 1
i , F 2

i , F 3
i , F 4

i , Z2} for every δt ∈ D X .

Claim 4. Let xi ∈ X and r ∈ {1, 2, 3, 4}. Then, �(γ r
midX (xi)

) ∩ �(δdownX (xi)
) = {T r

i , F
r
i }.

Proof . Let �(i, r) := �(γ r
midX (xi)

) ∩ �(δdownX (xi)
). Obviously, T r

i and F r
i are elements of �(i, r). It remains to show that there 

is no other strong color Y ∈ �(i, r).
Case 1: Y = Z2. Then, Z2 /∈ �(γ r

t ) and it follows that Y /∈ �(i, r).
Case 2: Y = R j with j ∈ {1, . . . , n}. Then, R j /∈ �(δt) and it follows that Y /∈ �(i, r).
Case 3: Y = T r′

j or Y = F r′
j with r′ �= r and j ∈ {1, . . . , n}. Then, Y /∈ �(γ r

midX (xi)
) and it follows that Y /∈ �(i, r).

Case 4: Y = T r
i′ or Y = F r

i′ with i′ �= i. Assuming T r
i′ ∈ �(i, r) it follows from the definition of � that there is some variable 

xi′ �= xi such that downX (xi′ ) = downX (xi) and midX (xi′ ) = midX (xi), which contradicts Claim 3. Hence, Y /∈ �(i, r). �
Note that for each variable xi there are four edges {{γ r

midX (xi)
, δdownX (xi)

} | r ∈ {1, 2, 3, 4}} that can only be colored with 
the strong colors T r

i and F r
i representing the truth assignments of the four occurrences of variable xi . We need to ensure 

that there is no variable xi , where, for example, the first occurrence is set to ‘true’ (T 1) and the second occurrence is set to 
i
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‘false’ (F 2
i ) in a �-satisfying STC-labeling with no weak edges. To this end, we use a variable-soundness gadget, which we 

describe in the following.
Define

U X := {α(r,r′)
t | t ∈ {1, . . . , �√n � + 9}, (r, r′) ∈ {1,2,3,4}2, r �= r′}

to be the set of upper vertices. We add edges such that the vertices in U X form a clique in G . To specify the corre-
spondence between the variables and the edges in the variable-soundness gadget, we define below a mapping upX :
X → {1, 2, . . . , �√n � + 9}. The main idea of the variable-soundness gadget is that for each variable xi ∈ X and each pair 
{r, r′} ⊆ {1, 2, 3, 4} there are four edges between the vertices γ r

i , γ r′
i and the vertices α(r,r′)

t , α(r′,r)
t of U X which can not all 

be strong in a �-satisfying STC-labeling if {γ r
midX (xi)

, δdownX (xi)
} receives strong color T r

i and {γ r′
midX (xi)

, δdownX (xi)
} receives 

strong color F r′
i . (Recall that we do not allow weak edges.) To this end, we assign a set of 12 endpoints in U X to each vari-

able xi . We need to ensure in particular that two variables xi , x j with midX (xi) = midX (x j) do not use the same endpoints 
in U X . We define upX (xi) := downX (xi). The following is directly implied by Claim 3.

Claim 5. Let xi, x j ∈ X with xi �= x j . If midX (xi) = midX (x j), then upX (xi) �= upX (xi).

We add the following edges between the vertices of M X and U X : For every variable xi , every r ∈ {1, 2, 3, 4}, and every 
r′ ∈ {1, 2, 3, 4} \ {r} we add the edges {α(r,r′)

upX (xi)
, γ r

midX (xi)
}, and {α(r,r′)

upX (xi)
, γ r′

midX (xi)
}.

We complete the description of the variable-soundness gadget by defining the vertex lists �(v) for each v ∈ U X . We set

�(α
(r,r′)
t ) :=

⋃
xi∈X

upX (xi)=t

{T r
i , F r′

i , Ri, Z1} for every α
(r,r′)
t ∈ U X .

Claim 6. Let xi ∈ X, let r ∈ {1, 2, 3, 4}, and let r′ ∈ {1, 2, 3, 4} \ {r}. Then

a) �(α
(r,r′)
upX (xi)

) ∩ �(γ r
midX (xi)

) = {T r
i , Ri}, and

b) �(α
(r,r′)
upX (xi)

) ∩ �(γ r′
midX (xi)

) = {F r′
i , Ri}.

Proof . We first prove statement a). Let �(i, r, r′) := �(α
(r,r′)
upX (xi)

) ∩ �(γ r
midX (xi)

). Clearly, �(i, r, r′) contains T r
i and Ri . It re-

mains to show that there is no other strong color Y ∈ �(i, r, r′). Recall that

�(γ r
t ) :=

⋃
xi∈X

midX (xi)=t

{T r
i , F r

i , Ri}.

In the following case distinction we consider every possible strong color Y ∈ �(γ r
midX (xi)

).

Case a.1: Y = R j or Y = T r
j for some j �= i. Then, there is a variable x j �= xi with midX (x j) = midX (xi). It follows by 

Claim 5 that upX (x j) �= upX (xi) and therefore R j, T r
j /∈ �(α

(r,r′)
upX (xi)

). Hence, Y /∈ �(i, r, r′).

Case a.2: Y = F r
j . Then, since

{F p
t | p ∈ {1,2,3,4}, t ∈ {1, . . . ,n}} ∩ �(α

(r,r′)
upX (xi)

) ⊆ {F r′
1 , F r′

2 , . . . , F r′
n } and r′ �= r

we conclude F r
j /∈ �(α

(r,r′)
upX (xi)

). Hence, Y /∈ �(i, r, r′).

Next, we prove statement b) with analogous arguments. Let �(i, r, r′) := �(α
(r,r′)
upX (xi)

) ∩ �(γ r′
midX (xi)

). Clearly, {F r′
i , Ri} ⊆

�(i, r, r′). It remains to show that there is no other color Y ∈ �(i, r, r′).
Case b.1: Y = R j or Y = F r′

j for some j �= i. Then, analogously to Case a.1 we conclude that Y /∈ �(i, r, r′).

Case b.2: Y = T r′
j . Then, since

{T p
t | p ∈ {1,2,3,4}, t ∈ {1, . . . ,n}} ∩ �(α

(r,r′)
upX (xi)

) ⊆ {T r
1, T r

2, . . . , T r
n} and r′ �= r

we conclude T r′
/∈ �(α

(r,r′)
X ). Hence, Y /∈ �(i, r, r′). This completes the proof of Claim 6. �
j up (xi)
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This completes the description of the variable gadget. We continue with the description of the clause gadget.

The Clause Gadget. The clause gadget consists of an upper part and a lower part. Let UC := {ηi | i ∈ {1, . . . , 12�√n � + 1}}
be the set of upper vertices and DC := {θi | i ∈ {1, . . . , �√n �}} be the set of lower vertices. We add edges such that UC and 
DC each form cliques in G .

Recall that for some clause C j ∈ C and a variable xi occurring in C j the occurrence number �(C j, xi) is defined as 
the number of clauses in {C1, C2, . . . , C j} that contain xi . Below we define two mappings upC : C → {1, 2, . . . , 12�√n � +
1}, downC : C → {1, 2, . . . , �√n �}, and vertex lists � : V → 2{1,...,c} . Then, for each clause C j ∈ C we add an edge 
{ηupC(C j)

, θdownC(C j)
}. Next, we ensure that this edge can only be labeled with the strong colors that match the literals 

in C j . This means, for example, if C j = (x1 ∨ x2 ∨ x3) we have �(ηupC(C j)
) ∩ �(θdownC(C j)

) = {T
�(C j ,x1)

1 , F �(C j ,x2)

2 , T �(C j ,x3)

3 }.

As before, we need to ensure that each variable occurring in a clause has a unique edge between the clause and variable 
gadgets which transmits the variable’s truth assignment to the clause. To achieve this, we define the clause-conflict graph
HC

φ := (C, ConflC) by

ConflC := {{Ci, C j} | Ci contains a variable xi and C j contains a variable x j

such that downX (xi) = downX (x j)}.

Clauses that share a variable are one example for adjacent vertices in HC
φ . Furthermore, due to the compression there 

may be distinct variables that are mapped to the same value under downX . Two distinct clauses containing these variables 
are another example for adjacent vertices in HC

φ .
However, from the fact that each variable occurs in at most four clauses in combination with Claim 1 a), it follows that 

the maximum degree of HC
φ is at most 12 · �√n �. Thus, there exists a proper vertex coloring χ : C → {1, 2, . . . , 12 · �√n � +1}

such that each color class χ−1(i), i ∈ {1, . . . , 12 · �√n � + 1}, contains at most � m
12·�√n �+1

� + 1 ≤ �√n � clauses [17]. Such 
coloring is known as equitable coloring and since it has O(

√
n) colors, it can be computed in polynomial time [23].

For a given clause Ci ∈ C we define upC(Ci) := j as the index of the color class χ−1( j) that contains Ci . The following 
claim provides a useful property for the clause gadget and can be shown with similar arguments as Claim 2.

Claim 7. If a clause C j1 ∈ C contains a variable xi1 and a clause C j2 ∈ C contains a variable xi2 such that downX (xi1 ) = downX (xi2 ), 
then upC(C j1 ) �= upC(C j2 ).

Proof . By definition, C j1 and C j2 are adjacent in HC
φ . Hence, C j1 and C j2 are elements of different color classes and therefore 

upC(C j1 ) �= upC(C j2 ). �
Next, we define downC analogously to upX . To this end consider the finite sequence Seqm = (upC(C1), upC(C2), . . . ,

upC(Cm)) and define downC(C j) as the number of occurrences of upC(C j) in the finite sequence Seq j := (upC(C1), . . . ,
upC(C j)). The fact that each color class contains at most �√n � elements implies downC(C j) ≤ �√n �. Intuitively, the follow-
ing claim guarantees that distinct clauses correspond to distinct edges, which is an analogue statement to Claim 3.

Claim 8. Let Ci, C j ∈ C . If Ci �= C j , then {ηupC(Ci)
, θdownC(C j)

} �= {ηupC(C j)
, θdownC(C j)

}.

Proof . Without loss of generality, let i < j. The claim obviously holds if upC(Ci) �= upC(C j), so let upC(Ci) = upC(C j). Then, 
there is at least one more occurrence of upC(Ci) in the partial sequence Seq j

1 compared to Seqi
1. Therefore downC(Ci) �=

downC(C j). �
We complete the description of the clause gadget by defining the vertex lists �(v) for every v ∈ UC ∪ DC . For a given 

clause C j ∈ C we define the color set X(C j) and the literal color set L(C j) of C j by

X(C j) := {T
�(C j ,xi)

i , F
�(C j ,xi)

i | xi occurs in C j}, and

L(C j) := {T
�(C j ,xi)

i | xi occurs as a positive literal in C j} ∪
{F

�(C j ,xi)

i | xi occurs as a negative literal in C j}.

Note that L(C j) ⊆X(C j). The vertex lists for the vertices in UC ∪ DC are defined as

�(ηt) :=
⋃

C j∈C
upC(C )=t

X(C j) ∪ {Z3} for every ηt ∈ UC , and
j
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�(θt) :=
⋃

C j∈C
downC(C j)=t

L(C j) ∪ {Z4} for every θt ∈ DC .

Claim 9. Let C j ∈ C . Then, �(ηupC(C j)
) ∩ �(θdownC(C j)

) = L(C j).

Proof . Let �( j) := �(ηupC(C j)
) ∩�(θdownC(C j)

). Since L(C j) ⊆X(C j) it holds that L(C j) ⊆ �( j). It remains to show that there 
is no other strong color Y ∈ �( j) \L(C j).

Case 1: Y ∈ {Z3, Z4}. Then, since Z3 /∈ �(θdownC(C j)
) and Z4 /∈ �(ηupC(C j)

), it follows that Y /∈ �( j).

Case 2: Y /∈ {Z3, Z4}. Assume towards a contradiction that Y ∈ �( j). From Y ∈ �(θdownC(C j)
) it follows that there is 

a clause C j1 with downC(C j1 ) = downC(C j) and Y ∈ L(C j1 ). It holds that C j1 �= C j , since otherwise Y ∈ L(C j), which 
contradicts the fact that Y ∈ �( j) \L(C j). From Y ∈ �(ηupC(C j)

) it follows that there is a clause C j2 with upC(C j2 ) = upC(C j)

and Y ∈ X(C j2 ). By the definition of X and L there exists a variable xi that occurs in C j1 and C j2 such that Y = T
�(C j1 ,xi)

i =
T

�(C j2 ,xi)

i or Y = F
�(C j1 ,xi)

i = F
�(C j2 ,xi)

i . We conclude �(C j1 , xi) = �(C j2 , xi) and therefore C j2 = C j1 �= C j . Then, the fact 
that upC(C j1 ) = upC(C j) and downC(C j2 ) = downC(C j) contradicts Claim 8 and therefore Y /∈ �( j). �

Connecting the Gadgets. We complete the construction of G by describing how the vertices of the variable gadget and the 
vertices of the clause gadget are connected. The idea is to define edges between the vertices in D X and UC that model the 
occurrences of variables in the clauses.

For each C j ∈ C we do the following: Let xi1 , xi2 , and xi3 be the variables that occur in C j . We add the edges: 
{δdownX (xi1 )

, ηupC(C j)
}, {δdownX (xi2 )

, ηupC(C j)
}, and {δdownX (xi3 )

, ηupC(C j)
}. The idea is that an edge {δdownX (xi)

, ηupC(C j)
} trans-

mits the truth value of a variable xi to a clause C j , where xi occurs as a positive or negative literal. The following claim 
states that the possible strong colors for such an edge are only T

�(C j ,xi)

i and F
�(C j ,xi)

i , which correspond to the negated 
truth assignment of the �(C j, xi)-th occurrence of xi .

Claim 10. Let C j ∈ C be a clause and let xi ∈ X be some variable that occurs in C j . Then �(δdownX (xi)
) ∩ �(ηupC(C j)

) =
{T

�(C j ,xi)

i , F �(C j ,xi)

i }.

Proof . Let �(i, j) := �(δdownX (xi)
) ∩ �(ηupC(C j)

). Obviously, {T
�(C j ,xi)

i , F �(C j ,xi)

i } ⊆ �(i, j). It remains to show that there is no 

strong color Y ∈ �(i, j) \ {T
�(C j ,xi)

i , F �(C j ,xi)

i }.
Case 1: Y = Z3 or Y = Z2. Since Z3 /∈ �(δdownX (xi)

) and Z2 /∈ �(ηupC(C j)
), we have Y /∈ �(i, j).

Case 2: Y = T r
t or Y = F r

t with t �= i and r ∈ {1, 2, 3, 4}. If Y /∈ �(ηupC(C j)
), then obviously Y /∈ �(i, j). Thus, let Y ∈

�(ηupC(C j)
). Then, by the definition of X, there is a clause C j′ containing a variable xt �= xi with upC(C j) = upC(C j′ ). If C j′ =

C j , then Claim 2 implies downX (xi) �= downX (xt) and thus Y /∈ �(δdownX (xi)
). Otherwise, if C j′ �= C j , then Claim 7 together 

with the fact that upC(C j) = upC(C j′ ) imply that downX (xi) �= downX (xt). Consequently, Y /∈ �(δdownX (xi)
) ⊇ �(i, j).

Case 3: Y = T r
i or Y = F r

i with r �= �(C j, xi). Obviously, Y ∈ �(δdownX (xi)
). Assume towards a contradiction that Y ∈

�(ηupC(C j)
). Then, by the definition of the color set X(·), there is a clause C j′ containing xi such that upC(C j′ ) = upC(C j)

and �(C j′ , xi) = r �= �(C j, xi). It follows that C j′ �= C j which contradicts Claim 7. Hence, Y /∈ �(ηupC(C j)
) ⊇ �(i, j). �

This completes the description of the construction and basic properties of the VL-Multi-STC instance (G, 9n + 4, 0, �). 
Note that G has O(

√
n) vertices. It remains to show the correctness of the reduction.

Correctness. We show that there is a satisfying assignment for φ if and only if there is a (9n + 4)-colored �-satisfying 
STC-labeling L for G with strong color classes

S
T r

t
L , S

F r
t

L , S Rt
L , S Zr

L for all t ∈ {1, . . . ,n} and r ∈ {1,2,3,4},

and W L = ∅.
(⇒) Let A : X → {‘true’, ‘false’} be a satisfying assignment for φ. We describe to which strong color classes we add the 

edges of G so that we obtain a �-satisfying STC-labeling.
First, we describe to which strong color classes we add the edges of the variable gadget. Formally, these are the edges 

in E(U X ∪ M X ∪ D X ). Let e := {δdownX (xi)
, γ r

midX (xi)
} be an edge of the variable-representation gadget for some xi ∈ X and r ∈

{1, 2, 3, 4}. We add e to S
T r

i
L if A(xi) = ‘true’ or to S

F r
i

L if A(xi) = ‘false’. In both cases, e satisfies the �-list property by 
Claim 4. Next, let e1 := {γ r

X , α(r,r′)
X }, and e2 := {γ r′

X , α(r,r′)
X } be two edges of the variable-soundness gadget for 
mid (xi) up (xi) mid (xi) up (xi)
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some xi ∈ X , r ∈ {1, 2, 3, 4} and r′ ∈ {1, 2, 3, 4} \ {r}. We add e1 to S Ri
L if A(xi) = ‘true’ or to S

T r
i

L if A(xi) = ‘false’. Further, we 

add e2 to S
F r′

i
L if A(xi) = ‘true’ or to S Ri

L if A(xi) = ‘false’. In each case, e1 and e2 satisfy the �-list property by Claim 6. For 
the remaining edges of the variable-gadget we do the following: We add all edges of E(U X ) to S Z1

L and all edges of E(D X )

to S Z2
L . Obviously, this does not violate the �-list property.

Second, we describe to which strong color classes we add the edges of the clause gadget. Formally, these are the edges 
in E(UC ∪ DC). Let C j ∈ C be a clause. Since A satisfies φ, there is some variable xi occurring in C j , such that the assignment 

A(xi) satisfies the clause C j . Let r := �(C j, xi). We add the edge {ηupC(C j)
, θdownC(C j)

} to S
T r

i
L if A(xi) = ‘true’ or to S

F r
i

L if 
A(xi) = ‘false’. In both cases, the edge satisfies the �-list property by Claim 9. For the remaining edges of the clause gadget 
we do the following: We add all edges of E(UC) to S Z3

L and all edges of E(DC) to S Z4
L . Obviously, this does not violate the 

�-list property.
Finally, we describe to which strong color classes we add the edges between the two gadgets. Formally, these are the 

edges in E(D X , UC). Let C j ∈ C be a clause and let xi be some variable occurring in C j . Let r := �(C j, xi). We add the edge 

{δdownX (xi)
, ηupC(C j)

} to S
F r

i
L if A(xi) = ‘true’ or to S

T r
i

L if A(xi) = ‘false’. This does not violate the �-list property by Claim 10.
We have now added every edge of G to exactly one strong color class of L, such that L is �-satisfying. It remains to 

show that there is no induced P3 containing two edges {u, v} and {v, w} from the same strong color class. In the following 
case distinction we consider every possible induced P3 on vertices u, v , and w where v is the central vertex.

Case 1: v ∈ U X . Then, v = α
(r,r′)
t for some t ∈ {1, . . . , �√n � + 9}, r ∈ {1, 2, 3, 4} and r′ ∈ {1, 2, 3, 4} \ {r}. Note that the 

vertices in U X are not adjacent to vertices in D X , UC and DC . Thus, it suffices to consider the following subcases.
Case 1.1: u ∈ U X . Then, {u, v} ∈ S Z1

L . If w ∈ U X , then the vertices u, v , and w do not form an induced P3, since U X is a 
clique in G . If w /∈ U X , then {v, w} /∈ S Z1

L . Hence, there is no STC-violation.
Case 1.2: u, w ∈ M X . Then, there are variables xi and x j with upX (xi) = upX (x j) = t and u = γ

p

midX (xi)
, w = γ

q

midX (x j)
for 

some p, q ∈ {r, r′}. We need to consider the following subcases.
Case 1.2.1: xi �= x j . Then i �= j. By Claim 6 it holds without loss of generality that �(u) ∩ �(v) ⊆ {T r

i , F
r
i , T

r′
i , F r′

i , Ri} and 
�(w) ∩ �(v) ⊆ {T r

j, F
r
j, T

r′
j , F r′

j , R j}. Since L is �-satisfying, the edges {u, v} and {v, w} are elements of different strong 
color classes. Thus, there is no STC-violation.

Case 1.2.2: xi = x j . Then, p �= q, since otherwise u = v . Without loss of generality, we have u = γ r
midX (xi)

and w =
γ r′

midX (xi)
. If A(xi) = ‘true’, it follows that {u, v} ∈ S Ri

L and {v, w} ∈ S
F r′

i
L . Otherwise, if A(xi) = ‘false’, it follows that {u, v} ∈

S
T r′

i
L and {v, w} ∈ S Ri

L . In both cases, the edges {u, v} and {v, w} are elements of different strong color classes. Thus, there 
is no STC-violation.

Case 2: v ∈ M X . Then v = γ r
t for some t ∈ {1, . . . , �√n �} and r ∈ {1, 2, 3, 4}. Note that the vertices in M X are not adjacent 

to vertices in UC , DC and M X . Thus, it suffices to consider the following subcases.
Case 2.1: u, w ∈ U X or u, w ∈ D X . Then, since U X and D X are cliques in G , the vertices u, v , and w do not form an 

induced P3 in G . Hence, there is no STC-violation.
Case 2.2: u ∈ U X and w ∈ D X . Then, there are variables xi and x j with midX (xi) = midX (x j) = t and u ∈ {α(r,r′)

upX (xi)
, α(r′,r)

upX (xi)
}, 

w = δdownX (x j)
for some r′ �= r. We need to consider the following subcases.

Case 2.2.1: xi �= x j . Then, i �= j. Without loss of generality it holds by Claim 6 that �(u) ∩ �(v) ⊆ {T r
i , F

r
i , T

r′
i , F r′

i , Ri} for 
some r′ �= r and by Claim 4 that �(v) ∩ �(w) = {T r

j, F
r
j}. Since L is �-satisfying, the edges {u, v} and {v, w} are elements 

of different strong color classes. Thus, there is no STC-violation.

Case 2.2.2: xi = x j . Then, if A(xi) = ‘true’ it follows that {u, v} ∈ S Ri
L ∪ S

F r
i

L and {v, w} ∈ S
T r

i
L . If A(xi) = ‘false’ it follows 

that {u, v} ∈ S Ri
L ∪ S

T r
i

L and {v, w} ∈ S
F r

i
L . In both cases the edges {u, v} and {v, w} are elements of different strong color 

classes. Thus, there is no STC-violation.
Case 3: v ∈ D X . Then v = δt for some t ∈ {1, . . . , �√n � + 9}. Note that the vertices in D X are not adjacent to vertices in 

U X and DC . Thus, it suffices to consider the following subcases.
Case 3.1: u ∈ D X . Then, {u, v} ∈ S Z2

L . If w ∈ D X , then the vertices u, v , and w do not form an induced P3, since D X is a 
clique in G . If w /∈ D X , then {v, w} /∈ S Z2

L . Hence, there is no STC-violation.
Case 3.2: u, w ∈ UC . Then, the vertices u, v , and w do not form an induced P3, since UC forms a clique.
Case 3.3: u, w ∈ M X . By Claim 4, all edges {v, y} ∈ E({v}, M X ) have distinct possible strong colors in �(v) ∩ �(y). Since 

L is �-satisfying, the edges {u, v} and {v, w} are elements of different strong color classes.
Case 3.4: u ∈ M X and w ∈ UC . Then, u = γ r

midX (xi)
for some xi ∈ X with downX (xi) = t and r ∈ {1, 2, 3, 4}. Moreover, w =

ηupC(C j)
for some clause C j containing a variable xi′ with downX (xi′ ) = t . We need to consider the following subcases.

Case 3.4.1: xi �= xi′ . Then, i �= i′ and by Claim 4 we have �(u) ∩�(v) = {T r
i , F

r
i } and by Claim 10 we have �(v) ∩�(w) =

{T r′
i′ , F

r′
i′ } with r′ = �(C j, xi′ ). Then, since L is �-satisfying, {u, v} and {v, w} are not elements of the same strong color 

class.
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Case 3.4.2: xi = xi′ . Then, if A(xi) = ‘true’ it follows that {u, v} ∈ S
T r

i
L and {v, w} ∈ S

F r′
i

L for some r′ ∈ {1, 2, 3, 4}. If A(xi) =
‘false’, then it follows that {u, v} ∈ S

F r
i

L and {v, w} ∈ S
T r′

i
L for some r′ ∈ {1, 2, 3, 4}. In both cases {u, v} and {v, w} are 

elements of different strong color classes.
Case 4: v ∈ UC . Then, v = ηt for some t ∈ {1, . . . , 12�√n � + 1}. Note that the vertices in UC are not adjacent to vertices 

in U X and M X . Thus, it suffices to consider the following subcases.
Case 4.1: u ∈ UC . Then, {u, v} ∈ S Z3

L . If w ∈ UC , then the vertices u, v , and w do not form an induced P3 since U X is a 
clique in G . If w /∈ UC it follows that {v, w} /∈ S Z3

L . Hence, there is no STC-violation.
Case 4.2: u, w ∈ D X or u, w ∈ DC . Then, the vertices u, v , and w do not form an induced P3, since D X and DC form 

cliques in G .
Case 4.3: u ∈ D X and w ∈ DC . Then, there is a clause C j with upC(C j) = t and a clause C j′ containing a variable xi with 

upC(C j′ ) = t and u = δdownX (xi)
, w = θdownC(C j)

. We consider the following subcases.

Case 4.3.1: C j �= C j′ . Then, since upC(C j) = upC(C j′ ) it follows by Claim 7 that C j and C j′ do not share a variable. 

Hence, xi does not occur in C j and therefore T
�(C j′ ,xi)

i , F
�(C j′ ,xi)

i /∈ L(C j). Thus, by Claims 9 and 10 and the fact that L
is �-satisfying, the edges {u, v} and {v, w} are elements of different strong color classes.

Case 4.3.2: C j = C j′ . Let r := �(C j, xi). If {v, w} /∈ S
T r

i
L ∪ S

F r
i

L , the edges {u, v} and {v, w} are elements of different color 

classes. Thus, there is no STC-violation. If {v, w} ∈ S
T r

i
L ∪ S

F r
i

L it follows by the construction of L that C j is satisfied by the 
assignment A(xi). Without loss of generality assume that xi occurs as a positive literal in C j . Then, A(xi) = ‘true’. This 

implies {v, w} ∈ S
T r

i
L and {u, v} ∈ S

F r
i

L . Hence, {u, v} and {v, w} are elements of different strong color classes.
Case 5: v ∈ DC . Then, v is not adjacent with any vertices in U X , M X or D X . Hence, we need to consider the following 

cases.
Case 5.1: u, w ∈ UC or u, w ∈ DC . Then, the vertices u, v , and w do not form an induced P3 since UC and DC are cliques 

in G .
Case 5.2: u ∈ DC and w ∈ UC . Then, {u, v} ∈ S Z4

L and {v, w} /∈ S Z4
L . Hence, there is no STC-violation.

This proves that L is a �-satisfying STC-labeling for G with no weak edges.
(⇐) Conversely, let L be a (9n + 4)-colored �-satisfying STC-labeling for G . We show that φ is satisfiable. We define an 

assignment A : C → {‘true’, ‘false’} by

A(xi) :=
⎧⎨
⎩

‘true’ if {δdownX (xi)
, γ 1

midX (xi)
} ∈ S

T 1
i

L , and

‘false’ if {δdownX (xi)
, γ 1

midX (xi)
} ∈ S

F 1
i

L .

The assignment is well-defined due to Claim 4. The following claim states that, if one occurrence r ∈ {1, 2, 3, 4} of some 
variable xi that is assigned ‘true’ (or ‘false’, respectively), then so is the first occurrence of xi . We obtain this statement by 
using the variable-soundness gadget.

Claim 11. Let xi ∈ X and r ∈ {2, 3, 4}.

a) If {δdownX (xi)
, γ r

midX (xi)
} ∈ S

T r
i

L , then {δdownX (xi)
, γ 1

midX (xi)
} ∈ S

T 1
i

L .

b) If {δdownX (xi)
, γ r

midX (xi)
} ∈ S

F r
i

L , then {δdownX (xi)
, γ 1

midX (xi)
} ∈ S

F 1
i

L .

Proof . We show (a). Let {δdownX (xi)
, γ r

midX (xi)
} ∈ S

T r
i

L . Consider the vertex α(r,1)

upX (xi)
. By Claim 6 we have

�(α
(r,1)

upX (xi)
) ∩ �(γ r

midX (xi)
) = {T r

i , Ri}, and

�(α
(r,1)

upX (xi)
) ∩ �(γ 1

midX (xi)
) = {F 1

i , Ri}.

Note, that the vertices δdownX (xi)
, γ r

midX (xi)
, α(r,1)

upX (xi)
form an induced P3 in G . Since L is a �-satisfying STC-labeling with 

no weak edges, it holds that {γ r
midX (xi)

, α(r,1)

upX (xi)
} ∈ S Ri

L . Then, since the vertices γ r
midX (xi)

, α(r,1)

upX (xi)
, and γ 1

midX (xi)
form an 

induced P3, the same argument implies {α(r,1)

upX (xi)
, γ 1

midX (xi)
} ∈ S

F 1
i

L . Then, since �(δdownX (xi)
) ∩ �(γ 1

midX (xi)
) = {T 1

i , F 1
i } by 

Claim 4 and the fact that δdownX (xi)
, γ 1

midX (xi)
, α(r,1)

upX (xi)
form an induced P3 it follows that {δdownX (xi)

, γ 1
midX (xi)

} ∈ S
T 1

i
L as 

claimed.
Statement (b) can be shown with the same arguments by considering the vertex α(1,r)

X instead of α
(r,1)

X . �

up (xi) up (xi)
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Next we use Claim 11 to show that every clause is satisfied by A. Let C j ∈ C be a clause. Then, there is an edge 
e1 := {ηupC(C j)

, θdownC(C j)
} ∈ E . By Claim 9 we have �(ηupC(C j)

) ∩ �(θdownC(C j)
) = L(C j). Since L is �-satisfying, it follows 

that e1 ∈ SY
L for some Y ∈ L(C j).

Consider the case Y = T r
i for some variable xi that occurs positively in C j and r = �(C j, xi). We show that A(xi) = ‘true’. 

Since xi occurs in C j there is an edge e2 := {δdownX (xi)
, ηupC(C j)

} ∈ E which can only be an element of the strong classes 

S
T r

i
L or S

F r
i

L due to Claim 10. Since e1 and e2 form an induced P3 and L is an STC-labeling we have e2 ∈ S
F r

i
L . The edge 

e3 := {δdownX (xi)
, γ r

midX (xi)
} forms an induced P3 with e2 and can only be an element of the strong classes S

T r
i

L or S
F r

i
L by 

Claim 4. Hence, e3 ∈ S
T r

i
L . By Claim 11 we may conclude {δdownX (xi)

, γ 1
midX (xi)

} ∈ S
T 1

i
L and therefore A(xi) = ‘true’. Hence, C j

is satisfied by A.
For the case Y = F r

i we can use the same arguments to conclude A(xi) = ‘false’. Hence, A satisfies every clause of φ. �
Note that in the instance constructed in the proof of Theorem 2, every edge has at most three possible strong colors 

and c ∈O(n) where n is the number of variables in φ. This implies the following.

Corollary 1. If the ETH is true, then

a) EL-Multi-STC cannot be solved in 2o(|V |2) time even if restricted to instances (G, c, k, �) where k = 0 and maxe∈E |�(e)| = 3.
b) VL-Multi-STC cannot be solved in co(|V |2/ log c) time even if restricted to instances where k = 0.

Since the lower bound holds for instances with k = 0, we also obtain a lower bound for approximation algorithms for
VL-Multi-STC and EL-Multi-STC.

Corollary 2. If the ETH is true, then there exists no approximation algorithm for VL-Multi-STC that runs in time 2o(n2) .

4. Parameterized complexity

Motivated by the strong hardness results from the previous section, we study the parameterized complexity of Multi-

STC and its list variants. The most natural parameter is the number k of weak edges. The case c = 1 (STC) is fixed-parameter 
tractable [35]. For c = 2, we also obtain an FPT algorithm: An STC-labeling with two strong colors corresponds to a proper 
two-coloring of the Gallai graph G̃ of the input graph after deleting the vertices corresponding to weak edges. Thus for c = 2
Multi-STC reduces to Odd Cycle Transversal in G̃ which is fixed-parameter tractable with respect to k [33]. This extends to
EL-Multi-STC with c = 2 by modifying the reduction slightly: After computing the Gallai graph, we add two vertex sets A
and B , each of size k + 1. Moreover, we add edges such that we obtain a biclique where A and B are the partite sets. 
We then connect each vertex that may only choose color 1 with every vertex of A and connect each vertex that may only 
choose color 2 with every vertex of B .

In contrast, for every fixed c ≥ 3, Multi-STC is NP-hard even if k = 0 [30]. Thus, FPT algorithms for the parameters 
c, k, or even the combined parameter (c, k) are unlikely. Instead, we study a structural parameter k1 that is related to k. 
Informally, k1 is the solution size in the case where c = 1. Formally, the parameter is defined as follows.

Definition 5. Let G = (V , E) be a graph with a 1-colored STC-labeling L = (SL, W L) such that there is no 1-colored STC-
labeling L′ = (SL′ , W L′) for G with |W L′ | < |W L |. Then we set k1 = k1(G) := |W L |.

Equivalently, k1(G) is the size of a minimum vertex cover of the Gallai graph G̃ of G [35].

4.1. A fixed-parameter algorithm for (c,k1)

We provide a simple FPT algorithm for EL-Multi-STC parameterized by (c, k1), which is the most general of the three 
problems. The main idea of the algorithm is to solve List-Colorable Subgraph on the Gallai graph of the input graph which 
is equivalent due to Proposition 1.

Let (G, c, k, �) be an instance of EL-Multi-STC. The first step is to compute the Gallai graph G̃ = (Ṽ , Ẽ) of G which has m
vertices and at most nm edges. Observe that (G, c, k, �) is equivalent to the instance (G̃, c, k, �) of List-Colorable Subgraph

due to Proposition 1. We describe an algorithm that solves (G̃, c, k, �) in O((c+1)s ·(|Ṽ | ·c+|Ẽ|)) time, where s = k1 denotes 
the size of a minimum vertex cover of G̃ .

Let S ⊆ Ṽ be a size-s vertex cover of G̃ , which can be computed in O(1.28s + sn) time [3]. Let I := Ṽ \ S denote the 
remaining independent set. We now compute whether G̃ has a subgraph-c-coloring a : Ṽ → {0, 1, . . . , c} with |{v ∈ Ṽ |
a(v) = 0}| ≤ k.

We enumerate all possible mappings aS : S → {0, 1, . . . , c}. Observe that there are (c + 1)s such mappings. For each 
aS we check whether aS (v) ∈ �(v) ∪ {0} for all v ∈ S . Furthermore, we check in O(|Ṽ | · c + |Ẽ|) time whether aS is a 
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Fig. 4. A graph G and vertex lists � of an instance I := (G, c = 2,k = 0,�) of VL-Multi-STC. It is easy to see that I is a no-instance while k1 = 1 < 2 = c.

subgraph-c-coloring for G̃[S]. If this is not the case, then discard the current aS . For every other choice of aS we proceed as 
follows:

We check whether it is possible to extend aS to a mapping a : Ṽ → {0, 1, . . . , c} that is a subgraph-c-coloring for G̃: For 
each vertex v ∈ I we check whether P v := �(v) \ {aS (w) | w ∈ NG̃(v)} is empty. If P v = ∅ we set a(v) = 0. Otherwise, we 
set a(v) = p for some arbitrary p ∈ P v . This can be done in O(|Ṽ | · c +|Ẽ|) time. The resulting mapping a : V → {0, 1, . . . , c}
is a subgraph-c-coloring for G̃ , since aS is a subgraph-c-coloring for G[S] and every v ∈ I has a color a(v) distinct from all 
vertices in N(v) ⊆ S . Finally, we check whether the total number of vertices with a(v) = 0 is at most k. If so, then we accept 
and stop. Otherwise, we continue with the next mapping aS . If we did not accept for any of the enumerated mappings aS , 
then we reject.

The overall running time of the algorithm is O((c + 1)s · (nc + m)). Recall that k1 = s, |Ṽ | = m and |Ẽ| ≤ nm. Therefore, 
we can solve EL-Multi-STC in O((c + 1)k1 · (cm + nm)) time.

Lemma 1. The algorithm described above is correct.

Proof. To see that the above algorithm is correct, observe first that it only accepts if it has found a subgraph-c-coloring 
for G̃ with |{v ∈ Ṽ | a(v) = 0}| ≤ k. For the other direction, assume that there is a subgraph-c-coloring a� : Ṽ → {0, 1, . . . , c}
with |{v ∈ Ṽ | a�(v) = 0}| ≤ k. One of the enumerated mappings aS satisfies aS = a�|S . For this mapping aS the algorithm 
sets a(v) = 0 for some vertex v ∈ I if and only if �(v) \ {a�(w) | w ∈ NG̃(v)} is empty. Thus, the number of vertices v ∈ Ṽ

with a(v) = 0 is at most |{v ∈ Ṽ | a�(v) = 0}| ≤ k, as required. �
We obtain the following fixed-parameter tractability result.

Theorem 3. EL-Multi-STC can be solved in O((c + 1)k1 · (cm + nm)) time.

Next, we conclude that Multi-STC parameterized by k1 alone is fixed-parameter tractable. To this end we observe the 
following relationship between c and k1.

Lemma 2. Let G = (V , E) be a graph. For all c, k ∈ N with c > k1(G) it holds that (G, c, k) is a yes-instance for Multi-STC.

Proof. Let c > k1. Then there exists an STC-labeling L = (SL, W L) for G with one strong color and |W L | = k1. Let 
e1, e2, . . . , ek1 be the weak edges of L. We define a c-colored labeling L+ := (S1

L+ , . . . , Sc
L+ , W L+ ) by

W L+ := ∅ and Si
L+ :=

⎧⎪⎨
⎪⎩

{ei} for i ∈ {1, . . . ,k1},

SL for i = k1 + 1,

∅ for i ∈ {k + 2, . . . , c}.

Since c > k1, every edge of G is labeled by L+ . Because L is an STC-labeling, there is no induced P3 containing two edges 
from Sk1+1

L+ = SL . Moreover, since |Si
L+| ≤ 1 for i �= k1 + 1, the labeling L+ satisfies STC. Since |W L+| = 0, it holds that 

(G, c, k) is a yes-instance for Multi-STC for every k ∈ N. �
Lemma 2 implies an FPT algorithm for Multi-STC parameterized by k1 alone: Let (G, c, k) be an instance of Multi-STC. If 

c > k1, then (G, c, k) is a yes-instance by Lemma 2. We thus only need to consider instances with c ≤ k1. Replacing c by k1
in the running time bound of Theorem 3 then gives the following.

Corollary 3. Multi-STC can be solved in O((k1 + 1)k1 · (k1m + nm)) time.

4.2. W[1]-hardness for vertex-list multi-STC parameterized by k1

The fixed-parameter tractability of Multi-STC parameterized by k1 alone relies on the relationship between c and k1
from Lemma 2. Unfortunately, Lemma 2 does not hold for VL-Multi-STC: Fig. 4 shows an example.

We now show that there is little hope to obtain fixed-parameter tractability for the list variants of Multi-STC parame-
terized by k1 by giving a parameterized reduction from Set Cover which is defined as follows.
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Set Cover

Input: A finite universe U ⊆ N, a family F ⊆ 2U , and an integer t ∈ N.
Question: Is there a subfamily F ′ ⊆F with |F ′| ≤ t such that

⋃
F∈F ′ F = U ?

More precisely, we reduce from Set Cover parameterized by the dual parameter |F | − t . The W[1]-hardness of Set Cover

for this parameterization follows from a classic reduction from Independent Set [22]. We provide it here for the sake of 
completeness.

Proposition 3. Set Cover parameterized by |F | − t is W[1]-hard.

Proof. The Independent Set problem asks for a given graph G = (V , E) and integer s whether there is a subset V ′ ⊆ V of 
size at least s such that the vertices in V ′ are pairwise non-adjacent in G . It is known to be W[1]-hard when parameterized 
by s [8].

Let (G = (V , E), s) be an instance of Independent Set. We construct a Set Cover-instance (U , F , t) as follows. Set U := E , 
F := {F v | v ∈ V } with F v := {{v, u} | u ∈ N(v)} and t := |V | − s. Note that |F | = |V |, hence |F | − t = |V | − (|V | − s) = s. �
Theorem 4. VL-Multi-STC parameterized by k1 is W[1]-hard, even if k = 0.

Proof. We give a parameterized reduction from Set Cover parameterized by |F | − t which is W[1]-hard due to Propo-
sition 3. For a given Set Cover-instance (U , F , t) we describe how to construct an equivalent VL-Multi-STC-instance 
(G = (V , E), c, k, �) with k1 ≤ |F | − t and k = 0. Let F = {F1, . . . , F |F |}. Define the vertex set V of the input graph G
by V := U ∪ Z ∪ {a} where a is a new vertex and Z := {zi | i ∈ {t + 1, t + 2, . . . , |F |}}. Define the edge set of G by 
E := EU ∪ EUa ∪ E Za with

• EU := {{v, w} | v, w ∈ U },
• EUa := {{u, a} | u ∈ U }, and
• E Za := {{z, a} | z ∈ Z}.

Note that |E Za| = |Z | = |F | − t and that U is a clique.
We let c := |F | + 1 and define the lists � as

�(v) :=
{

{i | v ∈ Fi} ∪ {|F | + 1} if v ∈ U ,

{1,2, . . . , |F |} if v /∈ U .

The idea behind this construction is that the vertex a selects sets from F by labeling the edges in EUa . The edges in E Za

ensure, that there are exactly t different strong colors left for the edges in EUa .
We first show that k1 ≤ |F | −t . Let e1, e2 ∈ E be the edges of an induced P3 in G . Since U ∪{a} is a clique by construction, 

at least one of the edges e1 or e2 has one endpoint in Z , hence it belongs to E Za . Since every P3 in G contains at least one 
edge from E Za it follows that defining E Za as weak edges and EU ∪ EUa as strong edges yields an STC-labeling with one 
strong color. This labeling has |E Za| = |F | − t weak edges, hence k1 ≤ |F | − t .

It remains to show that (U , F , t) has a solution F ′ of size t if and only if G has a �-satisfying STC-labeling L =
(S1

L , . . . , S
|F |+1
L , W L) with W L = ∅.

(⇒) Let F ′ ⊆ F be a set cover of U with |F ′| = t . Without loss of generality (by renaming) let F ′ = {F1, F2, . . . , Ft}. 
We define an STC-labeling L = (S1

L , . . . , S
|F |+1
L , ∅) as follows. We start by defining the classes Si

L for each i ∈ {t + 1, t +
2, . . . , |F | + 1}. We set

Si
L := {{a, zi}} for every i ∈ {t + 1, t + 2, . . . , |F |} and S |F |+1

L := EU .

Note that St+1
L ∪· · ·∪ S |F |+1

L = EU ∪ E Za , so by defining the strong color classes St+1
L , . . . , S |F |+1

L we have labeled all edges in 
EU ∪ E Za . Before we continue with the definition of L, we show that the definition of the strong classes St+1

L , . . . , S |F |+1
L does 

not violate the STC property and every edge in EU ∪ E Za satisfies the �-list property. Since U is a clique by construction, 
there is no induced P3 containing two edges from S |F |+1

L violating STC in EU . Moreover, since all sets St+1
L , . . . , S |F | contain 

exactly one edge, there is obviously no STC violation in E Za . For every vertex u ∈ U it holds that |F | + 1 ∈ �(u), hence the 
�-list property is satisfied for every e ∈ EU . Since {1, 2, . . . , |F |} = �(a) = �(zt+1) = · · · = �(z|F |), the edges in E Za also 
satisfy the �-list property.

We now label the edges in EUa by defining the sets S1
L , . . . , S

t
L . Recall that F ′ = {F1, . . . , Ft} is a set cover of size t . We 

set

S1
L := {{u,a} | u ∈ F1} and Si

L := {{u,a} | u ∈ Fi \ (F1 ∪ · · · ∪ Fi−1)} for each i ∈ {2,3, . . . , t}.
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Obviously, each edge of EUa is an element of at most one of the sets S1
L , . . . , S

t
L . Since F ′ is a set cover, we know that 

F1 ∪ · · · ∪ Ft = U . Hence, S1
L , . . . , S

t
L is a partition of EUa . Since U ∪ {a} forms a clique, no pair of edges in EUa violates the 

definition of STC-labellings. Moreover, since the edges in EUa receive different colors from the edges in E Za , no pair of edges 
from these two sets violates the definition of STC-labellings. From the definition of � we know that �(a) = {1, . . . , |F |} and 
for every u ∈ U it holds that i ∈ �(u) if u ∈ Fi . Hence, every edge in EUa satisfies the �-list property. It follows that L is a 
c-colored STC-labeling with W L = ∅ such that every edge satisfies the �-list property under L.

(⇐) Conversely, let L = (S1
L , . . . , S

|F |+1
L , ∅) be a c-colored STC-labeling for G such that every edge of G satisfies the 

�-list property. We will construct a set cover F ′ ⊆F with |F ′| ≤ t . We focus on the vertex a and its incident edges. Those 
are exactly the edges of EUa ∪ E Za . Since there are no weak edges, we know that all those edges are elements of strong 
color classes Si

L . Since L is an STC-labeling and every pair of edges e, e′ ∈ E Za forms a P3, it follows by |E Za| = |F | − t that 
the edges in E Za are elements of |F | − t distinct color classes. Because there is no edge between the vertices of U and Z , it 
also holds that there is no e ∈ EUa that is an element of the same strong color class as some e′ ∈ E Za . Otherwise, e and e′
form a P3 with the same strong color which contradicts the fact that L is an STC-labeling. It follows that the edges in EUa

are elements of at most t distinct strong color classes, since |�(a)| = |F | and every edge of G satisfies the �-list property 
under L. Without loss of generality (by renaming) we can assume that those strong color classes are S1

L , . . . , S
t
L . Recall that 

F = {F1, F2, . . . , F |F |}. We define

F ′ := {F1, F2, . . . , Ft}.

Obviously, |F ′| = t . It remains to show that F ′ is a set cover. The fact that all edges of G satisfy the �-list property under 
L, implies that for every u ∈ U there is a j ∈ {1, . . . , t} such that j ∈ �(u). Since �(u) = {i | u ∈ Fi} ∪ {|F | + 1} for all u ∈ U
by construction, it follows that every u ∈ U is an element of one of the sets F1, F2, . . . , Ft . Hence, U = F1 ∪ F2 ∪ · · · ∪ Ft and, 
thus, F ′ is a set cover of size t . �

A closer look at the instance (G, c, k, �) for VL-Multi-STC constructed from the Set Cover instance (U , F , t) in the proof 
of Theorem 4 reveals that c = |F | + 1 and k1 ≤ |F | − t . It follows that c + k1 ≤ 2|F | + 1, so the construction is a polynomial 
parameter transformation from Set Cover parameterized by |F | to VL-Multi-STC parameterized by (c, k1). Now, since Set 
Cover parameterized by |F | does not admit a polynomial kernel unless NP ⊆ coNP/poly [7] we obtain the following.

Corollary 4. VL-Multi-STC parameterized by (c, k1) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

4.3. On problem kernelization

Since EL-Multi-STC is a generalization of VL-Multi-STC, Corollary 4 implies that there is no polynomial kernel for EL-

Multi-STC parameterized by (c, k1) unless NP ⊆ coNP/poly. We now show that there is a 2c+1 · k1-vertex kernel for EL-

Multi-STC. To this end, we define a new parameter τ as follows. Let I := (G, c, k, �) be an instance of EL-Multi-STC. 
Then τ := |�(E) \ {∅}| is defined as the number of different non-empty edge lists occurring in the instance I . It clearly 
holds that τ ≤ 2c − 1.

For this kernelization we use critical cliques and critical clique graphs [32]. These concepts were also used to obtain linear-
vertex kernels for graph clustering problems parameterized by the number of edge modifications [16,4] and for STC [14]
parameterized by the number of weak edges k. Since for STC we can assume that k = k1, the kernelization described here 
lifts this linear-vertex kernel for STC to the more general EL-Multi-STC.

Definition 6. A critical clique of a graph G is a clique K where the vertices of K all have the same neighbors in V \ K , that 
is, ∀u, v ∈ K : N(u) \ K = N(v) \ K , and K is maximal under this property. Given a graph G = (V , E), let K be the collection 
of its critical cliques. The critical clique graph C of G is the graph (K, EC) with {Ki, K j} ∈ EC ⇔ ∀u ∈ Ki, v ∈ K j : {u, v} ∈ E .

For a critical clique K we let N (K ) := ⋃
K ′∈NC(K ) K ′ denote the union of its neighbor cliques in the critical clique graph 

and N 2(K ) := ⋃
K ′∈N2

C(K ) K ′ denote the union of the critical cliques at distance exactly two from K . The critical clique graph 
can be constructed in O(n + m) time [19].

Critical cliques are an important tool for EL-Multi-STC, because every edge contained in some critical clique is not part 
of any induced P3 in G . Hence, each such edge e is strong under any STC-labeling unless �(e) = ∅. In the following, we will 
distinguish between two types of critical cliques. We say that a critical clique K is closed if N (K ) forms a clique in G and 
that K is open otherwise. The number of vertices in open critical cliques is at most 2k1 [14]. The main reduction rule of this 
kernelization describes how to deal with large closed critical cliques. Before we give the concrete rules we provide a useful 
property of closed critical cliques. Informally, Lemma 3 states that edges between a closed critical clique and a neighbor 
vertex all behave the same if they have the same strong color lists.

Lemma 3. Let G = (V , E) be a graph, let K be a closed critical clique in G, and let � : E → 2{1,...,c} a mapping for some c ∈ N. 
Moreover, let v ∈ N (K ) and E ′ ⊆ E({v}, K ) such that all e′ ∈ E ′ have the same strong color list under �. Then, there is an optimal 
STC-labeling L = (S1, S2, . . . , Sc , W L) for G and � such that E ′ ⊆ A for some A ∈ {S1, . . . , Sc , W L}.
L L L L L
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Algorithm 1 EL-Multi-STC kernelization.
1: Input: A graph G = (V , E) graph and a closed critical clique K ⊆ V in G
2: for each v ∈N (K ) do
3: for each ψ ∈ {�(e) �= ∅ | e ∈ E({v}, K )} do
4: i := 0
5: for each w ∈ N(v) ∩ K do
6: if �({v, w}) = ψ then
7: Mark w as important
8: i := i + 1
9: if i = |E({v}, N 2(K ))| then

10: break
11: Delete all vertices u ∈ K which are not marked as important from G
12: Decrease the value of k by the number of edges e such that e is incident with a deleted vertex u and �(e) = ∅.

Proof. Pick an optimal STC-labeling L = (S1
L , S

2
L , . . . , S

c
L, W L). If E ′ ⊆ W L nothing more needs to be shown. Otherwise, if 

E ′ � W L , there exists an edge e ∈ E ′ with e ∈ Si
L for some i ∈ {1, . . . , c}.

We then define a labeling L̂ = (S1
L̂
, S2

L̂
, . . . , Sc

L̂
, W L̂) by Si

L̂
:= Si

L ∪ E ′ , W L̂ := W L \ E ′ and S j

L̂
:= S j

L \ E ′ for j �= i and show 
that L̂ is a �-satisfying optimal STC-labeling.

Let e ∈ E be an edge that forms an induced P3 with some edge in E ′ . Since K ∪N (K ) forms a clique by the definition 
of closed critical cliques, it follows that e ∈ E({v}, N 2(K )). Note that e also forms an induced P3 with e. Then, e /∈ Si

L̂
since 

L is an STC-labeling and e ∈ Si
L . Hence, L̂ does not violate STC. Moreover, it holds that |W L̂ | ≤ |W L | and thus, L̂ is optimal.

From the definition of E ′ and the fact that e ∈ Si
L , we know that i ∈ �(e′) for all e′ ∈ E ′ . Hence, L̂ is �-satisfying. �

We now may use Lemma 3 in the following way. We take a critical clique K and for each vertex v ∈ N (K ) and each 
color list we take an edge between v and K with that color list and we mark the other end of that edge. Then we remove 
all vertices in K that are not marked, see Algorithm 1. The remaining vertices (and edges) represent the deleted vertices 
and using Lemma 3 we can show that the deleted edges behave the same as the remaining ones. This gives rise to the 
following reduction rule.

Rule 1. If G has a closed critical clique K with |K | > τ · |E(N (K ), N 2(K ))|, then apply Algorithm 1 on G and K .

Proposition 4. Rule 1 is safe and can be applied in polynomial time.

Proof. Let (G = (V , E), c, k, �) be an instance for EL-Multi-STC and let K be a closed critical clique. We show that 
Algorithm 1 applied on G and K runs in O(n3) time and produces an equivalent instance (G ′ = (V ′, E ′), c, k′, �′) for EL-

Multi-STC.
Since |N (K )|, |N(v) ∩ K | ≤ n and |{�(e) �= ∅ | e ∈ E({v}, K )}| ≤ |K | ≤ n, the given algorithm clearly runs in O(n3) time. 

It remains to show that the produced instance I ′ := (G ′ = (V ′, E ′), c, k′, �′) is equivalent to I := (G = (V , E), c, k, �). Let 
D V ⊆ V be the set of vertices that were deleted by Algorithm 1, let D E be the set of edges that are incident with some 
v ∈ D V and let D∅

E ⊆ D E be the set of edges e ∈ D E with �(e) = ∅. We have

G ′ = (V \ D V , E \ D E); k′ = k − |D∅
E |; and �′ = �|E\D E .

We also define K ′ := K \ D V as the modified critical clique in G ′ .
(⇒) Let L = (S1

L , S
2
L , . . . , S

c
L, W L) be a �-satisfying STC-labeling for G such that |W L | ≤ k. We define a labeling L̂ =

(S1
L̂
, . . . , Sc

L̂
, W L̂) by W L̂ := W L \ D E and Si

L̂
:= Si

L \ D E for each i ∈ {1, . . . , c}. The fact that L is �-satisfying implies that L̂

is �′-satisfying. It also holds that

|W L̂ | = |W L \ D E | = |W L | − |W L ∩ D E | ≤ k − |D∅
E | = k′,

since D∅
E ⊆ W L ∩ D E . It remains to prove that L̂ does not violate STC. Assume there is an induced P3 on vertices u, v , 

and w in V ′ with edges {u, v}, {v, w} ∈ Si
L̂

for some 1 ≤ i ≤ c. It follows that {u, w} ∈ D E , since L is an STC-labeling. Then, 
by the definition of D E , at least one of the vertices u or w was deleted by the algorithm. This contradicts the fact that 
u, w ∈ V ′ = V \ D V . It follows that L̂ is a �′-satisfying STC-labeling for G ′ with at most k′ weak edges.

(⇐) Conversely, let L̂ = (S1
L̂
, . . . , Sc

L̂
, W L̂) be a �′-satisfying STC-labeling for G ′ such that |W L̂ | ≤ k − |D∅

E |. We define a 
�-satisfying STC-labeling L for G , with |W L | ≤ k. We first show that if a vertex in N (K ′) is connected to K ′ by many edges 
with the same strong color list, then these edges may receive the same strong color. To show the claim, consider a fixed 
vertex v ∈N (K ′) and a set K v ⊆ K ′ such that all edges in E({v}, K v ) have the same strong color list ψ �= ∅ under �′ .

Claim 12. If |K v | ≥ |E({v}, N 2(K ′))|, then we can assume that E({v}, K v) ⊆ Si for some 1 ≤ i ≤ c.

L̂
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Proof . Since K ′ is a closed critical clique, we can assume by Lemma 3, that either all edges in E({v}, K v) are weak or have 
the same strong color under L̂. In the latter case, the claim is directly fulfilled. Thus, assume the first case holds, that 
is, E({v}, K v) ⊆ W L̂ . Note that, whenever an edge e ∈ E({v}, K v) forms an induced P3 with another edge e′ , it follows that 
e′ ∈ E({v}, N 2(K ′)). Let i ∈ ψ . We define a new labeling P = (S1

P , . . . , Sc
P , W P ) for G ′ by

Si
P := Si

L̂
∪ E({v}, K v) \ E({v},N 2(K ′)),

W P := W L̂ \ E({v}, K v) ∪ (Si
L̂
∩ E({v},N 2(K ′))), and

S j
P := S j

L̂
for all j �= i.

From |K v | ≥ |E({v}, N 2(K ′))| we conclude

|W P | = |W L̂ | − |E({v}, K v)| + |Si
L̂
∩ E({v},N 2(K ′))|

≤ |W L̂ | − |K v | + |E({v},N 2(K ′))|
≤ |W L̂ |.

Moreover, P clearly is �′-satisfying. It remains to show that P is an STC-labeling, which means that there is no induced P3
containing an edge e ∈ E({v}, K v) ⊆ Si

P and another edge e′ ∈ Si
P . As mentioned above, the edges in E({v}, K v ) only form an 

induced P3 with edges from E({v}, N 2(K ′)). By the construction of P , no edge from E({v}, N 2(K ′)) belongs to Si
P . Hence, 

P is an STC-labeling. �
Let thus L̂ be such that the assumption of Claim 12 holds simultaneously for all eligible v ∈ N (K ′) and K v . We define 

the labeling L for G by extending L̂. We set W L := W L̂ ∪ D∅
E . Since |W L̂ | ≤ k − |D∅

E |, it holds that |W L | ≤ k. It remains to 
label all edges in D E \ D∅

E . Let u be some fixed vertex in D V and v ∈ N(u) such that {u, v} /∈ D∅
E .

Case 1: If v ∈ K , then the edge {u, v} is an edge between two vertices of a critical clique. Since {u, v} /∈ D∅
E , there is some 

i ∈ �({u, v}). We add {u, v} to Si
L . Clearly, {u, v} satisfies the �-list property. Since {u, v} is not part of any induced P3 this 

does not violate STC.
Case 2: If v ∈ N (K ), then there is a set Y ⊆ K ′ containing at least |E({v}, N 2(K ))| vertices distinct from u such that 

�({v, y}) = �({v, u}) for every y ∈ Y . Otherwise, u would have been marked as important by Algorithm 1, which contradicts 
the fact that u ∈ D V . From Claim 12, we know that all edges in EG ′ ({v}, Y ) are elements of the same strong color class Si

L̂
for 

some i ∈ {1, . . . , c}. We set Si
L := Si

L̂
∪ {{u, v}}. Clearly, {u, v} satisfies the �-list property under L. Moreover, adding {u, v}

to Si
L does not violate STC: The only edges that form an induced P3 with {u, v} are the edges in E({v}, N 2(K )). Now, 

since EG ′ ({v}, Y ) ⊆ Si
L̂

and since L̂ is an STC-labeling for G ′ , none of these edges is contained in Si
L̂
.

Consequently, L is a �-satisfying STC-labeling for G with |W L | ≤ k. �
We now consider instances that are reduced regarding Rule 1. The following upper bound of the size of closed critical 

cliques is important for the kernel result.

Lemma 4. Let (G, c, k, �) be a reduced instance for EL-Multi-STC. For every closed critical clique K in G it holds that |K | ≤ τ ·
|E(N (K ), N 2(K ))|.

Proof. We prove the lemma by having a closer look at the vertices that were not deleted by Algorithm 1. Note that the 
algorithm is applied on every closed critical clique K with |K | > τ · |E(N (K ), N 2(K ))|. Every vertex that was not marked as 
important in Line 7 of the algorithm is deleted from G . Note that there are at most τ possible images ψ of � : E → 2{1,...,c} . 
By Lines 7, 9, and 10 it holds that for every v ∈ N (v) the algorithm marks at most τ · |E({v}, N 2(K ))| vertices of K . 
Consequently, there are at most

τ ·
∑

v∈N (K )

|E({v},N 2(K ))| = τ · |E(N (K ),N 2(K ))|

marked vertices in K , since {E({v}, N 2(K )) | v ∈ N (v)} forms a partition of E(N (K ), N 2(K )). Hence, |K | ≤ τ ·
|E(N (K ), N 2(K ))| for every closed critical clique K in G . �
Theorem 5. EL-Multi-STC admits a problem kernel with at most (τ + 1) · 2k1 vertices.

Proof. Let (G = (V , E), c, k, �) be a reduced instance for EL-Multi-STC. We show that |V | ≤ (τ + 1) · 2k1.
The overall number of vertices in open critical cliques is at most 2k1 [14]. Let K be some closed critical clique. We now 

transform the graph G into a modified graph G ′ in the following way. We replace every closed critical clique K with a critical 
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clique K ′ such that |K ′| = |K |
τ . From Lemma 4 we know that |K | ≤ τ · |E(N (K ), N 2(K ))| for every closed critical clique K

in G . Consequently, |K ′| ≤ |E(N (K ), N 2(K ))| for every closed critical clique K ′ in G ′ . As shown previously, this implies that 
the overall number of vertices in closed critical cliques in G ′ is at most 2k1 [14, Proof of Theorem 1]. Hence, the overall 
number of vertices in closed critical cliques in G is at most τ · 2k1, which gives us |V | ≤ 2k1 + τ · 2k1 = (τ + 1) · 2k1. �

Recall that for any EL-Multi-STC instance (G, c, k, �) we have τ ≤ 2c − 1. Also, Multi-STC is the special case of EL-

Multi-STC where every edge has the list {1, 2, . . . , c}, and thus τ = 1. These two facts imply the following.

Corollary 5. EL-Multi-STC admits a problem kernel with at most 2c+1k1 vertices. Multi-STC admits a problem kernel with at most 
4k1 vertices.

5. Conclusion

We have provided a first study of the computational complexity of Multi-STC and two of its generalizations. There are 
many interesting research questions that can be pursued in future work. Most importantly, it is open whether Multi-STC

admits an algorithm with running time 2O(n) , even when k = 0. Let us remark that an algorithm with such a running time 
is also open for Edge Coloring: so far, it is only known that List-Edge Coloring, where a color list is given for each edge, 
admits no 2o(n2)-time algorithm under the ETH. A first step to prove a lower bound for Edge Coloring could be to prove 
that a vertex-list version of Edge Coloring admits no 2o(n2)-time algorithm as well.

For Multi-STC with c = 2, there exists a polynomial kernel for the parameter k: There is a parameter preserving reduc-
tion to Odd Cycle Transversal [35] which has a polynomial kernel [28]. Then, since Multi-STC with c = 2 is NP-hard and
Odd Cycle Transversal is in NP, there exists a polynomial kernel for Multi-STC. However, an interesting open question is if 
one could think of any direct problem kernelization for the parameter k.

A further direction of research could be to identify other applications of the structural parameter k1 which is the vertex 
cover number of the Gallai graph. Even more generally, it seems interesting to study which graph problems become tractable 
when the Gallai graph of the input graph has a certain structure. To this end, one could further study relations between 
the structure of a graph and the structure of its Gallai graph. For example, is it possible to describe certain natural graph 
classes compactly via forbidden induced subgraphs of their Gallai graphs?
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