
HAL Id: hal-03388114
https://hal.science/hal-03388114

Submitted on 22 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Accelerating DNNs from local to virtualized FPGA in
the Cloud: A survey of trends

Chen Wu, Virginie Fresse, Benoit Suffran, Hubert Konik

To cite this version:
Chen Wu, Virginie Fresse, Benoit Suffran, Hubert Konik. Accelerating DNNs from local to virtualized
FPGA in the Cloud: A survey of trends. Journal of Systems Architecture, 2021. �hal-03388114�

https://hal.science/hal-03388114
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Accelerating DNNs from local to virtualized FPGA in

the Cloud: A survey of trends

Chen Wua, Virginie Fressea, Benoit Suffranb, Hubert Konika

aLaboratory Hubert Curien, Saint-etienne, 42000, France
bST Microelectronics, Grenoble, 38000, France

Abstract

Field-programmable gate arrays (FPGAs) are widely used locally to speed up
deep neural network (DNN) algorithms with high computational throughput
and energy efficiency. Virtualizing FPGA and deploying FPGAs in the cloud
are becoming increasingly attractive methods for DNN acceleration because
they can enhance the computing ability to achieve on-demand acceleration
across multiple users. In the past five years, researchers have extensively
investigated various directions of FPGA-based DNN accelerators, such as
algorithm optimization, architecture exploration, capacity improvement, re-
source sharing, and cloud construction. However, previous DNN accelera-
tor surveys mainly focused on optimizing the DNN performance on a local
FPGA, ignoring the trend of placing DNN accelerators in the cloud’s FPGA.

In this study, we conducted an in-depth investigation of the technolo-
gies used in FPGA-based DNN accelerators, including but not limited to
architectural design, optimization strategies, virtualization technologies, and
cloud services. Additionally, we studied the evolution of DNN accelerators,
e.g., from a single DNN to framework-generated DNNs, from physical to
virtualized FPGAs, from local to the cloud, and from single-user to multi-
tenant. We also identified significant obstacles for DNN acceleration in the
cloud. This article enhances the current understanding of the evolution of
FPGA-based DNN accelerators.

Keywords: FPGA virtualization, Cloud computing, Deep neural network,
Accelerator, Trends

Preprint submitted to Journal of Systems Architecture July 29, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1383762121001752
Manuscript_9012544b91241db31fbe6789a6863d6a

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1383762121001752


1. Introduction

Deep neural networks (DNNs) have become a cutting-edge research topic
owing to their excellent performance in image classification, detection, seg-
mentation, and data prediction. Owing to the remarkable prediction ca-
pacity of datasets in a wide range of complex applications, researchers have
proposed myriad networks, such as AlexNet [1], VGG16 [2], ResNet152 [3],
Transformers [4], General Adversarial Networks (GANs) [5], and Variational
Autoencoder (VAE) [6]. The success of DNNs has also attracted attention
in the development of industrial platforms, such as Google Deepmind [7],
Facebook AI [8], Amazon Alexa [9].

Traditionally, in academia and industry, graphics processing units (GPUs)
are used to train DNNs, as they provide a high degree of parallelism to
process these algorithms [10, 11]. However, the execution of DNNs on GPU-
based platforms encounters energy/power and throughput bottlenecks. In
2016, a tensor processing unit (TPU) was announced by Google [12], which
runs DNNs 15 to 30 times faster than contemporary GPUs using similar
technologies [13], and the energy efficiency is increased by a factor of 30–80.
Despite its speedup and energy efficiency, the TPU has a high production
cost, lacks reconfigurability, and cannot be adapted to the emergence of new
network models with complex structures.

Field-programmable gate arrays (FPGAs) can achieve energy efficiency
and high performance in the face of rapidly innovating DNN models and
computational characteristics, as reported by Venieris et al [14]. FPGAs can
achieve up to 20 tera multiply accumulates per second (TMACs), and the
power consumption does not exceed 25 W, incurring a less than 10% overhead
in the overall power consumption [15]. Moreover, FPGAs can provide a
flexible hardware architecture with a fine granularity and massive pipeline
level. Therefore, FPGAs have become an alternative method for accelerating
DNNs.

Early DNN accelerators (e.g., [16, 17, 18, 19]) are typically implemented
on a single local FPGA fabric. As the number of learnable parameters and
operations in DNNs increases, the resources of a single FPGA may be insuf-
ficient for the entire DNN deployment. The challenges of designing DNNs
on a single local FPGA are described below.

• Productivity: Owing to the complexity of DNN design, mapping a DNN
onto an FPGA requires specific hardware expertise in hardware de-
scription language programming and performance optimization, which

2



have long learning curves. According to the complexity of the DNN
algorithm, deploying the DNN on the FPGA may be time-consuming
and may increase the programming burden of designers. In recent
years, productivity has improved owing to the emergence of compila-
tion frameworks that automatically map DNNs onto the FPGA.

• Scalability: DNNs are computation- and data-intensive applications
that require enormous computational resources. For example, VGG-16
has up to 39 billion operations and more than 500 million parameters
for 224 × 224 image classification [20]. In deeper DNNs, the resource
requirements may exceed the available resources in a single FPGA,
limiting the scalability of the DNN architecture. Even if technologies
and strategies are adopted to optimize the DNN architecture, when
a large-scale DNN is deployed in a single local FPGA, the resource
bottleneck can easily be reached.

• Elasticity: The solution of deploying DNN accelerators on local FPGAs
lacks resource elasticity because it assumes that DNN resource alloca-
tion must be fixed throughout the deployment lifecycle. Because dif-
ferent DNN algorithms require different computing resources, memory
bandwidths, and storage resources [21], these solutions cannot flexibly
provide and deprovision resources at runtime and hence fail to match
different workloads of the DNN.

• Portability: The deployment of most DNN accelerators directly de-
pends on the characteristics of the FPGA platform and is therefore
restricted to a specific FPGA vendor. Owing to the lack of an abstrac-
tion layer that isolates DNN accelerators from specific FPGA platforms,
these accelerators may face portability issues of DNN structures. They
cannot adapt quickly to the current changing DNN algorithms.

• Multi-tasks: Generally, the execution mode of a DNN on a local FPGA
is limited to a single user executing a single DNN within a given time.
It remains difficult for a single local FPGA to support multiple users
by executing execute multiple DNNs in parallel and satisfy each user’s
time, cost, and quality of service (QoS) requirements. Some frame-
works (for example, [22]) successfully solve the problem of multiple
DNN scheduling but can only execute DNNs sequentially in the form
of time slices in a single-task environment.

3



Figure 1: Characteristics of deploying FPGAs in the cloud and FPGA virtualization for
DNN deployment.

Deploying FPGAs in the cloud and/or virtualizing FPGAs can resolve
the aforementioned challenges, as shown in Figure 1. The cloud paradigm
enhances the computing capability of FPGAs with high throughput and low
latency. It enables the sharing of single or multiple FPGA resources across
multiple users, thereby efficiently scaling and accelerating on-demand DNNs.
Virtualizing FPGAs abstracts low-level physical resources and hides hard-
ware design and compilation flow from the software designers’ view, providing
a high-level application-dependent architecture. Owing to FPGA virtualiza-
tion, software designers can deploy DNN accelerators according to different
requirements (e.g., throughput, execution time, and accuracy) without rely-
ing on a specific FPGA platform. The collaboration between FPGA virtu-
alization and the FPGA cloud can satisfy the resource requirement, thereby
taking advantage of the ”unlimited” cloud capability to flexibly scale DNN
accelerators.

While exploring techniques to accelerate DNNs on local physical FP-
GAs, researchers have also attempted to adopt FPGA virtualization and the
FPGA cloud to facilitate the implementation of multiple DNNs at a large
scale and achieve flexible deployment in a multi-user environment. Although
the FPGA cloud and virtualization have brought breakthroughs to the de-
ployment of DNNs, previous surveys (e.g., [23, 24, 25, 26, 27, 28][29]) have
mainly focused on DNN optimization and the design of local FPGAs (e.g.,
architecture design, simplification, optimization strategies). These surveys
ignore the trend of DNN implementation on the timeline, that is, from local
to virtual FPGA in the cloud. Moreover, no in-depth analysis or compar-

4



ison of the challenges faced by the DNN accelerators at different stages of
deployment was conducted. Relying on previous surveys, we aim to

• Provide an overview of the main techniques of FPGA-based DNN ac-
celerators. These techniques were initially proposed to optimize the
performance of DNN accelerators in a local FPGA, but they can also
be applied to the FPGA cloud environment.

• Present the evolution of DNN accelerator deployment from local to
virtualized FPGAs through an in-depth introduction of virtualization
techniques and the FPGA cloud.

• Perform an in-depth analysis and comparison of the challenges faced
by the DNN accelerators at each stage.

The article is organised as follows: Section 2 provides an FPGA cloud def-
inition and a general overview of FPGA virtualization. Section 3 discusses
the crucial approaches for accelerating DNNs on the FPGA, which is also
applicable to the FPGA cloud. Section 4 describes the use of virtualization
technology in local DNNs and cloud-based DNNs. Section 5 highlights the
trends and evolution of the FPGA-based DNN and compares the character-
istics of these accelerators. Section 6 discusses the unresolved challenges of
accelerating DNNs in the FPGA cloud and presents other directions for DNN
acceleration. Section 6.2 gives the conclusion of the survey.

2. Background

This section presents an overview of the FPGA cloud and the available
services in the cloud and introduces the FPGA virtualization technology from
the viewpoints of the abstraction level and system architecture.

2.1. FPGA Cloud

Deploying FPGAs in the cloud involves leasing a bundle of specific soft-
ware tools, platforms, or FPGA resources remotely in a cost-effective manner.
Such an FPGA-enabled cloud maintains the advantages of FPGAs (e.g., low
power consumption and programmability) and establishes scalability, elas-
ticity, and multi-tenancy.

Provisioning FPGA resources is similar to provisioning traditional central
processing unit (CPU)- and GPU-based clouds. Regarding the service cate-
gories in traditional cloud computing, FPGA cloud providers offer FPGAs as

5



infrastructure as a service (IaaS) or software as a service (SaaS) [30]. Figure
2 presents an example of hierarchical mapping in the FPGA cloud. There is
no standard definition or classification for FPGA clouds, and the hierarchical
mapping may change over time.

2.1.1. FPGA in IaaS

The FPGA in IaaS provides access to the FPGA computing resource
pool and memory storage in the cloud. This paradigm divides the FPGA
into multiple independent virtual instances and supports high-bandwidth
communication to collaborate between each resource instance. Per-FPGA
or multiple-FPGA granularity can be supported in the IaaS for application
deployment. Cloud users must manually map their applications to resources
if their applications are deployed across multiple FPGAs.

As a commercial example, the Amazon F1 instance offers a collection of
eight FPGA devices with a high bandwidth. Enabling FPGA in IaaS has
also attracted attention in the academic field. Byma et al. [31] abstracted
FPGAs into virtual regions and managed resources across multiple FPGAs
through OpenStack. Asiatici et al. [32] provided a runtime management
framework to map FPGA resources for different applications with limited
overhead.

2.1.2. FPGA in SaaS

The FPGA in SaaS offers acceleration services for cloud users to exe-
cute applications and process data. Technical processes have been hidden
in the cloud background, and cloud users do not need to be responsible for
the hardware design flow and FPGA resource management. For example,
Microsoft released the Catapult project [33], which puts Altera Stratix vF-
PGA per CPU in the cloud to accelerate the Bing web search engine, with a
95% improvement throughout. Moreover, Microsoft released the BrainWare
project, where FPGAs are used to accelerate state-of-the-art DNNs in major
services such as Bing and Azure [34].

2.2. FPGA virtualization

The objectives of FPGA virtualization are to 1) provide a virtual ab-
straction of resources and underly the low-level hardware design from users;
2) support FPGA sharing in the time and space domains to serve multiple
tasks; and 3) facilitate the hardware design process and accelerate the pro-
gram compilation [35, 36, 37, 38]. We review FPGA virtualization according

6



Figure 2: IaaS and SaaS FPGA cloud. ”Vendor manage (optional)” and ”User manage
(optional)” indicate that this hierarchy does not always exist in the FPGA cloud, and it
is customised by each FPGA cloud vendor or user.

to the abstraction level [39] and system architecture [40]. The definition of
FPGA virtualization has changed over time in different scenarios.

2.2.1. Abstraction level

According to the scale of resource computing, FPGA virtualization can be
divided into three abstraction levels: resource, node, and multi-node levels.

• Resource level: The resource level contains reconfigurable resources
(e.g., logic) and non-reconfigurable resources (e.g., Input/Output blocks).
Several uniform architectures, such as coarse-grained overlays, have
been proposed to support the portability of this level between different
types of FPGAs [41, 42].

• Node level: The node level considers a single FPGA as a node. Re-
source allocation and scheduling are concerned with a single FPGA
at this level. Currently, time-division multiplexing (TDM) and space-
division multiplexing (SDM) are the two principal methods for sharing
a single FPGA resource [43, 44].

7



• Multi-node level: The multi-node level is designed to assign resources in
multiple FPGAs to multiple applications or multiple users. However,
mainstream compilation tools only support application deployments
on a single FPGA [45]. Therefore, application mapping across FPGAs
requires specific frameworks to solve hardware problems, such as in-
tercommunication, resource partitioning, and traversing the physical
boundary.

2.2.2. System architecture

The system architecture refers to a structural view at the abstraction
level. It usually covers the hardware, software stack, and overlay [46] but
may be different at each level of abstraction. Here, we introduce the system
architecture in a node-level abstract form, as shown in Figure 3, which can
also be applied to other levels of abstraction.

• Hardware stack: The hardware stack can vary in the host interface,
shell, and role.

– Host interfaces: 1) on-chip host inside the FPGA, which can be
a soft core formed by programmable logic (PL) or a hard core in
the processing system (PS) of a system-on-a-chip (SoC) FPGA;
2) local host, local CPU host, connected via high-bandwidth links
(e.g., PCIe); 3) remote host placed remotely via the network.

– Shell: The shell is a static region, usually comprising a system
memory controller (e.g., DRAM adapter), interface controller (e.g.,
DMA controller), and network interface controller (e.g., Ether-
net core). For instance, the shell in [47] includes the user PCIe,
management PCIe, card management system, and DDR access
channel.

– Role: The role is a dynamic region in the FPGA, which can be
regarded as a reserved region for deploying DNNs in our context.
It runs independently of the shell and can be reconfigured every
time for each application to satisfy user requirements.

• Software stack: The software stack runs on a host, provides users with
an application programming interface, and enables the communication
between the host and the FPGA. [40] introduces three types of software
stacks: 1) Operating systems (e.g., LeapFPGA OS [48], Recon OS [49]),

8



Figure 3: Overall architecture of the FPGA-based DNN accelerators in the IaaS cloud.
(a) Different levels of abstraction in the FPGA virtualization technique. (b) Example of
the system architecture in node-level virtualization.

which are conceived to support multiple threads for runtime resource
management. 2) The host application, which is written in OpenCL
and C++, provides simultaneous access to a shared FPGA for multiple
users. 3) Software frameworks (e.g., OpenStack), which can be used
to share resources across multiple users and distribute several partial
reconfigurations to one FPGA.

• Overlay: The overlay provides an intermediate layer between the hard-
ware stack and the software stack to achieve program portability. It
is considered a virtual reconfigurable architecture on top of a physi-
cal FPGA. Fine-grained granularity and coarse-grained granularity in
overlays are used in various applications [50, 51].

3. DNN implementation techniques

To enhance the performance of DNNs on the FPGA locally and in the
cloud, several techniques have been extensively studied. This section presents
implementation techniques that have been recently investigated.

9



3.1. Hardware architecture design

The widely used hardware architecture are streaming and single compu-
tation engine architectures.

• Streaming architecture: The streaming architecture (Figure 4) imple-
ments an entire DNN on the side of the Programmable logic (PL) of
the FPGA from the first convolutional layer to the final fully connected
layer. On the PL side, it deploys a chain of sequential DNN intellec-
tual property (IP) to process the dataset in the pipeline mode. The
intermediate results (DNN feature maps) are stored on the chip on the
PL side. This architecture enables an efficient data stream without fre-
quent data exchange with external memory, significantly reducing the
latency and obtaining throughput at a high frequency. A specific DNN
model using a streaming architecture must be defined before generat-
ing the bitstream. Whenever the DNN model changes, architecture
re-compilation and bitstream regeneration are inevitable. According
to the selected DNN algorithm, the re-compilation of this architecture
may be time- and resource-consuming.

Figure 4: Example of accelerating DNNs using the streaming architecture.

• Single Computation Engine: Single computation engine (Figure 5) im-
plements a part or a layer of the DNN on the PL side. It is a uni-
versal fixed template, usually in the representation of a systolic array

10



Figure 5: Example of accelerating DNNs using the single computation engine accelerator
architecture.

or multiple processing elements that can be configured as DNN lay-
ers of different scales [52, 53]. The execution of the entire DNN is
achieved sequentially by configuring this template in the program on
the PS side. The intermediate results (DNN feature maps) are stored
off the chip. The architecture significantly reduces resource usage and
introduces possibilities to scale accelerators. It has been widely used
in accelerators to enrich DNN diversity. However, because the DNN
blocks are executed sequentially on the FPGA, the execution time is
extended significantly. Each time the DNN architectures changes, it
is necessary to reload a complete bitstream to realize the novel DNN
deployments on the FPGAs.

Table 1 presents the major features of streaming and single computing
engine architectures according to their performance (e.g., flexibility, recon-
figuration, resource consumption).

3.2. Network compression

The increasing amounts of learnable parameters and arithmetic opera-
tions of DNNs lead to a computational burden and additional resource con-
sumption of hardware devices. Network compression makes DNNs more com-
pact when the data width is limited, assisting in striking a balance between

11



Table 1: Comparison of streaming and single computation architectures for DNN acceler-
ation.

Streaming Single computation

Network implementation Entire network Function unit

Structure Pipeline Recurrent

Optimisation mode Layer-independent One-optimization-fit-all

Recompilation time Long Short

Reconfiguration Bitstream-level reconfiguration Processor control configuration

Flexibility Low High

Resource usage High Low

Speedup Fast Low

resource usage and accuracy. Thus far, quantization, pruning, and in-parallel
pruning quantization have been successfully employed for network compres-
sion.

• Quantization: Network quantization converts floating-point data to
fixed-point data with a selectable data width. Quantization includes
uniform quantization with the same width for all network layers or
dynamic quantization of each layer based on the layer characteristics.
Researchers have widely adopted 16-bit fixed-point quantization (for
example, [54, 55]), and 4- and 8-bit uniform quantization [56, 57] have
already achieved good accuracy. Therefore, uniform quantization of a
small width is promising owing to its ease of implementation on FPGA
while maintaining accuracy.

• Pruning: Network pruning removes nonsignificant neurons to avoid
overfitting. This is an efficient method, particularly in embedded sys-
tems, for reducing the network size and saving computing resources
to fit the network to the memory size [58]. In [59], the authors com-
pressed a trained DNN model and performed reverse pruning and peak
pruning with fewer weights. Compared with the GPU, the compressed
AlexNet on FPGA achieved 182.3× and 1.1× improvements in latency
and throughput, respectively.

12



3.3. Optimization strategy

The scale of complex DNN structures introduces resource challenges.
Moreover, the data (e.g., weights) stored in the external memory require
enormous energy and latency. Because DNNs are composed of massive re-
peated loop operations, unrolling and tiling can be used to weaken off-chip
communication and deal with parallel computation problems. A more de-
tailed optimization was presented in [23].

• Loop unrolling: Unrolling executes a network or multiple layers in par-
allel—particularly convolutional layers. The network can be fully ex-
panded to achieve massively parallel processing or apply appropriate
unrolling factors (iterations in the loop) across different layers for par-
tial unrolling in the for-loop to optimize the datapath and maximise
the throughput [60, 61]. Ma et al. [62] adopted four types of loop
unrolling in kernel maps and feature maps to determine the parallelism
scheme and maximise data reuse. In an experiment involving VGG-16
on an Arria 10 FPGA, a throughput of 645.25 GOPS was achieved.

• Loop tiling: Constrained by limited on-chip memories, the data to be
processed are tiled into multiple tiles and stored in on-chip buffers. Se-
lecting a suitable tiling size factor can determine the trade-off between
resources and the required external memory bandwidth. For example,
Ma et al. [63] designed an auto-compilation process based on RTL,
which uses intra-block and inter-block strategies to divide the layer
execution into multiple sequential tiles. The process designed in [64]
supports both unrolling and tiling of input and output feature maps
on binarised networks. A 2× area efficiency improvement was achieved
compared with existing binarised networks.

4. Accelerating DNNs from local to virtualized FPGAs in the cloud

The work of accelerating DNNs on FPGAs in our surveys covers local
to the cloud and integrates the virtualization technique. The metrics used
to evaluate these methods usually include throughput, power, and accuracy.
Additionally, the adoption of virtualization techniques introduces additional
characteristics such as portability and productivity, and in the cloud envi-
ronment, QoS and isolation are regarded as new characteristics.

13



4.1. DNNs on local FPGA

Early studies (e.g., [65, 66][67]) were dedicated to manually mapping a
DNN model to a local FPGA with a streaming architecture. These studies
take full advantage of DNNs parallelism and apply layer-independent opti-
mization strategies to fit the entire network into the FPGA.

Benefiting from the well-defined structure of modern DNNs, which con-
tain similar layers with repetitive operations, researchers have proposed frame-
works with a single-engine computation structure [61, 68, 54, 69, 69] [70, 71],
as shown in Figure 6. These frameworks take advantage of both software
programmability and flexible hardware structures, making DNN implemen-
tation more diversified and achieving high performance with reduced resource
consumption. More frameworks that automatically map single DNNs to local
FPGAs were presented in [52]. Another new type of framework is a toolchain
that includes a compiler [60, 72, 73]. The compiler is a DNN architecture-
aware tool that can map a wide range of DNN applications to the instruction
set architecture (ISA) and control signals [60]. Figure 7 presents an example
of a compiler-inspired toolchain. Wang et al. [72] proposed a compiler that
transforms a DNN deployment into a graph-level problem. The compiler
first takes the software description as input and then transforms the descrip-
tion into directed acyclic graphs of computational operations. The networks
generated by the compiler on Xilinx ZU9 reach throughputs of 2.82 TOPs/s
(VGG), 1.38 TOPs/s (ResNet50), and 1.41 TOPs/s (GoogleNet).

More works can be found in Table 2.

Figure 6: Generic frameworks for DNN accelerators.

14



T
ab

le
2:

S
ev

er
al

ex
am

p
le

s
o
f

m
a
n
u

a
l

m
a
p

p
in

g
a
n

d
fr

a
m

ew
o
rk

s
o
n

th
e

lo
ca

l
F

P
G

A
.

W
or

k
s

Y
ea

r
D

N
N

m
o
d

el
s

D
ev

ic
e

D
at

a
fo

rm
at

A
rc

h
it

ec
tu

re
st

ra
te

gy
P

er
fo

rm
.

(G
O

P
s)

M
an

u
al

[7
4]

20
15

C
os

tu
m

C
N

N
X

il
in

x
V

ir
te

x
vc

70
7

32
-b

it
F

P
*

S
in

gl
e

en
gi

n
e

u
n

ro
ll

in
g

61
.6

2

[7
5]

20
15

C
IF

A
R

10
X

il
in

x
K

in
te

x
32

5
T

16
-b

it
S

in
gl

e
en

gi
n

e
Q

u
an

ti
za

ti
on

26
0

[5
3]

20
16

V
G

G
-1

6
X

il
in

x
Z

y
n

q
X

C
7Z

04
5

16
-b

it
S

in
gl

e
en

gi
n

e
u

n
ro

ll
in

g,
ti

ll
in

g
13

7.
3

[7
6]

20
16

A
le

x
N

et
X

il
in

x
vc

70
7

32
-b

it
F

P
*

S
in

gl
e

en
gi

n
e

u
n

ro
ll

in
g,

ti
ll

in
g

75
.1

6

[6
5]

20
16

A
le

x
N

et
x
il

in
x

vc
70

9
16

-b
it

S
tr

ea
m

in
g

Q
u

an
ti

za
to

n
,

P
in

g-
p

on
g

b
u

ff
er

,b
at

ch
in

g
56

5.
94

[7
7]

20
17

L
R

C
N

X
il

in
x

vc
71

0
16

-b
it

S
in

ge
en

gi
n

e
P

ru
n

in
g,

Q
u

an
ti

za
ti

on
,

u
n

ro
ll

in
g,

ti
ll

in
g

75
.5

F
ra

m
ew

or
k

[6
0]

20
17

V
G

G
16

X
il

in
x

Z
y
n

q
x
c7

z0
20

8-
b

it
S

in
ge

en
gi

n
e

P
er

-l
ay

er
q
u

an
ti

za
ti

on
84

.3

Y
O

L
O

62
.9

[7
8]

20
16

L
eN

et
-5

X
il

in
x

Z
y
n

q
x
c7

z0
2

32
-b

it
F

P
*

S
tr

ea
m

in
g

p
ip

el
in

e

18
5.

81

M
P

C
N

N
10

0.
23

C
N

P
15

0.
91

C
F

F
15

9.
22

[7
9]

20
17

B
N

N
-S

F
C

X
il

in
x

Z
y
n

q
Z

C
70

6
1-

b
it

S
tr

ea
m

in
g

p
ip

el
in

e,
b

in
ar

iz
ed

n
et

w
or

k

82
65

B
N

N
-L

F
C

90
8

B
N

N
-C

N
V

24
6

[5
4]

20
17

V
G

G
-1

9

A
lt

er
a

S
tr

at
ix

V
S

G
S

M
D

5
16

-b
it

S
in

gl
e

en
gi

n
e

ti
ll

in
g,

b
at

ch
in

g

36
4.

36

L
S

T
M

-L
M

31
5.

85

R
E

sN
et

-
15

2
22

6.
47

[8
0]

20
17

A
le

x
N

et

X
il

in
x

Z
y
n

q
X

C
7Z

04
5

16
-b

it
S

in
gl

e
en

gi
n

e
L

o
op

re
m

ov
al

,
re

ar
ra

n
ge

m
en

t

12
0.

3

G
o
og

L
eN

et
11

6

R
es

N
et

-5
0

12
2.

3

[6
8]

20
18

A
le

x
N

et
X

il
in

x
U

lt
ra

S
ca

le
K

U
06

0

16
-b

it
S

in
gl

e
en

gi
n

e
U

n
ro

ll
in

g,
p

ip
el

in
e

16
3

V
G

G
16

X
il

in
x

V
ir

te
x

vc
70

9
35

4

X
il

in
x

U
lt

ra
S

ca
le

K
U

06
0

26
6

[6
1]

20
18

A
le

x
N

et
A

lt
er

a
S

tr
at

ix
V

G
X

A
7

8-
b

it
S

in
gl

e
en

gi
n

e
u

n
ro

ll
in

g
11

4.
5

N
iN

11
7.

3

[7
2]

20
19

V
G

G

X
il

in
x

Z
U

2
8-

b
it

S
tr

ea
m

in
g

Q
u

an
ti

za
ti

on
,

ti
ll

in
g

33
4

R
es

N
et

50
22

8.
7

G
o
og

L
eN

et
23

1.
5

*
F

P
=

F
lo

at
in

g
p

o
in

t
fo

rm
at

.

15



Figure 7: Generic compiler-inspired frameworks for DNN accelerators.

4.2. DNNs on local virtualized FPGA

FPGA virtualization bridges the gap between the hardware stack and
the software stack with the abstraction layer, enhancing the productivity and
portability of DNN applications. Virtualization also enables resource sharing
among multiple FPGAs with flexible resource management to support a wide
range of DNNs. Figure 8 shows an example of virtualization at the node level.

At the resource level of virtualization, Tong et al. [81] propose a coarse-
grained overlay-based framework for quantising and accelerating a DNN with
any data width on an FPGA. The coarse-grained array comprises a recon-
figurable NoC, a scheduler, and network computation components and is
configured as DNN models according to instructions generated by the com-
piler of the framework. Such an overlay is independent of FPGA features and
can be flexibly adapted to FPGAs provided by different vendors. To satisfy
the metrics in virtualization, e.g., reducing the time and complexity of DNN
reconfiguration, this framework reconfigures the coarse-grained array from
the rightmost column to the leftmost column. The results indicate that the
inference of AlexNet and VGG-16 on Xilinx UltraScale+ VCU118 takes only
0.13 and 2.63 ms, respectively.

Similarly, Struharik et al. [82] designed a coarse-grained overlay-based
accelerator consisting of a set of processing blocks, which enabled on-the-fly
reconfiguration for different DNNs. The accelerator can implement main-
stream DNN families, such as VGG, Inception, ResNet, MobileNet, and
NASNet, with a frame rate up to 6.05 times higher than that of Nullhop
[83]. Other methods [84, 85] also employ a coarse-grained overlay on top of

16



the FPGA to enable dynamic datapath reconfiguration of DNN applications
at runtime.

Table 3: Comparison of coarse- and fine-grained overlays on FPGAs for DNN acceleration

Coarse-grained overlay Fine-grained overlay

Logic level RT level Gate level

Data width Up to 32bit 1 bit

Example logic DNN function unit (e.g., Conv) Control instruction (e.g., Load)

Goals Opitimize DNN Datapath switch Enable DNN diversity

Advantage Area-efficiency Higher flexiblity

In contrast to previous studies where DNNs were deployed on FPGAs
using the coarse-grained overlay, several researchers adopted a fine-grained
overlay as an abstraction level to achieve higher flexibility. Venieris et al.
[86] proposed an automated framework for implementing multiple DNNs on
a target FPGA platform with fast space exploration. The framework adopts
a streaming architecture to allocate resources at a fine-grained granularity for
exploring a wide range of resource and bandwidth allocations. The authors
tested their framework in a multi-DNN system (ZFNet, VGG16, SceneLa-
belCNN) on Xilinx ZC706, and the results indicated that the framework
achieved an improvement of up to 6.8× in performance/W over Nvidia Tegra
X1. Table 3 presents the features of the overlays used in the previous studies.

In node-level virtualization, the resource of a single FPGA can be allo-
cated to a single DNN application or multiple DNN applications in TDM
or SDM [87]. Zhang et al. [88] developed an end-to-end framework called a
DNN builder to build DNNs with high performance using a design space ex-
ploration strategy. The DNN builder enables virtualization on a single phys-
ical FPGA by allocating resources to several small accelerating engines. The
resource allocator can generate parallel schemes and data buffering guidelines
for each layer. The tool deploys AlexNet, ZF, VGG16, and YOLO on Xilinx
XC7Z045 and KU115 and achieves up to 5.15× better performance than that
reported in [89].

At a multi-node level, allocating resources from multiple FPGAs to the
DNN application may result in performance degradation owing to insufficient
off-chip bandwidth. Therefore, it is essential to employ optimized resource
mapping and efficient communication for this virtualization level. Zhang et

17



al. [90] enabled large-scale DNN application implementation across up to
16 FPGAs with resource- and bandwidth-aware mapping methods. Taking
the FPGA topology, resource conditions, and neural-network specifications
as the inputs, this method can partition the DNN application to each FPGA
depending on the statuses of the FPGAs (busy or free) and the estimation
throughput of layer mapping. Results indicated that ResNet-152 on a multi-
FPGA architecture outperformed a single-FPGA deployment by a factor of
16.4. Geng et al. [91] developed a framework that adopts a pipelined ar-
chitecture to train DNNs on multiple FPGAs with a one-dimensional topol-
ogy. The pipelined architecture with the fine-grained inter-and intra-layer
methodology minimises the time required for storing the feature map in the
memory during training. The authors evaluated their framework by train-
ing AlexNet on 10 Xilinx VC709 Connectivity Kits. The results indicated
that compared with other frameworks [21], the throughput obtained by this
framework was increased by a factor of 5; compared with Titan X, the energy
efficiency of the framework was up to 7.6 times higher. Moreover, the frame-
work exhibits good scalability, as it can scale up to 60 FPGAs to accelerate
DNNs.

However, such multiple-FPGA platforms adopting pipeline models gain
high throughput while sacrificing latency. Jiang et al. [92] developed a gen-
eral framework called Super-LIP to support concurrent processing for both
single- and multi-layer deployment on FPGAs. To achieve communication
between two FPGAs, the authors employ a novel methodology in Super-LIP
to achieve linear speedup by balancing computation workloads and distribut-
ing the shared data across FPGAs to avoid traffic heaviness on the FPGA
memory bus. Compared with the existing single-FPGA design [74], this
method achieved a 3.48× speedup of AlexNet, VGG, and YOLO on two
Xilinx ZCU102 kits.

4.3. DNNs on virtualized FPGA in the cloud

Zeng et al. [44] proposed a framework using FPGA virtualization, which
is applicable to any DNN accelerator based on the ISA in a cloud environ-
ment. This principle divides a large resource pool into multiple virualised
cores to share FPGA resources at the node level. By introducing a novel
two-level instruction (dispatch module and tiling-based instruction package
design), virtualized multi-core resources can be dynamically allocated to each
block in one DNN (single-task mode) or each DNN for multiple users (multi-
task mode) at runtime. Compared with previous methods, this technique

18



Figure 8: (a)DNN deployment without virtualization. (b) Example of FPGA virtualiza-
tion at the node level for deploying one DNN on a local FPGA. (c) Example of FPGA
virtualization at the node level for deploying several DNNs in the cloud environment.

solves physical resource isolation and performance among multiple users by
sharing FPGA resources in the SDM method. Experiments on VGG-16,
ResNet50, Inception V3, and MobileNet indicated that compared with a sin-
gle non-virtualized core design, the throughput of the proposed virtualization
method with multiple cores was 1.07–1.69 times higher overall.

A similar method called ViTAL was developed by Zha et al. [93] to en-
able FPGA virtualization in a cloud environment for deploying DNNs. This
method supports resource sharing at both the node and multi-node levels.
ViTAL provides an abstraction layer between DNN applications and physi-
cal resources, which abstracts heterogeneous resources into homogeneous re-
sources and provides a view of virtual blocks. The abstraction layer divides
a DNN application into virtual blocks and then maps these virtual blocks
to an FPGA or multiple FPGAs without impacting other running DNNs.
By using a latency-insensitive interface, virtual blocks can be mapped across
FPGAs at the multi-node level to achieve timing closure and match commu-
nication delays. Additionally, isolation in the cloud environment is achieved
by avoiding the sharing of physical resources among different virtual blocks.
The authors evaluated ViTAL by implementing LeNet, AlexNet, and VGG-
16 on a Xilinx UltraScale+ FPGA. The experimental results indicated that
ViTAL achieved good DNN mapping quality with a short compilation time

19



(1.6% of the total). Furthermore, ViTAL can dynamically relocate the DNNs
to different positions in the FPGA. The experimental results also indicated
that with FPGA virtualization methods, ViTAL significantly shortened the
response time (by 82%) in the cloud environment.

Fowers et al. [94] proposed a full-system architecture with virtualization
at a multi-node level to serve DNN inferences in a cloud environment. The
critical feature of the architecture is the dedicated neural processing units
(NPUs), which implement an SIMD ISA containing a matrix-vector mul-
tiplier. This DNN-specific ISA offers a high-level abstraction between the
underlying FPGA infrastructure and DNN software development, thereby
simplifying FPGA programming for software developers. The authors vali-
dated the architecture by running RNNs and compared it with the NVIDIA
Titan GPU, and it gained more than 36 effective teraflops (10 instances
NPU). Moreover, the authors evaluated ResNet-50 on the Arria 10 GX 1150,
which achieved 559 inferences per second (IPS), whereas ResNet-50 on the
Nvidia P40 GPU achieved only 461 IPS.

4.4. DNN deployment in commercial cloud

In recent years, companies such as Amazon F1 [95], Tentent [96], Huawei
FACs [97], and Microsoft [98] have launched cloud projects that provide
FPGA IaaS for users to rent FPGA resources. Researchers have begun to ac-
celerate DNN workloads in these commercial clouds to improve performance.
The framework of deploying DNNs on FPGAs with a commercial cloud as
the backend is similar to local deployment, but virtualization and physical
connections of FPGAs are often charged by cloud vendors and hidden in the
backend.

Several frameworks [99, 100, 101] have been proposed to implement DNNs
on a single physical FPGA in the cloud with Caffe and TensorFlow as a fron-
tend. Later, the research focus of DNN deployments moved from per-FPGA
granularity to multiple FPGAs. Because the mainstream compilation tools
do not support application implementation among multiple FPGASs, par-
ticular mapping algorithms or customized tools designed by the researchers
are needed. Shan et al. [102] proposed an effective solution for implementing
DNNs among multiple FPGAs in an AWS instance. The solution, which is
based on the characteristics of FPGAs in the AWS, uses a heuristic method
to find the global execution throughput between the CPU and the connected
FPGA and then uses an allocation algorithm (including group kernel allo-
cation and individual kernel allocation) to assign DNN workloads to various

20



FPGAs with resource constraints. It is suitable for deploying any DNN to
the AWS F1. Compared with the traditional mixed-integer nonlinear pro-
gramming solution, this solution achieved faster DNN implementations on
multiple FPGAs: 16-bit fixed-point AlexNet on two FPGAs, 32-bit floating-
point AlexNet on four FPGAs, 16-bit fixed-point VGG-16 on four or six
FPGAs, and ResNet on five FPGAs.

Table 4 presents studies on virtualization technology and the cloud envi-
ronment.

5. Trends of DNNs accelerators

As shown in Figure 9, the first stage in the evolution of DNN accelerators
involved manually mapping a single DNN to a single local FPGA with low
energy consumption. DNN accelerators were designed for implementation on
specific FPGA families. The optimization strategies are customised for a par-
ticular DNN and are not compatible with other networks. Therefore, DNN
deployment has disadvantages, such as poor portability, time-consuming de-
ployment, complex optimization, and inflexibility. Efforts have been made to
automatically generate DNN hardware structures according to the require-
ments of different FPGA families. Therefore, researchers have proposed sev-
eral frameworks to support a generic DNN accelerator and to offer customised
DNN implementations by analysing requirements and platform-specific con-
straints. These frameworks are usually integrated with an RTL compiler with
full exploitation of low-level structures to achieve high performance. More-
over, instruction-driven compiler frameworks have been developed in recent
years to simplify the control flow of DNNs.

Despite enjoying energy efficiency and acceleration, DNN deployment on
FPGAs faces complexity, resulting in reduced productivity. The framework
of the previous stage mainly reduces the programmable complexity at the
single-FPGA level without multiple tasks, and researchers have not yet de-
termined how to improve the productivity of DNN implementation at the
multiple-FPGA or resource level. Accordingly, DNN accelerators with virtu-
alization techniques are being developed. Resource-level virtualization pro-
vides portability of DNN deployment for various families of FPGAs from
different vendors. Node-level and multi-node-level virtualization enables re-
source sharing among FPGAs. Multi-node level virtualization exhibits the
advantages of scaling up DNNs and training DNNs.

21



T
ab

le
4:

S
ev

er
al

ex
am

p
le

s
of

D
N

N
s

b
a
se

d
o
n

lo
ca

l
v
ir

tu
a
li

ze
d

F
P

G
A

a
n

d
D

N
N

s
in

th
e

C
lo

u
d

W
or

k
s

Y
ea

r
D

N
N

V
ir

tu
al

iz
at

io
n

C
lo

u
d

M
u
lt

i-
te

n
an

t
T

as
k

an
d

re
so

u
rc

e
m

an
ag

er
F

P
G

A
p
la

tf
or

m

M
o
d
el

tr
ai

n
in

g
A

b
st

ra
ct

io
n

H
os

t
S
h
el

l
D

ev
ic

e
N

u
m

b
er

[2
1]

20
16

A
le

x
N

et
,

V
G

G
-1

6
N

/A
M

u
lt

i-
n
o
d
e

le
ve

l
R

H
A

X
I,

N
et

w
or

k
ac

ce
ss

N
/A

N
/A

sy
st

em
co

n
tr

ol
le

r
X

il
in

x
V

ir
te

x
V

C
70

9
6

[3
4]

20
18

L
S
T

M
,

R
N

N
N

/A
M

u
lt

i-
n
o
d
e

le
ve

l
R

H
N

et
w

or
k

co
m

m
u
n
ic

at
io

n
,

P
C

Ie
co

n
tr

ol
le

r
M

o
d
el

p
ar

al
le

li
sm

,
O

n
-c

h
ip

p
in

n
in

g
A

lt
er

a
S
tr

at
ix

10
28

0
1

[9
1]

20
18

A
le

x
N

et
16

-b
it

M
u
lt

i-
n
o
d
e

le
ve

l
L

H
C

om
m

u
n
ic

at
io

n
,

I/
O

co
m

p
on

en
t

P
ar

ti
ti

on
in

g,
M

em
or

y
su

b
sy

st
em

X
il
in

x
V

ir
te

x
V

C
70

9
10

[1
03

]
20

18
V

G
G

-1
6,

A
le

x
N

et
,

S
q
u
ee

ze
N

et
,

Y
O

L
O

M
u
lt

i-
n
o
d
e

le
ve

l
L

H
C

om
m

u
n
ic

at
io

n
,

P
C

Ie
,

A
u
ro

ra
M

ix
ed

in
te

ge
r

li
n
ea

r
p
ro

gr
am

m
in

g
X

li
n
x

Z
Y

N
Q

3

[1
04

]
20

19
A

le
x
N

et
,

D
is

p
N

et
,

R
es

N
et

,
G

o
og

L
eN

et
N

/A
R

es
ou

rc
e

le
ve

l
O

C
A

X
I,

M
em

or
y

co
n
tr

ol
le

r
T

u
n
in

g
al

go
ri

th
m

X
il
in

x
Z

C
70

6,
Z

C
U

10
2

1

[9
2]

20
19

A
le

x
N

et
,

S
q
u
ee

ze
N

et
,

Y
O

L
O

,
V

G
G

-1
6

N
/A

M
u
lt

i-
n
o
d
e

le
ve

l
O

C
H

os
t

co
m

m
u
n
ic

at
io

n
,

cl
o
ck

ge
n
er

at
or

H
y
p

er
v
is

or
X

il
in

x
Z

C
U

10
2

2

[9
0]

20
19

R
es

N
et

15
2

N
/A

M
u
lt

i-
N

o
d
e

le
ve

l
R

H
N

et
w

or
k

co
m

m
u
n
ic

at
io

n
D

y
n
am

ic
p
ar

ti
ti

on
in

g
X

il
in

x
U

lt
ra

S
ca

le
16

[1
05

]
20

19
C

u
st

om
iz

ed
3D

C
N

N
N

/A
M

u
lt

i-
N

o
d
e

le
ve

l
L

H
N

et
w

or
k

in
te

rf
ac

e,
P

C
Ie

co
n
tr

ol
le

r
H

ar
d
w

ar
e

m
on

it
or

,
m

ap
p
in

g
ta

b
le

X
il
in

x
V

C
U

11
8

4

[1
06

]
20

19
S
q
u
ee

ze
N

et
,

G
o
og

L
eN

et
,

V
G

G
-1

6
32

-b
it

F
P

*
R

es
ou

rc
e

le
ve

l
L

H
D

D
R

co
n
tr

ol
le

r,
G

lo
b
al

m
em

or
y

in
te

rc
on

n
ec

ti
on

P
ar

ti
al

re
co

n
fi
gu

ra
ti

on
m

an
an

ge
r

In
te

l
S
tr

at
ix

10
S
X

S
oC

1

[8
1]

20
20

V
G

G
-1

6,
A

le
x
N

et
N

/A
R

es
ou

rc
e

le
ve

l
O

C
D

D
R

co
n
tr

ol
le

r
C

ro
as

e-
gr

ai
n
ed

N
oC

,
P

ar
am

et
er

sc
h
ed

u
le

r
X

il
in

x
V

C
U

11
8

1

[1
07

]
20

18
D

N
N

W
ea

ve
r

N
/A

N
o
d
e

le
ve

l
L

H
P

C
Ie

co
n
tr

ol
le

r,
D

M
A

,
M

M
IO

C
lo

u
d

en
v
ir

on
m

en
t

N
/M

Z
on

e
m

an
ag

er
on

h
os

t
C

P
U

A
lt

er
a

S
tr

at
ix

V
G

S
,

X
il
in

x
U

lt
ra

sc
al

e+
1

[3
4]

20
18

L
S
T

M
,

R
N

N
N

/A
M

u
lt

i-
n
o
d
e

le
ve

l
R

H
N

et
w

or
k

co
m

m
u
n
ic

at
io

n
,

P
C

Ie
co

n
tr

ol
le

r
S
M

,
T

M
R

es
ou

rc
e

ru
n
ti

m
e

m
an

ag
er

A
lt

er
a

S
tr

at
ix

10
28

0
1

[1
08

]
20

20
C

IF
A

R
N

et
N

/A
N

o
d
e

le
ve

l
O

C
M

em
or

y
co

n
tr

ol
le

r,
A

X
I

S
M

,
T

M
R

u
n
ti

m
e

ta
sk

m
an

ag
er

,
sc

h
d
u
li
n
g

d
ec

is
io

n
X

il
in

x
Z

C
U

10
4

1

[9
3]

20
20

N
iN

,
A

le
x
N

et
,

O
ve

rF
ea

t,
V

gg
-1

6
N

/A
M

u
lt

i-
n
o
d
e

le
ve

l
R

H
L

at
en

cy
-i

n
te

n
si

ve
in

te
rf

ac
e,

ad
d
re

ss
tr

an
sl

at
io

n
T

M
H

y
p

er
v
is

or
an

d
sy

st
em

co
n
tr

ol
le

r
X

il
in

x
U

lt
ra

S
ca

le
+

4

[4
4]

20
20

R
es

N
et

50
,

In
ce

p
ti

on
V

3,
M

ob
il
eN

et
N

/A
N

o
d
e

le
ve

l
L

H
V

ir
tu

al
iz

at
io

n
in

fr
as

tr
u
ct

u
re

S
M

M
u
lt

i-
le

ve
l

in
st

ru
ct

io
n
s,

v
ir

tu
al

iz
at

io
n

m
an

ag
er

X
il
in

x
A

lv
eo

U
20

0
1

[5
4]

20
17

V
G

G
-1

9,
R

es
N

et
15

2,
L

S
T

M

32
-b

it
F

P
*,

16
-b

it

N
/M

,
C

h
ar

ge
d

b
y

cl
ou

d
ve

n
d
or

s

Ia
aS

(P
er

-F
P

G
A

)
N

/A
S
y
m

b
ol

ic
co

m
p
il
er

C
at

ap
u
lt

1

[1
09

]
20

18
M

L
P

,
Y

O
L

O
,

D
oR

eF
a-

N
et

N
/A

Ia
aS

(P
er

-F
P

G
A

)
N

/A
D

at
a

F
lo

w
B

al
an

ci
n
g

al
go

ri
th

m
A

W
S

F
1

1

[9
9]

20
18

L
eN

et
,

V
G

G
-1

6
N

/A
Ia

aS
(P

er
-F

P
G

A
)

N
/A

D
at

am
ov

er
,

sy
st

em
co

n
tr

ol
le

r
A

W
S

F
1

1

[1
00

]
20

19
A

le
x
N

et
,

V
G

G
-1

6,
R

es
N

et
-5

0
N

/A
Ia

aS
(P

er
-F

P
G

A
)

N
/A

M
o
d
el

sp
li
t,

ta
sk

al
lo

ca
ti

on
m

an
ag

er
A

W
S

F
1

1

[1
10

]
20

20
A

le
x
N

et
,

V
G

G
-1

6
N

/A
Ia

aS
(m

u
lt

i-
F

P
G

A
s)

N
/A

M
IN

L
P

S
ol

ve
r

A
W

S
F

1
an

d
F

2
1

[1
11

]
20

15
D

en
se

N
et

-1
21

,
R

es
N

et
-1

52
,

et
c

N
/A

N
/M

S
aa

S
(P

er
-F

P
G

A
)

S
M

,
T

M
W

eb
se

rv
ic

e
A

P
I

A
rr

ia
10

1,
2,

4

*
F

P
=

fl
oa

ti
n
g

p
oi

n
t

fo
rm

at
.

O
C

=
O

n
-c

h
ip

h
os

t;
R

H
=

R
em

ot
ed

h
os

t;
L

H
=

L
o
ca

l
h
os

t.
(H

o
st

in
se

ct
io

n
2.

2
.2

)
S
M

=
S
p
at

ia
l

m
u
lt

ip
le

x
in

g;
T

M
=

T
im

e
m

u
lt

ip
le

x
in

g.
N

/A
=

N
ot

ap
p
li
ed

.
N

/M
=

N
ot

m
en

ti
on

ed
.

22



Figure 9: Evolution of DNN accelerators at each time node: from manual mapping to
frameworks, from a single node to a cluster, from physical to virtual resources, and from
local to cloud.

Subsequently, several works proposed cloud-based accelerators for deploy-
ing DNNs on-demand. These studies can be divided into two categories. The
first category involves building an end-to-end cloud environment for DNN
acceleration. These works not only require the development of a framework
or a solution for DNN deployment but are also responsible for providing
FPGA devices, virtualizing FPGAs, managing FPGA resources, scheduling
tasks, and supporting multi-tenant scenarios with resources and data iso-
lation. However, these works are still in their infancy and face obstacles,
such as runtime overhead. Few researchers have performed studies in this
area, but it will be an appealing field owing to the growing focus on cloud
computing. The other category involves using the commercial FPGA cloud
as a backend to develop DNN frameworks or solutions. These frameworks
usually cannot consider multi-tenant solutions and cannot support DNN de-
ployment at runtime. Additionally, FPGA management and virtualization
are handled by the cloud provider and hidden in the background. Studies
have mainly focused on deploying DNNs at per-FPGA granularity because
this does not require resource-mapping algorithms or compilation tools across
multiple FPGAs. DNN development can only be completed by using cloud
integrators provided by cloud vendors and mainstream compilation tools.

23



At each stage, DNN deployment exhibits various characteristics, as shown
in Figure 10. Most DNN implementations are based on streaming or a single
computation engine, along with the compression and optimization strategies
mentioned in Section 3. Compared with a single computation engine, the
streaming architecture gains efficiency by pipelining the network and acti-
vating concurrent executions between layers. However, this efficiency leads
to a resource burden and a long recompilation time because obtaining a new
DNN model requires regenerating the bitstream. According to the different
requirements (e.g., resource constraints or speedup), researchers can choose
different hardware structures in both the local and cloud FPGAs.

Figure 10: Comparison of related methods with different characteristics.

6. Discussion

In the history of deploying DNNs on FPGAs, new requirements have been
proposed at different stages, which has led to different challenges. With the
development of a novel generation of platforms, technologies, and concepts,
challenges have been resolved.

6.1. Unresolved challenges

Some challenges of using FPGAs in the cloud have not been fully resolved
owing to their complexity. Here, we describe two major challenges: isolation
and diversity.

24



6.1.1. Isolation

With the increasing efforts to provide a cloud environment for multiple
tenants to deploy DNNs on the shared FPGAs, resources and performance
isolation have become a concern in the cloud.

DNN accelerators on the FPGA usually run under full hardware access
and may share resources. Therefore, malicious code can attack the entire
platform for other tenancies [112, 113]. Additionally, dataset collection can
be time-consuming and expensive—particularly in industrial cases where
datasets are of significant commercial value. Providing strict data and re-
source isolation for multiple tenants can prevent unauthorised access to the
dataset and avoid data leakage [114] [115].

Additionally, a DNN application may affect the performance of other
DNN applications during concurrent execution[112, 116], which causes unre-
liable performance. However, few works[93, 44] discuss performance isolation
problems, and their isolation remains underexplored.

6.1.2. Diversity

Diversity of DNN functions: Owing to resource limitations and develop-
ment difficulties, the networks reported in the literature are standard (such
as AlexNet and VGG) with common functions (such as convolution and pool-
ing). With the continuous emergence of DNNs, the current DNN functions
that can be implemented on FPGAs lack consistency with the development
of DNN algorithms. However, the cloud environment provides more possi-
bilities for exploring the deployment of DNNs with a rich set of functions on
FPGAs by providing more resources and abstraction layers and can promote
the diversity of DNN IP development.

Diversity of DNN usage: Training is a difficult phase to be performed
on the FPGA, because all the features must be stored in memory until the
corresponding errors are backpropagated, which requires more storage than
inference. Existing works mainly focus on performing DNN inferences with
relatively simple functions on the FPGA. Benefiting from the “unlimited”
capacity and resources provided by the FPGA cloud, DNN training, fine-
tuning, transfer learning, and the support of new functions in DNNs will be
more feasible.

6.2. Industrial solution

To keep pace with the development of DNN accelerator design, novel
platforms have been used in industry to enhance the hardware computing

25



power. In 2019, Xilinx proposed a new SoC family called Versal, which is
based on an adaptive compute acceleration platform, for accelerating ap-
plications such as DNNs. Versal tightly integrates software-programmable
accelerators through the NoC structure, making accelerators scalable with
flexible connections and achieving a high level of software abstraction for the
rapid development of accelerators.

Xilinx also proposed a novel framework called Vitis AI [117]. The frame-
work can be interfaced with Caffe and TensorFlow and provides a unified
solution, e.g., quantization, optimization, and pruning. Moreover, it allows
the deployment of DNNs based on the ISA and can compile the latest DNNs
into deep-learning processor unit instruction codes. Vitis AI can enhance the
productivity and portability of DNN deployment, allowing software engineers
to deploy DNNs without hardware expertise.

6.3. Roadblocks of FPGA Cloud

Solutions of FPGA-based accelerators in the cloud have been proposed for
several years [97, 95]. Nevertheless, FPGAs have achieved less success com-
pared to GPU and TPU architectures in the cloud. Deploying FPGA devices
as easy-to-use resources in the cloud faces the following major roadblocks.

First, FPGA programming requires cloud users to have extensive hard-
ware skills and expertise to deploy their applications in the cloud, which is
a considerable challenge for software engineers and data scientists. Cloud
providers must provide well-developed virtualization techniques for abstract-
ing FPGAs [118]. As discussed in Section 5, virtualizing FPGAs in the cloud
for artificial-intelligence applications still has issues, such as runtime over-
head, multi-user support, user isolation, and data privacy. Additionally, the
FPGA cloud provides users with high permissions to access the resources,
where users can upload their bitstreams for application deployment, leading
to malicious attacks and security problems [119]. Such problems hinder the
success of FPGAs in cloud computing.

7. Conclusion

This paper summarizes several techniques to promote DNN deployments
on FPGAs, including architectural design and optimization strategies. We
reviewed related works based on FPGA virtualization and cloud deployment.
Our study involved an in-depth analysis of the evolution of DNN deployment

26



on FPGAs, from local FPGAs to virtualized FPGAs in the cloud. This topic
was ignored by previous surveys.

With the rising concern regarding the adoption of FPGAs at the edge
and in the cloud, porting DNNs onto FPGAs in cloud services will continue
to attract attention in the years to come.
Acknowledgements

The first author is funded by China Scholarship Council (Grant number,
201708070009).

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, Commun. ACM 60 (6) (2017)
84–90. doi:10.1145/3065386.
URL https://doi.org/10.1145/3065386

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition, in: Y. Bengio, Y. LeCun (Eds.), 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
URL http://arxiv.org/abs/1409.1556

[3] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778. doi:10.1109/CVPR.2016.90.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, 2017.
URL https://arxiv.org/pdf/1706.03762.pdf

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks,
arXiv preprint arXiv:1406.2661 (2014).

[6] D. P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv
preprint arXiv:1312.6114 (2013).

[7] J. Powles, H. Hodson, Google deepmind and healthcare in an
age of algorithms, Health and technology 7 (4) (2017) 351–367.
doi:https://doi.org/10.1007/s12553-017-0179-1.

27



[8] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noord-
huis, M. Smelyanskiy, L. Xiong, X. Wang, Applied machine learning at
facebook: A datacenter infrastructure perspective, in: 2018 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 620–629. doi:10.1109/HPCA.2018.00059.

[9] I. Lopatovska, K. Rink, I. Knight, K. Raines, K. Cosenza,
H. Williams, P. Sorsche, D. Hirsch, Q. Li, A. Martinez,
Talk to me: Exploring user interactions with the amazon
alexa, Journal of Librarianship and Information Science 51 (4)
(2019) 984–997. arXiv:https://doi.org/10.1177/0961000618759414,
doi:10.1177/0961000618759414.
URL https://doi.org/10.1177/0961000618759414

[10] M. Song, Y. Hu, H. Chen, T. Li, Towards pervasive and user satisfac-
tory cnn across gpu microarchitectures, in: 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2017, pp. 1–12. doi:10.1109/HPCA.2017.52.

[11] S. Potluri, A. Fasih, L. K. Vutukuru, F. A. Machot, K. Kyamakya,
Cnn based high performance computing for real time image processing
on gpu, in: Proceedings of the Joint INDS’11 ISTET’11, 2011, pp. 1–7.
doi:10.1109/INDS.2011.6024781.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Ja-
worski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, D. H. Yoon, In-datacenter perfor-
mance analysis of a tensor processing unit, SIGARCH Comput. Archit.

28



News 45 (2) (2017) 1–12. doi:10.1145/3140659.3080246.
URL https://doi.org/10.1145/3140659.3080246

[13] N. P. Jouppi, C. Young, N. Patil, D. Patterson, A domain-specific
architecture for deep neural networks, Commun. ACM 61 (9) (2018)
50–59. doi:10.1145/3154484.
URL https://doi.org/10.1145/3154484

[14] S. I. Venieris, I. Panopoulos, I. Leontiadis, I. S. Venieris, How to reach
real-time ai on consumer devices? solutions for programmable and
custom architectures, arXiv preprint arXiv:2106.15021 (2021).

[15] Intel® stratix® 10 variable precision dsp blocks user guide.

[16] Y. Zhou, J. Jiang, An fpga-based accelerator implementation for deep
convolutional neural networks, in: 2015 4th International Conference
on Computer Science and Network Technology (ICCSNT), Vol. 01,
2015, pp. 829–832. doi:10.1109/ICCSNT.2015.7490869.

[17] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula,
J.-s. Seo, Y. Cao, Throughput-optimized opencl-based fpga accelerator
for large-scale convolutional neural networks, in: Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’16, Association for Computing Machinery, New
York, NY, USA, 2016, p. 16–25. doi:10.1145/2847263.2847276.
URL https://doi.org/10.1145/2847263.2847276

[18] L. B. Saldanha, C. Bobda, An embedded system for handwritten
digit recognition, Journal of Systems Architecture 61 (10) (2015)
693–699, special section on Architecture of Computing Systems edited
by Editors: Wolfgang Karl, Erik Maehle, Kay Römer, Eduardo
Tovar, Martin Danek Special section on Testing, Prototyping, and
Debugging of Multi-Core Architectures edited by Editors: Frank
Hannig Andreas Herkersdorf Special section on Embedded Vi-
sion Architectures and Applications edited by Editors: Christophe
Bobda, Walter Stechele, Ali Ahmadinia and Miaoqing Huang.
doi:https://doi.org/10.1016/j.sysarc.2015.07.015.
URL https://www.sciencedirect.com/science/article/pii/S1383762115000867

29



[19] T. Fanni, L. Li, T. Viitanen, C. Sau, R. Xie, F. Palumbo, L. Raffo,
H. Huttunen, J. Takala, S. S. Bhattacharyya, Hardware design
methodology using lightweight dataflow and its integration with low
power techniques, Journal of Systems Architecture 78 (2017) 15–29.
doi:https://doi.org/10.1016/j.sysarc.2017.06.003.
URL https://www.sciencedirect.com/science/article/pii/S1383762116302831

[20] F. Li, B. Liu, Ternary weight networks, ArXiv abs/1605.04711 (2016).

[21] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, J. Cong, Energy-efficient
cnn implementation on a deeply pipelined fpga cluster, in: Proceedings
of the 2016 International Symposium on Low Power Electronics and
Design, ISLPED ’16, Association for Computing Machinery, New York,
NY, USA, 2016, p. 326–331. doi:10.1145/2934583.2934644.
URL https://doi.org/10.1145/2934583.2934644

[22] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, S. Areibi,
Caffeinated fpgas: Fpga framework for convolutional neural networks,
in: 2016 International Conference on Field-Programmable Technology
(FPT), 2016, pp. 265–268. doi:10.1109/FPT.2016.7929549.

[23] S. Mittal, A survey of fpga-based accelerators for convolutional neural
networks, Neural computing and applications 32 (4) (2020) 1109–1139.
doi:https://doi.org/10.1007/s00521-018-3761-1.

[24] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, [dl] a survey of fpga-
based neural network inference accelerators, ACM Trans. Reconfig-
urable Technol. Syst. 12 (1) (Mar. 2019). doi:10.1145/3289185.
URL https://doi.org/10.1145/3289185

[25] S. Bianco, R. Cadene, L. Celona, P. Napoletano, Benchmark analysis
of representative deep neural network architectures, IEEE Access 6
(2018) 64270–64277. doi:10.1109/ACCESS.2018.2877890.

[26] Z. Li, Y. Zhang, J. Wang, J. Lai, A survey of fpga design for ai
era, Journal of Semiconductors 41 (2020) 021402. doi:10.1088/1674-
4926/41/2/021402.

[27] A. G. Blaiech, K. Ben Khalifa, C. Valderrama, M. A. Fernandes,
M. H. Bedoui, A survey and taxonomy of fpga-based deep learning

30



accelerators, Journal of Systems Architecture 98 (2019) 331–345.
doi:https://doi.org/10.1016/j.sysarc.2019.01.007.
URL https://www.sciencedirect.com/science/article/pii/S1383762118304156

[28] D. Moolchandani, A. Kumar, S. R. Sarangi, Accelerating cnn inference
on asics: A survey, Journal of Systems Architecture 113 (2021) 101887.
doi:https://doi.org/10.1016/j.sysarc.2020.101887.
URL https://www.sciencedirect.com/science/article/pii/S1383762120301612

[29] O. Djedidi, M. A. Djeziri, Power profiling and monitoring in embedded
systems: A comparative study and a novel methodology based on
NARX neural networks, Journal of Systems Architecture 111 (2020)
101805. doi:https://doi.org/10.1016/j.sysarc.2020.101805.
URL https://www.sciencedirect.com/science/article/pii/S1383762120300953

[30] S. Salamat, B. Khaleghi, M. Imani, T. Rosing, Workload-aware
opportunistic energy efficiency in multi-fpga platforms, CoRR
abs/1908.06519 (2019). arXiv:1908.06519.
URL http://arxiv.org/abs/1908.06519

[31] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, P. Chow,
Fpgas in the cloud: Booting virtualized hardware accelerators with
openstack, in: 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines, 2014, pp. 109–116.
doi:10.1109/FCCM.2014.42.

[32] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, P. Ienne, Virtualized
execution runtime for fpga accelerators in the cloud, IEEE Access 5
(2017) 1900–1910. doi:10.1109/ACCESS.2017.2661582.

[33] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, D. Burger,
A reconfigurable fabric for accelerating large-scale datacenter services,
IEEE Micro 35 (3) (2015) 10–22. doi:10.1109/MM.2015.42.

[34] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abey-
deera, L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein,

31



A. Forin, K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Hus-
seini, T. Juhasz, K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen,
D. Mukhortov, P. Patel, B. Perez, A. Rapsang, S. Reinhardt,
B. Rouhani, A. Sapek, R. Seera, S. Shekar, B. Sridharan, G. Weisz,
L. Woods, P. Yi Xiao, D. Zhang, R. Zhao, D. Burger, Serving dnns
in real time at datacenter scale with project brainwave, IEEE Micro
38 (2) (2018) 8–20. doi:10.1109/MM.2018.022071131.

[35] Q. Ijaz, E.-B. Bourennane, A. K. Bashir, H. Asghar, Revisiting the
high-performance reconfigurable computing for future datacenters, Fu-
ture Internet 12 (4) (2020). doi:10.3390/fi12040064.
URL https://www.mdpi.com/1999-5903/12/4/64

[36] A. Vaishnav, K. D. Pham, D. Koch, J. Garside, Resource elastic virtu-
alization for fpgas using opencl, in: 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), 2018, pp. 111–
1117. doi:10.1109/FPL.2018.00028.

[37] K. Vipin, S. A. Fahmy, Fpga dynamic and partial reconfiguration:
A survey of architectures, methods, and applications, ACM Comput.
Surv. 51 (4) (Jul. 2018). doi:10.1145/3193827.
URL https://doi.org/10.1145/3193827

[38] R. Skhiri, V. Fresse, et al., From fpga to support cloud to cloud of fpga:
State of the art, International Journal of Reconfigurable Computing
(2019).

[39] A. Vaishnav, K. D. Pham, D. Koch, A survey on fpga virtualization, in:
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 131–1317. doi:10.1109/FPL.2018.00031.

[40] M. Quraishi, E. Tavakoli, F. Ren, A survey of system archi-
tectures and techniques for fpga virtualization, IEEE Transac-
tions on Parallel Distributed Systems 32 (09) (2021) 2216–2230.
doi:10.1109/TPDS.2021.3063670.

[41] O. Knodel, P. R. Genssler, R. G. Spallek, Virtualizing reconfigurable
hardware to provide scalability in cloud architectures, in: International
Conference on Advances in Circuits, Electronics and Micro-electronics
(CENICS), 2017.

32



[42] J. Weerasinghe, F. Abel, C. Hagleitner, A. Herkersdorf, Enabling fpgas
in hyperscale data centers, in: 2015 IEEE 12th Intl Conf on Ubiqui-
tous Intelligence and Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on
Scalable Computing and Communications and Its Associated Work-
shops (UIC-ATC-ScalCom), 2015, pp. 1078–1086. doi:10.1109/UIC-
ATC-ScalCom-CBDCom-IoP.2015.199.

[43] Li, Xiangwei and Maskell, Douglas L., Time-Multiplexed FPGA Over-
lay Architectures: A Survey, ACM Trans. Des. Autom. Electron. Syst.
24 (5) (Jul. 2019). doi:10.1145/3339861.
URL https://doi.org/10.1145/3339861

[44] S. Zeng, G. Dai, K. Zhong, H. Sun, G. Ge, K. Guo, Y. Wang, H. Yang,
Enable efficient and flexible fpga virtualization for deep learning in
the cloud, in: Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’20, Asso-
ciation for Computing Machinery, New York, NY, USA, 2020, p. 317.
doi:10.1145/3373087.3375346.
URL https://doi.org/10.1145/3373087.3375346

[45] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, Z. Zhang, A parallel bandit-
based approach for autotuning fpga compilation, in: Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’17, Association for Computing Machinery, New
York, NY, USA, 2017, p. 157–166. doi:10.1145/3020078.3021747.
URL https://doi.org/10.1145/3020078.3021747

[46] H. K.-H. So, C. Liu, FPGA Overlays, Springer International Publish-
ing, Cham, 2016, pp. 285–305. doi:10.1007/978-3-319-26408-0 16.
URL https://doi.org/10.1007/978-3-319-26408-0 16

[47] C. Lu, K. Ye, G. Xu, C.-Z. Xu, T. Bai, Imbalance in the cloud:
An analysis on alibaba cluster trace, in: 2017 IEEE Interna-
tional Conference on Big Data (Big Data), 2017, pp. 2884–2892.
doi:10.1109/BigData.2017.8258257.

[48] K. Fleming, H.-J. Yang, M. Adler, J. Emer, The leap fpga
operating system, in: 2014 24th International Conference on

33



Field Programmable Logic and Applications (FPL), 2014, pp. 1–8.
doi:10.1109/FPL.2014.6927488.

[49] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner,
M. Platzner, C. Plessl, Reconos: An operating system approach
for reconfigurable computing, IEEE Micro 34 (1) (2014) 60–71.
doi:10.1109/MM.2013.110.

[50] S. A. Chin, K. P. Niu, M. Walker, S. Yin, A. Mertens, J. Lee, J. H.
Anderson, Architecture exploration of standard-cell and fpga-overlay
cgras using the open-source cgra-me framework, in: Proceedings of the
2018 International Symposium on Physical Design, ISPD ’18, Associ-
ation for Computing Machinery, New York, NY, USA, 2018, p. 48–55.
doi:10.1145/3177540.3177553.
URL https://doi.org/10.1145/3177540.3177553

[51] X. Li, K. Vipin, D. L. Maskell, S. A. Fahmy, A. K. Jain, High through-
put accelerator interface framework for a linear time-multiplexed fpga
overlay, in: 2020 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), 2020, pp. 1–5. doi:10.1109/ISCAS45731.2020.9181072.

[52] Venieris, Stylianos I. and Kouris, Alexandros and Bouganis, Christos-
Savvas, Toolflows for Mapping Convolutional Neural Networks on FP-
GAs: A Survey and Future Directions, ACM Comput. Surv. 51 (3)
(Jun. 2018). doi:10.1145/3186332.
URL https://doi.org/10.1145/3186332

[53] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, H. Yang, Going deeper with embedded fpga
platform for convolutional neural network, in: Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’16, Association for Computing Machinery, New York,
NY, USA, 2016, p. 26–35. doi:10.1145/2847263.2847265.
URL https://doi.org/10.1145/2847263.2847265

[54] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, J. Cong, Fp-dnn: An automated framework for map-
ping deep neural networks onto fpgas with rtl-hls hybrid templates,

34



in: 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2017, pp. 152–
159. doi:10.1109/FCCM.2017.25.

[55] Q. Xiao, Y. Liang, L. Lu, S. Yan, Y.-W. Tai, Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on fp-
gas, in: 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), 2017, pp. 1–6. doi:10.1145/3061639.3062244.

[56] P. Gysel, J. Pimentel, M. Motamedi, S. Ghiasi, Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks, IEEE Transactions on Neural Networks and Learning
Systems 29 (11) (2018) 5784–5789. doi:10.1109/TNNLS.2018.2808319.

[57] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, M. Welling, Re-
laxed quantization for discretized neural networks, arXiv preprint
arXiv:1810.01875 (2018).

[58] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convo-
lutional neural networks for resource efficient transfer learning, CoRR
abs/1611.06440 (2016). arXiv:1611.06440.
URL http://arxiv.org/abs/1611.06440

[59] M. Zhang, L. Li, H. Wang, Y. Liu, H. Qin, W. Zhao, Optimized com-
pression for implementing convolutional neural networks on fpga, Elec-
tronics 8 (3) (2019). doi:10.3390/electronics8030295.
URL https://www.mdpi.com/2079-9292/8/3/295

[60] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han,
Y. Wang, H. Yang, Angel-eye: A complete design flow for map-
ping cnn onto embedded fpga, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37 (1) (2018) 35–47.
doi:10.1109/TCAD.2017.2705069.

[61] Y. Ma, N. Suda, Y. Cao, S. Vrudhula, J. sun Seo,
Alamo: Fpga acceleration of deep learning algorithms with
a modularized rtl compiler, Integration 62 (2018) 14–23.
doi:https://doi.org/10.1016/j.vlsi.2017.12.009.
URL https://www.sciencedirect.com/science/article/pii/S0167926017304777

35



[62] Y. Ma, Y. Cao, S. Vrudhula, J.-s. Seo, Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural net-
works, in: Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’17, Associa-
tion for Computing Machinery, New York, NY, USA, 2017, p. 45–54.
doi:10.1145/3020078.3021736.
URL https://doi.org/10.1145/3020078.3021736

[63] Y. Ma, Y. Cao, S. Vrudhula, J.-s. Seo, An automatic rtl compiler
for high-throughput fpga implementation of diverse deep convolu-
tional neural networks, in: 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), 2017, pp. 1–8.
doi:10.23919/FPL.2017.8056824.

[64] E. Wang, J. J. Davis, P. Y. K. Cheung, G. A. Constantinides, Lut-
net: Learning fpga configurations for highly efficient neural network
inference, IEEE Transactions on Computers 69 (12) (2020) 1795–1808.
doi:10.1109/TC.2020.2978817.

[65] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, L. Wang, A high performance
fpga-based accelerator for large-scale convolutional neural networks, in:
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), 2016, pp. 1–9. doi:10.1109/FPL.2016.7577308.

[66] K. ABDELOUAHAB, M. Pelcat, J. Sérot, C. Bourrasset, F. Berry,
Tactics to Directly Map CNN graphs on Embedded FPGAs,
IEEE Embedded Systems Letters 9 (4) (2017) 113 – 116.
doi:10.1109/LES.2017.2743247.
URL https://hal.archives-ouvertes.fr/hal-01626462

[67] Wei Ding and Zeyu Huang and Zunkai Huang and Li Tian
and Hui Wang and Songlin Feng, Designing efficient acceler-
ator of depthwise separable convolutional neural network on
FPGA, Journal of Systems Architecture 97 (2019) 278–286.
doi:https://doi.org/10.1016/j.sysarc.2018.12.008.
URL https://www.sciencedirect.com/science/article/pii/S1383762118304612

[68] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, J. Cong, Caffeine:
Toward uniformed representation and acceleration for deep convolu-
tional neural networks, IEEE Transactions on Computer-Aided De-

36



sign of Integrated Circuits and Systems 38 (11) (2019) 2072–2085.
doi:10.1109/TCAD.2017.2785257.

[69] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim,
C. Shao, A. Mishra, H. Esmaeilzadeh, From high-level deep neu-
ral models to fpgas, in: 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2016, pp. 1–12.
doi:10.1109/MICRO.2016.7783720.

[70] Zhe Xu and Ray C.C. Cheung, Binary convolutional neural
network acceleration framework for rapid system prototyp-
ing, Journal of Systems Architecture 109 (2020) 101762.
doi:https://doi.org/10.1016/j.sysarc.2020.101762.
URL https://www.sciencedirect.com/science/article/pii/S1383762120300564

[71] Lien-Chih Hsu and Ching-Te Chiu and Kuan-Ting Lin and
Hsing-Huan Chou and Yen-Yu Pu, ESSA: An energy-Aware
bit-Serial streaming deep convolutional neural network accel-
erator, Journal of Systems Architecture 111 (2020) 101831.
doi:https://doi.org/10.1016/j.sysarc.2020.101831.
URL https://www.sciencedirect.com/science/article/pii/S1383762120301235

[72] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y. Shan,
Y. Wang, Dnnvm: End-to-end compiler leveraging heterogeneous op-
timizations on fpga-based cnn accelerators, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39 (10)
(2019) 2668–2681.

[73] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling, et al., Dla: Com-
piler and fpga overlay for neural network inference acceleration, in:
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), IEEE, 2018, pp. 411–4117.

[74] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, Optimiz-
ing fpga-based accelerator design for deep convolutional neural net-
works, in: Proceedings of the 2015 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’15, Association
for Computing Machinery, New York, NY, USA, 2015, p. 161–170.

37



doi:10.1145/2684746.2689060.
URL https://doi.org/10.1145/2684746.2689060

[75] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learn-
ing with limited numerical precision, in: Proceedings of the 32nd Inter-
national Conference on International Conference on Machine Learning
- Volume 37, ICML’15, JMLR.org, 2015, p. 1737–1746.

[76] A. Rahman, J. Lee, K. Choi, Efficient fpga acceleration of convolutional
neural networks using logical-3d compute array, in: 2016 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2016, pp.
1393–1398.

[77] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang,
Z. Cheng, K. Rupnow, D. Chen, High-performance video content recog-
nition with long-term recurrent convolutional network for fpga, in: 2017
27th International Conference on Field Programmable Logic and Ap-
plications (FPL), 2017, pp. 1–4. doi:10.23919/FPL.2017.8056833.

[78] S. I. Venieris, C.-S. Bouganis, fpgaconvnet: A framework for mapping
convolutional neural networks on fpgas, in: 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), IEEE, 2016, pp. 40–47.

[79] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, K. Vissers, Finn: A framework for fast, scalable binarized
neural network inference, in: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’17, Association for Computing Machinery, New York, NY, USA, 2017,
p. 65–74. doi:10.1145/3020078.3021744.
URL https://doi.org/10.1145/3020078.3021744

[80] V. Gokhale, A. Zaidy, A. X. M. Chang, E. Culurciello, Snowflake:
An efficient hardware accelerator for convolutional neural networks, in:
2017 IEEE International Symposium on Circuits and Systems (ISCAS),
2017, pp. 1–4. doi:10.1109/ISCAS.2017.8050809.

[81] T. Geng, C. Wu, C. Tan, B. Fang, A. Li, M. Herbordt,
Cqnn: a cgra-based qnn framework, in: 2020 IEEE High Per-
formance Extreme Computing Conference (HPEC), 2020, pp. 1–7.
doi:10.1109/HPEC43674.2020.9286194.

38



[82] R. J. Struharik, B. Z. Vukobratović, A. M. Erdeljan, D. M. Rakanović,
Conna–hardware accelerator for compressed convolutional neural
networks, Microprocessors and Microsystems 73 (2020) 102991.
doi:https://doi.org/10.1016/j.micpro.2020.102991.
URL https://www.sciencedirect.com/science/article/pii/S0141933119300158

[83] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu, T. Delbruck, Nullhop: A flexible convolutional neural net-
work accelerator based on sparse representations of feature maps, IEEE
Transactions on Neural Networks and Learning Systems 30 (3) (2019)
644–656. doi:10.1109/TNNLS.2018.2852335.

[84] S. Hadjis, K. Olukotun, Tensorflow to cloud fpgas: Tradeoffs for accel-
erating deep neural networks, in: 2019 29th International Conference
on Field Programmable Logic and Applications (FPL), 2019, pp. 360–
366. doi:10.1109/FPL.2019.00064.

[85] A. Arora, S. Mehta, V. Betz, L. K. John, Tensor slices to the rescue:
Supercharging ml acceleration on fpgas, in: The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’21, Association for Computing Machinery, New York, NY, USA, 2021,
p. 23–33. doi:10.1145/3431920.3439282.
URL https://doi.org/10.1145/3431920.3439282

[86] S. I. Venieris, C.-S. Bouganis, f-cnnx: A toolflow for mapping multiple
convolutional neural networks on fpgas, in: 2018 28th International
Conference on Field Programmable Logic and Applications (FPL),
2018, pp. 381–3817. doi:10.1109/FPL.2018.00072.

[87] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi,
B. Kasikci, A hypervisor for shared-memory fpga platforms, in: Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’20, Association for Computing Machinery, New York, NY, USA, 2020,
p. 827–844. doi:10.1145/3373376.3378482.
URL https://doi.org/10.1145/3373376.3378482

[88] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, D. Chen,
Dnnbuilder: an automated tool for building high-performance dnn

39



hardware accelerators for fpgas, in: 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018, pp. 1–8.
doi:10.1145/3240765.3240801.

[89] H. Zeng, R. Chen, C. Zhang, V. Prasanna, A framework for generating
high throughput cnn implementations on fpgas, in: Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’18, Association for Computing Machinery, New
York, NY, USA, 2018, p. 117–126. doi:10.1145/3174243.3174265.
URL https://doi.org/10.1145/3174243.3174265

[90] W. Zhang, J. Zhang, M. Shen, G. Luo, N. Xiao, An efficient mapping
approach to large-scale dnns on multi-fpga architectures, in: 2019 De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2019,
pp. 1241–1244. doi:10.23919/DATE.2019.8715174.

[91] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, M. Her-
bordt, Fpdeep: Acceleration and load balancing of cnn training on
fpga clusters, in: 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2018, pp.
81–84. doi:10.1109/FCCM.2018.00021.

[92] W. Jiang, E. H. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi, J. Hu,
Achieving super-linear speedup across multi-fpga for real-time DNN
inference, CoRR abs/1907.08985 (2019). arXiv:1907.08985.
URL http://arxiv.org/abs/1907.08985

[93] Y. Zha, J. Li, Virtualizing fpgas in the cloud, in: Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, As-
sociation for Computing Machinery, New York, NY, USA, 2020, p.
845–858. doi:10.1145/3373376.3378491.
URL https://doi.org/10.1145/3373376.3378491

[94] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Pa-
tel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, D. Burger, A configurable cloud-scale dnn

40



processor for real-time ai, in: 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2018, pp. 1–14.
doi:10.1109/ISCA.2018.00012.

[95] Amazon ec2 f1 https://aws.amazon.com/fr/ec2/instance-types/f1/.

[96] Tencent cloud: Instance type fpga fx2
https://intl.cloud.tencent.com/document/product/213/11518fx2.

[97] Huawei acceleration cloud server(facs).

[98] Microsoft catapult https://www.microsoft.com/en-
us/research/project/project-catapult/.

[99] N. Raspa, G. Natale, M. Bacis, M. D. Santambrogio, A framework
with cloud integration for cnn acceleration on fpga devices, in: 2018
IEEE International Parallel and Distributed Processing Symposium
Workshops, 2018.

[100] Y. Chen, J. He, X. Zhang, C. Hao, D. Chen, Cloud-dnn: An
open framework for mapping dnn models to cloud fpgas, in:
Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’19, Association for
Computing Machinery, New York, NY, USA, 2019, p. 73–82.
doi:10.1145/3289602.3293915.
URL https://doi.org/10.1145/3289602.3293915

[101] S. Tridgell, M. Kumm, M. Hardieck, D. Boland, D. Moss, P. Zipf,
P. H. W. Leong, Unrolling ternary neural networks, ACM Trans. Re-
configurable Technol. Syst. 12 (4) (Oct. 2019). doi:10.1145/3359983.
URL https://doi.org/10.1145/3359983

[102] J. Shan, M. T. Lazarescu, J. Cortadella, L. Lavagno, M. R.
Casu, Cnn-on-aws: Efficient allocation of multikernel applications
on multi-fpga platforms, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 40 (2) (2021) 301–314.
doi:10.1109/TCAD.2020.2994256.

[103] W. Jiang, E. H.-M. Sha, Q. Zhuge, L. Yang, X. Chen,
J. Hu, Heterogeneous fpga-based cost-optimal design for timing-
constrained cnns, IEEE Transactions on Computer-Aided Design

41



of Integrated Circuits and Systems 37 (11) (2018) 2542–2554.
doi:10.1109/TCAD.2018.2857098.

[104] Q. Xiao, Y. Liang, Fune: An fpga tuning framework for
cnn acceleration, IEEE Design Test 37 (1) (2020) 46–55.
doi:10.1109/MDAT.2019.2908549.

[105] J. Shen, D. Wang, Y. Huang, M. Wen, C. Zhang, Scale-out acceleration
for 3d cnn-based lung nodule segmentation on a multi-fpga system, in:
2019 56th ACM/IEEE Design Automation Conference (DAC), 2019,
pp. 1–6.

[106] K. He, B. Liu, Y. Zhang, A. Ling, D. Gu, Fecaffe: Fpga-enabled
caffe with opencl for deep learning training and inference on intel
stratix 10, in: Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’20, Associ-
ation for Computing Machinery, New York, NY, USA, 2020, p. 314.
doi:10.1145/3373087.3375389.
URL https://doi.org/10.1145/3373087.3375389

[107] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, C. J.
Rossbach, Sharing, protection, and compatibility for reconfigurable
fabric with amorphos, OSDI’18, USENIX Association, USA, 2018, p.
107–127.

[108] H.-Y. Ting, T. Giyahchi, A. A. Sani, E. Bozorgzadeh, Dynamic shar-
ing in multi-accelerators of neural networks on an fpga edge device,
in: 2020 IEEE 31st International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2020, pp. 197–204.
doi:10.1109/ASAP49362.2020.00040.

[109] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, K. Vissers, Finn-r: An end-to-end deep-
learning framework for fast exploration of quantized neural net-
works, ACM Transactions on Reconfigurable Technology and Systems
(TRETS) 11 (3) (2018) 1–23.

[110] J. Shan, et al., Power-optimal mapping of cnn applications to cloud-
based multi-fpga platforms, IEEE Transactions on Circuits and Sys-
tems (2020).

42



[111] J. Barnes, Azure machine learning, Microsoft Azure Essentials. Mi-
crosoft (2015).

[112] P. R. Genssler, O. Knodel, R. G. Spallek, Securing virtualized fpgas
for an untrusted cloud, in: Proceedings of the International Confer-
ence on Embedded Systems, Cyber-physical Systems, and Applications
(ESCS), The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2018, pp. 3–9.

[113] S. Yazdanshenas, V. Betz, The costs of confidentiality in virtualized
fpgas, IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 27 (10) (2019) 2272–2283. doi:10.1109/TVLSI.2019.2919644.

[114] F. Yao, A. S. Rakin, D. Fan, Deephammer: Depleting the intelligence
of deep neural networks through targeted chain of bit flips, ArXiv
abs/2003.13746 (2020).

[115] Ahmed Shafee and Tasneem A. Awaad, Privacy at-
tacks against deep learning models and their countermea-
sures, Journal of Systems Architecture 114 (2021) 101940.
doi:https://doi.org/10.1016/j.sysarc.2020.101940.
URL https://www.sciencedirect.com/science/article/pii/S138376212030196X

[116] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, T. Dumitraş, Terminal brain
damage: Exposing the graceless degradation in deep neural networks
under hardware fault attacks, in: Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, USENIX Association,
USA, 2019, p. 497–514.

[117] Xilinx vitis ai, https://www.xilinx.com/products/design-
tools/vitis/vitis-ai.html.

[118] A. Iordache, G. Pierre, P. Sanders, J. G. de F. Coutinho, M. Stillwell,
High performance in the cloud with fpga groups, in: Proceedings of the
9th International Conference on Utility and Cloud Computing, UCC
’16, Association for Computing Machinery, New York, NY, USA, 2016,
p. 1–10. doi:10.1145/2996890.2996895.
URL https://doi.org/10.1145/2996890.2996895

[119] K. Matas, T. La, N. Grunchevski, K. Pham, D. Koch, In-
vited tutorial: Fpga hardware security for datacenters and beyond,

43



in: Proceedings of the 2020 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, FPGA ’20, Association
for Computing Machinery, New York, NY, USA, 2020, p. 11–20.
doi:10.1145/3373087.3375390.
URL https://doi.org/10.1145/3373087.3375390

44



Graphical Abstract

Accelerating DNNs from local to virtualized FPGA in the Cloud:
A survey of trends

Chen Wu, Virginie Fresse, Benoit Suffran, Hubert Konik

1



Highlights

Accelerating DNNs from local to virtualized FPGA in the Cloud:
A survey of trends

Chen Wu, Virginie Fresse, Benoit Suffran, Hubert Konik

• This article an overview of the main techniques used for accelerating
DNNs on the FPGAs both in local and in the Cloud.

• This article gives an insight into the evolution of DNN accelerators
deployment from local to virtualized FPGA through in-depth analysis
of virtualization techniques and the FPGA Cloud.




