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Abstract 

Plant effector biology is a research area that describes how plant-associated organisms modulate host 

structures and functions to promote colonization by using small molecules (effectors). In this article, we 

analyzed the 249 most highly-cited publications focused on plant pathogen effectors (aka Highly 

Influential studies on plant Pathogen Effectors; thereafter HIPEs) published between 2000 and 2020. 

This analysis identified outstanding countries, organizations, and journals that contributed HIPEs, as 

well as the evolution of research trends, model molecules, and model organisms over the last two 

decades. We notably show an increasing proportion of studies focused on effectors of biotrophic and 

hemibiotrophic fungi upon time. Our snapshot of the top tier plant effector biology papers will help 

readers gain a comprehensive and analytical understanding of this research area. 
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Introduction
Plant pathogens threaten agricultural production 

by triggering dramatic yield losses worldwide 

(Savary et al., 2019). The effector biology 

research field explains how pathogens 

manipulate their host(s) to promote infection 

through the modulation of host structures and 

processes, and aims at leveraging that 

knowledge to ultimately improve plant health 

(Win et al., 2012). Since the 2000s, this field of 

research grew spectacularly, with an exponential 

increase in the number of publications 

(https://www.webofscience.com;Supplementary 

Figure S1). During these two decades, our 

understanding of effector diversity and functions 

has improved, notably thanks to functional 

genomic studies. However, there are only a few 

studies that comprehensively inventory the 

major findings and concepts of plant effector 

biology, which makes it difficult for junior 

researchers to gain a broad expert and conceptual 

understanding of the research field. 

To build a snapshot of top tier research in plant 

effector biology, we implemented the 'HIP in' 

('Highly-Influential Publication in' ...) method 

that we recently described (Petre et al., 2021). 

We report here a bibliometric analysis of 249 

Highly Influential (i.e. highly cited) papers on 

plant Pathogen Effectors (thereafter HIPEs) 

published between 2000 and 2020. We describe 

the concepts, model objects, and findings shared 

by HIPEs, as well as the research community 

that shared them. We notably show the 

increasing importance of fungi as model 

pathogens over time, and highlight key fungal 

species. 

A bibliometric pipeline identifies 249 

highly influential publications addressing 

plant pathogen effectors 

To identify the most influential publications that 

addressed plant pathogen effectors over the last 

two decades, we implemented a previously-

described bibliometric pipeline (Petre et al., 

2021), which mostly uses the Web of Science 

database (https://www.webofscience.com) and a 

reference management software (here 

Mendeley). We selected the top three most cited 

research articles or reviews for each year 

between 2000 and 2020, which we identified via 

three successive searches using the key words 

'plant pathogen effectors', 'plant pathogen 

avirulent effectors', and 'plant pathogen virulent 

https://www.webofscience.com/
https://www.webofscience.com/


effectors' (Figure 1A; Dataset 1; see 

Supplementary Methods and Supplementary 

Figure S2 for details). In total, we collected and 

archived 249 HIPEs (127 research articles and 

122 reviews; hereafter the 'HIPE collection') on 

the following public web address: 

https://www.zotero.org/groups/4410902/hipe_c

ollection/library. 

The HIPEs represents 4% of all the publications 

identified via the three searches above 

mentioned, but their annual citation rate is 

approximately four times higher (25 vs. 6 on 

average; Figure 1B). The HIPE with the highest 

number of citations (6503) and annual citation 

rate (414) is the review that presented the 

seminal zig-zag model (Jones and Dangl, 2006). 

Interestingly, the current five years impact 

factors of the journals in which HIPEs were 

published do not correlate with HIPEs annual 

citation rate, indicating that the journal impact 

factor is a poor indicator of HIPEs influence 

(Figure 1C). As a note, only 19 out of 249 HIPEs 

overlap with the collection of highly-cited 

papers in plant immunity (HIPPYs) described in 

our previous paper (Petre et al., 2021; Dataset 1, 

column B). To summarize, HIPEs represent an 

original collection of influential studies that 

pertains to plant pathogen effectors, and that is 

suitable for further analyses. 

 

 

Figure 1. HIPEs are highly cited studies addressing plant pathogen effectors 

 (A)  Venn diagram indicating the number of overlapping publications between the three group of key words ('plant pathogen 

effectors', 'plant pathogen avirulence effectors' and 'plant pathogen virulence effectors') used to build the HIPE collection. The 

number of publications is shown between parentheses. (B) Boxplots displaying the annual citation rate of all publications 

identified with the keyword searches (left-hand side; ‘All publications’) and the HIPEs only (right-hand side; ‘Corpus only’). 

The boxplot outliers are indicated as dots. The number and the average of publications considered is indicated below each 

boxplot (N and Avg value, respectively). (C) Scatterplot displaying the annual citation rate of individual HIPEs according to 

the value of the current five-year journal impact factor of the journal in which the HIPEs were published. Black and grey dots 

indicate research articles and reviews, respectively. Linear trendlines are indicated for each article type along with trendline 

equations and r-squared values, with the same color-code as previously. In (B) and (C), the red arrow indicates the HIPE with 

the highest annual citation rate, which corresponds to the 2006 review by Jones and Dangl that presented the zig-zag model of 

the plant immune system. The raw data used to build this figure are available in the Dataset 1. 

https://www.zotero.org/groups/4410902/hipe_collection/library
https://www.zotero.org/groups/4410902/hipe_collection/library
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A small influential community publishes the 

majority of the HIPEs 

To identify the research community that 

publishes the HIPEs, we extracted from HIPEs 

metadata the main countries and institutions to 

which HIPEs corresponding authors are 

affiliated, as well as the journals that published 

them. Overall, 19 countries, 87 institutions 

(comprising 154 affiliated corresponding 

authors), and 67 journals published the 

HIPEs (Dataset 1). Interestingly, only a handful 

of scientific actors contributed most of the 

collection (Table 1).  Indeed, three countries 

(USA, UK, and Germany) published 62% of the 

HIPEs, whereas four institutions published a 

quarter of the HIPEs: the Max Planck Institute 

(MPI, Germany), The Sainsbury Laboratory 

(TSL, UK), the National Research Institute for 

Agriculture, Food, and Environment (INRAE, 

France) and the Wageningen University & 

Research (WUR, Netherlands). Also, four 

journals (Science, Annual Review of 

Phytopathology, PNAS, and The Plant Cell) 

contributed over a quarter of the HIPEs. 

Altogether, this analysis indicates that HIPEs are 

shared by a restricted number of academic actors 

mostly based in Western Europe and in the USA.  

Table 1. Top countries, institutions, and journals that publish the most HIPEs.  

Country, institution, or journala 
Number 

of HIPEs 

Number of 

citations 
Number of 

corresponding authors  
Current 5-year 

journal impact factor 

USA 88 25,167 52 - 

UK 35 13,939 25 - 

Germany 31 7,581 19 - 

INRAE (France) 18 3,099 13 - 

TSL (UK) 15 10,082 7 - 

MPI (Germany) 15 4,034 10 - 
WUR (Netherlands) 14 3,190 6 - 

Science  20 7,013 - 44.37 

Annual Review of Phytopathology 19 4,925 - 13.87 

PNAS  17 4,702 - 10.62 

The Plant Cell 17 3,686 - 10.14 
a USA: United States of America; UK: United Kingdom; INRAE: Institut National de Recherche pour l’Agriculture, 

l’Alimentation et l’Environnement; TSL: The Sainsbury Laboratory; MPI: Max Planck Institute; WUR: Wageningen 

University & Research; PNAS: Proceedings of the National Academy of Science of the USA. 

HIPEs collectively address seven main 

research questions, whose relative 

importance within the HIPE collection 

evolved over time 

To identify the main research questions 

addressed by the HIPEs, we performed an 

iterative analytical reading combined with key 

word tagging of all the collection aimed at 

identifying HIPEs main research topics and sub-

topics. This analysis identified seven main 

research topics as follow: 1) the 'PTI' (PAMP-

triggered immunity; what is the interplay 

between PTI and effectors?; 10 HIPEs), 2) the 

'ETI' (Effector-triggered immunity; what is the 

interplay between ETI and effectors?; 41 

HIPEs), 3) the 'ETS' (Effector-triggered 

susceptibility; how do effectors modulate host 

functions?; 78 HIPEs), 4) the 'Effector 

trafficking' topic (how do pathogens deliver 

effectors to the host?; 16 HIPEs), 5) the 

'Pathogen highlight' topic (what is the current 

knowledge in the field for specific pathogen 

species?; 12 HIPEs), 6) the 'Pathoresources' 

topic (how to build and leverage technological 

innovation and resources to better understand 

plant-pathogen interactions?; 53 HIPEs), and 7) 

the 'General review' topic (how do we 

conceptually understand the role of effectors in 

plant-pathogen interactions?; 39 HIPEs) (see 

Supplementary Text for details). Interestingly, 

the annual citation rate is comparable between 

these main research topics (Supplementary 

Figure S3). 

To gain a more accurate understanding of HIPEs 

research questions, we further grouped HIPEs 

into 20 sub-topics (Figure 2). Thus, each of the 



seven main research topics comprises two to five 

sub-topics that pertain to a more specific 

research question. For example, the ETI topic 

comprises two sub-topics: 'Immune receptors' 

(what are the receptors that recognize 

effectors?) and 'Effector recognition' (how do 

immune receptors recognize effectors and signal 

that recognition?). Overall, these sub-topics 

highlight several specific research questions and 

the main addressed are: 'what is the function of 

pathogenic effectors in the host?' (18% of 

HIPEs, ETS topic) and 'how do we develop and 

use omics data to identify pathogenic effectors?' 

(16% of HIPEs, Pathoresources topic).

 

Figure 2. HIPEs pertain to seven main research topics 

Pie chart displaying the seven main research topics and 20 sub-topics addressed by the HIPEs and their publication trends over 

time. The main research topics, sub-topics and trendlines associated are color-coded as indicated in Figure S3. Research sub-

topics are indicated as separated pie segments within a main topic. The categorization of each HIPEs was based on iterative 

expert reading and key word association of the entire HIPE collection. Numbers above the main research topics indicate the 

total number of HIPEs for each topic. Trendlines indicate the number of HIPEs for each topic according to four five-year time 

frames: 2000-2005; 2006-2010; 2011-2015 and 2016-2020. PTI: PAMP-triggered immunity; ETI: Effector-triggered 

immunity; ETS: Effector-triggered susceptibility. The raw data used to build this figure are available in the Dataset 1. 

 

To identify potential research trends within the 

HIPEs, we analyzed the evolution of the number 

of publications in each of the seven main topic 

between 2000 and 2020, by five-year time 

frames (i.e. 2000-2005, 2006-2010, 2011-2015, 

and 2016-2020). That analysis showed that most 

topics remain stable over time. In contrast, the 

two topics Effector trafficking and 

Pathoresources showed marked trends of 

decrease and increase over time, respectively. 

The Effector trafficking topic declined markedly 

over the years, mainly due to the reduction of 

HIPEs addressing the bacterial Type III or Type 

IV secretion system. The strong controversy on 

the mechanisms of delivery of filamentous 

pathogen effectors may also explain the decline 

of this topic (Anderson et al., 2015; Tyler et al., 

2013; Wawra et al., 2013; Wawra et al., 2017). 
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At the opposite, the Pathoresources topic 

steadily increased, probably benefiting from the 

progresses in genomics that helped the 

identification of candidate effectors (Figure 2). 

In conclusion, this set of analyses show that 

HIPEs pertain to key research questions that 

address well-defined aspects of the molecular 

interaction between plants and pathogens; the 

relative importance of some of those increased 

(i.e. Pathoressources) or declined (i.e. Effector 

trafficking) over the last two decades. 

HIPEs address a handful of key organisms 

and proteins 

To identify the main objects (i.e. organisms or 

molecules) investigated by the HIPEs, we 

performed a word occurrence analysis of the title 

and abstracts combined with word cloud 

generation and iterative text enrichment for 

words referring to organisms or molecules 

(Dataset 2; see Supplementary Methods for 

details). That pipeline helped to generate a world 

cloud of the 200 most frequently used words 

referring to organisms or molecules (Figure 3A). 

As expected, the most used words refer to key 

groups of organisms (pathogen, Arabidopsis, 

bacterium, fungus, Pseudomonas) or groups of 

molecules (effector, receptor, NLR, gene, 

protein, genome). We further quantitatively 

analyzed Dataset 2 to identify the top five most 

frequently referred to plant species, pathogen 

species, immune receptors, and effectors (Figure 

3B-E). Firstly, the top five model plants 

comprise a Brassicaceae (Arabidopsis thaliana), 

two Poaceae (i.e. cereals; rice and wheat), and 

two Solanaceae (potato and tomato). The fact 

that three out of these five model plants are key 

crops providing staple food worldwide (i.e. rice, 

wheat, and potato; Savary et al., 2019) shows the 

alignment of research efforts with agricultural 

efforts to meet global food security (Figure 3B). 

 

Figure 3. HIPEs rely on a handful of model organisms and proteins 

(A) Word cloud displaying the most frequent words referring to organisms or molecules in the title and abstract of the HIPEs. 

The word cloud was built using a filtered text file including HIPEs metadata (publication title and abstract) deprived from 

words that did not explicitly refer to organisms or molecules. Word colors were randomly generated to assist visual word 

discrimination. The word cloud displays 200 words. The size of the words positively correlates with their frequency in the text 

file. A top five of plant organisms (B), plant-associated pathogens (C), immune receptors (D) and pathogen effectors (E) was 

identified based on the Dataset 2. Specific additional key words were considered for the following topics: Arabidopsis thaliana 

('Arabidopsis' and 'thaliana'), Pseudomonas syringae ('Pseudomonas', 'syringae', 'DC3000' and 'pst'), Phytophthora sp. 

('Phytophthora', 'infestans', 'ramorum' and 'sojae'), Xanthomonas sp. ('Xanthomonas', 'campestris' and 'oryzae' if used in a 



meaningful context), Powdery mildews ('Powdery' and 'mildews'), NLR ('NLR', 'LRR', 'NB-LRR', 'TNL', 'CNL', 'sNLR' and 

'hNLR'). NLR: nucleotide-binding/leucine-rich-repeat receptor; PRR: pattern recognition receptors. The raw data used to build 

this figure are available in the Dataset 2. 

 

Secondly, the top five model pathogens 

comprise two bacteria (Pseudomonas syringae 

and Xanthomonas species), two groups of fungi 

(Pucciniales and Erysiphales, causing rust and 

powdery mildew diseases), and one genus of 

oomycetes (Phytophthora species) (Figure 3C). 

These pathogens collectively cause a wide range 

of diseases that significantly impact agricultural 

production worldwide (Fones et al., 2020; 

Savary et al., 2019). Thirdly, the top five model 

receptors comprise two general groups of 

immune receptors (NLRs and PRRs), as well as 

three specific proteins: FLS2 (the PRR 

responsible for flagellin recognition), Pto (a 

cytosolic kinase), and RIN4 (a regulator of 

immunity). The prominence of NLRs mirrors 

their importance in ETI, and the importance of 

ETI as a research topic within HIPEs (Figure 

3D). Finally, the top five model groups of 

effectors comprise three P. syringae effectors 

(AvrPto, AvrPtoB, and AvrRpt2) and two 

oomycete effector families (the RXLR 

superfamily, and the AVR3a family) (Figure 

3E). Altogether, these analyses reveal the 

prominence of A. thaliana, P. syringae, as well 

as receptor and effector gene families as model 

objects in effector biology. We refer readers to 

Supplementary Text for a more detailed and 

contextualized analysis of the organisms and 

molecules listed above.  

Temporal analysis of model pathogens 

reveals the increasing importance of plant 

pathogenic fungi  

To get a more detailed understanding of the 

model pathogens addressed in HIPEs, we 

performed an iterative analytical reading of all 

HIPEs and categorized them according to the 

taxonomic group of the pathogens they 

emphasized (if any). This analysis revealed that 

80% of the HIPEs emphasize a specific 

pathogen; we grouped those HIPEs into six 

categories: bacteria (96 HIPEs), fungi (74), 

oomycetes (33), viruses (3), nematodes (2), and 

aphids (1) (Dataset 1) (Figure 4A). Only a 

handful of HIPEs emphasize aphids, viruses and 

nematodes, suggesting that the effector biology 

community revolves mostly around bacterial, 

fungal and oomycete model systems. Notably, 

the categories bacteria of oomycetes (33% and 

13% of the collection, respectively) show low 

diversity, as they mostly address Pseudomonas 

and Phytophthora species, respectively (Dataset 

1). In contrast, the fungal group (28% of the 

HIPEs) shows a high diversity, as it addresses 15 

different fungal genera (Dataset 1). This 

indicates that bacteria and oomycete groups are 

dominated by a limited number of key model 

species, while the fungal group addresses a 

broader diversity of species. Interestingly, the 

size of the categories evolved drastically 

between 2000 and 2020 (Figure 4B). Indeed, 

between the 2000-2005 and the 2016-2020 time 

periods, studies focusing on bacteria declined 

from 75% to 21% of the HIPE collection, while 

studies focusing on oomycetes and fungi 

increased from 2% to 13% and from 2% to 40%, 

respectively. These results indicate that in the 

early 2000s model bacterial systems vastly 

dominated effector biology, but that over time 

filamentous pathogens (i.e. fungi and 

oomycetes) gained importance. This likely 

reflects the impact of pathogenomics and the 

possibility for systematic effectors prediction in 

sequenced genomes of a larger number of 

microbes, particularly fungi.  

The influence of publications addressing 

fungal effectors increased over time: 

analysis of the ‘HIPE-fun’ collection  

To perform an objective analysis of the most 

prominent fungal species in influential 

publications addressing fungal plant pathogen 

effectors, we repeated the bibliometric analysis   
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Figure 4. Studies emphasizing fungi gain importance over time.  

 (A) Pie chart displaying the seven taxonomic groups of pathogens emphasized (if any) addressed by the HIPEs. The assignment 

of each HIPE was based on iterative expert reading of the publications. For each taxonomic group, the number of HIPEs and 

the total number of species are indicated (e.g. '74/15'). (B) Percent stacked bar chart displaying the evolution of the relative 

size of taxonomic groups over four five-year time periods: 2000-2005; 2006-2010; 2011-2015 and 2016-2020. Color code is 

the same as in (A). The raw data used to build this figure are available in the Dataset 1.  

 

that identified the HIPE collection, by 

considering only the research articles on fungi. 

This helped to build a collection of 100 HIPEs 

focusing on fungi (thereafter referred to as 

'HIPE-funs'; Dataset 3; see Supplementary 

Methods and Supplementary Figure S2 for 

details), archived on the following public web 

address: https://www.zotero.org/groups/441090

5/hipe-fun_collection/library.  

To understand the expansion of publications 

focus on fungi in HIPEs, we extracted the 

number of publications addressing plant 

pathogen effectors and the citation rank over 

years of the HIPE-funs (i.e. rank of the 

publication on the Web of Science database 

based on the number of citations). This analysis 

highlighted an obvious increase in the citation 

rank over years of the HIPE-funs associated with 

the expansion in the number of publications 

addressing plant pathogen effectors. Between 

2000-2005 and 2016-2020, studies on fungi were 

ranked on average from 33rd place out of 56 

publications to 7th place out of 192 publications 

(Figure 5A). This result displays the significant 

increase in the influence of publications related 

to fungi over time, and more precisely by two 

predominant trophic lifestyles: biotrophy and 

hemibiotrophy (45% for both; Figure 5B).  

The HIPE-funs are related to influential 

fungal species in the field of molecular plant 

pathology  

In 2012, Dean and colleagues surveyed hundreds 

of mycologists who voted for the most important 

fungal species in molecular plant pathology 

based on their scientific and economic 

importance (495 votes in total). We performed a 

comparative analysis to evaluate the 

correspondence between the fungal species 

addressed in HIPE-funs and the top 10 list from 

Dean et al. (2012). We first identified a total of 

21 fungal genera covered in the HIPE-funs. We 

ranked fungal genera according to HIPE-funs 

numbers and annual citation rates, and then we 

compared this ranking with the list by Dean and 

colleagues (Table 2). First, this analysis showed 

that all top 10 species occur in at least one HIPE-

fun, highlighting an excellent correspondence 

between the two lists (Dataset 3). Notably, the 

genera Magnaporthe and Puccinia appear in the 

top of both lists (Table 2; Dean et al., 2012). 

These genera comprise species that trigger 

dramatic epidemics on rice and/or wheat, 

threatening global food security (Figueroa et al., 

2018; Talbot, 2003; Wilson and Talbot, 2009). 

That may explain why they represent important 

fungal models in the field of fungal effector 

https://www.zotero.org/groups/4410905/hipe-fun_collection/library
https://www.zotero.org/groups/4410905/hipe-fun_collection/library


Figure 5. Publications addressing effectors of (hemi)biotrophic fungi gain prominence over time.  

(A) Evolution of the number of publications related to plant pathogen effectors and the citation rank for HIPE-funs. Each 

citation rank was calculated based on the mean of rank of publications by time frames (i.e. position of the publication on the 

Web of Science website based on the number of citations). (B) Pie chart displaying the proportion of each lifestyle of plant 

pathogenic fungi studied in the HIPE-funs. The categorization of each lifestyle was based on iterative expert reading and 

association with the pathogenic species studied for the entire HIPE-fun collection. Numbers above lifestyle topics indicate the 

total number of HIPE-funs for each topic. The raw data used to build this figure are available in the Dataset 3.  

 

biology. In contrast, the ranking of some species 

differs between the two lists. For instance, the 

genus Botrytis sp. dominates the top 10 list of 

Dean et al. (2012), but it is barely represented in 

the HIPE-funs (2nd place in the previous report 

vs. 13th place in this study; Table 2). This genus, 

and notably the species Botrytis cinerea, is a 

strong model for molecular plant pathology but 

not in effector biology. This is probably because 

of its necrotrophic lifestyle (poorly represented 

by the HIPE-funs; Figure 5B); a lifestyle that is 

though not to rely much on effectors during host 

infection, but rather on toxins. To conclude, our 

analysis of HIPE-funs confirms the importance 

of well-established fungal pathogens as 

agronomical models in both effector biology and 

molecular plant pathology. 

 

Table 2. Main fungal plant pathogens with the highest number of publications and annual 

citations based on HIPE-funs. 

Fungal pathogen Rank 
Number of 

publications 
Citation rate 

(per year) 
Rank based on Dean et al., 

2012 top 10 list 

Blumeria sp. 1 12 240 6 

Magnaporthe sp. 2 10 206 1 

Leptosphaeria sp. 3 10 136 - 

Cladosporium sp. 4 9 171 - 

Puccinia sp. 5 9 73 3 

Verticillium sp. 6 6 163 - 

Melamspora sp. 7 6 121 10 

Zymoseptoria sp. 8 6 117 7 

Fusarium sp. 9 6 84 4 & 5 

Colletotrichum sp. 10 4 124 8 

Ustilago sp. 11 4 87 9 

Sclerotinia sp. 12 4 67 - 

Botrytis sp.  13 2 117 2 
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Conclusion and outlook 

To conclude, the present study shows that top 

tiers plant effector biology has developed as a 

well-structured research area, with key academic 

actors and objects (i.e. molecules or organisms). 

The study also reveals that the focus of the most 

cited publications in the field has partially 

shifted over time, from bacterial pathogens to 

filamentous pathogens (notably fungi). As an 

outlook for the next twenty years, we anticipate 

that the research area will continue to diversify 

the organisms it addresses (i.e. aphids, 

herbivores, viruses), which may help understand 

better the diversity of virulence strategies that 

arose throughout evolution.  
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SUPPLEMENTARY METHODS 

Building of the HIPE and HIPE-fun 

collections  

To identify and extract publications in plant 

pathogen effectors that have been published 

between 2000 and 2020 and that have been 

highly cited, we used a step-by-step pipeline that 

used the Web of Science website as described 

previously by Petre et al. (2021), with the 

following modifications. We used the Mendeley 

software instead of Zotero. We selected 

publications following searches with three 

groups of keywords: 'plant pathogen effector', 

'plant pathogen avirulence effector' and 'plant 

pathogen virulence effector'. We defined 12-

time periods (2000-2001; 2002-2003; 2004-

2005; 2006-2007; 2008-2009; 2010-2011; 2012-

2013; 2014-2015; 2016-2017; 2018; 2019; 

2020). The last three years have been considered 

separately due to low citation numbers (grouping 

them in pairs would have excluded publications 

from the most recent year). Three publications 

per year were considered (e.g. we selected six 

publications for the time period 2000-2002 and 

only three publications for the year 2020). In 

order to import all the metadata of the 

publications (e.g. PDF, title, abstract, author list, 

journal, ...), we used the 'Mendeley Web 

Importer' tool. Finally, we removed all 

redundant publications between the three 

different extraction to obtain a collection of 249 

non-redundant publications (HIPE collection). 

In addition, we reperformed this step-by-step 

pipeline included all variations cited above in 

order to extract a corpus of 100 research articles 

focused only on fungal pathogens (HIPE-fun 

collection). We archived both HIPE and HIPE-

fun collections in a public Mendeley web folder 

as follow: 'HIPE collection' 

(https://www.zotero.org/groups/4410902/hipe_

collection/library) and 'HIPE-fun collection' 

(https://www.zotero.org/groups/4410905/hipe-

fun_collection/library).  

Categorization of publications into 

research topics and organisms studied  

To group HIPEs according to their research 

topics, we performed an iterative analytical 

reading of the publications and keywords aimed 

at identifying their main research questions and 

the organism studied, as described previously 

(Petre et al., 2021). Throughout this process, we 

grouped the HIPEs into (i) topics and subtopics 

according to the main research and specific 

questions they address or (ii) the pathogenic 

organisms or group of pathogenic organisms 

addressed by HIPEs (Dataset 1). In addition, to 

evaluate the temporal distribution of the HIPEs 

within each group cited above, we quantified 

their number per five-year time frames: 2000-

2005, 2006-2010, 2021-2015 and 2016-2020. 

 Generation of word clouds and analysis 

of key organisms and molecules 

To analyze text content, we built the text files 

using Microsoft Excel and Text Wrangler 

softwares, as described previously (Petre et al., 

2021).We first manually copied and pasted the 

relevant text from Mendeley metadata 

(publication title and abstract) into a Microsoft 

Excel spreadsheet (Dataset 1) and we then 

generated the word clouds containing only 

words referring to organisms and molecules with 

filtered text files (Dataset 2). An accurate 

quantification of the most frequent words was 

performed using the online WordClouds 

generator (https://www.wordclouds.com/). To 

generate Excel spreadsheets with the word 

occurrences, we imported our filtered text files 

and we used the 'Word list' function to export 

them.   

https://www.zotero.org/groups/4410902/hipe_collection/library
https://www.zotero.org/groups/4410902/hipe_collection/library
https://www.zotero.org/groups/4410905/hipe-fun_collection/library
https://www.zotero.org/groups/4410905/hipe-fun_collection/library
https://www.wordclouds.com/
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Figure S1 

Figure S1. The number of publications pertaining to plant pathogen effectors increases 

exponentially over time. 

 

 

Figure S2 

Figure S2. Operational diagram displaying the step-by-step pipeline used to build the HIPE and 

HIPE-fun collections.  
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Figure S3 

Figure S3. The seven main research topics show comparable citation rates.  

Boxplots indicating the annual citation rate of the seven main research topics addressed by the HIPEs. The red arrow indicates 

the HIPE with the highest annual citation rate, which corresponds to the 2006 review by Jones and Dangl that presented the 

seminal zig-zag model of the plant immune system. The raw data used to build this figure are available in the Dataset 1. 

 

Dataset 1. Raw dataset including the 249 HIPEs and main meta data. 

Dataset 2. Filtered text file of the 249 HIPE titles and abstracts. 

Dataset 3. Raw dataset including the 100 HIPE-funs and main meta data.  

  



SUPPLEMENTARY TEXT 

Effector trafficking topic studies how 

pathogens secrete effectors in the host 

The 'Effector trafficking' topic comprises 16 

publications (six research articles and ten 

reviews) that collectively gathered around 4.4k 

citations. Among them, bacterial studies 

predominate, as only three publications focused 

on filamentous pathogens. The topic comprises 

two subtopics. The 'Type III/IV bacterial system' 

subtopic comprises 13 publications. The 

majority address the current knowledge on the 

Type III secretion system (TTSS) and associated 

effectors (Alfano and Collmer, 2004; Büttner 

and Bonas, 2002a; Büttner and Bonas, 2002b; 

Cornelis and Van Gijsegem, 2000; Galán et al., 
2014; He et al., 2004; Jin et al., 2003; Lindeberg 

et al., 2012) and the Type IV secretion system 

(Christie, 2001; Christie and Vogel, 2000). On 

another hand, three publications describe and 

analyze how hrp/hrc genes encode the Hrp (type 

III secretion) system and other putative effectors 

as well as its associated secretion mechanisms 

(Alfano et al., 2000; Collmer et al., 2000; Lee et 

al., 2001). The 'Filamentous pathogen 

translocation pathways' subtopic comprises three 

publications. One publication addresses the 

functioning of the biotrophic interfacial complex 

(BIC) of Magnaporthe oryzae (Khang et al., 

2010), and two publications focus on how 

effectors traffic to the host cell cytosol (Whisson 

et al., 2007) (Kale et al., 2010). 

ETI (Effector-triggered immunity) topic 

highlights the immune resistance with the 

specific recognition of effectors 

The 'ETI' (Effector-triggered immunity) topic 

comprises 41 publications (30 research articles 

and 11 reviews) that collectively gathered 

around 9.7k citations. Near 76% of those 

publications emphasize a specific organism (or 

group of organisms), including notably fungi and 

bacteria (41 and 27%, respectively). This topic 

comprises two subtopics. The 'Immune receptor' 

subtopic comprises 17 publications that 

summarize and discuss recent findings on the 

diversity, the structure, and the function of NLRs 

(nucleotide-binding leucine-rich repeat 

receptors) (Bai et al., 2012; Belkhadir et al., 

2004; Cesari et al., 2014; DeYoung and Innes, 

2006; Jubic et al., 2019; Lu et al., 2016; Marchal 
et al., 2018; Martin et al., 2003; McHale et al., 

2006; Pedley and Martin, 2003; Saintenac et al., 

2018; Shen et al., 2007; van Der Vossen et al., 

2000; Wang et al., 2019a; Wang et al., 2019b; 

Williams et al., 2014) or compare plant and 

animal immune systems (Maekawa et al., 2011). 

The 'Effector recognition' subtopic comprises 24 

publications. The first set of publications 

addresses direct and indirect recognition of 

pathogens by the plant immune system (Ellis et 

al., 2007; Kourelis and Van Der Hoorn, 2018; 

Petit-Houdenot and Fudal, 2017). A second set 

is focused on the direct recognition model 

following the gene-for-gene model (Allen et al., 
2004; Bourras et al., 2015; Bourras et al., 2019; 

Dodds et al., 2006; Gu et al., 2005; de Jonge et 
al., 2012; Navathe et al., 2020; Paulus et al., 

2020; Saur et al., 2019; Vleeshouwers et al., 
2011; Yang et al., 2006). The last set of 

publications studies the indirect recognition of 

pathogen effectors (Tian et al., 2014) following 

the guard model (Axtell and Staskawicz, 2003; 

Deslandes et al., 2003; Mackey et al., 2002; 

Shao et al., 2003) and finally the recognition 

mediated by NLR-ID following the decoy model 

(Cesari et al., 2013; Kroj et al., 2016; Le Roux 
et al., 2015; Sarris et al., 2015; Sarris et al., 

2016).  

ETS (Effector-triggered susceptibility) 

topic explains how pathogens deploy 

effectors to promote infection disease 

The 'ETS' (Effector-triggered susceptibility) 

topic comprises 78 publications (45 research 

articles and 33 reviews) that collectively 

gathered around 17k citations. Nearly 94% of 

those publications emphasize a specific or a 

group of organisms with a preponderance of 

bacterial studies in contrast to studies focused on 

filamentous pathogens (60 and 40%, 

respectively). This topic comprises five 

subtopics. The 'Bacteria review' subtopic 

comprises 17 publications. A first well-defined 

set of publications summarizes our knowledge 

on Type III bacterial effectors (Boch and Bonas, 

2010; Büttner, 2016; Greenberg and Vinatzer, 

2003; Gürlebeck et al., 2006; Macho, 2016; 

Macho and Zipfel, 2015; Oh and Beer, 2005; 

Winstanley and Hart, 2001). Another set of 

publications reviews the recent investigations on 

intricate molecular interactions with bacterial 

elicitation and evasion of plant innate immunity 

(Abramovitch et al., 2006; Deslandes and Rivas, 
2012) and comprises comparative analyses with 

the fungal pathogens (Hogenhout et al., 2009; 
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Khan et al., 2018) or animal-specific bacteria 

(Büttner and Bonas, 2003; Orth, 2002). One 

publication studies the impact of auxin on 

pathogenesis and during the interactions with 

bacterial pathogens (Kunkel and Harper, 2018). 

Finally, a last set of publications summarize 

researches on the infection pathways of the 

genus Xanthomonas sp. (Büttner and Bonas, 

2010) and more precisely the contribution of 

transcription activator-like effectors (TALEs) 

(Perez-Quintero and Szurek, 2019). The 

'Effector expression' subtopic comprises two 

publications and highlights the epigenetic 

regulation of effector gene expression in the 

fungus Leptosphaeria maculans (Soyer et al., 
2014) and the regulation of the hrp gene cluster 

encoding the type III protein secretion system 

(TTSS) (Noël et al., 2001). The 'Filamentous 

pathogen review' subtopic comprises 12 

publications reviewing the recent findings on 

fungal effectors (Anderson et al., 2015; 

Franceschetti et al., 2017; Giraldo and Valent, 

2013; Han and Kahmann, 2019; Lo Presti et al., 

2015; de Sain and Rep, 2015; Selin et al., 2016; 

Stergiopoulos et al., 2013; Stergiopoulos and de 

Wit, 2009; Tsuge et al., 2013), on oomycete 

effectors (Schornack et al., 2009), and on the use 

of effectors as cellular probes (Toruño et al., 
2016). The 'Functional characterization' subtopic 

comprises 46 publications. Nearly 71% of those 

publications study the modulation of immune 

responses by effectors (Bos et al., 2006; Feng et 
al., 2012; Gao et al., 2019; Gimenez-Ibanez et 

al., 2009; Göhre et al., 2008; Hou et al., 2019; 

Houterman et al., 2008; Kim et al., 2005; Li et 
al., 2005; Mackey et al., 2003; Nomura, 2006; 

Park et al., 2012; Rooney, 2005; Wang et al., 

2016; Weiberg et al., 2013; Xia, 2004; Xiang et 
al., 2008; Zhang et al., 2007; Zhang et al., 2010), 

compare bacterial and fungal modulation of 

plant immunity (Göhre and Robatzek, 2008), 

address phytohormone modulation (Gimenez-

Ibanez et al., 2014; Kazan and Lyons, 2014; Liu 

et al., 2014; Plett et al., 2014), or focus on plant 

trafficking modulation (Aung et al., 2020; 

Brooks et al., 2005; Chen et al., 2010; DebRoy 

et al., 2004; de Jonge et al., 2010; Kay et al., 

2007; Mentlak et al., 2012; Orth, 2000; Shan et 
al., 2008; de Torres-Zabala et al., 2007). A 

second set of publications identifies avirulence 

genes and validates their Avr activity (Tsiamis et 

al., 2000; Zhong et al., 2017) and highlights the 

masking model as a counter-defense of pathogen 

to evade the immune system (Ma et al., 2017; 

Plissonneau et al., 2016). Five publications 

characterize the activity of type III bacterial 

effectors (Abramovitch et al., 2003; 

Abramovitch and Martin, 2005; He et al., 2006; 

Jamir et al., 2004; Nimchuk et al., 2000) and the 

associated environmental influences (Xin et al., 
2016). Finally, two publications study the 

virulence activity and virulent motifs of effectors 

secreted by the soybean pathogen Phytophthora 
sojae (Dou et al., 2008; Ma et al., 2015). The 

'Structural characterization' subtopic comprises 

one publication that reports the crystal structure 

of the TALE PthXo1 of Xanthomonas oryzae 

(Mak et al., 2012).  

General review topic conceptualizes our 

knowledge on plant-pathogen 

interactions 

The 'General review' topic comprises 39 

publications (all reviews) that collectively 

gathered around 18k citations. Nearly 77% of 

those publications do not emphasize on a 

specific or a group of organisms. It comprises 

three subtopics. The 'Host immunity' subtopic 

comprises 22 publications. A first series of nine 

publications summarizes recent findings on ETI 

(Cui et al., 2015; Thordal-Christensen, 2020; 

Wu et al., 2014), PTI (PAMP-triggered 

immunity) (Boller and Felix, 2009; Hématy et 

al., 2009), compares them (Chisholm et al., 
2006; Dodds and Rathjen, 2010; Liu et al., 2013; 

Qiu et al., 2008; Thomma et al., 2011; Tsuda and 

Katagiri, 2010), or emphasize some taxonomic 

groups (Liu et al., 2014; Zvereva and Pooggin, 

2012). The other set of publications describes the 

contribution of phytohormones to plant 

immunity (Zhang and Li, 2019), the regulation 

and the signaling pathways of host immunity 

(Feys and Parker, 2000; Hacquard et al., 2017; 

Wang et al., 2020), the antiviral immunity (Calil 

and Fontes, 2017; Gouveia et al., 2017), the 

defense priming (Conrath, 2011), or the non-host 

resistance in plant (Nürnberger and Lipka, 

2005). Finally, two publications compare 

immunity between plants and animals 

(Staskawicz et al., 2001) and between bacteria 

and fungi (van’t Slot and Knogge, 2002). The 

'Pathosystem evolution' subtopic comprises 

eight publications that summarize our 

knowledge on evolutionary models and 

mechanisms of plant-pathogen interactions 

(Brown and Tellier, 2011; Dong et al., 2015; 
Frantzeskakis et al., 2019; Raffaele and 

Kamoun, 2012; Schulze-Lefert and Panstruga, 

2011) with a focus on climate change (Velásquez 



et al., 2018) and R-Avr (Resistance gene – 

Avirulence gene) interactions (Białas et al., 
2018). Finally, one publication compares the 

evolution in bacterial and fungal pathosystems 

(Dou and Zhou, 2012). The 'Recognition model' 

subtopic comprises nine publications and 

proposed different conceptual models focused 

on the plant immune system (Bent and Mackey, 

2007; Bonas and Lahaye, 2002; van Der Hoorn 

and Kamoun, 2008; Jones and Takemoto, 2004; 

Jones and Dangl, 2006; Nimchuk et al., 2001; 

Stotz et al., 2014) and comparative analyses with 

the animal immune system (Jones et al., 2016). 

Finally, one publication summarizes specifically 

bacterial recognitions models (Khan et al., 

2016).  

Pathogen highlight topic emphasizes on 

specific organisms 

The 'Pathogen highlight' topic comprises 12 

publications (all reviews) that collectively 

gathered around 1.6k citations. These reviews 

emphasize bacteria (6), fungi (4), oomycetes (1) 

and nematodes (1). It comprises three subtopics. 

The 'Bacterium' subtopic comprises six 

publications and summarize recent findings on 

the genera Xanthomonas (An et al., 2020; Kumar 

et al., 2020; Niño-Liu et al., 2006; Timilsina et 
al., 2020) and Pseudomonas (Xin et al., 2018; 

Xin and He, 2013). The 'Filamentous pathogen' 

subtopic comprises five publications and 

summarize recent findings on the oomycete 

Phytophthora infestans (Fry, 2008), the fungus 

Cladosporium fulvum (de Wit, 2016), the rust 

fungi (Lorrain et al., 2019), the mycorrhizal 

fungi (Genre et al., 2020) and an overview of 

selected fungal species with a focus on PAMPs 

and associated effectors (de Wit et al., 2009). 

The 'nematode' subtopic comprises one 

publication on the model species Caenorhabditis 

elegans (Alegado et al., 2003).   

Pathoresources uses omics approaches 

and technological innovations to study 

plant-pathogen interactions 

The 'Pathoresources' topic comprises 53 

publications (42 research articles and 11 

reviews) that collectively gathered around 11k 

citations. It comprises three subtopics. The 

'Omic data' subtopic comprises 41 publications. 

Almost half of those publications provides 

genomic data (Baltrus et al., 2011; Buell et al., 
2003; Cooke et al., 2012; Dale et al., 2019; Duan 

et al., 2009; Faino et al., 2016; Genin and 

Boucher, 2004; Genin and Denny, 2012; 

Grandaubert et al., 2014; Haas et al., 2009; 

Joardar et al., 2005; Kema et al., 2018; 

Laflamme et al., 2020; Levy et al., 2018; Li et 
al., 2020; O’Connell et al., 2012; Rouxel et al., 
2011; Salanoubat et al., 2002; Spanu et al., 2010; 

Thieme et al., 2005; Tyler et al., 2006; Wyatt et 

al., 2020; Yoshida et al., 2009) and four 

publications perform comparative analyses of 

genomic data (Fouché et al., 2018; Fouché et al., 

2020; Spanu, 2012; de Wit et al., 2012). A 

second set of publications reports effectoromic 

analyses (Jiang et al., 2008; Vleeshouwers et al., 

2008), secretomic analyses (Bos et al., 2010; 

Kamoun, 2006; Kamoun, 2007; Poueymiro and 

Genin, 2009; Vincent et al., 2020), 

transcriptomic analyses (Rudd et al., 2015; 

Wang et al., 2011) and studies of the effector-

target interactome network (Mukhtar et al., 
2011; Weßling et al., 2014). Finally, three 

publications describe the pathogen–host 

interactions database (PHI-base) providing 

curated molecular and biological in- formation 

on gene catalogues associated with pathogen–

host interactions (Urban et al., 2015; Urban et 
al., 2017; Urban et al., 2020). The 'Lab tool' 

subtopic comprises three publications and 

describe molecular genetic tools to enhance lab 

investigations for a better comprehension of 

plant-pathogen interactions (Fang and Tyler, 

2016; Ghislain et al., 2019; Nowara et al., 2010). 

Finally, the 'Computational prediction' subtopic 
comprises nine publications which describe 

pipelines to identify and characterize effectors of 

filamentous pathogens (Saunders et al., 2012; 

Sperschneider et al., 2016; Sperschneider et al., 
2017; Sperschneider et al., 2018a; Sperschneider 

et al., 2018b), of bacteria (Chang et al., 2005; 

Collmer et al., 2002; Lindeberg et al., 2005), or 

to annotate NLRs (Steuernagel et al., 2020).  

PTI topic describes the basal disease 

resistance of plant  

The 'PTI' topic comprises ten publications (four 

research articles and six reviews) that 

collectively gathered around 2.7k citations. 

Among them, five publications do not focus on 

a specific organism or a group of organisms, four 

study specifically focus on a bacterium and only 

one on a fungus. It comprises two subtopics. The 

'Pattern-recognition receptor' (PRR) subtopic 

comprises two publications. These two reviews 

summarize and discuss recent findings on plant 

PRRs, their diversity to recognize different 
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ligands, and the ability of pathogen effectors to 

interfere with early PRR signaling (Tang et al., 
2017; Zipfel, 2009). The 'Signaling mechanisms' 

subtopic comprises eight publications. Four 

publications describe downstream molecular 

events with: two summarize the complex 

network of signaling pathways occurring during 

PTI with an emphasis on mitogen-activated 

protein kinases (MAPK) and effectors employed 

to suppress it (Bigeard et al., 2015; Meng and 

Zhang, 2013); and two highlight the activity of 

MAPK4 (Qiu et al., 2008) and BIK1 (Lu et al., 
2010) in the early signaling pathways and 

effectors associated with that process. On 

another hand, two publications study the 

contribution of phytohormones to the effector 

recognition (Tsuda and Katagiri, 2010; Yang et 

al., 2019), one addresses the role of reactive 

oxygen species (ROS) in signaling and defense 

reactions against filamentous fungi and fungal 

effectors that suppress the host oxidative burst 

(Heller and Tudzynski, 2011), and one provides 

evidence of calcium-dependent PAMP-triggered 

immunity in plants (Tian et al., 2019).  
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