Chen Wu

Virginie Fresse

Benoit Suffran

Hubert Konik

Accelerating DNNs from local to virtualized FPGA in the Cloud: A survey of trends

Keywords: FPGA virtualization, Cloud computing, Deep neural network, Accelerator, Trends

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Deep neural networks (DNNs) have become a cutting-edge research topic owing to their excellent performance in image classification, detection, segmentation, and data prediction. Owing to the remarkable prediction capacity of datasets in a wide range of complex applications, researchers have proposed myriad networks, such as AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], ResNet152 [START_REF] He | Deep residual learning for image recognition[END_REF], Transformers [START_REF] Vaswani | Attention is all you need[END_REF], General Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial networks[END_REF], and Variational Autoencoder (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF]. The success of DNNs has also attracted attention in the development of industrial platforms, such as Google Deepmind [START_REF] Powles | Google deepmind and healthcare in an age of algorithms[END_REF], Facebook AI [START_REF] Hazelwood | Applied machine learning at facebook: A datacenter infrastructure perspective[END_REF], Amazon Alexa [START_REF] Lopatovska | Talk to me: Exploring user interactions with the amazon alexa[END_REF].

Traditionally, in academia and industry, graphics processing units (GPUs) are used to train DNNs, as they provide a high degree of parallelism to process these algorithms [START_REF] Song | Towards pervasive and user satisfactory cnn across gpu microarchitectures[END_REF][START_REF] Potluri | Cnn based high performance computing for real time image processing on gpu[END_REF]. However, the execution of DNNs on GPUbased platforms encounters energy/power and throughput bottlenecks. In 2016, a tensor processing unit (TPU) was announced by Google [START_REF] Jouppi | In-datacenter performance analysis of a tensor processing unit[END_REF], which runs DNNs 15 to 30 times faster than contemporary GPUs using similar technologies [START_REF] Jouppi | A domain-specific architecture for deep neural networks[END_REF], and the energy efficiency is increased by a factor of 30-80. Despite its speedup and energy efficiency, the TPU has a high production cost, lacks reconfigurability, and cannot be adapted to the emergence of new network models with complex structures.

Field-programmable gate arrays (FPGAs) can achieve energy efficiency and high performance in the face of rapidly innovating DNN models and computational characteristics, as reported by Venieris et al [START_REF] Venieris | How to reach real-time ai on consumer devices? solutions for programmable and custom architectures[END_REF]. FPGAs can achieve up to 20 tera multiply accumulates per second (TMACs), and the power consumption does not exceed 25 W, incurring a less than 10% overhead in the overall power consumption [15]. Moreover, FPGAs can provide a flexible hardware architecture with a fine granularity and massive pipeline level. Therefore, FPGAs have become an alternative method for accelerating DNNs.

Early DNN accelerators (e.g., [START_REF] Zhou | An fpga-based accelerator implementation for deep convolutional neural networks[END_REF][START_REF] Suda | Throughput-optimized opencl-based fpga accelerator for large-scale convolutional neural networks[END_REF][START_REF] Saldanha | An embedded system for handwritten digit recognition[END_REF][START_REF] Fanni | Hardware design methodology using lightweight dataflow and its integration with low power techniques[END_REF]) are typically implemented on a single local FPGA fabric. As the number of learnable parameters and operations in DNNs increases, the resources of a single FPGA may be insufficient for the entire DNN deployment. The challenges of designing DNNs on a single local FPGA are described below.

• Productivity: Owing to the complexity of DNN design, mapping a DNN onto an FPGA requires specific hardware expertise in hardware description language programming and performance optimization, which have long learning curves. According to the complexity of the DNN algorithm, deploying the DNN on the FPGA may be time-consuming and may increase the programming burden of designers. In recent years, productivity has improved owing to the emergence of compilation frameworks that automatically map DNNs onto the FPGA.

• Scalability: DNNs are computation-and data-intensive applications that require enormous computational resources. For example, VGG-16 has up to 39 billion operations and more than 500 million parameters for 224 × 224 image classification [START_REF] Li | Ternary weight networks[END_REF]. In deeper DNNs, the resource requirements may exceed the available resources in a single FPGA, limiting the scalability of the DNN architecture. Even if technologies and strategies are adopted to optimize the DNN architecture, when a large-scale DNN is deployed in a single local FPGA, the resource bottleneck can easily be reached.

• Elasticity: The solution of deploying DNN accelerators on local FPGAs lacks resource elasticity because it assumes that DNN resource allocation must be fixed throughout the deployment lifecycle. Because different DNN algorithms require different computing resources, memory bandwidths, and storage resources [START_REF] Zhang | Energy-efficient cnn implementation on a deeply pipelined fpga cluster[END_REF], these solutions cannot flexibly provide and deprovision resources at runtime and hence fail to match different workloads of the DNN.

• Portability: The deployment of most DNN accelerators directly depends on the characteristics of the FPGA platform and is therefore restricted to a specific FPGA vendor. Owing to the lack of an abstraction layer that isolates DNN accelerators from specific FPGA platforms, these accelerators may face portability issues of DNN structures. They cannot adapt quickly to the current changing DNN algorithms.

• Multi-tasks: Generally, the execution mode of a DNN on a local FPGA is limited to a single user executing a single DNN within a given time.

It remains difficult for a single local FPGA to support multiple users by executing execute multiple DNNs in parallel and satisfy each user's time, cost, and quality of service (QoS) requirements. Some frameworks (for example, [START_REF] Dicecco | Caffeinated fpgas: Fpga framework for convolutional neural networks[END_REF]) successfully solve the problem of multiple DNN scheduling but can only execute DNNs sequentially in the form of time slices in a single-task environment. While exploring techniques to accelerate DNNs on local physical FP-GAs, researchers have also attempted to adopt FPGA virtualization and the FPGA cloud to facilitate the implementation of multiple DNNs at a large scale and achieve flexible deployment in a multi-user environment. Although the FPGA cloud and virtualization have brought breakthroughs to the deployment of DNNs, previous surveys (e.g., [START_REF]A survey of fpga-based accelerators for convolutional neural networks[END_REF][START_REF] Guo | a survey of fpgabased neural network inference accelerators[END_REF][START_REF] Bianco | Benchmark analysis of representative deep neural network architectures[END_REF][START_REF] Li | A survey of fpga design for ai era[END_REF][START_REF] Blaiech | A survey and taxonomy of fpga-based deep learning accelerators[END_REF][START_REF] Moolchandani | Accelerating cnn inference on asics: A survey[END_REF][29]) have mainly focused on DNN optimization and the design of local FPGAs (e.g., architecture design, simplification, optimization strategies). These surveys ignore the trend of DNN implementation on the timeline, that is, from local to virtual FPGA in the cloud. Moreover, no in-depth analysis or compar-ison of the challenges faced by the DNN accelerators at different stages of deployment was conducted. Relying on previous surveys, we aim to

• Provide an overview of the main techniques of FPGA-based DNN accelerators. These techniques were initially proposed to optimize the performance of DNN accelerators in a local FPGA, but they can also be applied to the FPGA cloud environment.

• Present the evolution of DNN accelerator deployment from local to virtualized FPGAs through an in-depth introduction of virtualization techniques and the FPGA cloud.

• Perform an in-depth analysis and comparison of the challenges faced by the DNN accelerators at each stage.

The article is organised as follows: Section 2 provides an FPGA cloud definition and a general overview of FPGA virtualization. Section 3 discusses the crucial approaches for accelerating DNNs on the FPGA, which is also applicable to the FPGA cloud. Section 4 describes the use of virtualization technology in local DNNs and cloud-based DNNs. Section 5 highlights the trends and evolution of the FPGA-based DNN and compares the characteristics of these accelerators. Section 6 discusses the unresolved challenges of accelerating DNNs in the FPGA cloud and presents other directions for DNN acceleration. Section 6.2 gives the conclusion of the survey.

Background

This section presents an overview of the FPGA cloud and the available services in the cloud and introduces the FPGA virtualization technology from the viewpoints of the abstraction level and system architecture.

FPGA Cloud

Deploying FPGAs in the cloud involves leasing a bundle of specific software tools, platforms, or FPGA resources remotely in a cost-effective manner. Such an FPGA-enabled cloud maintains the advantages of FPGAs (e.g., low power consumption and programmability) and establishes scalability, elasticity, and multi-tenancy.

Provisioning FPGA resources is similar to provisioning traditional central processing unit (CPU)-and GPU-based clouds. Regarding the service categories in traditional cloud computing, FPGA cloud providers offer FPGAs as infrastructure as a service (IaaS) or software as a service (SaaS) [START_REF] Salamat | Workload-aware opportunistic energy efficiency in multi-fpga platforms[END_REF]. Figure 2 presents an example of hierarchical mapping in the FPGA cloud. There is no standard definition or classification for FPGA clouds, and the hierarchical mapping may change over time.

FPGA in IaaS

The FPGA in IaaS provides access to the FPGA computing resource pool and memory storage in the cloud. This paradigm divides the FPGA into multiple independent virtual instances and supports high-bandwidth communication to collaborate between each resource instance. Per-FPGA or multiple-FPGA granularity can be supported in the IaaS for application deployment. Cloud users must manually map their applications to resources if their applications are deployed across multiple FPGAs.

As a commercial example, the Amazon F1 instance offers a collection of eight FPGA devices with a high bandwidth. Enabling FPGA in IaaS has also attracted attention in the academic field. Byma et al. [START_REF] Byma | Fpgas in the cloud: Booting virtualized hardware accelerators with openstack[END_REF] abstracted FPGAs into virtual regions and managed resources across multiple FPGAs through OpenStack. Asiatici et al. [START_REF] Asiatici | Virtualized execution runtime for fpga accelerators in the cloud[END_REF] provided a runtime management framework to map FPGA resources for different applications with limited overhead.

FPGA in SaaS

The FPGA in SaaS offers acceleration services for cloud users to execute applications and process data. Technical processes have been hidden in the cloud background, and cloud users do not need to be responsible for the hardware design flow and FPGA resource management. For example, Microsoft released the Catapult project [START_REF] Putnam | A reconfigurable fabric for accelerating large-scale datacenter services[END_REF], which puts Altera Stratix vF-PGA per CPU in the cloud to accelerate the Bing web search engine, with a 95% improvement throughout. Moreover, Microsoft released the BrainWare project, where FPGAs are used to accelerate state-of-the-art DNNs in major services such as Bing and Azure [START_REF] Chung | Serving dnns in real time at datacenter scale with project brainwave[END_REF].

FPGA virtualization

The objectives of FPGA virtualization are to 1) provide a virtual abstraction of resources and underly the low-level hardware design from users; 2) support FPGA sharing in the time and space domains to serve multiple tasks; and 3) facilitate the hardware design process and accelerate the program compilation [START_REF] Ijaz | Revisiting the high-performance reconfigurable computing for future datacenters[END_REF][START_REF] Vaishnav | Resource elastic virtualization for fpgas using opencl[END_REF][START_REF] Vipin | Fpga dynamic and partial reconfiguration: A survey of architectures, methods, and applications[END_REF][START_REF] Skhiri | From fpga to support cloud to cloud of fpga: State of the art[END_REF]. We review FPGA virtualization according to the abstraction level [START_REF] Vaishnav | A survey on fpga virtualization[END_REF] and system architecture [START_REF] Quraishi | A survey of system architectures and techniques for fpga virtualization[END_REF]. The definition of FPGA virtualization has changed over time in different scenarios.

Abstraction level

According to the scale of resource computing, FPGA virtualization can be divided into three abstraction levels: resource, node, and multi-node levels.

• Resource level: The resource level contains reconfigurable resources (e.g., logic) and non-reconfigurable resources (e.g., Input/Output blocks). Several uniform architectures, such as coarse-grained overlays, have been proposed to support the portability of this level between different types of FPGAs [START_REF] Knodel | Virtualizing reconfigurable hardware to provide scalability in cloud architectures[END_REF][START_REF] Weerasinghe | Enabling fpgas in hyperscale data centers[END_REF].

• Node level: The node level considers a single FPGA as a node. Resource allocation and scheduling are concerned with a single FPGA at this level. Currently, time-division multiplexing (TDM) and spacedivision multiplexing (SDM) are the two principal methods for sharing a single FPGA resource [START_REF] Li | Time-Multiplexed FPGA Overlay Architectures: A Survey[END_REF][START_REF] Zeng | Enable efficient and flexible fpga virtualization for deep learning in the cloud[END_REF].

• Multi-node level: The multi-node level is designed to assign resources in multiple FPGAs to multiple applications or multiple users. However, mainstream compilation tools only support application deployments on a single FPGA [START_REF] Xu | A parallel banditbased approach for autotuning fpga compilation[END_REF]. Therefore, application mapping across FPGAs requires specific frameworks to solve hardware problems, such as intercommunication, resource partitioning, and traversing the physical boundary.

System architecture

The system architecture refers to a structural view at the abstraction level. It usually covers the hardware, software stack, and overlay [START_REF] So | FPGA Overlays[END_REF] but may be different at each level of abstraction. Here, we introduce the system architecture in a node-level abstract form, as shown in Figure 3, which can also be applied to other levels of abstraction.

• Hardware stack: The hardware stack can vary in the host interface, shell, and role.

-Host interfaces: 1) on-chip host inside the FPGA, which can be a soft core formed by programmable logic (PL) or a hard core in the processing system (PS) of a system-on-a-chip (SoC) FPGA; 2) local host, local CPU host, connected via high-bandwidth links (e.g., PCIe); 3) remote host placed remotely via the network.

-Shell: The shell is a static region, usually comprising a system memory controller (e.g., DRAM adapter), interface controller (e.g., DMA controller), and network interface controller (e.g., Ethernet core). For instance, the shell in [START_REF] Lu | Imbalance in the cloud: An analysis on alibaba cluster trace[END_REF] includes the user PCIe, management PCIe, card management system, and DDR access channel.

-Role: The role is a dynamic region in the FPGA, which can be regarded as a reserved region for deploying DNNs in our context. It runs independently of the shell and can be reconfigured every time for each application to satisfy user requirements.

• Software stack: The software stack runs on a host, provides users with an application programming interface, and enables the communication between the host and the FPGA. [START_REF] Quraishi | A survey of system architectures and techniques for fpga virtualization[END_REF] introduces three types of software stacks: 1) Operating systems (e.g., LeapFPGA OS [START_REF] Fleming | The leap fpga operating system[END_REF], Recon OS [START_REF] Agne | Reconos: An operating system approach for reconfigurable computing[END_REF]), which are conceived to support multiple threads for runtime resource management.

2) The host application, which is written in OpenCL and C++, provides simultaneous access to a shared FPGA for multiple users. 3) Software frameworks (e.g., OpenStack), which can be used to share resources across multiple users and distribute several partial reconfigurations to one FPGA.

• Overlay: The overlay provides an intermediate layer between the hardware stack and the software stack to achieve program portability. It is considered a virtual reconfigurable architecture on top of a physical FPGA. Fine-grained granularity and coarse-grained granularity in overlays are used in various applications [START_REF] Chin | Architecture exploration of standard-cell and fpga-overlay cgras using the open-source cgra-me framework[END_REF][START_REF] Li | High throughput accelerator interface framework for a linear time-multiplexed fpga overlay[END_REF].

DNN implementation techniques

To enhance the performance of DNNs on the FPGA locally and in the cloud, several techniques have been extensively studied. This section presents implementation techniques that have been recently investigated.

Hardware architecture design

The widely used hardware architecture are streaming and single computation engine architectures. • Single Computation Engine: Single computation engine (Figure 5) implements a part or a layer of the DNN on the PL side. It is a universal fixed template, usually in the representation of a systolic array Table 1 presents the major features of streaming and single computing engine architectures according to their performance (e.g., flexibility, reconfiguration, resource consumption).

Network compression

The increasing amounts of learnable parameters and arithmetic operations of DNNs lead to a computational burden and additional resource consumption of hardware devices. Network compression makes DNNs more compact when the data width is limited, assisting in striking a balance between resource usage and accuracy. Thus far, quantization, pruning, and in-parallel pruning quantization have been successfully employed for network compression.

• Quantization: Network quantization converts floating-point data to fixed-point data with a selectable data width. Quantization includes uniform quantization with the same width for all network layers or dynamic quantization of each layer based on the layer characteristics.

Researchers have widely adopted 16-bit fixed-point quantization (for example, [START_REF] Guan | Fp-dnn: An automated framework for mapping deep neural networks onto fpgas with rtl-hls hybrid templates[END_REF][START_REF] Xiao | Exploring heterogeneous algorithms for accelerating deep convolutional neural networks on fpgas[END_REF]), and 4-and 8-bit uniform quantization [START_REF] Gysel | Ristretto: A framework for empirical study of resource-efficient inference in convolutional neural networks[END_REF][START_REF] Louizos | Relaxed quantization for discretized neural networks[END_REF] have already achieved good accuracy. Therefore, uniform quantization of a small width is promising owing to its ease of implementation on FPGA while maintaining accuracy.

• Pruning: Network pruning removes nonsignificant neurons to avoid overfitting. This is an efficient method, particularly in embedded systems, for reducing the network size and saving computing resources to fit the network to the memory size [START_REF] Molchanov | Pruning convolutional neural networks for resource efficient transfer learning[END_REF]. In [START_REF] Zhang | Optimized compression for implementing convolutional neural networks on fpga[END_REF], the authors compressed a trained DNN model and performed reverse pruning and peak pruning with fewer weights. Compared with the GPU, the compressed AlexNet on FPGA achieved 182.3× and 1.1× improvements in latency and throughput, respectively.

Optimization strategy

The scale of complex DNN structures introduces resource challenges. Moreover, the data (e.g., weights) stored in the external memory require enormous energy and latency. Because DNNs are composed of massive repeated loop operations, unrolling and tiling can be used to weaken off-chip communication and deal with parallel computation problems. A more detailed optimization was presented in [START_REF]A survey of fpga-based accelerators for convolutional neural networks[END_REF].

• Loop unrolling: Unrolling executes a network or multiple layers in parallel-particularly convolutional layers. The network can be fully expanded to achieve massively parallel processing or apply appropriate unrolling factors (iterations in the loop) across different layers for partial unrolling in the for-loop to optimize the datapath and maximise the throughput [START_REF] Guo | Angel-eye: A complete design flow for mapping cnn onto embedded fpga[END_REF][START_REF] Ma | Alamo: Fpga acceleration of deep learning algorithms with a modularized rtl compiler[END_REF]. Ma et al. [START_REF] Ma | Optimizing loop operation and dataflow in fpga acceleration of deep convolutional neural networks[END_REF] adopted four types of loop unrolling in kernel maps and feature maps to determine the parallelism scheme and maximise data reuse. In an experiment involving VGG-16 on an Arria 10 FPGA, a throughput of 645.25 GOPS was achieved.

• Loop tiling: Constrained by limited on-chip memories, the data to be processed are tiled into multiple tiles and stored in on-chip buffers. Selecting a suitable tiling size factor can determine the trade-off between resources and the required external memory bandwidth. For example, Ma et al. [START_REF] Ma | An automatic rtl compiler for high-throughput fpga implementation of diverse deep convolutional neural networks[END_REF] designed an auto-compilation process based on RTL, which uses intra-block and inter-block strategies to divide the layer execution into multiple sequential tiles. The process designed in [START_REF] Wang | Lutnet: Learning fpga configurations for highly efficient neural network inference[END_REF] supports both unrolling and tiling of input and output feature maps on binarised networks. A 2× area efficiency improvement was achieved compared with existing binarised networks.

Accelerating DNNs from local to virtualized FPGAs in the cloud

The work of accelerating DNNs on FPGAs in our surveys covers local to the cloud and integrates the virtualization technique. The metrics used to evaluate these methods usually include throughput, power, and accuracy. Additionally, the adoption of virtualization techniques introduces additional characteristics such as portability and productivity, and in the cloud environment, QoS and isolation are regarded as new characteristics.

DNNs on local FPGA

Early studies (e.g., [START_REF] Li | A high performance fpga-based accelerator for large-scale convolutional neural networks[END_REF][START_REF] Abdelouahab | Tactics to Directly Map CNN graphs on Embedded FPGAs[END_REF][67]) were dedicated to manually mapping a DNN model to a local FPGA with a streaming architecture. These studies take full advantage of DNNs parallelism and apply layer-independent optimization strategies to fit the entire network into the FPGA.

Benefiting from the well-defined structure of modern DNNs, which contain similar layers with repetitive operations, researchers have proposed frameworks with a single-engine computation structure [START_REF] Ma | Alamo: Fpga acceleration of deep learning algorithms with a modularized rtl compiler[END_REF][START_REF] Zhang | Caffeine: Toward uniformed representation and acceleration for deep convolutional neural networks[END_REF][START_REF] Guan | Fp-dnn: An automated framework for mapping deep neural networks onto fpgas with rtl-hls hybrid templates[END_REF][START_REF] Sharma | From high-level deep neural models to fpgas[END_REF][START_REF] Sharma | From high-level deep neural models to fpgas[END_REF] [70, 71], as shown in Figure 6. These frameworks take advantage of both software programmability and flexible hardware structures, making DNN implementation more diversified and achieving high performance with reduced resource consumption. More frameworks that automatically map single DNNs to local FPGAs were presented in [START_REF] Venieris | Toolflows for Mapping Convolutional Neural Networks on FP-GAs: A Survey and Future Directions[END_REF]. Another new type of framework is a toolchain that includes a compiler [START_REF] Guo | Angel-eye: A complete design flow for mapping cnn onto embedded fpga[END_REF][START_REF] Xing | Dnnvm: End-to-end compiler leveraging heterogeneous optimizations on fpga-based cnn accelerators[END_REF][START_REF] Abdelfattah | Dla: Compiler and fpga overlay for neural network inference acceleration[END_REF]. The compiler is a DNN architectureaware tool that can map a wide range of DNN applications to the instruction set architecture (ISA) and control signals [START_REF] Guo | Angel-eye: A complete design flow for mapping cnn onto embedded fpga[END_REF]. Figure 7 presents an example of a compiler-inspired toolchain. Wang et al. [START_REF] Xing | Dnnvm: End-to-end compiler leveraging heterogeneous optimizations on fpga-based cnn accelerators[END_REF] proposed a compiler that transforms a DNN deployment into a graph-level problem. The compiler first takes the software description as input and then transforms the description into directed acyclic graphs of computational operations. The networks generated by the compiler on Xilinx ZU9 reach throughputs of 2.82 TOPs/s (VGG), 1.38 TOPs/s (ResNet50), and 1.41 TOPs/s (GoogleNet).

More works can be found in Table 2.

DNNs on local virtualized FPGA

FPGA virtualization bridges the gap between the hardware stack and the software stack with the abstraction layer, enhancing the productivity and portability of DNN applications. Virtualization also enables resource sharing among multiple FPGAs with flexible resource management to support a wide range of DNNs. Figure 8 shows an example of virtualization at the node level.

At the resource level of virtualization, Tong et al. [START_REF] Geng | Cqnn: a cgra-based qnn framework[END_REF] propose a coarsegrained overlay-based framework for quantising and accelerating a DNN with any data width on an FPGA. The coarse-grained array comprises a reconfigurable NoC, a scheduler, and network computation components and is configured as DNN models according to instructions generated by the compiler of the framework. Such an overlay is independent of FPGA features and can be flexibly adapted to FPGAs provided by different vendors. To satisfy the metrics in virtualization, e.g., reducing the time and complexity of DNN reconfiguration, this framework reconfigures the coarse-grained array from the rightmost column to the leftmost column. The results indicate that the inference of AlexNet and VGG-16 on Xilinx UltraScale+ VCU118 takes only 0.13 and 2.63 ms, respectively.

Similarly, Struharik et al. [START_REF] Struharik | Conna-hardware accelerator for compressed convolutional neural networks[END_REF] designed a coarse-grained overlay-based accelerator consisting of a set of processing blocks, which enabled on-the-fly reconfiguration for different DNNs. The accelerator can implement mainstream DNN families, such as VGG, Inception, ResNet, MobileNet, and NASNet, with a frame rate up to 6.05 times higher than that of Nullhop [START_REF] Aimar | Nullhop: A flexible convolutional neural network accelerator based on sparse representations of feature maps[END_REF]. Other methods [START_REF] Hadjis | Tensorflow to cloud fpgas: Tradeoffs for accelerating deep neural networks[END_REF][START_REF] Arora | Tensor slices to the rescue: Supercharging ml acceleration on fpgas[END_REF] also employ a coarse-grained overlay on top of the FPGA to enable dynamic datapath reconfiguration of DNN applications at runtime. In contrast to previous studies where DNNs were deployed on FPGAs using the coarse-grained overlay, several researchers adopted a fine-grained overlay as an abstraction level to achieve higher flexibility. Venieris et al. [START_REF] Venieris | f-cnnx: A toolflow for mapping multiple convolutional neural networks on fpgas[END_REF] proposed an automated framework for implementing multiple DNNs on a target FPGA platform with fast space exploration. The framework adopts a streaming architecture to allocate resources at a fine-grained granularity for exploring a wide range of resource and bandwidth allocations. The authors tested their framework in a multi-DNN system (ZFNet, VGG16, SceneLa-belCNN) on Xilinx ZC706, and the results indicated that the framework achieved an improvement of up to 6.8× in performance/W over Nvidia Tegra X1. Table 3 presents the features of the overlays used in the previous studies.

In node-level virtualization, the resource of a single FPGA can be allocated to a single DNN application or multiple DNN applications in TDM or SDM [START_REF] Ma | A hypervisor for shared-memory fpga platforms[END_REF]. Zhang et al. [START_REF] Zhang | Dnnbuilder: an automated tool for building high-performance dnn hardware accelerators for fpgas[END_REF] developed an end-to-end framework called a DNN builder to build DNNs with high performance using a design space exploration strategy. The DNN builder enables virtualization on a single physical FPGA by allocating resources to several small accelerating engines. The resource allocator can generate parallel schemes and data buffering guidelines for each layer. The tool deploys AlexNet, ZF, VGG16, and YOLO on Xilinx XC7Z045 and KU115 and achieves up to 5.15× better performance than that reported in [START_REF] Zeng | A framework for generating high throughput cnn implementations on fpgas[END_REF].

At a multi-node level, allocating resources from multiple FPGAs to the DNN application may result in performance degradation owing to insufficient off-chip bandwidth. Therefore, it is essential to employ optimized resource mapping and efficient communication for this virtualization level. Zhang et al. [START_REF] Zhang | An efficient mapping approach to large-scale dnns on multi-fpga architectures[END_REF] enabled large-scale DNN application implementation across up to 16 FPGAs with resource-and bandwidth-aware mapping methods. Taking the FPGA topology, resource conditions, and neural-network specifications as the inputs, this method can partition the DNN application to each FPGA depending on the statuses of the FPGAs (busy or free) and the estimation throughput of layer mapping. Results indicated that ResNet-152 on a multi-FPGA architecture outperformed a single-FPGA deployment by a factor of 16.4. Geng et al. [START_REF] Geng | Fpdeep: Acceleration and load balancing of cnn training on fpga clusters[END_REF] developed a framework that adopts a pipelined architecture to train DNNs on multiple FPGAs with a one-dimensional topology. The pipelined architecture with the fine-grained inter-and intra-layer methodology minimises the time required for storing the feature map in the memory during training. The authors evaluated their framework by training AlexNet on 10 Xilinx VC709 Connectivity Kits. The results indicated that compared with other frameworks [START_REF] Zhang | Energy-efficient cnn implementation on a deeply pipelined fpga cluster[END_REF], the throughput obtained by this framework was increased by a factor of 5; compared with Titan X, the energy efficiency of the framework was up to 7.6 times higher. Moreover, the framework exhibits good scalability, as it can scale up to 60 FPGAs to accelerate DNNs.

However, such multiple-FPGA platforms adopting pipeline models gain high throughput while sacrificing latency. Jiang et al. [START_REF] Jiang | Achieving super-linear speedup across multi-fpga for real-time DNN inference[END_REF] developed a general framework called Super-LIP to support concurrent processing for both single-and multi-layer deployment on FPGAs. To achieve communication between two FPGAs, the authors employ a novel methodology in Super-LIP to achieve linear speedup by balancing computation workloads and distributing the shared data across FPGAs to avoid traffic heaviness on the FPGA memory bus. Compared with the existing single-FPGA design [START_REF] Zhang | Optimizing fpga-based accelerator design for deep convolutional neural networks[END_REF], this method achieved a 3.48× speedup of AlexNet, VGG, and YOLO on two Xilinx ZCU102 kits.

DNNs on virtualized FPGA in the cloud

Zeng et al. [START_REF] Zeng | Enable efficient and flexible fpga virtualization for deep learning in the cloud[END_REF] proposed a framework using FPGA virtualization, which is applicable to any DNN accelerator based on the ISA in a cloud environment. This principle divides a large resource pool into multiple virualised cores to share FPGA resources at the node level. By introducing a novel two-level instruction (dispatch module and tiling-based instruction package design), virtualized multi-core resources can be dynamically allocated to each block in one DNN (single-task mode) or each DNN for multiple users (multitask mode) at runtime. Compared with previous methods, this technique solves physical resource isolation and performance among multiple users by sharing FPGA resources in the SDM method. Experiments on VGG-16, ResNet50, Inception V3, and MobileNet indicated that compared with a single non-virtualized core design, the throughput of the proposed virtualization method with multiple cores was 1.07-1.69 times higher overall.

A similar method called ViTAL was developed by Zha et al. [START_REF] Zha | Virtualizing fpgas in the cloud[END_REF] to enable FPGA virtualization in a cloud environment for deploying DNNs. This method supports resource sharing at both the node and multi-node levels. ViTAL provides an abstraction layer between DNN applications and physical resources, which abstracts heterogeneous resources into homogeneous resources and provides a view of virtual blocks. The abstraction layer divides a DNN application into virtual blocks and then maps these virtual blocks to an FPGA or multiple FPGAs without impacting other running DNNs. By using a latency-insensitive interface, virtual blocks can be mapped across FPGAs at the multi-node level to achieve timing closure and match communication delays. Additionally, isolation in the cloud environment is achieved by avoiding the sharing of physical resources among different virtual blocks. The authors evaluated ViTAL by implementing LeNet, AlexNet, and VGG-16 on a Xilinx UltraScale+ FPGA. The experimental results indicated that ViTAL achieved good DNN mapping quality with a short compilation time (1.6% of the total). Furthermore, ViTAL can dynamically relocate the DNNs to different positions in the FPGA. The experimental results also indicated that with FPGA virtualization methods, ViTAL significantly shortened the response time (by 82%) in the cloud environment.

Fowers et al. [START_REF] Fowers | A configurable cloud-scale dnn processor for real-time ai[END_REF] proposed a full-system architecture with virtualization at a multi-node level to serve DNN inferences in a cloud environment. The critical feature of the architecture is the dedicated neural processing units (NPUs), which implement an SIMD ISA containing a matrix-vector multiplier. This DNN-specific ISA offers a high-level abstraction between the underlying FPGA infrastructure and DNN software development, thereby simplifying FPGA programming for software developers. The authors validated the architecture by running RNNs and compared it with the NVIDIA Titan GPU, and it gained more than 36 effective teraflops (10 instances NPU). Moreover, the authors evaluated ResNet-50 on the Arria 10 GX 1150, which achieved 559 inferences per second (IPS), whereas ResNet-50 on the Nvidia P40 GPU achieved only 461 IPS.

DNN deployment in commercial cloud

In recent years, companies such as Amazon F1 [95], Tentent [START_REF]Tencent cloud: Instance type fpga fx2[END_REF], Huawei FACs [97], and Microsoft [98] have launched cloud projects that provide FPGA IaaS for users to rent FPGA resources. Researchers have begun to accelerate DNN workloads in these commercial clouds to improve performance. The framework of deploying DNNs on FPGAs with a commercial cloud as the backend is similar to local deployment, but virtualization and physical connections of FPGAs are often charged by cloud vendors and hidden in the backend.

Several frameworks [START_REF] Raspa | A framework with cloud integration for cnn acceleration on fpga devices[END_REF][START_REF] Chen | Cloud-dnn: An open framework for mapping dnn models to cloud fpgas[END_REF][START_REF] Tridgell | Unrolling ternary neural networks[END_REF] have been proposed to implement DNNs on a single physical FPGA in the cloud with Caffe and TensorFlow as a frontend. Later, the research focus of DNN deployments moved from per-FPGA granularity to multiple FPGAs. Because the mainstream compilation tools do not support application implementation among multiple FPGASs, particular mapping algorithms or customized tools designed by the researchers are needed. Shan et al. [START_REF] Shan | Cnn-on-aws: Efficient allocation of multikernel applications on multi-fpga platforms[END_REF] proposed an effective solution for implementing DNNs among multiple FPGAs in an AWS instance. The solution, which is based on the characteristics of FPGAs in the AWS, uses a heuristic method to find the global execution throughput between the CPU and the connected FPGA and then uses an allocation algorithm (including group kernel allocation and individual kernel allocation) to assign DNN workloads to various FPGAs with resource constraints. It is suitable for deploying any DNN to the AWS F1. Compared with the traditional mixed-integer nonlinear programming solution, this solution achieved faster DNN implementations on multiple FPGAs: 16-bit fixed-point AlexNet on two FPGAs, 32-bit floatingpoint AlexNet on four FPGAs, 16-bit fixed-point VGG-16 on four or six FPGAs, and ResNet on five FPGAs.

Table 4 presents studies on virtualization technology and the cloud environment.

Trends of DNNs accelerators

As shown in Figure 9, the first stage in the evolution of DNN accelerators involved manually mapping a single DNN to a single local FPGA with low energy consumption. DNN accelerators were designed for implementation on specific FPGA families. The optimization strategies are customised for a particular DNN and are not compatible with other networks. Therefore, DNN deployment has disadvantages, such as poor portability, time-consuming deployment, complex optimization, and inflexibility. Efforts have been made to automatically generate DNN hardware structures according to the requirements of different FPGA families. Therefore, researchers have proposed several frameworks to support a generic DNN accelerator and to offer customised DNN implementations by analysing requirements and platform-specific constraints. These frameworks are usually integrated with an RTL compiler with full exploitation of low-level structures to achieve high performance. Moreover, instruction-driven compiler frameworks have been developed in recent years to simplify the control flow of DNNs.

Despite enjoying energy efficiency and acceleration, DNN deployment on FPGAs faces complexity, resulting in reduced productivity. The framework of the previous stage mainly reduces the programmable complexity at the single-FPGA level without multiple tasks, and researchers have not yet determined how to improve the productivity of DNN implementation at the multiple-FPGA or resource level. Accordingly, DNN accelerators with virtualization techniques are being developed. Resource-level virtualization provides portability of DNN deployment for various families of FPGAs from different vendors. Node-level and multi-node-level virtualization enables resource sharing among FPGAs. Multi-node level virtualization exhibits the advantages of scaling up DNNs and training DNNs. Subsequently, several works proposed cloud-based accelerators for deploying DNNs on-demand. These studies can be divided into two categories. The first category involves building an end-to-end cloud environment for DNN acceleration. These works not only require the development of a framework or a solution for DNN deployment but are also responsible for providing FPGA devices, virtualizing FPGAs, managing FPGA resources, scheduling tasks, and supporting multi-tenant scenarios with resources and data isolation. However, these works are still in their infancy and face obstacles, such as runtime overhead. Few researchers have performed studies in this area, but it will be an appealing field owing to the growing focus on cloud computing. The other category involves using the commercial FPGA cloud as a backend to develop DNN frameworks or solutions. These frameworks usually cannot consider multi-tenant solutions and cannot support DNN deployment at runtime. Additionally, FPGA management and virtualization are handled by the cloud provider and hidden in the background. Studies have mainly focused on deploying DNNs at per-FPGA granularity because this does not require resource-mapping algorithms or compilation tools across multiple FPGAs. DNN development can only be completed by using cloud integrators provided by cloud vendors and mainstream compilation tools.

At each stage, DNN deployment exhibits various characteristics, as shown in Figure 10. Most DNN implementations are based on streaming or a single computation engine, along with the compression and optimization strategies mentioned in Section 3. Compared with a single computation engine, the streaming architecture gains efficiency by pipelining the network and activating concurrent executions between layers. However, this efficiency leads to a resource burden and a long recompilation time because obtaining a new DNN model requires regenerating the bitstream. According to the different requirements (e.g., resource constraints or speedup), researchers can choose different hardware structures in both the local and cloud FPGAs.

Discussion

In the history of deploying DNNs on FPGAs, new requirements have been proposed at different stages, which has led to different challenges. With the development of a novel generation of platforms, technologies, and concepts, challenges have been resolved.

Unresolved challenges

Some challenges of using FPGAs in the cloud have not been fully resolved owing to their complexity. Here, we describe two major challenges: isolation and diversity.

Isolation

With the increasing efforts to provide a cloud environment for multiple tenants to deploy DNNs on the shared FPGAs, resources and performance isolation have become a concern in the cloud.

DNN accelerators on the FPGA usually run under full hardware access and may share resources. Therefore, malicious code can attack the entire platform for other tenancies [START_REF] Genssler | Securing virtualized fpgas for an untrusted cloud[END_REF][START_REF] Yazdanshenas | The costs of confidentiality in virtualized fpgas[END_REF]. Additionally, dataset collection can be time-consuming and expensive-particularly in industrial cases where datasets are of significant commercial value. Providing strict data and resource isolation for multiple tenants can prevent unauthorised access to the dataset and avoid data leakage [114] [115].

Additionally, a DNN application may affect the performance of other DNN applications during concurrent execution [START_REF] Genssler | Securing virtualized fpgas for an untrusted cloud[END_REF][START_REF] Hong | Terminal brain damage: Exposing the graceless degradation in deep neural networks under hardware fault attacks[END_REF], which causes unreliable performance. However, few works [START_REF] Zha | Virtualizing fpgas in the cloud[END_REF][START_REF] Zeng | Enable efficient and flexible fpga virtualization for deep learning in the cloud[END_REF] discuss performance isolation problems, and their isolation remains underexplored.

Diversity

Diversity of DNN functions: Owing to resource limitations and development difficulties, the networks reported in the literature are standard (such as AlexNet and VGG) with common functions (such as convolution and pooling). With the continuous emergence of DNNs, the current DNN functions that can be implemented on FPGAs lack consistency with the development of DNN algorithms. However, the cloud environment provides more possibilities for exploring the deployment of DNNs with a rich set of functions on FPGAs by providing more resources and abstraction layers and can promote the diversity of DNN IP development.

Diversity of DNN usage: Training is a difficult phase to be performed on the FPGA, because all the features must be stored in memory until the corresponding errors are backpropagated, which requires more storage than inference. Existing works mainly focus on performing DNN inferences with relatively simple functions on the FPGA. Benefiting from the "unlimited" capacity and resources provided by the FPGA cloud, DNN training, finetuning, transfer learning, and the support of new functions in DNNs will be more feasible.

Industrial solution

To keep pace with the development of DNN accelerator design, novel platforms have been used in industry to enhance the hardware computing power. In 2019, Xilinx proposed a new SoC family called Versal, which is based on an adaptive compute acceleration platform, for accelerating applications such as DNNs. Versal tightly integrates software-programmable accelerators through the NoC structure, making accelerators scalable with flexible connections and achieving a high level of software abstraction for the rapid development of accelerators.

Xilinx also proposed a novel framework called Vitis AI [117]. The framework can be with Caffe and TensorFlow and provides a unified solution, e.g., quantization, optimization, and pruning. Moreover, it allows the deployment of DNNs based on the ISA and can compile the latest DNNs into deep-learning processor unit instruction codes. Vitis AI can enhance the productivity and portability of DNN deployment, allowing software engineers to deploy DNNs without hardware expertise.

Roadblocks of FPGA Cloud

Solutions of FPGA-based accelerators in the cloud have been proposed for several years [97,95]. Nevertheless, FPGAs have achieved less success compared to GPU and TPU architectures in the cloud. Deploying FPGA devices as easy-to-use resources in the cloud faces the following major roadblocks.

First, FPGA programming requires cloud users to have extensive hardware skills and expertise to deploy their applications in the cloud, which is a considerable challenge for software engineers and data scientists. Cloud providers must provide well-developed virtualization techniques for abstracting FPGAs [START_REF] Iordache | High performance in the cloud with fpga groups[END_REF]. As discussed in Section 5, virtualizing FPGAs in the cloud for artificial-intelligence applications still has issues, such as runtime overhead, multi-user support, user isolation, and data privacy. Additionally, the FPGA cloud provides users with high permissions to access the resources, where users can upload their bitstreams for application deployment, leading to malicious attacks and security problems [START_REF] Matas | Invited tutorial: Fpga hardware security for datacenters and beyond[END_REF]. Such problems hinder the success of FPGAs in cloud computing.

Conclusion

This paper summarizes several techniques to promote DNN deployments on FPGAs, including architectural design and optimization strategies. We reviewed related works based on FPGA virtualization and cloud deployment. Our study involved an in-depth analysis of the evolution of DNN deployment on FPGAs, from local FPGAs to virtualized FPGAs in the cloud. This topic was ignored by previous surveys.

With the rising concern regarding the adoption of FPGAs at the edge and in the cloud, porting DNNs onto FPGAs in cloud services will continue to attract attention in the years to come.

Figure 1 :

 1 Figure 1: Characteristics of deploying FPGAs in the cloud and FPGA virtualization for DNN deployment.

Figure 2 :

 2 Figure 2: IaaS and SaaS FPGA cloud. "Vendor manage (optional)" and "User manage (optional)" indicate that this hierarchy does not always exist in the FPGA cloud, and it is customised by each FPGA cloud vendor or user.

Figure 3 :

 3 Figure 3: Overall architecture of the FPGA-based DNN accelerators in the IaaS cloud. (a) Different levels of abstraction in the FPGA virtualization technique. (b) Example of the system architecture in node-level virtualization.

•

 Streaming architecture: The streaming architecture (Figure4) implements an entire DNN on the side of the Programmable logic (PL) of the FPGA from the first convolutional layer to the final fully connected layer. On the PL side, it deploys a chain of sequential DNN intellectual property (IP) to process the dataset in the pipeline mode. The intermediate results (DNN feature maps) are stored on the chip on the PL side. This architecture enables an efficient data stream without frequent data exchange with external memory, significantly reducing the latency and obtaining throughput at a high frequency. A specific DNN model using a streaming architecture must be defined before generating the bitstream. Whenever the DNN model changes, architecture re-compilation and bitstream regeneration are inevitable. According to the selected DNN algorithm, the re-compilation of this architecture may be time-and resource-consuming.

Figure 4 :

 4 Figure 4: Example of accelerating DNNs using the streaming architecture.

Figure 5 :

 5 Figure 5: Example of accelerating DNNs using the single computation engine accelerator architecture.

Figure 6 :

 6 Figure 6: Generic frameworks for DNN accelerators.

Figure 7 :

 7 Figure 7: Generic compiler-inspired frameworks for DNN accelerators.

Figure 8 :

 8 Figure 8: (a)DNN deployment without virtualization. (b) Example of FPGA virtualization at the node level for deploying one DNN on a local FPGA. (c) Example of FPGA virtualization at the node level for deploying several DNNs in the cloud environment.

4 *

 4 FP = floating point format. OC = On-chip host; RH = Remoted host; LH = Local host. (Host in section 2.2.2) SM = Spatial multiplexing; TM = Time multiplexing. N/A = Not applied. N/M = Not mentioned.

Figure 9 :

 9 Figure 9: Evolution of DNN accelerators at each time node: from manual mapping to frameworks, from a single node to a cluster, from physical to virtual resources, and from local to cloud.

Figure 10 :

 10 Figure 10: Comparison of related methods with different characteristics.

Table 1 :

 1 Comparison of streaming and single computation architectures for DNN acceleration.

		Streaming	Single computation
	Network implementation	Entire network	Function unit
	Structure	Pipeline	Recurrent
	Optimisation mode	Layer-independent	One-optimization-fit-all
	Recompilation time	Long	Short
	Reconfiguration	Bitstream-level reconfiguration Processor control configuration
	Flexibility	Low	High
	Resource usage	High	Low
	Speedup	Fast	Low

Table 2 :

 2 Several examples of manual mapping and frameworks on the local FPGA.

	Perform.	(GOPs)	61.62	260	137.3	75.16	565.94	75.5	84.3	62.9	185.81	100.23	150.91	159.22	8265	908	246	364.36	315.85	226.47	120.3	116	122.3	163	354	266	114.5	117.3	334	228.7	231.5
	strategy	unrolling	Quantization	unrolling,tilling	unrolling,tilling	Quantizaton, Ping-pong	buffer,batching	Pruning, Quantization,	unrolling, tilling		Per-layer quantization			pipeline			pipeline, binarized network			tilling, batching				Loop removal, rearrangement			Unrolling, pipeline				unrolling	Quantization, tilling
	Architecture	Single engine	Single engine	Single engine	Single engine	Streaming	Singe engine		Singe engine			Streaming			Streaming			Single engine				Single engine			Single engine				Single engine	Streaming
	Data format	32-bit FP*	16-bit	16-bit	32-bit FP*	16-bit	16-bit		8-bit			32-bit FP*			1-bit			16-bit				16-bit			16-bit				8-bit	8-bit
	DNN Device models	Costum Xilinx Virtex vc707 CNN	CIFAR10 Xilinx Kintex 325 T	Xilinx Zynq XC7Z045 VGG-16	Xilinx vc707 AlexNet	xilinx vc709 AlexNet	Xilinx vc710 LRCN	VGG16	Xilinx Zynq xc7z020 YOLO	LeNet-5	MPCNN	Xilinx Zynq xc7z02 CNP	CFF	BNN-SFC	Xilinx Zynq ZC706 BNN-LFC	BNN-CNV	VGG-19	Altera StratixV SGSMD5 LSTM-LM	REsNet-	152	AlexNet	Xilinx Zynq XC7Z045 GoogLeNet	ResNet-50	Xilinx UltraScale AlexNet KU060	Xilinx Virtex vc709	Xilinx UltraScale VGG16	KU060	AlexNet	Altera Stratix V GXA7 NiN	VGG	Xilinx ZU2 ResNet50	GoogLeNet
	Works Year	[74] 2015	[75] 2015	[53] 2016	[76] 2016	[65] 2016	[77] 2017		[60] 2017			[78] 2016			[79] 2017			[54] 2017				[80] 2017			[68] 2018				[61] 2018	[72] 2019
					Manual																	Framework									

* FP = Floating point format.

Table 3 :

 3 Comparison of coarse-and fine-grained overlays on FPGAs for DNN acceleration

		Coarse-grained overlay	Fine-grained overlay
	Logic level	RT level	Gate level
	Data width	Up to 32bit	1 bit
	Example logic DNN function unit (e.g., Conv) Control instruction (e.g., Load)
	Goals	Opitimize DNN Datapath switch	Enable DNN diversity
	Advantage	Area-efficiency	Higher flexiblity

Table 4 :

 4 Several examples of DNNs based on local virtualized FPGA and DNNs in the Cloud

	FPGA platform	Device Number	Xilinx Virtex 6 VC709	Altera Stratix 1 10 280	Xilinx Virtex 10 VC709	Xlinx ZYNQ 3	Xilinx ZC706, 1 ZCU102	Xilinx ZCU102 2	Xilinx 16 UltraScale	Xilinx VCU118 4	Intel Stratix 10 1 SX SoC	Xilinx VCU118 1	Altera Stratix V	GS, Xilinx 1	Ultrascale+	Altera Stratix 1 10 280	Xilinx ZCU104 1	Xilinx 4 UltraScale+	Xilinx Alveo 1 U200	Catapult 1
		Multi-tenant Task and resource manager	system controller	Model parallelism, On-chip	pinning	Partitioning, Memory	subsystem	N/A Mixed integer linear	programming	Tuning algorithm	Hypervisor	Dynamic partitioning	Hardware monitor,	mapping table	Partial reconfiguration	mananger	Croase-grained NoC,	Parameter scheduler		N/M Zone manager on host CPU		SM, TM Resource runtime manager	SM, TM Runtime task manager, schduling decision	TM Hypervisor and system controller	SM Multi-level instructions, virtualization manager	N/A Symbolic compiler
		Cloud						N/A																Cloud environment		IaaS (Per-FPGA)
	Virtualization	Abstraction Host Shell	Multi-node level RH AXI, Network access	Multi-node level RH Network communication, PCIe controller	Multi-node level LH Communication, I/O component	Multi-node level LH Communication, PCIe, Aurora	Resource level OC AXI, Memory controller	Multi-node level OC Host communication, clock generator	Multi-Node level RH Network communication	Multi-Node level LH Network interface, PCIe controller	Resource level LH DDR controller, Global memory interconnection	Resource level OC DDR controller	Node level LH PCIe controller, DMA, MMIO	Multi-node level RH Network communication, PCIe controller	Node level OC Memory controller, AXI	Multi-node level RH Latency-intensive interface, address translation	Node level LH Virtualization infrastructure	N/M, Charged by cloud vendors
		training	N/A	N/A	16-bit			N/A	N/A	N/A	N/A	32-bit FP*	N/A		N/A		N/A	N/A	N/A	N/A	32-bit	FP*,	16-bit
	DNN	Model	AlexNet, VGG-16	LSTM, RNN	AlexNet	VGG-16, AlexNet,	SqueezeNet, YOLO	AlexNet, DispNet,	ResNet, GoogLeNet	AlexNet, SqueezeNet,	YOLO, VGG-16	ResNet152	Customized 3D CNN	SqueezeNet,	GoogLeNet, VGG-16	VGG-16, AlexNet		DNNWeaver		LSTM, RNN	CIFARNet	NiN, AlexNet,	OverFeat, Vgg-16	ResNet50, Inception	V3, MobileNet	VGG-19, ResNet152,	LSTM
		Year	2016	2018	2018	2018	2019	2019	2019	2019	2019	2020		2018		2018	2020	2020	2020	2017
		Works	[21]	[34]	[91]	[103]	[104]	[92]	[90]	[105]	[106]	[81]		[107]		[34]	[108]	[93]	[44]	[54]	[109]

Acknowledgements

The first author is funded by China Scholarship Council (Grant number, 201708070009).