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WITH THREE-BODY INTERACTIONS
PHAN THANH NAM, JULIEN RICAUD, AND ARNAUD TRIAY

ABSTRACT. We consider a trapped dilute gas of N bosons in R® interacting via
a three-body interaction potential of the form N V(NY2(z — y,z — 2)). In the
limit N — oo, we prove that every approximate ground state of the system is
a convex superposition of minimizers of a 3D energy-critical nonlinear Schro-
dinger functional where the nonlinear coupling constant is proportional to the
scattering energy of the interaction potential. In particular, the N-body ground
state exhibits complete Bose-Einstein condensation if the nonlinear Schrodinger
minimizer is unique up to a complex phase.
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1. INTRODUCTION

Bose-Einstein condensation was predicted in 1924 [6l 14], but it was not until
1995 that it was first realized experimentally in gases of alkali atoms [I], 12], leading
to the 2001 Nobel prize in Physics of Cornell, Wieman, and Ketterle. While the
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theoretical works of Bose and Einstein [6], [14] [15] focused only on the ideal gas,
interactions among particles do not only make the analysis more involved but also
lead to new phenomena, one of the most famous being superfluidity [2I],[5]. In dilute
regimes, where collisions occur rarely, the interaction is most often described by an
effective two-body potential vop(z1 — x2) which is computed by integrating out the
possible internal degrees of freedom of two particles placed at x1 and x5, in the ideal
situation where all the others are infinitely far away. This approximation, enough for
most applications, might break down if a third particle nearby affects strongly the
internal structure of the two others. In this case, one can add a correction by using
another effective interaction potential vsp(z1 — w2, 21 — x3) in the ideal situation
where three-particles are close and the others infinitely far away, etc. —namely,

U(xyy...,TN) Z vop(z; — 5) + Z v3B(z — xj, 0 — Tp) + ... .

1<i<j<N 1<i<j<k<N

In this many-body expansion, the three- and higher-order corrections, although
small, are not always negligible: three-body interactions account for 2% of the bind-
ing energy of liquid He* [35] and even 14% for water [34], preventing the two-body
approximation from explaining certain of their physical properties [42] 50]. In the
realm of condensed matter, the Bose-Hubbard model with two-body and three-body
interactions was derived from cold polar molecules, where the two-body interaction
can independently be tuned and even switched off [§]. Finally, in the study of ul-
tracold gases, three-body interactions have received a strong interest with the hope
of observing exotic states like self-trapped droplets or Pfaffian states [41]. In partic-
ular, a repulsive three-body interaction can stabilize a condensate against collapse
due to an attractive two-body interaction, the competing contributions can lead
to crystallization and is believed to be a good candidate for observing super-solid
states [3| [4].

In this work, we consider a system of N bosons in R? trapped by a confining
potential and interacting via three-body interactions. It would be also interesting to
include two-body interactions in the model, but we do not do so here in order to sim-
plify the problem. We study the Gross—Pitaevskii-like regime where the interaction
potential scales like

Vv (z —y,x — 2) :NV<N1/2(x—y,x—z)>.

We prove that the ground state energy and approximate ground states of the system
are effectively described by the 3D energy-critical nonlinear Schrodinger functional
where the nonlinear term is proportional to the scattering energy of the interaction
potential. To our knowledge, it is the first time that the ground state problem of
a dilute Bose gas with three-body interactions is investigated rigorously. In fact, a
simpler result with the weaker interaction potential of the form

NGB_2V<NB(9U -y, — z))

with 5 > 0 small can be handled by following the method in [24] (see also the
subsequent [38, [45, [49] for further developments of relevant techniques). In this
case, the usual mean-field approximation is correct to the leading order. The critical
case [ = 1/2 that we consider here is more difficult since the three-body correlation
between particles yields a leading order correction to the ground state energy, which
is similar to the Gross—Pitaevskii regime of the two-body interaction studied in [31],
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27, 28, [39]. We refer to [30, 43, 44] for pedagogical reviews on relevant results in the
two-body interaction case.

In the time-dependent problem, the potential N6B*2V(N5(x -y, T — z)) with
B = 0 small already received some attention [9, 10 51, 11} 22] 40, 25]. The critical
regime 8 = 1/2 is again more difficult and the corresponding dynamical problem
remains open. In the two-body interaction case, the Gross—Pitaevskii regime was
first studied in [I7, [16], see also the reviews [46] 20] 2] for further results.

1.1. Model. Let us now explain the mathematical setting in detail. We consider a
system of N > 3 identical bosons in R? described by the Hamiltonian

N
Hn Zzhi—l— Z Vn(xi — xj, 2 — o), (1)
=1 1<i<j<k<N

acting on the symmetric space
N
o = LT (R)Y) = Q L*R?),
S

where, following the most mathematically demanding setting in the two-body inter-
action case [28], 89], we consider the one-body operator of the form

h:= (=iV, + A(2))? + Vixe(z)  on L*(R3). (2)
Here, we assume that the external trapping potential satisfies
Vet € L (R3,R)  and Ve (z) > Clz|*+ 1 for ae. x € R?, (3)

for some constant « > 0, while the vector potential (accounting for a magnetic field
or a rotation) satisfies

Ae L} (R® and lim |A(z)]?e “l*l =0, (4)

loc
|z| =00
for some constant C' > (0. Moreover, the interaction potential is chosen of the form
V(z,y) = NV(NY*(z,y)) for all 2,y € R®, (5)

where V : R3 x R? — R is nonnegative, bounded, compactly supported, and has the
symmetry properties

V(z,y) =V(y,z) and V(z—y,z—2)=V(y—z,y—2)=V(z—y,z—2x) (6)

which ensure that Hy leaves the bosonic space $ invariant. Thus, Hy models a
trapped dilute Bose gas where the range of the interaction potential is much smaller
than the average distance between particles: N~1/2 « N~1/3,

Under our conditions (3)—(@l), the Hamiltonian Hy is well-defined and bounded
from below with core domain ®i\/ C°(R3). Hence, it can be extended to a self-
adjoint operator on $V by Friedrichs’ method. The extension, still denoted by Hy,
is bounded from below and has compact resolvent since Vey(x) — 00 as |x| — oo.
In particular, a ground state exists.

In the present paper, we are interested in the ground state energy

EN = inf <\I/,HN\I/> (7)

1@l n=1
and the corresponding ground states in the limit N — co. When N becomes large, it
is in general impossible to compute, both analytically and numerically, the ground
state energy En and the ground states from the full many-body description ().
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Hence, for practical computations it is important to derive an effective theory which
relies on less variables.

The usual mean-field approximation suggests to restrict to the complete conden-
sation ansatz of N particles

N
ON(zy,...,xN) = Hu(xj) with u € L*(R?). (8)
j=1

\IJN%u

However, the correlation due to the strong interaction between particles at short
distances will also play a role to leading order. Since the gas is dilute, the corre-
lation structure is encoded in the scattering problem associated to the three-body
interaction potential Vi (z — y,z — z). Let us consider the three-body operator

—Ag — Ay, — Apy + V(21 — 22,21 —23) oOn L2((R3)3) .

We can remove the center of mass by change of variables:

1
r = §($1+$2—|—$3), ro=x1 — T2, and r3=1x1—T3. (9)
Denoting the momentum variable p, = —iV,, with z € R3 and i®> = —1, we have
1 1 1
Pz = gph +Dry +Prs,  Dzy = gpf'l — Prys Pzz = gprl — Prs

and, consequently,

- Alvl - Am - Al’g + VN(CCI —T2,T] — $3)

1 2 1 2 /1 2
= <§p7'1 +p7'2 +p7“3> + (gph _pT'2> + <§pr1 _pT3> + VN(TI,TQ)

1
= gpzl + 2(p22 + ng +p7’2p7‘3) + VN(T27 T3) N (10)
Thus, after removing the center of mass, we are left with the two-body operator
2(p> + Py + paby) + VN (2, y) = —2Ax0 + Vi (z,y)  on L*((R?)?),

where —A g = [MVps|? = divgs (M?Vpge) and the matrix M : R? x R3 — R3 x R?

is given by
m=(0) (B )

The operator —2A( + Vn(z,y) is associated to the (modified) scattering energy

bm (V) :==  inf / (2MVw(x)|? + Vi (x)|1 — w(x)|?) dx.
weH1(RS) JR6
Recall the standard scattering energy of a potential W : R — R
b(W):= inf / (2|Vw(x)|2 + W(x)|1 - w(x)?) dx. (11)
weH(RY) Jrd

By change of variables, the modified scattering energy can be written as
bm (V) =b(V(M-))det M.
Here, det M = 31/3/8. Moreover, the specific choice in (B]) ensures that

bat(Viy) = bﬂjv(;/).
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In summary, to the leading order we expect that

bm(V
VN ('Ia y) ~ ]\§2 )5:v=y=0 . (12)
Putting the formal approximations (§) and (I2)) together, we arrive at
E
"N ~egpi= inf Eap(u), (13)
N ”uHL2(R3):1

where Egp(u) is the 3D energy-critical nonlinear Schrédinger (NLS) functional

Ecp(u) = /R <|(—iv A )u(@) 2 + Vi () |u() 2 + bMT<V)|u(x)|6> dr. (14)

Let us denote by Mgp the set of minimizers of Egp. The existence of a mini-
mizer ug of Egp follows straightforwardly from standard variational methods, where
the compactness in L?(R?) of minimizing sequences is guaranteed by the trapping
condition Ve (x) — 00 as |x| — oo. The solution solves the nonlinear equation

(h+ b (V)|ug(2)[*/2 — €0) uo(z) =0 for all 2 € R?,

for some chemical potential g € R? (the Lagrange multiplier associated with the
mass constraint [[u|[;2gsy = 1). Moreover, with our assumptions on Vext and A, the

absolute value of the resolvent kernel of h + bag(V)|ug|*/2 + 1 is bounded by the
one of —A + 1 (see for instance [47, Sect. 15]), which implies ug € L>(R3) by the
Sobolev embedding H?(R3) c L*(R?).

In the absence of the magnetic field, i.e. A = 0, the minimizer ug of Eqp is
unique up to a complex phase (this can be seen by a standard convexity argument).
However, in the general case A # 0, Egp may have several minimizers which indicates
the presence quantized vortices. We refer to [31], 28, [39] and the reviews [30), 43|, 44]
for the related discussions in the two-body interaction case where the nonlinear term
|ul in (T4 is replaced by |ul*.

1.2. Main results. Our first result is a rigorous justification of (I3)).

Theorem 1 (Ground state energy). Let Voxt, A, and Vi satisfy B)—(6l). Then, the
ground state energy of Hy in (Il) satisfies

E
lim — =eqgp = inf  Egp(u), 15
NI N T =y, for(v) 19)

where the effective functional Egp(u) is given in (I4).

As a by-product of our proof of Theorem [I we also obtain that every approximate
ground state of Hy behaves as a convex superposition of the pure tensor products as
in (8). Note that the approximation (8) is expected to hold not in the norm topology
of HV, but rather in a weaker topology defined by reduced density matrices. Recall
that for every 1 < k < N, the k-body density matrix 7\(12 of a normalized wave

function Uy € $HY is a nonnegative trace class operator on $* = L2((R?)F) with
kerne

'y\(pk])v(z;zl) :/ Un(Z, ity 2N)UN(Z, Tpg1y -y 2N) ATy -+ - don .
(RS)N—Ic

n our convention, inner products in (complex) Hilbert spaces are linear in the second argument
and anti-linear in the first.
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Equivalently, we can also write 7\(12 = Trpi1-n | N) (PN, where the partial trace

is taken over all but the first k£ variables. The proper meaning of (&) is
k
7D~ WV B, k=12, (16)

which is often referred to as the complete Bose—Einstein condensation.
Our second result is a rigorous justification of (I6]) for ground states, or more
generally for approximate ground states, of Hy.

Theorem 2 (Condensation of approximate ground states). Let Vexy, A, and Vi be
as in Theorem/[d. Assume that VU is an approzimate ground state for Hy —namely,

Uy, HyW
[l =1 and  Jim 2V INTN)

=eqp.
N—oo N G

Then, up to a subsequence as N — oo, there exists a Borel probability measure
supported on Mcgp, the set of minimizers of Egp, such that

I (’“):/ kY (, ©F =1,2,...
NE)HOO’Y\I/N Mep ’u ><u ‘du(u)7 k » ’

in trace norm.
In particular, if Egp has a unique minimizer ug (modulo a complex phase), then

the whole sequence {7\(:]27}]\; converges towards [uf*) (u§*| for all k € N\ {0}.
Let us give some quick remarks about our results.

Remark 3 (Less singular interactions). From our approach, we also find that for
every 0 < 3 < 1/2, the ground state energy of the Hamiltonian

N
Hyme=» hi+ > NYPV(N(; - zj,2; — 23)) (17)
i=1 1<i<j<k<N
satisfies
. EN . ‘7(0) / 6
lim — = inf u, hu + — w(x)] dx » . 18
N—ooo N lullp2 g3)=1 {< >L2(]R3) 6 Jus u(z)| (18)

This is an analogue of ([I5]) where the scattering energy baq(V') in the nonlinear func-
tional is replaced by its first Born approximation 17(0) = fRG V. Consequently, we
also obtain the convergence of approximate ground states of Hy ¢ to the minimizer
of the right side of (Ig]).

When 5 > 0 is small (depending on the growth of Vi), (I8) can be proved
by a standard mean-field technique, for example using a quantitative quantum de
Finetti theorem as proposed by Lewin, Nam, and Rougerie [24]. The proof of (8]
for the whole range 0 < f < 1/2 is more difficult and can be obtained from a
simplification of our method. The critical case 8 = 1/2 in Theorem [ is the hardest
one since the strong correlation yields a leading order correction to the mean-field
approximation. A

Remark 4 (Dynamical problem). In the context of quantum dynamics, it was proved
by Chen and Holmer [11] for 5 < 1/9, then by Nam and Salzmann [40] for § <

1/6, that the Schrodinger evolution Wy (t) = e ~(0) with initial condition

7\(1}])\7(0) ~ |u(0))(u(0)| exhibits the complete condensation 7\(1111)\;(15) ~ |u(t))(u(t)| for
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any time ¢ > 0, where the condensate u(t) is determined by the time-dependent
equation

Opu(t, z) = <—A + %T?(O)|u(t,x)|4> u(t, 7). (19)

Here, HY . is the Hamiltonian as in (I7)) but without the external potential and
the magnétic field. We expect that the same result holds for all 0 < 8 < 1/2 and
that the factor V(0) in (I3) is replaced in the critical case 8 = 1/2 by the scattering
energy bag(V). This is still an open question. The results in the present paper
justify the initial condition of the dynamical problem. A

Remark 5 (Comparison to the two-body interaction case). The derivation of the
Gross-Pitaevskii functional, the analogue of () with |u|% replaced by |u|*, from the
many-body problem with a two-body interaction potential of the form N2V (N (z —
y)) goes back to the seminal papers of Lieb, Seiringer, and Yngvason [32], 3], 27 2§].
There are four levels of difficulty. First, for the homogeneous system of N bosons
trapped in a unit torus (A = 0 and Vo = 0), the convergence of the ground
state energy (similar to Theorem [I]) follows from the analysis in [32]. Second, the
extension of the energy convergence to the inhomogeneous trapped case in R? (4 = 0
and Ve # 0) was solved in [31]. Third, the proof of the Bose-Einstein condensation
(similar to Theorem [), which is harder, was first achieved in [27]. Finally, in the
most mathematically demanding setting of a general trapped case with a magnetic
field (A # 0 and Ve # 0), the convergences of both the energy and the states were
settled in [28]. See also [39] for an alternative proof.

Here, we aim at extending the results from the two-body interaction case, in
the most difficult setting from [28], 39], to the three-body interaction case. For the
homogeneous gas, a simpler version of our analysis can be found in [37] where we
combine a variant of Dyson’s lemma of the present paper with the argument in [32] in
order to quickly derive the energy convergence (the analysis can even be done in the
thermodynamic limit). On the other hand, the proof in the present paper is much
more complicated than that in [37] since we handle the full generality of the one-
body operator and we prove Bose-Einstein condensation, for which the argument
in [37] is insufficient.

In comparison to the existing works in the two-body interaction case [32, 3] 27,
28,139], the analysis in the three-body interaction case requires three new ingredients.
First, we are unable to derive the energy upper bound from a Jastrow—Dyson type
state and a cubic (in annihilation/creation operators) transformation is hence needed
in order to create the correct correlation structure. Second, for the energy lower
bound, we have to extend Dyson’s lemma to the new scattering problem, which is
in particular relevant for non-radial potentials. Third, the core novel technique of
our proof lies in a bootstrap argument where we repeatedly apply Dyson’s lemma in
order to implement the mean-field approximation. This new technique is not only
crucial to handle the three-body interaction case, which is energy-critical, but is
also helpful to simplify the proof in the two-body interaction case (see Appendix [7).
More details are given below. A

1.3. Ingredients of the proof. Now let us explain the main ingredients of the
proof.

Upper bound. The uncorrelated trial state as in (8)) is insufficient to get the leading
order upper bound Ex < Negp + o(N). In fact, the energy per particle over the

Hartree states u®" is given by a functional similar to Egp (u) but where the scattering
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energy baq (V) in front of the nonlinear term |u|® is replaced by V (0) = Jge V- Hence,
it is important to take some correlation into account. Heuristically, we can think of
the Jastrow—Dyson type state

N N
Un(z1,...,2N) :Huo(xj) H IN(xp — g, zp — 20) (20)
j=1 p<k<{l

where ug is a minimizer of eqp and fy : R? x R? — R is a function satisfying the
symmetry (B) and solving, for almost every x € R%, the scattering equation

=28 frn(x) + Vi (x) fn(x) =0,
which is equivalent to solve, for almost every z,y, z € R3, the equation
(—Az = Ay = A)fN(z —y, 2 —2) + (VN n) (@ —y, 2 —2) = 0. (21)

The existence of such a function is proved in Theorem Bl In particular, the scattering
energy is encoded in fx as

/R6 VN fn =bum (V) = N 2bm(V).

Unfortunately, we are not able to compute the ground state energy per particle of the
trial state (20) to the leading order, even if we replace fy by a modified version fy ¢
satisfying fy¢(x) = 1 for |z| > ¢: the computation is significantly more complicated
than for the two-body interaction case.

Here, we follow an alternative approach. First, for ease of computation, we
extend Hy to the operator Hy = 0 & @ﬁ:l Hy n acting on the bosonic Fock

space F(9) :=C o Pr_, HY

M
HM,N:Zhj+ Z NV(NI/Q(mi—xj,xi—xk)).

j=1 1<i<j<k<M

This extension can be written conveniently as
1
Hy = / ayhyayde + = / Vn(r =y, — 2)aza,azazaya, dvdydz
R3 (RS)S

using the standard creation and annihilation operators a},a,. To capture the con-
densation, we define the Weyl operator

W(f) = exp(a’(f) —a(f)) forall f e L*(R%),

which is a unitary operator on the Fock space and satisfies

W(f)algW(f) =alg) +{g.f) forall f.g € L*(R?).
In order to create the desired correlation structure encoded in the scattering solution
fn in 1)), we introduce another unitary transformation

Uy = exp []1(1\/ < NYHBF — BV < N1/2)] ,

where N = [ aXa,dxz is the number operator on the Fock space and
B} = —6N2 /(RS)S(l — )z —y,x— z)uo(x)uo(y)uo(z)axayaz dedydz. (22)

We choose the cut-off on the particle number to be N'/2 such that Uy does not
create too many excited particles. We will prove (see Theorem [2]] below) that

(Q,ULW (VNe)*HyW (VN@)UnQ) < Negp + O(N?/?),
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where Q is the vacuum. Note that the trial state W (v Np)UnQ does not belong
to the N-body space $, but it essentially lives on sectors of N + O(\/ﬁ ) particle
number. Following an idea of Solovej [48], by controlling the fluctuations of the
particle number of W(v/Np)UnS), we are able to construct a trial state in the
N-body Hilbert space and to obtain the desired upper bound

En gNeGP—i—o(N).

In the two-body interaction case, a similar trial state has been used [2}, [36] where
equation (22]) is replaced by a kernel that is quadratic in terms of creation and
annihilation operators, which simplifies the computation greatly since Un§) is a
quasi-free state. In our case, the computation with the cubic kernel in equation (22])
is more complicated, but technically manageable. The details will be explained in
Section [6l

Lower bound. We will follow the overall strategy from the two-body interaction
case [28, 139], namely we replace the singular potential Viy = NV (N'/2.) by a softer
potential using a Dyson lemma and then we apply the mean-field approximation.
However, to handle the three-body interaction case, we have to use the Dyson lemma
several times (instead of only one time as in the two-body interaction case) and
this iteration procedure requires new ideas which eventually lead to a substantial
improvement over the overall strategy.

Let us quickly explain our approach. The general idea of the Dyson lemma is that
forany 0 < v < 1and 0 < 8/ < 8 < 1/2, we have the operator inequality

— A+ Vivp(x) > Unpr(x) (1= ONPF) (23)
on L?(RY%), with the scaling convention
Vis(x) = N9 2V(NPx), Uy pr(x) = N 2U(NP'x)
where V,U € C°(R%) are essentially fixed and

/ U=vN*bp(v V).
R6

In our first use of the Dyson lemma, by taking v = 1 we can replace the original
Gross—Pitaevskii scaling 5 = 1/2 by a simpler scaling 0 < 8’ < 1/2 with

/ Ung =bm(Vng=1/2) = N~2bp((V) = the desired scattering energy.
R6

While the above estimate holds for all 0 < 8 < 1/2, lifting it to the many-body level
requires the additional condition 8 > 1/3 which is technically needed to control
several error terms. On the other hand, the mean-field techniques in [24] only work
for a smaller .

To reduce further 8, we will apply the Dyson lemma again. Note that thanks to
the sub-critical scaling 8’ < 1/2, the equality

Voaav™ W) = [ U1+ (1) = N20(V)(1+ o(1)

holds for all N#~1/2 « v < 1, namely the scattering energy of v Uy g is well
approximated by its first Born approximation fRG v U ~,3 - This allows us to apply
the Dyson lemma with some 0 < v < 1, namely we sacrifice very little kinetic energy
and still get

—2vAM + Uy g (x) 2 Ungr(x)(1 +0(1)) (24)
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with 0 < 38" < f8/. Repeating this step finitely many times, we end up with a soft
potential which can be handled by the techniques in [24].

On the technical side, we will derive a many-body version of (23]) with suitable
cut-offs in the configuration and momentum spaces. In order to control various error
terms and make the iteration procedure work, we will use the bosonic symmetry to
adjust the relevant number of particles in each step of the bootstrap argument.

Now let us go for a more detailed explanation of our lower bound proof.

Step 1: Dyson’s lemma. We will prove in Theorem [I0 that, given the potential
Vv = 0 supported in [x| < O(N~Y?) and R > N~/2 we can find a function U > 0
in L!(R%) supported in {|x| < R} such that Ug satisfies the symmetry (@),

Ur(z,y) < CR™L{p1<ryLjy<r) » /RG Ur=bpm(V)(1+0(1)Nosoo)

and
—2Ap0 + Vn(x) > N 2Ug(x) on L*(RY). (25)

Actually we will derive need an improved version of (23], with MV1 (Ix< \/§R}M
instead of Ay, but let us ignore the technical cut-off in the introductory discussion.

Note that all existing proofs of the Dyson lemma and its generalizations rely on
the radial symmetry of the potential (see [31, [29]), which is not satisfied by our
potential V : R® — R. We will derive (25]) from a general result on the standard
scattering energy (see Theorem [0) which holds for a large class of potentials and
could be of independent interest.

Now, coming back to the Hamiltonian Hy and using (25]), we obtain in Lemma [IT]
the following lower bound for all 1 > ¢ > 0,

(1—e)'Hy + C.R*N? (26)
N
- 1 T+ x;+ Tk
>Zhi+m Z Ur(@i — xj,z; — xp) H O2r <f—w>7
i=1 1<i,7,k<N 01,7,k
i#j ket
where

h=h-— (1 - €)p2]l{‘p‘>571} and 93 = ]l{\:v\>R} .
Note that (26]) implicitly contains an improved version of (25]), where only the high-
momentum part |[p| > e~ ! of the kinetic energy is needed to replace Viy by N ~2Ug,
and the low-momentum part |p| < e~! is kept in order to recover the full nonlinear
functional in (I4]). The same idea of saving the the low-momentum part has been
also used in the two-body interaction case [28, [39].

Removing the cut-off and estimating four-body error terms. The cut-off
O2r(z) = 1y >2ry appears in [Z6) due to the fact that we exclude the event of
having four particles within a distance O(R). This is a disadvantage of the use of
the Dyson lemma and the four-body problem here is similar to the three-body one
in the two-body interaction case [28] [39]. The standard way to remove the cut-off
Ao is to use Bernoulli’s inequality

r,t+xj+x r,t+xj+x
H 923(%’“—:@): H (1—X23<%k—xz>>

b5,k 06,5,k

Ti + x5 + Tk
>1- Z X2R<%—xz>,
0#i5k



THE CONDENSATION OF A BOSE GAS WITH THREE-BODY INTERACTIONS 11

where xg(z) := lfj;j<ry = 1 — Or(z). Consequently, the interaction in (26]) can be
bounded from below as

1 T, + T+ Tk
6NZ > Ur(wi—wjmi—ar) ] bor <%—ﬂ?e>

1<i,j, k<N l#i,5.k
i) Ak
1
Z W Z UR(.%'Z' — .%'j, T; — .%'k) (27)
1<, 5,k<N
i ] £k
C

~ N2RE Z Z X4r(Ti — ) xar(®i — xp)Xar(Ti — Tp) -

1<i,5, k<IN €£4,5,k

iFjFkA
Due to the energy-critical nature of the problem, we are unable to control the four-
body error term using the second-moment argument as in [39] (and its variants,
e.g. a third-moment argument, seem also insufficient). Nevertheless, following the
approach in [28], we can show (see Lemma [[H]) that, up to a replacement of N by
M =~ N if necessary, the zero-temperature limit of the bosonic Gibbs state I'y of
H satisfies the four-body collision estimate

4
TI"HXR(M —xz) 'y < CR®.
(=2
Therefore, the expectation against I'y of the error term in (27)) is bounded by

CN?2R3, which coincides with the error in (26]). In summary, from (28] and 27 we
deduce that

N
EN 1—c¢ ~ 1
~ > =T <Zh + o3z Z Ur(z; — xj,2; — m))rN — C.NR*, (28)
i=1 1<4,5,k<N
i#jFEkA
where I'y is the zero-temperature limit of the bosonic Gibbs state of Hpy. In order
to keep the error of order o(1), we need to take

N3 s R> N2, (29)

These constraints on R are optimal in order to make the Dyson lemma useful: the
condition R > N~1/2 ensures that we replace Viy by a less singular potential, while
the condition R < N~1/3 keeps us in the dilute regime where there are essentially
no four-body collisions. Under these conditions, applying the Dyson lemma does
not change the energy to the leading order.

Step 2: Mean-field approximation. So far we follow closely the existing
analysis in the two-body interaction case [28, [39]. Let us now explain a crucial new
difficulty in the three-body interaction case, which implicitly relies on the fact that
we are dealing with an energy-critical problem here. In the two-body interaction
case, as soon as we arrive at an analogue of (28]), the right-hand side can be treated
using now standard mean-field techniques, e.g. using the coherent state method as
in [28] or using the quantum de Finetti theorem as in [39]. A key ingredient needed
in [28, B9] is the two-body inequality

W= y)| < CIWlpgs (- A1 -A,) on L(®)?).  (30)

Together with the so-called “second moment estimates”, this inequality allows to
control the interaction potential efficiently by the kinetic operator. The bound (B30
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also plays an essential role in the study of the Gross—Pitaevskii dynamics in [18]. In
fact, as proved in [39], the refinement

W (@ = )| < CpIW 1oy (1= D)1= A)/*7on L2(R?)?)  (31)

of (B0) holds for every n > 0 and is useful in combination with the so-called second
moment estimates (which ones are out of reach for the three-body case in the regime
we consider). Roughly speaking, (BI)) can be interpreted as a variant of the Sobolev
embedding theorem L>®(R3) ¢ H3/2+21(R3), where the total (3/2 + 2n) derivatives
on x —y are divided equally between the variables x and y. In the three-body inter-
action case, the analogue of (BI)) is the following operator inequality on L?((R3)3):

W(z =y, = 2)| < Cy[Wpigey (1= A)H7(1 = A1 = AT (32)

for every n > 0, which should be compared with the Sobolev embedding theorem
L>(RS) ¢ H3+37(R®). In particular, there is no extension of (30) to the three-body
case, namely one cannot take n = 0 in (32]). For that reason, we are not able to apply
directly the mean-field techniques as in [28, 39] in order to handle the right-hand
side of (28]). More precisely, one could try to replace ([82]) by the bound

Wz —y,z = 2)| <Cp [Wllpomey (1= Az)(1 = Ay)(1 = Az),

for p > 1, but in our application HUR”LP(RG) ~ R=6(=1) ig then too large due to the

constraint R < N~/3 in 29). Therefore, to overcome this difficulty, we have to
relax the condition R < N~1/3 before applying the mean-field techniques, and this
requires new ideas.

Repeated use of the Dyson lemma. We will replace Ur by softer potentials
by applying the Dyson lemma again, in the spirit of ([24) where N~2Ug plays the
role of Uy g and R plays the role of N —P. As we already mentioned before, in our
second use of the Dyson lemma, we only use a very small fraction of the kinetic
energy. More precisely, for every 0 < R < R; < 1 we can find 0 < v < 1 such that

~ vAMm + N72Ur(x) = N2Ug, (x)(1 +o(1)). (33)

However, the latter bound is not very helpful since if we use it to deal with the IN-
body Hamiltonian, then we have to impose the additional condition R; <« N~1/3,
which is similar to (29]), in order to control the corresponding four-body error terms.
Therefore, to proceed further we have to introduce a new technique to relax the
condition on R;.

Adjustment of the number of particles. To relax the condition on R;, we
will replace the N-body Hamiltonian by a Nj-body Hamiltonian with N7 < N.
Heuristically, if we can replace N by N; < N, then the constraint on R; becomes
Ry < N; 1/3 which is much better than the previous condition R; <« N ~1/3 This
can be done rigorously using the bosonic symmetry of ¥y, namely we can rewrite
the main term on the right-hand side of (28)) as

N

1 ~ 1

NTY<E hi+—6N2 E UR(mi—xj,mi—xk)>TN
i=1 1<4,5,k<N

i%jFhAi

Ny
1 ~ 1

1<i,5,k <Ny

i#j#hA



THE CONDENSATION OF A BOSE GAS WITH THREE-BODY INTERACTIONS 13

for N > Nj > 1. For the Ni-body Hamiltonian, the following bound
~VvAM + N PUr(x) > Ny 2Ur, (x)(1+ o(1)),

can be used instead of (33]), and we can replace Ur on the right-hand side of (34])
by Ug, for a lower bound as soon as

N> R >R> N,

The latter constraints are comparable to (29). By choosing N; suitably, we can
fulfill these conditions provided that

R*®*> R, >R,

1/2

and obtain
1 N
N Tr (Zhl + N2 Z Ur(x; — Tj, Ty — xk)>PN
i=1 1<4,5,k<N
i Ak
1—¢ N
> N TI‘<ZhZ+W Z URl(,IZ'—,Ij,xl'—$k)>FN+0(1).
=1 1<4,5, k<N
ik

Here, we already used the bosonic symmetry again to replace N1 by N on the right-
hand side. Repeating this procedure, we can replace Ur by Ug, for every fixed £ € N
provided that

R > Ry> Ry

Thus, for every n > 0 small arbitrarily, we can choose Ry = N~ with ¢ = {(n)
sufficiently large. Putting it all together, we deduce from (28]) that

N
En _ (1—¢)*H! ~ 1
N > TTI“ th-i-m Z URe(mi—xj,xi—mk) FN+0(1)
i=1 1<4,5,k<N
Cavbalaal
with a soft potential Ug, that can be handled by the mean-field techniques from [24].
The details will be discussed in Section Bl Taking ¢ — 0T at the end, we obtain the
desired lower bound

E bm(V
N> inf <<u, hu) p2(rsy + m(V) / ]u(m)\6dx> +o(1).
N 6 R3

||u||L2(]R3):1

This completes our sketch of the proof of Theorem [1I

Proof of the BEC. Theorem [2follows from a Hellmann—Feynman argument as in [39],
where we will derive the energy convergence of Theorem [I] for a perturbed problem.
This will be discussed in Section [7l

Organization of the paper. In Section 2] we discuss basic facts on the scattering
energy in (II)). Then, we derive several versions of the Dyson lemma in Section [3]
which will be used to replace the potential Vi by softer ones in Section d In
Section [B] we conclude the energy lower bound in Theorem [II The matching energy
upper bound is proved in Section [0l Finally, the convergence of states in Theorem
is obtained in Section [1

Notation. From now on and for shortness, we will denote ||-[|,, := (| ;»gasy when
there is no possible confusion on the dimension d.
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2. SCATTERING ENERGY

2.1. General setting. In this section we discuss the zero-scattering problem of
nonnegative potentials which are not necessarily radial. We refer to [30, Appendix
C] for a related discussion in the case of radial potentials.

Let d > 3 and 0 < v € L®(R%) be compactly supported. We define the zero-
scattering energy of v by

b(v) := inf / (2|Vg0(x)|2 +v(x)|1 — go(x)|2) dx. (35)
peH1(RY) JRd
Here, H'(R?) is the space of functions ¢ : R? — C vanishing at infinity with
|Vg| € L2(R?), denoted by D'(R?) in Lieb-Loss [26, Section 8.3].

Theorem 6 (General scattering solution). Let d > 3 and 0 < v € L¥(RY) be
compactly supported. Then, the variational problem (Bh) has a unique minimizer
w=(—2A 4 v) Y. It solves, for almost every x € R?, the scattering equation

—2Aw(x) + v(x)(w(x) —1) =0

and satisfies, for all x € R?, the pointwise estimates

Cd v Cd v
< 1, < —r—, < —
0<w(x) < w(x) T and |Vw(x)| T (36)
Moreover, the scattering energy satisfies
b(v) = / v(x)(1 —w(x))dx and 0< / v—bw) < Cylv)%u . (37)
R4 Rd d+2

Proof. Let {,}2°, € H(R%) be a minimizing sequence for the functional

8l = [ (21906 +060 1 - (0)) dx.

We can assume that ¢, is real-valued, since we can ignore the imaginary part of
©n, without increasing &[¢,], and that 0 < ¢, < 1, since we can replace ¢,, by
min(max(gy,0),1) without increasing &[p,]. Given that &[p,] is bounded and v
nonnegative, ¢, is bounded in H'(R%) and \/v(1—,) is bounded in L?(R%). By the
Banach—Alaoglu theorem, we can assume up to a subsequence that ¢,, — w weakly
in H'(RY) and /o(1 — ¢,) — o(1 — w) weakly in L*(R%). By Fatou’s lemma,
we conclude that w is a minimizer. The minimizer w is unique since the functional
© — &[] is strictly convex.

The above proof also gives 0 < w < 1. Moreover, &[w] < &w + ty] for t > 0 and
any function ¢ € C°(R?). Hence,

O<d

<— & tp| =2 2Vw -V —1)p).
G Flrtd =2 [ (29w Vot ow—1)y)

R4
Thus
—2Aw+v(w—1)=0 (38)
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in the distributional sense. Since 0 < v(1 —w) < v € LY(RY) N L®(RY), we get
w € H?(R%) N CY(R?) by the standard elliptic regularity [26, Theorem 10.2]. Thus,
equation (38) holds in the pointwise sense (almost everywhere).

The scattering equation can be written as

- 1 v(y)(1 —w(y))dy
= (=2A)"w(1 - = 39
w(x) = (<28) ol ~w)() = gy [ P @)
where [S97!| is the surface area of the (d — 1) dimensional sphere S?!. Since
v(l —w) € LY(RY) and it has compact support, we deduce from (B9) that w(x)
decays as O(|x|?>79) as |x| — oco. Since 0 < w < 1 everywhere, we conclude that
Cd v
< . Tev
w0 S Ry
Moreover, note that (38]) is equivalent to —2A f +vf = 0 pointwise with f =1 —w
Therefore, from v € L®(RY), f > 0 everywhere, and f is not identically zero (since
it does not vanish at infinity), we find that f > 0 everywhere by [26, Theorem 9.10].

Thus, w < 1 everywhere.
From (39]), we also obtain

L v¥)(1 —wE)(x —y)dy
\V4 = — . 40
S T VT o
This implies that |Vw(x)| decays as O(|x|'~?) as |x| — oo. Moreover, since w €
C'(R%), we conclude that

for all x € R?.

| Cd’l}
S x|+l

Finally, since w is a minimizer for (35]) we have
b(v) = / (2IVw®)? + o)1 — wx)]?) dx.
Rd

On the other hand, from the scattering equation we have

/Rd (2|Vw(x)|? + v(x)(w(x) — Dw(x)) dx=0.

Thus, we can rewrite
b(v) = / (v(x)|1 - w(x)* — v(x)(w(x) — Dw(x)) dx = / v(x)(1 — w(x))dx.
R4 R4
Using the scattering equation w = (—2A+wv)~'v and the Hardy-Littlewood-Sobolev
inequality, we can estimate

Og/ v —b(v /vw—/ —2A 4+ v) 1y
R4 R4
< / ’U(—A) Cd”’l}” 2d . ]
2 R4

Remark 7. Tt is well-known (see for example [7, 44]) that, by repeatedly using the
scattering equation w = (—2A 4 v)~'v and the resolvent formula, we can write the
scattering energy as a Born series expansion

v):/Rdv—/Rdv(—ZA—i—v)_lv:/Rdv—/Rdv(—QA)_lv—i-....

If v > 0 and v # 0, then b(v) < [pa v since (—2A + v)"' >0 on L2(RY). A

|Vw(x) for all x € R?.
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2.2. Three-body symmetry. Let V : RS — R, satisfy the three-body symme-
try (6). One can check that ([@]) is equivalent to
V(z,y) =V(y,z) =V(r—y,—y) forall (x,y) € R® x R3.
Put differently, V = V(g-) when g : R? x R? — R3 x R3 is equal to

0 1 1 -1
S = (1 0) or A:= <0 _1>.
Note that both S and A are symmetries (S? = A% = 1) and that SAS = ASA.
Thus, the group generated by A and S is finite and is given by
G={I,S A AS,SA ASA}. (41)

In summary, the symmetry (@) is equivalent to the fact that V' =V (g-) for all g € G
—mnamely, V is invariant under the action of G.

Next, let us consider the scattering problem associated to the three-body inter-
action potential V' (z — y,x — z). Consider the operator

—Ay — Ay, — Ay, + V(zp — 29,21 —23) On LQ((Rg)?’) .
After removing the center of mass, we are left with the two-body operator
—2A 0 + V(z,y) on L*((R*)?),
where —Ap = |MVps|? with the matrix M : R3 x R3 — R3 x R3 given by

Mo (L2 D)) L (VB VB )
S\2\1 2 T 2v2\WB-1 V3+1)°
We define the modified scattering energy
(V)= inf / QMY + VL - p()?) dx.  (43)
peH(RY) JRd

As we will see, by a change of variables, the results from the previous section on the
standard scattering energy b(V'), defined in (33]), can be used to understand ba(V'),
defined in ([43]). To be precise, from Theorem [6] we have the following.

Theorem 8 (Modified scattering solution). Let 0 < V € L®(R%) be compactly
supported and satisfy the symmetry (@). Then, the variational problem (A3)) has a
unique minimizer w = (—2A 0+ V)"V, The function w satisfies the symmetry (6),
it solves, for almost every x € RS, the modified scattering equation

—2A pw(x) + V(%) (w(x) —1) =0
—which is equivalent to solve, for almost every x,y,z € R3, the equation
(A = Ay —Aw(z—y,z—2)+ (V(w=1)(z —y,z—2) =0—,

and it satisfies, for all x € RS, the pointwise estimates

Cy

Cy

< ——.
and |Vw(x)| < xP i1

The modified scattering energy satisfies
bpm(V) = / V(x)(1 —w(x))dx and 0< / V-bu(V)SC|VIE. (44)
R6 R6 2

Moreover, by(V) = b(V(M-))det M for b defined in B5). Here, det M = 3+/3/8.
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Proof. Note that for every ¢ € H'(R®) we have

[ 2MUGP + VI =g = [ MITRMIP + VML = (M) det M

= det/\/l/ 2|V (p(M:))]? + V(M1 = (M) (45)
R6
Moreover, it is obvious that ¢ € H'(R®) if and only if ¢(M-) € H'(R®). Therefore,

(V)= inf / 2V i + V1~ o
peH1(RY) JRE

_det M inf /R AV (M2 + V(M1 = p(M-)]?

peH! (RY)
—det M inf / AV + V(M1 — @2 = b(V(M-)) det M.
Qe H1(RY) JR6
Thanks to (#H]), it is straightforward that the minimizer of ba(V) in ([A3)) is
w = w(M~1) with @ the unique minimizer of b(V (M-)) defined in (B5). Thus, most

of the statements in Theorem [ follow from Theorem [l From the equation
—2A pw(x) + V(x)(w(x) —1) =0 for a.e. x € R,
we can also deduce that
(A —Ay—Aw(z—y,z—2)+(V(w—1))(z—y,z—2) =0 forae z,y,z € R3,

by removing the center of mass similarly to (I0).

Finally, let us prove that w is invariant under the actions of G. Since V is invariant
under the actions of G and w = (—2A ¢+ V)1V, it remains to check that —A 4 is
also invariant under the actions of G. For every ¢ € C2°(R%) and g € G, using

gM?gt = M? (46)
and |det g| = 1, we have

(0~ Baapla Doy = [ | IMT el dx = [ 1M1 (Vo)) e

/ IM(V)(x)?| det g| dx = /Rﬁ |IM(Vp)(x)|? dx
<P7 AM@L?(RG) .

Thus, w = w(g-) for all g € G and it therefore satisfies the symmetry (). O
3. DYSON LEMMAS

3.1. Dyson lemma for non-radial potentials.

Theorem 9 (Dyson lemma for non-radial potentials). Let d > 3, 0 < v € L>®(R%)
with Supp v C {|x| < Ro}, and 0 < U € C(RY) be radial with [, U = 1 and
SuppU C {R; < |x| < R2}. Then, we have the operator inequality

=2Vl jxj<Ry} Vx + (%) = b(v) (1 —
with a constant Cy > 0 depending only on the dimension d.

We will later use Theorem [Q for d = 6. Note that we need the characteristic
function 1x<r,} since we will apply the Dyson lemma to a specific region of the
configuration space where three particles are in the same neighborhood.
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Proof. If Ry < 2Ry, then we can take C; = 2 and the desired inequality holds
trivially since the right-hand side is negative. Thus, it remains to consider the case
Ry 2 2Ry.

Let w be the scattering solution to b(v) as in Theorem [Bl Then, the function
f =1 — w satisfies

0<f<1, —2Af+vf=0, and lim f(x)=1.
|x|—00

We now take an arbitrary function ¢ € C®(RY) and denote n = ¢/f. For every
R € [Ry, Ry, integrating by parts and using the scattering equation, we have

Lo 290l = [ 2T 20T 2£ T T () 4o

) )

= [ epap |
B(0,R) B(0

I f (—2Af +vf) + / AP f(Vf) -7t
R) OB

)

VF)n
= [ opwap+ | ol
B(0,R) oB(0,R f

where B(0, R) = {|z| < R} and 7ix = x/|x| is the outward unit normal vector on
the sphere 0B(0, R). Therefore, for every R € [Ry, Ra], we can bound

VF)n
[ aAvelulel> [ aAvel el > [ o7
B(0,R>) B(O,R 8B(0,R) f

Let us now compute ((Vf)-)/f on the sphere B(0, R). Recall from Q) that

)

(47)

L1 x—y) _
vf(x)nx_m Rdv(y)f(y)‘x_y’d'nxdy'

For every |x| > 2Ry and |y| < Ry, a Taylor expansion gives

Ry X—y 1 Ry
X C T4 h X > —(1— C I
Mxdr T x —ypd T T < "]

where the triangle inequality was used to obtain the second estimate. Since Suppv C
B(0, Ry) and b(v) = [pavf, we have for all [x| > 2Ry that
S 1 v(y)f(y) Ro b(v) CyRo
VI > g [, et (1o ) = gt (1- )
(48)
Consequently, on one hand, for every R € [Ry, Rs] such that 1 — CyRy/R > 0,
inserting ([48)) in ([@7) and using 1/f > 1, we get

2|Ve? +vlp? = <1— / of?. 49
/B(O,Rz) Vel ] [Sd=1| Rd-1 R 9B(0,R) i (49)

On the other hand, if 1 — C4Ry/R < 0, then (49]) holds trivially since the left-hand
side is always nonnegative. Thus, ([@9) holds for all R € [R;, Rs]. Integrating both
sides of (9) against [S!|R¥"1U(R) with R € [Ry, Ry] and using [, U = 1 for the
left-hand side, we conclude that

CuR
/ 2|Ve|? +vlp* > bo) <1— d °>/ Ulg|?.
B(OvRQ) Rl R4

Since the latter bound holds for all ¢ € C°(R%), we obtain the desired operator
inequality. O

X—y X

x—yld [x[
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3.2. Dyson lemma with the three-body symmetry. We have the following
variant of Theorem [Q for interaction potentials with the three-body symmetry.

Theorem 10 (Dyson lemma with modified scattering energy). Let 0 < V € L™ (RY)
be supported in B(0, Ry) and satisfy the symmetry ([@). Let 0 < U € C(RY) be radial
with [pe U =1 and SuppU C {R; < x| < Rp}. Define

1 -
U= > UM g)det(M™), (50)
9€g
where G and M are given in (&) and @2). Then, 0 < U € C(R®) satisfies the

symmetry (@), [ze U =1, and SuppU C {/2/3R1 < |x| < V2Ry}. Moreover, we
have the operator inequality

—2MVxl (| cvaryMVx + V(%) 2 bu(V) <1 - —) U(x) on L*(R%).

Here, C > 0 is a universal constant (independent of V,U, Ry, R1, R2).

Proof. From the definition (B0), it is clear that U(x) = U(gx) for all g € G. Thus, U
satisfies the symmetry ([@). On the other hand, it is straightforward to diagonalize
M and find that its spectrum is equal to {\/m , \/ﬁ}, which in particular implies
that \/1/2 < M < +/3/2. Combining these bounds with (@), we find that

M lgx| = M x| € [\/2/3|x|, \/§|x|] for all x € RS,
Therefore, from the assumption Supp U C {R1 < |x| < R2}, we deduce that

SuppU C {\/2/3R; < |x| < V2Ry}.

Moreover, fRG U= fRG U=1 by change of variables and using |det g| = 1 for g € G.
Next, we prove the operator inequality. We start by applying Theorem [ to
V(M:). Note that SuppV(M-) C B(0,1/3/2Ry), since SuppV C B(0,Ry) and
1/2 < M < 4/3/2. Hence, Theorem [0 gives
CRy

2l e Vi V) > (1= GV )T ) on 22(9).

Since V = V/(g-) for g € G, the change of variable x = M~lgy gives, on L*(R%),

CR =~
—2MVyL{pm-ty|<ryMVy +V(y) > (1 - R—10> b(V(M)U (M gy).
On the left-hand side, we use Lir-1y(<r,} < Lyjy1<yam,) Since IM™ly| > \/1/2]y]|.
On the right-hand side, we average over g € G and use b(V (M-)) = by (V) det M1
(see Theorem [§]). The proof is therefore complete as it yields

CR
—2MVy Ly apyMVy +V(y) > (1 - #) bm(V)U(y) on L*(R%). O
3.3. Many-body Dyson lemma. We have the following many-body version of the
Dyson lemma.

Lemma 11 (Many-body Dyson lemma). Let 0 < W € L®(R®) be supported in
B(0, Ro) and satisfy the symmetry @). Let 0 < U € L*°(RY) be radial with [ U =1
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and SuppU C {1/8 < |x| < 1/4}. Define U as in BU) and Ug = RSU(R™L.).
Then, for all s >0 and 0 < e < 1, we have

M
1
sz?]l{lpibs]’ + 6 Z W(x; — Tj,Ti — Tr) (51)
i—1 1<i,j, k<M
atkaliiad
> bm(W)(1 —¢) (| CRo
6 R

Ti+T;+x
X Z Ulx; — 5,2 — x) H Oor (%_azo

1<i,5,k<M L#i,5,k
i£jFkFAL
— O R3M2.

Here, C' > 0 is a universal constant (independent of W,U, M, R,e,s).

Note that in (5I) we only use the high-momentum part of the kinetic energy on
the left-hand side. This is important for our application, since we need the low-
momentum part to recover the NLS functional. If we use fully the kinetic energy,
then the bound becomes simpler:

M

1
le?"i‘é Z W(xi—mj,xi—mk)
1=

1<i g, k<M
kel
b (W) CRy
> 1—— 52
G 7 (52)
r,t+x;+x
X Z Uz — xj, 27 — k) H O2r (%’ﬁ —w) :
1<i g, k<M b#4,5,k
iFjFRF

The latter bound follows from from (5I)) by taking s — 0 and then ¢ — 0.

Proof. Denote xgr(7) = lyjz<ry = 1 — Or(z) for z € R3. For (z1,...,zp7) € (R})M
and i,7,k € {1,2,..., M} with ¢ # j # k # i, we denote

T+ T+ xk
Fiji == xr(z; — x)xr(vi — vx)XRr(2j — 21) H Oor (% — xz) .
O#i,j.k
Clearly Fjj;, € {0,1}. Moreover, by the triangle inequality

Fijr < xr(xi — xj)xr(Ti — 21) H Or (z; — x¢) .
(#i,5,k
Hence, for every 1 < i < M, there is at most one pair j, k such that Fj;, = Fj; # 0.
Thus, we have the “no four-body collision” bound

Z Fijr <2.
1<5,k<M
iFj Ak
Multiplying the above inequalities from the right and from the left by p;ly,>s,
where p; = —iV,,, then summing over ¢, we obtain

M
1
Dz 25 D Mnl>a)PiFukpil(p>s) - (53)
i—1 1<i,5,k<M

i#j#h#i
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Let us now remove the momentum cut-off on the right-hand side of (53)). By
decomposing 1yj,,1>s3 = 1 — Lyjp,|<s) and using the Cauchy—Schwarz inequality, we
obtain for all 0 <e < 1

L i >s3Pi Fiepill s >sy = (1= €)pi Fyjupi — € L {jpu<syPiFijapill (s <5 -
Hence, we deduce from (53) that

-1

M
1—¢ €
D s = 5 D, piFupi— Y ey PiFirpil <)
i=1 1<i,j, k<M 1<i,j, k<M
iFj#kA iFj#kA
(54)
For every 1 < 4,7 < M with ¢ # j, we have
Z Fijr < Xr(wi — 25) .
1<k<M
ki)

On the other hand, using
£ )92 zzqmeyy = @)Y 1] oy 9 e -
where G2(L?(R?)) is the space of Hilbert-Schmidt operators, we find that
0 < Lpoj<sppix (@i = )pillfjpi<s)

1L g <srpixr(zi — )il fpyi<syll,,

N

2
< | gpui<apixr(e - xj)HGQ(LQ(R?’,dmi))
_ 2
= (2m) ’ ||]l{\p¢\<s}|l7i|HL2(R37dpi) Ixr(zi — xj)||%2(R37d{L'i) < Cs°R3.
Thus, we can bound the last term on the right-hand side of (54]) as

Z L ppi1<syPiFijepil {p; <5y < Z Lipi<s)PiX R(Ti — 25)pillfp<s}

1<i,5,k<M 1<i,j<M
i#j ki i#]
< Cs°R3M?.

Hence, (54) reduces to

M
1—¢ _
D_Pilpiss) 2 6 Do 2 paFipn - CTISRIME,
i=1 1<i,5,k<M nefi,j,k}
i#jEkA

which is equivalent to

M
1—¢
Dot D Wlwi—xj,mi — )

=1 1<i,j,k<M
i#£jFEkF
1—¢ _
= 6 Z Z pnﬂjkpn + W(xz — X, T — ,Ik) —Ce 155R3M2 .
1<i,5,k<M | ne{i,j,k}
i£jF#k#i

Now, let us show that for any given (i, j, k) with ¢ # j # k # ¢, we have

> paFikpn + Wz — x5, — x1)
ne{i,jik}
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CR AR R
<1 _ 70> bM(W)U(xZ — X, T — xk) H Oor <+k — xg> . (55)
04k

We do the change of variables similarly to (@)):
T = §($i+$j+$k), rj=x; —x;, and 1 =x;—T}.
Then,

1
_pT‘i - p?"k )

1
_pT’i - pT‘j ) and pl‘k = 3

1
_pT’i +p7‘j +p7"k ) pl‘j = 3

pa:i:?)

hence

Z pnFijk:pn = pmiFijkpxi + Pz Fijk:patj + pxkﬂjkpark
nefi,jk}

1 1
= gprz +p7’1 +p7"k E]k ng’, +p7"J +p7’]€

1 1 1 1
+ <§p7'7, _pr]) E]k‘ <§pn _ij) + <§ph _pf'k> E]k‘ <§pn _ka>

1
= gprin‘jkpri + 2pr; Fijkpr; + 2pr, Fijkpry, + Pr; Fijkpry, + Py FijeDr; -

We can remove p,, Fijxpr, > 0 for a lower bound. Moreover, by introducing the
notation rj; = (rj,r;) € RS we have

Fije = xr(rp)xr(ri)xr(r; — i) [ 020 —xe) 2 Lo, <ny [ O2r(ri —20) .
0,5,k Ui,k

Thus,

Z pnﬂjkpn

ne{i,j,k}
> 2py; Fijepr; + 200, Fijipr, + 0r; Fijkpry + P Fijipr; = 2Mpy ), FijeMpy,
2 2Mpr; Lje,, | <r/2yMDrj, H Oar(ri — x¢) -
0#isjk
Since W > 0, we have the obvious bound
Wi(z; — xj,z — x) = W(rje) = Wi(r) H Oor(ri — x¢)
0#i,5,k

Using Theorem [I0] we obtain

Z pnFijepn + Wz — xj, xi — xy)
nefijk}

(ZMprjk]l{\rijR/z}Mprm + W(rjx > H Oar(ri — x0)
01,7,k

> (1= CRo/R)bsm(W)Unr(re) [] ar(ri —a0).
0445,k

Thus, (B3) holds, completing the proof of Lemma [T1] O
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4. REDUCTION TO SOFTER INTERACTION POTENTIALS

In this section, we prove Lemma [[2] below. This is the central piece for the proof
of the lower bound on the energy Ey, defined in (), which is given in the next
section (Theorem [16)). It allows to replace the singular potential V by a potential
whose scaling is as close to the mean-field scaling as wanted. For Lemma [12]to hold,
we need some extra condition on the magnetic potential which will be lifted in the
end of the proof of Theorem [16] —namely,

[A(@)?

im =0. 56
A Vela) (56)

Lemma 12 (Reduction to softer potentials). Let 5 € (0 3/8],0<e<1<s, and
5 € (0 €2/2). Assume Vey to be as in @) and A € L} (R3) to satisfy (B6). Let

< U € L=(R®) be radial with Jge U =1 and SuppU C {1/8 < |x| < 1/4}. Define
U as in (BQ) and Ur = R™SU(R™1.). Then, for all integers N > 3, there exist an
integer M € [(1 —&)N,N] and R € [N~8 N=5/?] such that

M

. b (V)
En > lnfO'Lg(RSJM)< E (h578),‘ + G(M — 1)(M — 2) E UR( —Zj,T5 — k))
i=1 1<i,j, k<M
l'?fj]#k‘#i

—C. 4 psRY"N —cCsN — 3C.N ,
where he s :=h — (1 — &)Ly >5)p® with h defined in [2).

Note that, thanks to (56), the operator h. ¢ is bounded below for all € € (0,1)
and s > 1. In fact, for all € € (0,1), there is C. such that

he s > gp2 —C, foralls>1. (57)

We first state and prove some preliminary results before giving the proof of Lemmal[l2]
in Section A3l

4.1. Binding inequality. Consider the Hamiltonian

M
Hyn = th‘ + Z NV(NY2(x; — 25), N (w; — @) (58)
i=1 1<i<j<k<M

and denote by E(M, N) its ground state energy and by I'ys v the zero-temperature
limit of the bosonic Gibbs state —that is, the uniform average over all ground states
of Hysn. For any observable A, we denote <A>FM v =TIr ATy N

Lemma 13. There exists a constant C' > 0 such that for any integer N > 3 and
any 0 < & < 1, there exists an integer M = M(N,¢) € [(1 —€)N, N]| satisfying

E(M,N) - E(M —4,N) < Ce'. (59)
Proof. Denote

7 = ' E(m.N) — E(m —4.N)).
me[a%&mm( (m,N) — E(m —4,N))

Since Vexy = 0 and V' > 0, E(m, N) is nonnegative and increasing in m. Hence,

4E(N,N) > > (E(m,N) — E(m —4,N)) > Z(eN —1).
me[(1—e)N,N]JNN
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Combined with the simple upper bound E(N,N) < CN —take for instance u®V
with u € C°—, it gives Z < Ce™ L. O

Remark 14. Using the concavity of the NLS functional in the parameter in front of
the nonlinearity and following the argument in the proof of [28, Proposition 1], we
can even find, for all N, an M = M(N) such that N —o(N) < M < N and

E(M,N)—E(M —-4,N) < C.
However, this stronger conclusion is not needed for our purpose. A

4.2. Four-body estimate.

Lemma 15. Let M = M(N,¢) be as in Lemma [I3. Then, the zero temperature
limit of the Gibbs state I'ns n of Hy N satisfies

4
< H ]l{xll'i|<R}> < CERQ . (60)
=2

INVEY,

Proof. With an immediate adaptation of the proof of [28, Lemma 2] to three-body
interaction potentials, in particular using that Vg > 0 and V' > 0, we obtain

4
VETT e Ve
i=1 op

for any measurable function {(x1,x2,x3,x4) = 0, where the operator norm in the
right-hand side is the one in L?(IR'2?). In particular, applying this bound to

(E(M,N)—E(M—-4,N))

N

<£(1"17x27x3?x4)>1—‘]y[’]\7 €

4
£($1,$2,$3,$4) = H ]]-{|mlfmi|<R} y T € Rs’
=2

and using E(M, N) — E(M — 4,N) < Ce™!, we find that

4
<Hﬂ{x1—xi|<R}>
i=2 I

I,N

4 4 4
Ay,
< C: H]l{|mlfmi|<R}He ‘ H]l{\:vlfmiKR}
=2 i=1 =2

op

4
122
< C: [T [ thor-sieme ¥
=2

G2(L2(R3,dz;))

< C.R°
L2(R3,dp;)

‘e_ﬁpz’

4
_ 2
= C: [T 1 e —ei<my oo, dor)
=2

where we used that ||K||262(L2(R3)) = [ga.ps | K (z,y)|* dzdy for any operator K €

G2(L3(R?)) with kernel K (z,y). O
4.3. Proof of Lemma We now are ready to conclude.

Proof of Lemma[I2. Step 1. Let s > 1 > ¢ > 0 be independent of N. Let M, with
(1—e)N <M < N, be as in Lemma [3] and I'ys v be the zero temperature limit of
the Gibbs state for Hys v in (B8]). We first prove a bound on E(M, N) and deduce,
in the last step of this proof, the desired estimate for E(N, N). Let

M2 <« Ry < M™'/3. (61)
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Applying Lemma [ with W = NV (N'/2.), which is supported in B(0,CN~1/2)
and has ba(W) = by (V) /N2, we have the operator inequality on L2(R3M)

M
1
pr]l{\p¢|>s}+5 > NV(NY2(x; —2)), N2 (2 — z))

1<i,j, k<M

i j#kFi
bm(V)(1 —¢) c
> 1-
61N2 N12R,
Tit+zTj+x
X Z URO(xi—xj,xi—mk) H GQRO (%—xj)
1<i,5,k<M 0#£i,5,k
i Ak

— Ce's°REM?.
Multiplying both sides by (1 — €)/M and using (1 — )N < M < N, we obtain

HM,N S bM(V)(1—€)4 1— C
M 7 603 MUY2R,

T, + x5+ T
X Z URO( ,I],IEZ k‘) H 92R0 <+—$g>

1<i,j k<M O,k
i A

M
1
+ 27 2(h678)i —C..MR}, (62)

where we recall that he s = h — (1 — &) L{jp> 50"

Next, we remove the four-body cut-off in the interaction term on the right-hand
side of (62). Recall that xr(z) = 1{z<ry = 1 — Or(z). Using SuppUgr C B(0, R)
and Bernoulli’s inequality, we have for every 1 <4, 5,k < M with ¢ # j # k # 1,

Tit+z;+
S Upy(xi — x5, — k)[l— H Or, <+k—xg>]

tijk
C T +xj+ T)
S RoXRo (zi — ) XRo (i — 2k) [1 — II or <% - 3615) }
0 t#ijk
C
< ﬁXRo( Tj)XRo (Ti — T [1 — I[ aro (zi - xz)}
0 04£4,5.k

C
=ﬁm<wi—w]~>mg<wi—xk> - TT G an o a0
(£i gk

Z XaRo (Ti — Tj)Xaro (T — Tk)XaR, (Ti — ¢) -
0 0+£4,5.k

Combining it with Lemma [I5] we find that

T, + x5+ g
< — Zj, Ty — Ty) [1— H O2r, <%—m>]>
1<4,5,k<M i\j PN

L£1,5.k
ik ekt
C
< %o Yo D (tare(wi — m)xaro (i — @) xaro (i — x0))p,, < C-M*R}
0 1<i,j, k<M 04,5,k
it
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thence, from ([62]), that

E(M,N) 1
M M <HM7N>FIVI,N
M
1 < be C
> — (Y (hes)i+ s (1 — =7 ) > Unylai — a2 — xk)>
M\ 6M M2 Ry 1<i,j k<M ISV,
it

~C. MR}, (63)

where we used the notation b. = by (V)(1—¢)*. Combining it with the simple upper
bound E(M,N) < CM, we get

b
6]\23 < Z Ury (i — LjyTq — xk)> <Ces- (64)
1<i,5,k<M INVEY,
i#jFEkF

Hence, (63]) can be simplified to

M
E(M,N) 1 be
T>M<;(h€,s)i+m Z URO($i—$j,$i—$k)>

1<i,j, k<M
i#j kA

INVEY,

1 3
The optimal choice of Ry is determined by 1/(MY2Ry) = M R} —namely,
Ry = M3/8,

The condition (61) is clearly satisfied. With this choice, we have

M
E(M,N) 1 < be
——— > — (D> (hew)it =5 >, Urlwi—zj,zi — )
M M i=1 6AT 1<i,j,k<M NV,
i#jFkF

—C. M~Y% . (66)

Step 2. The error term MR% in (B5) forbids to directly take Ry ~ N7 and
to conclude. Essentially, it means that (65]) is only useful in the dilute regime
Ry < M~'/3. We now use the bosonic symmetry to reformulate the energy as
the one of a system with fewer particles My < M, broadening the range of the
interaction for which the system is dilute. Using again the Dyson Lemma, we replace
the potential Ug, by a softer one Ug, for Ry < R; < M1—1/3. Unlike in Step 1, here,
we can only use a small fraction of the kinetic energy. For that reason, we replace
the particle number M by a smaller parameter M; in order to improve the error
caused by the removal of the four-body cut-off. Keeping in mind that Ry = M ~3/8,
the parameters M7 and R; are chosen such that

MY > Ry Ry M2 (67)
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To be precise, by the bosonic symmetry of I'y7 n, the main term in (G6]) can be
written as

M
| < b
_ g (he,s)i + — E URO(mi — X, T; — xk)>
M — 6M?2 .

1<, g, k<M
i#jFkFi

1 . be(M —1)(M —2)
= ﬁl< Z(he,s)i + 6M2(M, — 1)(M; — 2) Z Ury(zi — xj,xi — xk)>F1vI,N

i—1 1<i,j k<M
ATkt
My
1 b
2 M<Z(h5,5)i+6—]\22 Z URO(mi —mj,mi —wk)> . (68)
LA 1 1< j k<M Tan

iFj#kA
Here, we used that
(M - 1)(M ~2) _ (M~ (M, ~ 2)
M? - M?

>0 forall M > M, > 2.

Next, we take a small parameter § € (0,62/2) and apply the Dyson lemma to the
potential W = 6_1b€Mf2URO, which is supported in B(0, Ry) and has the scattering
energy

b C

2 e €,0

bm(W) = ||W||L1(R6) - C||W||L3/2(R5) > 5—]\412 (1 B M12R04> :

Here, we used (44)) in the latter estimate (the condition Ry > M, /2 ensures that
the scattering energy of W is well approximated by its first Born approximation).

Thus, from (52)), after multiplying both sides by d, we have the operator inequality
on L2(R3M1)

My

b

) E p?+6]\22 E URO(xi—xj,xi—xk)
i=1 L i<i,jik<i

iFJFERF

> b€2 1— 05,54 1_CR0
6132 MZR, R

Titx;+w
X Z URl(mi—xj,mi—mk) H Oor, (%—xj).

1<i,j k<M1 O,k
i A

Thanks to Lemma [I5] we can remove the four-body cut-off in the interaction term
similarly to Step 1 —namely,

T, +x;+x
> <U31($i—$j,$z—xk) [1— II 6:2r <+k—ﬁw>}>
Ty~

1<i,g,k<M1 l#,5.k
i it
C
<% > > (xam, (@i — x5)Xar, (w1 — Tk)Xar, (2 — 20))r,, v < C-M{R}.

L 1<i g k<M 00,5,k
i#j kA

Hence,
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My

28
1 /8 b
<Z§p?+6 < Z URO(xi—mj,xi—wk)>
1INV

=1
i£jEhA

i 0-si) (- ) (T, e

Z e \' T RA R
1 1410 1 1<i,j, k<M
i)tk
— C.M\R}.

M?
L 1< k<M
>FM,N

From (57) and 6 € (0,£2/2), we obtain dp* < ehe s+ 0C:. Inserting the latter bound

in (68), we deduce from (G0 that
M

E(M,N) 1 < >

T 2\ 2o hes)i
M(l —E) M1 ; ¢ FM,N

C

65)\22 (1_ M25,54> <1_ CRO> < Z URO(xi—xj,xi—xlg)>
1 1R0 1<i,5,k<M; INYSY

i Ak
— C. M~Y8 —C.M R} — C.5. (69)

_|_

Combined with the simple bound E(M,N) < CM, it gives an analogue of (64):
< Ceps

)

b
- < > URl(ﬂci—wj,wi—wk)>
INYSN

6M3
LN 1<i g k<M

i#jFRF
Thus, (69) can be simplified into
M,
E(M,N) _ 1 < be
POLN) S LIS it =25 ST Unyai — g0 — 1)
M(l - E) Ml Zzl 6M1 1<i,j,k<M1 F]M,N
i ki
Ry

—-1/8 3
—C. MY <M1R1 + R > —~C.4.

We can choose M; and R; such that

1/9

1 Ro 2 1 RO 0
MiRE=—— =22_((M;R3 -9 = Rp2/?
1R1 MIQRS Rl (( 1 1) M12R4 <R1> ) 0 3

namely
2/9
Ry = R07/9 and M; = R;%:S = R1—19/7.
1

The condition (67) is clearly satisfied. With this choice of parameters, we also have

M8 « R?ﬁ, hence we arrive at

My
E(M,N) _ 1 < be
T e (i g Y U —agni— )
M(1—¢) = M\ = 6M; 1<i,j,k <M fany
ATtk
- Ce,s,éR?ﬁ -G
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Step 3. We can iterate the argument in Step 2 in order to reach softer potentials.
Denote

Rj=R/% and M;=R;"" forallj=12,.... (70)
Then, by induction, we can prove that, for every J € N\ {0},
My
E(M,N) _ 1 < be
— 7 2 Z(hes)i+— Z Ugr,(x; — xj, 2; — %)
_ J ) 2 J VB

Catkaleal
2/7
- 575757JRJ/ - 67‘]5 ° (71)
Indeed, the case J = 1 has been handled in Step 2 and the general case is very similar

so we only mention some main estimates for the reader’s convenience. Assuming
that (1)) holds for J — 1, we can write by the bosonic symmetry that

E(M,N) "
M =y 1 T Cesarltyy +C20
1 My b
= MJ_1< Z (hs,s)i+ ﬁ ‘ Z URJ_l(xi_CUj,CU@'—CCk)>
=1 J—1 1<Z,],k<MJ_1 FJVI’N
i#j#kAi
1 /¢ b
e
g E<Z(h6’s)i+ 602 Z URJl(ﬂUz‘—ﬂUj,mi—mk)> .
=1 J 1<17]7k<M‘] F]\/I,N
iAj kA

Applying the Dyson lemma to W = 6b€Mj2URJ_1, we deduce from (52) that

My
b
52 p?+676 E Ur,_, (zi — xj,x; — x)
i—1

2
J 1<i,5,k< My
i#j# kA

> b52 1— 205,2 1— CRJ—l
6M2 M2R} Ry

Ti+ x5 + Tk
X Z URJ(mi—xj,mi—xk) H GQRJ <%—1‘g>.
1<4,5,k<M g#%]yk
Cabaleal
The four-body cut-off can be removed by Lemma [I5] leading to

Ti +x;+x
Z <URJ(xi—xj,xi—xk)[1— H O2r, (%—u>}>
1INV

1<i,5,k<M L#i,5,k

i#j Ak

<< S0 Gary (@ — x)xar, (@ — zk)xar, (€ — o) < C.M3R3

S R X4R ;\Tg j)X4AR ;g k)X4R;\Ti )y S ey
J 1< j, k< My 0,5,k

iFj Ak
Moreover, combining it with the simple upper bound E(M, N) < CM, we get
b
< 3 Z Ur,(z; — xj, i — xp) <Cos. (72)
6M 4
IV I<i g k<M INYRY
iFj Ak

Hence,
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1/ &L,
5
E<5Zp, +W Z UR(,I(xi—xj,xi—xk)>
i=1 INVEN

2
J 1<i,j,k< My
i#j#k#i

be <
> Z Ugr,(z; — x; x—xk)>
3 J 7
6M INVEN,

IV 1<i 5, k<M
i) F#kFi

CRjy_4 1
R MER?]fl

— Lesd (MJR§ + +

Thus, using again that dp? < ehe s + 6C;, we obtain
My

b
> (hes)i+ 6]\2 > Ug (@i — 5,2 —xk)>

2
i=1 J 1< j k<M,
i EkA

E(M,N) _ 1
M —e) ~ E<

INVEY,

2/7 3 1 Ry
- e,s@JRJ,l — Les,d <MJRJ + MER?],l + RJ ) - 055.

With the choice in (Z0)), we have
1 Ry 2/9 2/7
MRS = = =R/ =R
M3RY_ | Ry o

and the desired estimate ([71]) follows.

Step 4. To conclude, we choose J € N\ {0} depending only on g such that
B 37\’
2 < 8\9 P

N2 Ry = (R)®) = a2 > N8,
From (71)) and (72]), we have

Then,

E(M,N)
M(1—¢)/
My
1 < be
> A et o D Uny (e - _x’“)>
Ms N\ OM7 i, e

i#j kA
2/7
—Ceys R - C.6

1 /& bo(M; — 1)(M; — 2)
- M< 2 et G yar gy 2 Urii -z x’““)>pM,N

1<i,5,k<M
i£jFkF

- 5,3,6,JR?]/7 - CE(S

1 /& (V)
>3 0+ gy 3 Ve

1<i,j, k<M
i#j kA

— C..s5 R —cCy—C.5,
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where we used that 1 — % < CM; ! and |b. — bp(V)] < Ce, together
with the estimate

1
<6(M —1)(M -2 1<MZ,€<M Ry (i = 2, xk)>rMN
XbL),Rx Mg >
i)k

E(M, N)

< C (Ug, (w1 — 22,21 — 363)>FM’N <0y ( %

Since N > M > N(1—¢) and CN > Eyx > E(M, N), we have the immediate bound

E(M, N) Ex Ex
< <N 4oy,
M(I—2)7 SN1—goH SN T

The desired conclusion of Lemma follows. O

5. CONCLUSION OF THE ENERGY LOWER BOUND

Recalling that
b
egp = i‘nf Eap(u) = inf {(u, hu) + M/ |u|6} ,
R3

Jull,=1 lul=1 6
as defined in (I3])—(14]), this section is devoted to the proof of the following theorem.

Theorem 16 (Energy lower bound). Suppose that Vexy and A satisfy B) and ().
Then,

. En
NB N 7O
Proof. We prove Theorem [I0 with the extra assumption that A satisfies (B6]). This
assumption can be removed, at the end, following an argument of [39, Sect. 4B] that
we omit here.

Recall that h. s =h — (1 — 6)]1{|p|>s}p2. For all € > 0, there exist C¢, ¢y > 0 such
that, on L?(R3), we have

€ 9

1 €
4p + 5‘/ext(x) - Ca 2 ”

hew > 2 + Vews(z) — Ce7HA@)® > 1

5 P2+ colz|® = C..

Let us therefore define 7L€7s = he,s — Ke,s, where k. ¢ := info(h.s) — 1. Thanks to
the Lieb—Thirring inequality in [I3] Theorem 3], we have
1
Tr((—A R I dkdzr <
(At + )< [ e e < o

for any ¢ > q.(@) == 3 + % Thus, Tr(ﬁ;g) < C.. Therefore, if we introduce the
projections

P=1(hey <L), Q=1-P=1(hey>L)

for some parameter L > 0, then we have

~ L4
TrP=Trl(h.s < L)<Tr <~—> < C. LY. (73)
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Let > 0 be small (depending on ¢). In view of Lemma [I2, we consider the
Hamiltonian

, = bm (V)
Hy = Z(hE,S)i—i_ 6(M—1)(M—2) Z UR(xi—xj,xi—xk) (74)
1<i,5,k<M

iFj#kA
for some N > M > (1—¢)N and N~#/2 > R > N=#. Recall that Up = R-SU(R™!")
for a fixed function 0 < U € L>®°(R®) satisfying the three-body symmetry (@) and
Jre U = -

Let Wy be a ground state for Hys and let us denote ypr = |Was) (Wasl. Its k-body
density matrix is the operator

%(\Z) = Trp 1My

on L2(R3%) with kernel

(k) )
Yar (@15 TR Y1, - YR) = Uas (21, .oy Ty Tht1s -+ -y TA)
R3(M—Fk)

X Unr(Y1s - Yk Tht1s > T ) ATggr - day

Thus, 7](‘2) > 0 and Tr 7](\5) = 1. Using this notation, we can write

Eu 1 ~ <‘I’M,f~IM‘I’M>
W = MlnfO'Lg(RSM)HM = M

=Tr [ﬁe,s%(\}[)} +L4év) [U 7(3)] .

(3) 5

Notice that, since Ur > 0 and v;,; > 0, this implies in particular that

-~ E
Tr [ha 37](\})] < WM < Ce, (75)

for some constant C. > 0 independent of V.
Now let us impose the finite dimensional cut-off P and use the quantitative

quantum de Finetti theorem. We want to replace 7](5’1) by some %(5’1) satisfying

7](\?/}) = P®3%(\?/})P®3 that will be chosen later using the quantum de Finetti theo-
rem. We bound from below the one-body term as follows

3Tr |:fﬁ6,87](\})i| = Khl +hy + h3> (3)}

3
(Z E) P®3’Y](\?}) po3
=1

> Tr

- (Zh>~(3 +Tr (i >(P®3 ® pes _ 7](;}’)]
1+a [(Zh>~(3 +Tr (i )(p®3 (3) pes _ ,ﬁ)]’ (76)

for any %(\4) = P®3%(\3)P®3 and where we used the shortened notation h; := (Eas),
For the three-body term, we apply the Cauchy—Schwarz inequality, with 0 < & <
1, as follows

UR — (]1@3 o P®3 + P®3) UR (]1®3 . P®3 + P®3)
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— P®3URP®3 + (]l®3 _ P®3) URP®3 + P®3UR (]1®3 _ P®3)
+ (193 — P93 Up (1%% — P®3)

> <1 _ ia) P3PS | <1 1 +€> (]l®3 B P®3) Un (]l®3 B P®3)

3

(]l®3 P®3)
)
where we used for the second inequality that

(]]_@3 _ P®3) UR (]]_@3 _ P®3) < ||UR||oo (]]_@3 P®3) 9

R6 (]]_@3 P®3) )

Moreover, since
Q®]1®2+P®]1®2 Q1+P®]l®2
=+ PRQRL+POPR®Q+ P <Q1+ Qx4+ Qs+ P,

we have o
U PO3URP 1 :
R = 1+€ RG(Q1+Q2+Q3)
Recall that 'y](\i) := Try_pr[yam] and that %(\3) = P®3%(\2)P®3 by assumption. Now
using that

Tr [P®3URP®371(\2)} Ty {URP®3’Y](\3)P®3]

=1 [0 + 1 [ (P P —50)]

and

R s 3E
Tr [(Ql + Qs+ Qs) 7](\2)] — 3Ty [Q (”} <3Tr %71(\})] < 3Eu
by (78], we obtain

o] > et o e o (e )]
(77)

Combining (76) and (77), we have

E_M 1 El + 7L2 + %3 bm (V) ~(3)
M7~ 1+e < 3 T U
(Zh> <P®3 (3) P®3 §(3))]
1 bm(V) ©3.(3) po3 _ ~(3) C_Eu
1+e 6 TT[UR<P T P = M)]_aLR6M’
hence
C \ Eum 1 M4 ha+ by bp(V) ~(3)
S el R
<1+5LR6> Mo Tae T ( 3 g UR )

|[Pes + Ba + s pes |
3 * Re

Tr ‘P®3,Y](\3)P®3 o ;?](\2)‘ ,
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for any %(\2) = P®3%(\?/}) P®3. We will now use the quantum de Finetti theorem to find

such a Aw’](\f'[) to approximate P®37](5}) P®3 in trace norm. We recall its formulation [24],

Theorem 3.1] for the convenience of the reader.

Theorem 17 (Quantitative quantum de Finetti theorem in finite dimen-
sion). Let K be a finite dimensional Hilbert space and k € N\ {0}. For every state

Gy on KF .= QK and every p=1,2,...,k, we have
S

4p dim K
Top1alGil = [ 0] dpg ) < LG5

Tricp < A

Tr[Gy],

where
dpg, (u) == dim Kk <u®k, Gku®k> du

with du being the normalized uniform (Haar) measure on the unit sphere SK.

Following exactly [24, Lemma 3.4], which deals with two-body density matrices,
we derive now a localized version for the three-body density matrices.

Let $ := L?(R?) and define the notations P_ := P and P, := Q. Let vy be an
arbitrary N-body (mixed) state. Then, there exist localized states Gy = Gy and
G, = G% (we use both notations) in the Fock space F() = C®H D H? @ -+ of
the form

Gy =Go®Gy & OGN DD

whose reduced density matrices satisfy, for any 0 <n < N,

) p w_ (N 7' (F

n

an%\yfl = (G%) = <n> kz <n> TrnJrlﬁk[G%,k] . (78)
=n

As reminded in the aforementioned paper, the relations (78)) determine uniquely the

localized states Gy and Gy and ensure that they are (mixed) states on the Fock

spaces F(P$) and F(Q$), respectively:

N N
> TGl =) Tr[Grl =1, (79)
k=0 =

We now apply the quantitative de Finetti Theorem [I7 to £ = P$, G = G,
and p = 3. We obtain the following Lemma, already proven in [33, Lemma 3.2] (see
also [19, Theorem 3.2] for an improved version). We prove it here for the convenience

of the reader.

Lemma 18 (Quantitative quantum de Finetti for the localized state). Let
N be an arbitrary N-body (mixed) state. Then,

P®37](\?,’)P®3 . /Spﬁ ‘u®3><u®3{ dun(w)| < 12Tr P

N )

TI'ﬁS (80)

where

N LN — 3'

dpn (u Z E d,uNk( ), d,uN7k(u) :dim(pfj)l; <U®k,GN,ku®k> du .
o k=

(81)

Proof. The proof follows the lines of the one in [24, Lemma 3.4]. Applying Theo-
rem [I7 to K = P$H, G, = G, and p = 3, we have
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Trpgys | Trask[GN k] —/SP ) (u®?| dp e (u)
)
12dim(P$) 12Tr P
NS 7]{:( ) TI“[GN,]C] = k‘ TI‘[GNJC],

where we notice that, on the left-hand side, we can replace Tr(pg)s by Trgs. Com-
bining this and (78)), the triangle inequality gives

Tres p®3,y](\i;>)P®3_/ ) (03| dpuy (u)
SP$H
N -1 N
N k\12Tr P Tr P Tr P
< Te[Gy ] < 12 Te[Gy ] < 1220,
> <3> <3> DGl N > Tr[Giv il I
k=3 k=3
where the last inequality is due to (79]). O

We return to our lower-bound and apply Lemma [I8 to vy;. We therefore choose

W= [ ] ).
SP$H

in our ongoing lower bound. It obviously satisfies ]3(@‘9’%(\?/})13@3 = %(\Z) as required.

This yields

C-\ Ev _ (1— 5)4/ ey LY
1 — = s — L —
( +LR6> VI R dpnr(u) = Ce (L + B72) 7
(1—5)4/ —6y L*
> — -
2 €es Ry = Jas dpps(u) — Ce (L + R ) e (82)

where we defined the functional &, s g and the associated groundstate energy e. s r
by

: . = bm(V) /) @3 3
€c s,R ‘= lélﬁf 557873(11,) = lglfjf <<u, h575u> + T <u® ,URU® >

and we used that

hi+hy+hs  bu(V N
(1 32 3+ Mé )UR>’7(3)

Tr

> (1-2)f /S . Eonl) i),

where we recall that b. = (1 — ¢)*hp(V) and where we have denoted S$ :=
fues|uly =1}

To go further, we need to estimate uy(SP$) ~ 1 and e, s g by below in terms
of egp. For the first part, we use the following lemma (proved at the end of this
section).

Lemma 19. Let vy and duy be as in (8Il). Then,

12 [ anvn) 2 1-amQal) - 2
SP$H

N
In particular, if va; = |¥a) (¥ /| is a ground state for Hyy in (7)), then
Tr(Q’y](\}[)) <L 'Tr (E&S’y](vl[)) <C.L7t

thanks to the kinetic energy bound (7). Moreover, recalling that Tr P < C. L4
from (73)), if L is chosen such that 1 < L < N'/9, then Lemma I3 gives

L4
12/ dpn(u) >1—-C.L™ ' —C.== > 1+ 0(1).
SPs N
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We now deal with e, gr. The first step is to approximate the interaction term.
To this purpose, we define the functional & ; and its groundstate energy e. s by

bm(V)
6

and we use this other lemma (also proved at the end of this section).

ecs = inf & ((u):= inf <u,7L575u> + Hqu foralls >1>e¢>0,

luly=1 lull=1

Lemma 20. For any €,s > 0, there exists a constant Ce 3 > 0 such that
€c,s,R = _Ca,sR + €5 -

Hence, using that e. < C' — k.5, with C independent of € and s, (82]) becomes

= Ces— (C—hizg)e = CoL'RC 4+ Lo M+ LIRS MY).

Recall that Ey; = inf O'LE(RSM)FIM, defined in (74). Using Lemma[2 M > (1—¢)N,
and Lemma 2], we obtain

E E
WN > (1- e)ﬁM + (1= &) — Co g sRYT — (C = ke g)e — 6C-
> (1 —e)(ees+ kes) — (C— keg)e — Co

— Cogsp(LIRC+ LM 4+ LIROML + RY7) forall § > 0.

Recall that N > M > (1 —¢)N and NP2 > R > N—B. Therefore, choosing
L = NY(at2) e obtain
FE
~ = (1= e)(eess + k) = (C = re)e
Gﬁ—L __1 Gﬁ—i 7[3/7
—Ced—Ces55(N a2 £ Nat2 £ N7 a2 4 N7P/T),

Taking 0 < 8 < 1/(6(¢ + 2)), we obtain
E
lim inf =& > (1—¢)(ecs + kes) — (C —kes)e —C0 forall § >0.
Novoo N o e :

In particular, we can take § — 0 in order to remove the last term above. Finally,
by a standard compactness argument (see, e.g., [28] or [39, Sect. 4B]), we have
limg o0 ke s = info(h) — 1 and

lim lim e. s+ ke s = eqp -

e—0s—00
This finishes the proof of Theorem [I6l up to the proofs of Lemmas [I9 and 20 that
we give below, concluding this section. O

Proof of Lemma[Ld Note that, from (8Il), we obtain [ duxy < 1 since every measure
KNk is normalized. It remains to prove the lower bound. From (80) and the triangle
inequality, we have

12 Tr(P)
—N
On the other hand, by the cyclic property of the trace, we can decompose
1= T0) = TP+ Q@r (P + Q) = To(P Y P + Tr(@uir P @)
= Tr(Py(Py + Q)7 (Po + Q2)P1) + Tr(Qir Q1)
= Tr(Plpf)’](\?)PzPl) + TI‘(PlQny](\‘?)QQPl) + Tr(Ql'Y](\:?)Ql)

/ dMN > TI“(P®3’)/](3)P®3) _
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= TT(P1P2P3%(\?;)P3P2P1) + TT(P1P2Q3%(\?)Q3P2P1) + TT(PleW](\?)szl)
+Tr QY Q1)
< Tr(PE3y P Po3) + 3Te(QY V). O

We now the give proof of Lemma 20l which is an adaptation of the one of [24],
Lemma 4.1].

Proof of Lemma [20. We have

bm (V)
Eenl) = () = 2 ((u, URu®) — ul§)
Rewriting (u®?, Uru®?®) by a change of variables, we have

(u®?, Upu®?) = /]R9 [u(@)?u(y)*lu(z) PR™U(R™ (x — y), R (z — 2)) dedy d=

= [, el = By)Pluta = R2) Uy, 2) da dy s
and, since [ps U = 1, we obtain
(u®?, Upu®) — lullg
= /R9 u(@)[PU(y. 2) (Ju(z — Ry)P|u(z — R2)* — Ju(2)|') dzdydz.
We now write the term in parenthesis as an integral:

1
e = R)Plu(e — R )l = [ (e = R Plue R
= /1 V|u|2(x —tRy) - Ry |u(x — tRz)|2 dt
0

+ /1 lu(z — tRy) >V (Jul*)(z — tRz) - Rzdt.
Using that ’
[ lute = Ry) [V iuf @ = tR2)] de < 2l 19,
for all z,y € R3, t € (0,1), and R > 0, we obtain

[(u®, Upu®®) — Jully] < CR ul [ Vull

202l

We used above the Sobolev inequality and that ||V |ul|, < [|Vull,, see [26l Theorem
7.8]. Therefore, we have

€2s(w) = Eep() < CR (14| Vul}) for all u € S5,

UG 2 poo sy |,
and, since |Vul3 < 2e7'€. 5 r(u), we obtain

inf €2 o < Eeo(u) < Eonr(w) + OR (14 271, p(u)?  forall ue S8,
Applying this to a minimizing sequence {uy}, C S$ for e. ; r and passing to the
limit gives

ié%ﬁfgg,s <es,p+CR (1 + 25_1657873)2 <eesp+CesR foralluc SPSH,
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where we used the simple estimate e. s g < C independently of R,s,e > 0. O

6. ENERGY UPPER BOUND

Let us recall that Vi := NV (N'/2.) and that w = 1 — f, where f is the solution
to the scattering equation of V, satisfies, for all x € RS, the estimates

C c

O0<wx) <1, wx)< and |Vw(x)| < s

We define wy := w(N1/2-) and fy = f(N1/2.).
Let us also recall, for M € N\ {0}, the notation

(83)

M
Hyn=Y hi+ Y. NV(NY(w; —zj,2; — ay)) (84)
j=1 1<i<j<k<M

and the definition

Hy :=0® @ HM,N
M>1

1
= / arhya, de + = / VN(z —y,z — 2)aza,aiazaya, dedydz.
R3 6 (R3)3

For f € L?(R3), we define the Weyl operator
W(f) = exp(a®(f) —a(f))
which is a unitary operator and, for g € L?(R3), satisfies
W(f)alg)W(f) = alg) + (g, f) and W(f)"a"(g)W(f)=a"(9) +(f.9)-
We also define, for ¢ € H?(R?), B = Bly] € L*(R?) as
B(x’ Y, Z) = WN(x’ Y, Z)SD($)S0(?/)SD(Z)
and By = Bi[p] as

1
Do [ e iy =
6 (R3)3

Finally, we denote
0 =0W) =1 yysWN), B:=6Bj-B©O, and Uy:=e . (86)
This section is devoted to the proof of the following theorem and its corollary.

Theorem 21 (Energy upper bound). Let ¢ € D(h)NL>®(R3) with ||¢|ly = 1. Then,
there exists C, > 0, depending only on |helly and ||¢| ., such that

0o’
(2. UxW (VN HxW (VNQ)UNQ) < Nar(p) + CoN2,
where ) is the vacuum.
Corollary 22. There exists a constant C > 0, independent of N, such that
En < Negp + CN?/3.

As a convention for this section, the constants C' only depend on |hel|l, and
¢l - Also, note that since h > Vot > 1, the diamagnetic inequality gives |hply >

|20, = Vgl
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6.1. The transformation Uy. Let p € N\ {0}, denote § = (#1,...,4,) € {-,*}?,
and define k(f) = 2#{i|t; = *} — p. Then,

afl ...ai@{N:n}C{N:n%—ﬁ(ﬁ)}, n=0,1,2,....

1

Therefore, we have UnQ € {N € 3Ny} and if x(f) ¢ 3Z¢, then
(Q,Ufalt ... UnQ) = 0. (87)

For example, we have (Q, U ay, UnQ) = (Q, U§az, a2,UnQ) = 0. We now state two
lemmas, which will be used in the proof of Theorem 211

Lemma 23. Let ¢ € C*°(R?®) and By be as in [®85). Then, there exists Cy, > 0,
depending only on |helly and ||¢||,, such that

oo’

NZ
VN eN\{0},  £([B1, Bl = Qv) < Cpp s

where
Qp) = 57 [ Non(a2Plole) e Plol2) dedyds > 0.
Moreover, there exists C' > 0 such that
VN eN\{0}, VoeC=R®), Q) <Cloll el w7z -

Lemma 24. Define B as in [86). Then, for all k € NU {0}, there exists C, > 0
such that

V(A N) e [-1,1] x (N\ {0}), <Q,e—ABNkeABQ> <Oy (88)

In particular, for all k € NU{0}, there exists Cy, > 0 such that
VN e N\ {0}, <Q U]*VNRUNQ> <O (89)

Proof of Lemma[23. On the bosonic Fock space F(£)), we have
lazayaz, a;,az,a:,] = 60,=0/0y=y 02— + 1805001 6y—yy 0=z + 90305001 Ay 5=z . (90)

Hence,

. 1
1By, B] = o / Ny (1,2 (@) Ple) Pl () de dy d
1

+ g 12 N3/2WN('$’ Y, Z)
x N 2wy (2 y, 2)p(x)p() o (y)Pe(2) P ar do da’ dy dz
1
+ 16 [ NN,y )N oy y, 2)
R

x p(x)p(@)p(y)e(y)|p(2)* dhayamay doe da’ dy dy' dz
= (I) + () + (I11),

which defines the terms (I), (I), and (IIT). In order to estimate these terms, let us
first define

T(7)(2) = 9l2) || Moo, 2)p()e0) o) do dy
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for any (2, f) € R3 x L?(R%). The terms (I), (I), and (III) are respectively pro-
portional to HTH262( 2(rs)), to the second quantization of T7™, and to the second
quantization of T*T. We have

TV mqmoy < € il Il || V2|
proving the statement about Q(¢) =: (I). Note that, contrarily to the two-body

interaction case, here we have w € L?(R®). To bound the other terms, let us com-
pute [|T,,. Using (&3)), for all 2 € R3, we have

()
o) [, oty </ rm—;\yiﬁ)’zw dx) W

r/ o(v) (/ i Y (ke i) a

+ Il o) / 7 e du.

Hence, by the Hardy-Littlewood—Sobolev inequality, we obtain

4 2 2
ey < C ol Il Il ey

Q ﬁ\@

NI

C
(9 T() 2y < N el el Igllz 1/l p2geey — for all g € LA(R?).
Therefore, |[T'],, < C,N~Y2 and we obtain
(ID < C|T|2,N < CoNT'W and () < C|T|2, NNV = 1) < C,N'N?. O
Proof of Lemma[Zf) The case k = 0 is immediate.
Let k € N\ {0}, £(NV) := N*, and
9 =¢(+3)—¢.

Then, ¢ is such that £(0) = 0 and 37¢ > 0 for j > 0. Using the Duhamel formula,
we have

N =€) BN+ X [ [ B, B, auas.
0 0

We are only interested in the expectation on the vacuum §2, hence, since £(0) = 0,

only the third term will give a non zero contribution. Using that a,N = (N + 1)ay,
we obtain

~[B,&WN)] = [B10,£(N)] + hoc. = 0E(N)B1© + h.c.
and
[B,[B,£(N)]] = [B1© — ©B},0¢(N)B1O)] + h.c.
= 9% (N) (B1©)? — ©B;9%¢(N)B,©
+ 0(N)[B1©,0B;] + h.e.  (91)

The last term, which is the most regular, is controlled using that 9¢(N) is non-
negative and commutes with [B;0,0Bj], and that

[B1©,0B]] = 00B{ By + O(N + 3)[By, Bj]

O(N +3)[B1,Bi] < O(N +3) (Q( )+CN2> < COWN +3),
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where we used that © and B} B; commute, that 00 < 0 for the first inequality, and
Lemma 23] for the second inequality.
The first two terms in (@I]) are controlled using the Cauchy—Schwarz inequality:

D*E(N)(B1©)? — OB0?¢(N)B1© + h.c
= (B1©)9*(N - 3)(B10) — 20B;0°¢(N)B1©
< (B1©)PE(N = 3)(OB)) + (0B})9*¢(N — 3)(6B)) — 20B19*¢(N)B,©
= 0*¢(N)[B10,OB7] + (*6(N) + 0*¢(N — 6) — 20*¢(N — 3)) ©B;B,1©
= 9%¢(N)[B1©,©B}] + 0*¢(N — 6)0B; B;©
< CO*EN) + CO'EN —6) (N +1)3.
Gathering the last three inequalities, we obtain
[B,[B,£(N)]] < C (9EWN) + 9*E(N)) + CO*EN — 6)(NV +1)°.

Choosing £(N) = N, the above inequality shows that (88)) holds for £ = 1. For any
integer k > 2, we have £(N) = A* and, using that 0%¢ is a linear combination of A/
for i € N\ {0} and 0 < j < k — 4, one concludes the proof by induction. O

6.2. Proof of Theorem 211 We first conjugate Hy with the Weyl operator, we
obtain

W(VNg)*dl'(h)W (VNy) = dI'(h) + VNa* (he) + VNa (he) + N (@, hp)

and

6
1
- / Vv(z —y,z — 2)W(VNg) ajajalagaya. W (VNe) dzdydz = Y L;
6 Jro i=0
where
1
Lg = —/ Vn(z —y,x — 2)a,a,asazaya, dedydz,
6 Jgo v
N1/2
L5 = 5 / Vn(z —y,z — 2)azayazazayp(z) dedy dz + hec.,
RO
N * k%
Ly= 2 e Vn(z —y,z — 2)ayayazazp(y)p(z) dedy dz + h.c.
N
+ 5 VN(z =y, — z)aza,a:a,0(y)p o(z)dzdydz + h.c.
RO
N 2
+ 5 VN(z —y,z — 2)agayazay|e(2)|” dovdy dz
RO
I
N3/2
L3 = 5 / Vn(z —y,z — 2)azayao(z)e(y)p(z) dedy dz + h.c.
RO
N3/2 )
+ X / V(e - 9,2 — 2)atalar(y)|o(2)? de dydz + he.
RO
N3/2

_l’_

5 / VN(z —y,z — 2)azaya.0(2)e(y)p(z) dzdy dz + h.c.
RO

Ry
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N2
Lo="— /9 Vn(z —y,z — z)a;iaz<,0(91€)cp(y)]cp(z)]2 dzdydz + h.c.
R

2
N2 * 2 2
+ 5 [ Virle = vr = aianlo) o) de dyds

+ N? /R9 Vn(z —y,z — z)a;ay<p(x)(p(y)’(p(z)’2 d dy dz

)

N5/2 .
£ =25 [ Vo= o = e @lePlp) dedyds + he,
and

N 2 2 2 2
Lo="5 [ NV = v.a = le@Pe)Ple(:) drdydz.

Gathering up the constant terms, we obtain

N {m hohia + 5 [NV (W =200 = 2)) [o@Plol) Flo(:) P da dydz} |

which is the mean-field energy associated to the particle ¢. This quantity does not
take into account the contribution from the scattering process. To obtain it, one

must include contributions hidden in the terms dI'(h), Egl), and L. We will first
prove that the other terms are negligible and then extract the main contribution
from the aforementioned terms.

6.2.1. Controlling the error terms. Using (87), we obtain
(2,67 B4ePQ) =0 forall A e {a* (he), L1, L9, 22 £® 0. 55}

because they create or annihilate a number of particles which is coprime with 3. It
remains to bound the following terms.

Lemma 25. There exists Cy, > 0, depending only on ||¢||,, such that

(@78 + £)ePQ) < and (9,7 (L + £0)ePQ) < C N2
Proof. We prove

2 3
£ + £ < OVl gy Il el A

and
£ + L5 < O sup [V, )l us el NN,
zeR
since the result then follows by (89]). The first bound comes from
(2) _ 1 * 4
Ly =5 [ V(e = —))gseaz0: Az < OV 1y gy Il N
R3

and, using the Cauchy—Schwarz inequality,
3 * *
£ < / NN (@ —y.x — 2)) (abasle(v) + ajayle(@)]) le(2)] du dydz

<OV pes) el N -
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For the second bound, on the one hand, using the pointwise inequality

LNV =g = 2Dl dz < NV Ll sup Vi)
zeR

we obtain

3
£ < C sup [V, Mg el NN,
4SS
and, on the other hand, by the Cauchy—Schwarz inequality, we have

N
54(12) < E/ Vn(z —y,z — 2) (a;a;amay|gp(z)|2 + aiaiaxazlso(y)F) dz dydz
RO

<C sup IV (@, )l 1 sy Il NY2A2. O
S

6.2.2. Contribution from dI'(h).

Lemma 26. There exists Cy, > 0, depending only on |hy|, and ||¢| ., such that

(Q, e P dT(h)e"Q)
< éN?’ /RQ(VNfNWN)(x = 2,y = 2)le@)*|e(y)Ple(2)]* dz dy dz + C, N2,
Proof. We have
e Bdr(h)e? = dr(n) — /0 1 e *B[B, dI'(h))e*B ds . (92)

Let us compute
—[B, dT'(h)]
= [B10, dI'(h)] + h.c.

= / B(z,y, z)ayaya,0, al hyay]) de dy dz da’ + hec.
RY JR3
= 3/ (hiB)(x,y, z)azaya.0 dzdydz + h.c.
RO

= - %N?’/z/ ((—Alwzv(w,y, 2)e(@)p(y)p(z) — wn(x,y, 2)(he) (x)e(y)e(2)
RY

— 2iViwn(z,y, 2) - ([—iV + A](go)(x))go(y)gp(z)) azaya.0 drdydz + h.c.
=K1+ Ky +Ks3.

The main contribution comes from ;. Indeed, using the Holder inequality with

| V32T 10,4, 2) - (=19 + A) @) )e(2)]

L2(R?)
» 2 3/2 1/2
<=9 + Ayl Dl [N2Vion |, oy < ON
and
[ ey Y0 o)) |, oy < ol Mol ol < €
we obtain
+ (Ky + K3) < O(L+ NY2)(W +1)%/2. (93)

Noticing that
_Ale(waya Z) - AQWN(xaya Z) - A3WN(xay7 Z) = _2AMWN(m — Y- Z)
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= —(Win)(z =2y —2)

and using symmetry, we can rewrite K1 as

6
From (02)—(93]), we obtain

1
e Bdr(h)e? = dr'(h) + / e B Ky + Ky + K3)esB ds
0

1
Ki=—-N*? / (VN In) (@ = 2,y = 2)o(z)e(y)p(2)azaya.O dvdy dz + h.c.
RO

1 s
< dI'(h) + Ky —/ / e "P[B, K1]e*? duds
0 Jo

1
+ C’Nl/2/ e BN +1)%2e38 ds.
0

Since we test against the vacuum, the first two terms will not contribute and the
last one will give a contribution of order N1/2. Let us then compute

- [Balcl]

1
= — 6N3/2 /RQ(VNfN)(x —z,y — 2)p(@)e(y)e(2) [agaya.0,0B7] dzdydz + h.c.

1
— =N [ Wi)e - sy - @b )
RO JR?
x ON + 3)[azayaz, ayayal]dedy dzde’ dy' d2' + h.c
1
a2 [ ] e — 2 = De@p)el o)
RY JRY

x 00ay a,,azazaya, dr dy dz dz’ dy’ d2’ + h.c.

= ON +3)K11 + 00K, 2,

where we recall that 00 = ©(N + 3) — ©. The main contribution comes from Ky ;.
Indeed, using [00| < CN~Y(N + 1)%, we have

£00K12 < C10O| || NV (Vi fiv)o™

o Bl OV + 17 < GV + 1.

Expanding the commutator in Ky 1, we obtain

Ki1= éNB’ /RQ(VNwa)(w — 2,y = 2)|e@)* o) *e(2) ] dz dy dz

N /RJVNfN)(w 2w (@, 9, 2)p(@)p (@) e ()P (2)?

X aray drdr’ dydz

L B R R O M E ey Ol
R15

X Qg Gy A dz’dy dy’ dz

=: (I) + (II) + (I1I).

Of course (I) is the main contribution. Let us bound the other terms. From (36]),
we have

[ Mon@ g 2l ds’ < € ol gy < o l¥ls
R 72 (12— yI2 + |y — =) y—2]
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which leads to

(I) < CN? /RIQ(VNfN)(%y,Z)WN(f,y, 2)e(@)e(@)lle)? (=)

X (ataz + a’iay)drdz’ dydz

2 P 2
< Ol N [ (Vi) 2) oty ELLEEL

5 VY *
+ONE [ ol @ o) o) P da dy

ayay drdydz

N2N

Lo (R3)

1
+0H|so|2*m

4
< Cllglls

P T
-] {r<enz}

1
liollse N2N
LDO(]R3)

1
< C(Ihelly + lelloe)® N2 .

Similar computations give

(II) < N? /RM(VNfN)(fE,y,Z)WN(HE’,y@Z)SD(fE)%O(@/)WWI@(Z)IQ

X (ayayazay + ayayaya,) dede’ dydy' dz
2 4 a7
< Cllel s Il NZN?.

We therefore obtain

1
Kii < N /RQ(VNfNWN)(x — 2,y = 2)le(@) Pley)P|o(2)]* de dy dz
+CONZ(1+N?).

Noting that fol fos duds = 1/2 and 0 < 1 -0 < N-Y2N, an application of
Lemma 24] concludes the proof of Lemma d

6.2.3. Contribution from Lg.

Lemma 27. There exists Cy, > 0, depending only on |hy|, and ||¢| ., such that

(Q,e P Lee”Q)
<5 [ ek = 2= 2)lpl@) PloPlo(2) dedyds +CoNE.
Proof. We have
e PrLee? = L6 — /01 e*B[B, Lsle*B ds.

When estimated against the vacuum, only the last term gives a non zero contribu-
tion. Let us therefore focus on it. Using that [X), Z] = X[V, Z] when [X, Z] = 0,
we have

- [Ba '66]
1 * * *
— ~% /R9 /R9 Vn(x —y,z — z)[axayaz,ax,ay,az,]axayaz
x ON32un (' y, (@) oy () da dy dz dz’ dy Az’ + h.c.
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1

=5 /9 N*2Vy(x —y,x = 2)wn(@,y, 2)p(@)p(y)¢(2) azaya.© dedy dz + h.c.
R

i / N2V (2 — y,z — 2)wn (@, 2)p@ )9 (0)(2)
R12

X aragaya.a, O dedydzdz’ + hec.

1 —_—
-3 s N3/2VN(x — g,z — 2wn (@, 2) @) o))

X ay yaxayayay/az@ dz dydzda’ dy’ + h.c.

Ny ONY: .}

We now prove that only the contribution of Eél) is of order N.
On one hand, using the Cauchy—Schwarz inequality, we obtain for all > 0 that

£ <O [ ©atagatay, W +1)"* azayaza, drdydzdo’
R12

+Cn7' [ O +3) ( N°Vy(z —y,z — 2)°wn (2, y, 2)°
R3 RY

<lo(@) Ple(y) Plo(=)P dy dz dm') ot (N + 172 ay da

CaN + 172+ N2 o |5 2|

L2(RS)

x il N2 ooy (N + 1)

‘LC’O(R?’)
< CN1/4(N + 1)5/2 ’
where we used that Vy(z,y,2) < CN]I{\x—z|<C’N*1/2} and optimized over 7.
On the other hand, and similarly, we have for all n > 0 that

E( ) < 077/ Ay @y ay (N + 1)73/2 azaya,aa,y dedy dz dz' dy'
R15

+Cn ! s N V(N2 (2 =y, 2 — 2)wn (@3, 2 lo(2) Ple(y) P le(2)]?

X ayay (./\/—i- 1)%2 a,a, de dy dz dz’ dy/
C N + 1)+ N2 gL || N2

(N +1)772

el “{\-KCN-W} e

CN1/4 (N+ 1)7/2 ’

where we also optimized over n in order to obtain the last inequality.

~(1)

Finally, to access the contribution of L, we apply one more time the Duhamel

formula:
1 . . 1 S .
/ e_SBEél)eSB ds = Eél) - / / e uB [B,Eél)]eUB duds.
0 0 0

As before, the first term vanishes when tested against the vacuum state Q0 and we
focus therefore on the second term. Introducing the notations

~1o 1 VIR YV YVIRY
L) = —— 9 N*2Vy(z =y, = 2)wn (@, 9, 2)p(@)(y)¢(2) azaya dz dy dz
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and Eél’ﬂ = (Zél’o))*, we have
D _ 70 4 Fiolg.
A direct computation gives [B10, Zél’o)G] = 0, from which we obtain
—[B, L] = [B1© — B;©,L"70] + h.c. = [L{"*©,0B}] + h.c.
= OW +3)[L(, Bf] + 00B: LY + h.c.
<[L8?), Bi] + hoe. + C(N +1)°,
where we applied the Cauchy-Schwarz inequality and used
BiBi<CWN+1)%, LEVEND) <ON* (W +1)%, and 90 < CNTYW +1)%
In view of (@0), we have
26 Bil = 5 [ V(o o) o) Plele)  dadyds

1 TN Lk
5 [ Va2 @) lolo) Pl oot da dyd=d

1 -
£ 180 [ (V)@ 2ol NP0l oo
X ayaayaz dzdy dy dzd7
hence

~10 . 1
£, Bi) +he. < g | NS Vi) y, 2)lo@)Plioy) Pl () dady dz

+C(NYEN + N, (94)

where we used Vi < |V, N and computations similar to the ones in the proof of
Lemma 23l This concludes the proof of Lemma O

6.2.4. Contribution from Egl).

Lemma 28. There exists Cy, > 0, depending only on |hy|, and ||¢| ., such that

(@, FrePa)

o0’

1
<=3 L, NV en) .. 2le@) o) el de dydz + CoN2.

Proof. Let us first introduce the notations
N3/2
G

ch /11@9 V(T =y, — 2)aza,a,o(x)e(y)p(z) dz dy dz

and £5 = (£)*, so that £{" = £] + £3. Still denoting © = 15 y1/2(N), we have

(1-0)cl+£51-0)

<(1-9) </ NV (z —y,z — 2)?|p(2)p(y)e(2)* de dy dZ) ’ N +1)

3
2

Njw

[SIEN

S ON |V p2gs) lelz lella (1 = 0) (W +1)2 SO (N + 1)z . (95)



48 P.T. NAM, J. RICAUD, AND A. TRIAY
Therefore, Egl) < @Eg + £50 + C(N 4 1)7/2 and it is enough to look at
1
“B(OLl + £30)e? = (OL] + £30) — /0 eP[B,0L] + £30]eP ds.

The first term vanishes when tested against 2. Let us compute the commutator.
Using (@0)), we obtain

—[B,0L} + £56] = —[B, £30] + h.c. = [B1© — OB}, £56)] + h.c.
= [£30,0B7] + h.c. = O(N + 3)[L3, Bf] + 00B] L3 + h.c.
< [£8,Bf] + h.e. + C(N +1)°,
where we used that |00 < N~}(A + 1)? and a computation similar to (@5]). Then,
the same computations as in ([04]) give
(L3, BT] + h.c.
1

=~ 3 NV (z,y, 2)wn (@3, 2 (@) o(y)p(2) (2 (y ) p(2')
RO xRY

x [agayaz, ayayay]dedydzde’ dy’ d2' + hec.

<=3 | N Vvwn)(@,y, 2)le@) () Ple(2)[* de dy dz + C(N'PN +N?),
RO

which concludes the proof. O
6.2.5. Conclusion of the proof of Theorem [21: collecting the leading contributions.
In Lemmas 26] 28 and 27, we extracted the contributions of dI'(h), L3 and Lg to

the leading order. Adding the contribution from £y and controlling the remainder
terms using Lemma 25 we obtain

(Q, e PW (VN HyW (VNg)ePQ)

<N [ (9 + A@)@P + Vo (a)lp(a)) da
N

5 V) @y, )o@ lew)Ple()] de dydz

+w 1 1
o (B - 5 §) (Ve el )Pl da dy s
+ CONY?
< Ng(;p((p) + CN1/2 .

We have used that f + w = 1, so that the third term above vanishes, and also that

5 OV el PP deayas < 40 [ o) d,

which is obtained from the Hélder inequality and from that ba(V) = [ps V[ =
|V f|l;- This concludes the proof of Theorem 21

6.3. Proof of Corollary For pu > 0, denote
EM(M,N) =info(Hy ) — u(M + M3/N?),

where Hyy y is defined in (84)), and E(M, N) := E°(M, N). We claim that there ex-
ists o > 0 such that, for all 4 > po and N € N, {E#(M, N)},,cy is a non-increasing
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sequence. Indeed, let I'yy—1 v = |WUpr—1.n) (¥ar—1,n| be the density matrix of a
ground state Wy, n of Hy—1,n, then we have the inequalities

M
E(M, N) < MTI“L2(R3N) hll“M,l,N + < 3 > TI“LQ(RP,N) VN(xl,xg,xg)I’M,LN

M
< E(M — 1,N) —|—TI'L2(R3N) {(m — 1> h1

M M—-1
— =1 Ty
+ (M—?) > ( 5 >VN(90179027903)} M—1,N

<MM;LN»3%MM—LM

gmM—1N+CWW4‘Q+%®

where we bounded E(M — 1,N) by the energy of the ansatz ¢®M~! in the last
inequality. Hence, it suffices to choose pg = C th/ 2cpHg.

Let N = N — N2/3 and let us denote Uy := W(V N@)UyQ € F(L2(R?)). As a
consequence of (&7), ([89), and

WV NG NW(VNg) = N + VN(a*(¢) + a(p)) + N,

Wy satisfies

(U, NUy) =N - N3 10(1), (96)
(T, (N = (I, NTy))* Ty) = O(N), (97)
and
(Un, N3 y) = N3 4 O(N¥3). (98)
Let us first argue that
(Hn)y, < NEgp(p) + CN?2. (99)

Indeed, following the proof of Theorem 21] we have

QW (VN HAW (VNG 0

= (Q, UAW(VN) HyW (VN@)) g

6
HN—Ngm¢+ZXNmf —mem.

=

Therefore, using Theorem 1] and that [(Li);;, ol < CN (see the proof of Theo-
rem [2T]), we obtain (99]).

Let us now denote Wy v = Iny=p¥n. For p > po, using that {E#(M, N)} e
is a non-increasing sequence and noticing that ),/ v [Ty n?=1- (AN>N) gy
we have

(1= (e, ) BA(N,N)
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< Y EMM,N) [ @]
M<N

o0
=Y EBMM,N)[®unl*— > EH(M,N) [ Tan]
M=0 M>N

3 3
<<HN M<N+N>+M1N>N<N+AL>> ,
VN

Now, using (@6)-(O8]) and Chebyshev’s inequality, we obtain that

_4 2 _1
oy = <]1N><N>¢N+N§+O<1>>¢N e <<N_ W) >¢N sen

(s wMay = (Ivsn (V= (N)ay ), + Avsmdey Wy

<CN™3 <(N - <N>¢N)2> +CN5 (N)y, <CN3

VN

and

(1), = (- 00)),

a2 (Lo (V= W4, ) ) 0,

LN

+N 2 (Low (W = W)y, ), D3,

L3N
+ N2 (N g, Ny,

< N2 <<N— <N>@N)3> +CN% < CONE.

Hence, we deduce from the above inequality on E#(N, N) that
E"(N,N) < (1 + CN*1/3) (Hy)g, —2uN + CN?3.

Using (@9)) for ¢ = ug, the GP minimizer, finishes the proof. O

7. CONVERGENCE OF GROUND STATES

The convergence of states in Theorem [2] follows from a simple adaption of the
proof in [39, Sect. 4C] to our method of proof for the lower bound. Let us briefly
explain the main steps for the reader’s convenience. Let ¥y be a normalized state
in $HV satisfying
(Un, Hy V)

lim N = eqp -

N—o0

Since Tr hyy, < C and h has compact resolvant, we know by the de Finetti

theorem [23, Corollary 2.4] that, up to a subsequence as N — oo, there exists a
Borel probability measure p on the unit sphere S$ such that

lim '7\(12 _/Sj'j [u®F) (W@ dp(u)| =0, k=1,2,....

N—oo
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Hence, it only remains to prove that the support of u is contained in the set of
minimizers of Egp. To this end, it is enough prove

[ Pt duw < s [0 (100)
SH uEMcap

for all v € L?(R3) and k € N\ {0}. Indeed, one can easily verify that passing to
the limit & — oo in (I00) implies that Suppu C Mgp. Proving (I00) is done by

means of a Hellmann—Feynman argument, which we now explain. Keeping the same
notations as in [39, Lemma 4.3], for v € L?(R3) and N,k € N\ {0}, we define

! -
Stv=wr1 2L W
1<i1 < <ixg<N

The above operator is bounded uniformly in N and one can easily check that we
can carry out the proof of Theorem [I6] (lower bound) with Hy — S{, to obtain

info(Hy — SY)
lim inf P2 > inf {& - kL
it = 2, {For) — ol

Note, in particular, that the binding inequality (53] is satisfied with Hjs n replaced
by Hy,n — Sli\,fv and that the proof of [28, Lemma 2] easily adapts to yield the
four-body estimate (60). Therefore, for all ¢ > 0, implementing the change of
parameter v — /%)y and dividing by ¢, we obtain

N
/ (v, u)[** dp(u) = lim (Un, HNUN) = (U, (Hy = S, )N

<t <eGP — inf {5GP(u) —t|<v,u>|2k}> .
lully=1

By standard compactness arguments, one can show that taking the limit ¢ — 0

above gives (I00). This concludes the sketch of the proof of Theorem 21

APPENDIX. THE TWO-BODY INTERACTION CASE: LOWER BOUND

In the two-body interaction case, our proof of the lower bound simplifies and it
gives a shorter alternative to [28, [39]. Moreover, we only need the L!-condition on
the interaction potential, relaxing therefore some regularity assumptions in [28] [39].
Since this simplification may be interesting in its own right, we give some details
below.

We consider W € L'(R?), a nonnegative and compactly supported potential, and
we assume A and Vex; to be as in Theorem [Il For N, M € N\ {0}, let us denote

M
E®(M,N) := infU(HJZV][B,N) with HJZ\EN = Zhi + Z Wi (z; —x;),
i=1

1<i<j<M

where h; = hy,, h = hy := (—iV, + A(2))? + Vexe(2), and Wy = N2W(N-). Define
() = [ (117 + A + Vo Dat) + T u(o)l) da

with b(V') given in ([B5). We have the following result.
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Theorem 29. The ground state energy of H]%[}?N satisfies

E?B(N,N)
lim —————= = inf & .
N N Hul|\r21:1 28(u)

This result has been proved in [28],[39] (under a slightly stronger condition on W).
Here, we will sketch an alternative proof of the lower bound. Note that from our
proof, it is also possible to derive the convergence of states similar to Theorem [l
For a technical reason, we will work under the additional assumption (B6) on A,
which can be removed following an argument in [39, Sect. 4B].

The main step in the proof of Theorem 29| is obtained via the following lemma.

Lemma 30 (Reduction to softer potentials). Let 5 € (0,2/3], 0 <e <1< s, and
d € (0, 62/2) We assume Vexy to be as in @) and A € L} (R3) to satisfy (50).
Let 0 < U € L®(R3) be radial with Jzs U =1 and SuppU C {1/8 < |x| < 1/4}.
Define U as in (B0) and Ur = R73U(R™'.). Then, for all N, there exist an integer
M €[(1 —¢)N,N] and R € [N=#, N=8/2] such that

M
E®(N,N) > inf oy psm Z(h )—{—M Z Ur(z; — x;)
L2(R3M) : €,8)1 (M — 1) s 7 J
i=1 I<i<gsM

_ Ca,s,ﬁ,6R2/7N —eCgN — 6C:.N ,
where he s = h — (1 — 5)]1{\p\>8}p2'

With Lemma [B0] at hand, we can apply for instance [24] Theorem 2.5] with 0 <
B < (21/2+3/a)~! in order to obtain the desired lower bound in Theorem This
part is similar to the analysis in Section Bl Thus, it remains to prove the lemma.

Proof of Lemma[30. By adapting Lemma [I3] to the two-body interaction case, we
find that there is a constant C' > 0, such that for all N € N\ {0} and 0 < e < 1/2,
we can find M = M(N,¢) € N such that N(1 —¢) < M < N and

E*(M,N) - E*(M —3,N) < Ce!.

This replaces a convexity argument in Step 1 of the proof of [28] Theorem 1]. Using
this binding inequality and the heat kernel estimate in [28, Lemma 2], we obtain for
the zero temperature limit I'j7 n of the Gibbs state of H]%? y the following analogue
to Lemma 7

6
<]1{|11*:1:2\SR}ﬂ{\xlf:v3|<R}>FM’N < CER .
Then, using
Zﬂ{\xrmKR} H ]1{\xfxl\>23} i=1,....,M,
J?fl 5#%]
we obtain

Z Lipijsappl + D) Wilzi—a))

1<i<j<M
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M M M
1
> ZZ <]]'{|pi>5}pi]l{xixj|<R}pi]]'{|pi>s} + §WN(~”U@' - ij)) H L1z, —zo|>2R}
/=1

i ]
M M , y
= (1 - 6) Z Z <pi]l{xi—xj|<R}pi + §WN($z - x])) H ]l{\xj—wz\>2R}
o =1
Z Jj# UFig
M M
- Ce™! Z Zpi]l{|pi‘<3}]l{‘xi—xj‘<R}pi]1{|pi‘<s}
J#i
M M "
b(W) C
Z ZZ N <1 — RN) UR(%‘ - wj) H ]l{\xj—u\>2R} _ CESSMZR‘%.
i (=1
77 fary

We used the Cauchy—Schwarz inequality for the second inequality and the third
inequality is a consequence of Lemma [0 together with the estimate

H1{\pi|<s}Pz‘1{|xi—xj\<R}Pi1{|pi\<s} s

2
< Cs°R3.
L2(R3,dx;)

— -3 1112
= @) Lty il [ 2 g apy |[Ltteizi<m|

From this and the lower bound

M M M
H Lo~z >2ry 21— Z (1= 1qjz;—ay>2mry) = 1 — Z L{jz;—z0<2R} »
(=1 /=1 /=1
CA£i,5 CF£i,j C£i,j
we obtain
E®(M,N)
M
> <Z(h€,s)i +o(W) Y M 'Ug(zs —xj)> (101)
i=1 1<i<j<M INYSY,
M 1
_C< Z MlUR(.%'i—.%'j)< Z ]l{xj”<2R}+R—N+€>>
1<i<j<M /=1 NV
L#i,g
— C.sM’R?.

Recall that N > M > (1 —e)N. To bound the error term in (I01]), note that

M
CR_3< Z Z M_lUR(xi—xj)]l{xj—ung}>
INVEN

1<i<j<M (=1
U]

< CR_3M2 <]l|$1—x2‘<2R]l|$2—$3|<2R> < CN x MR3

INYSN

by the bosonic symmetry of Iy v and that, using (I0I]), we also have

< Z M Ug(z; — mj)> < C(E(M,N)+ CM?*R?) < CN(1+ MR?).
1INV,

1<i<j<M

Hence, (I0I)) becomes
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M
E’B(M,N) > <Z bW) > MIUR(:ci—xj)>FMN

=1 1<i<j<M

.

~C.sN(M'R™' + MR?) — CNe.
To ensure that the error term N(M1R™! + MR3) is o(IV), we need
M7 >R> M.
We can take for example
R=(M"'x M~V3)/2 o N~2/3

This is still too singular in order to apply the mean-field technique in [24, Theorem
2.5]. However, the main simplification over [28 39] comes when we use again the
bosonic symmetry to rewrite (I0I]), for 1 < M; < M, as

EB(M,N) _ 1 /& (W)

— Vot s T Ly N Ly

M Z M < Z (hes)i + M, Z Ur(xi xﬂ)>r
i=1 1<i<j<M M,N

— Ces(M™'R™ + MR?*) — CMe. (102)

We will now apply Dyson’s lemma to W = S~ M['b(W)Ug which, by (B7), satisfies
— . b(W) C
2
B7) 2 Wl so) — O ey > 3 (1- 530 )

For R; > R, following the above estimates, we obtain

My
b(W)
2
(L5 X vt o),
i=1 M,N

1<i<i<M
b(W
(MDY vn —x]>>
1 1<i<j< M INVEN,
1 1
—C M Z URl(xi Z ]l{mj xe‘<2R1} + = 5M1R
1<i<j<M, zl;él INYSY
i,J
b(W
> <% > Ug (@i - xj)> — CsMy (MyR} + MT'R7Y).
1<i<j< M INVEY,

In order for the error M;(M; R} + M 'R™") to be o(M), we need
M >Ri>R>M'>M",
which can be satisfied with for example the choices
M; = (M % R71)1/2 — (R73/2 % R71)1/2 — Rf5/4
and
Ri= (R x Mf1/3)1/2 = (R x R5/12)1/2 — Rpl7/24

Now, using (57) and that & € (0,£2/2), we have §p? < eh. s + dC:. Inserting the
above inequality in (I02), we obtain
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My

2B M,N 1 b(W
ar > S+ G T Unow))

i—1 U icici<an

—C.sRY*—Ce -0

Defining Ry := R and, for j =1,...,J, R; := le.z/lm — RO7/24Y 404 M; = —5/4
repeating this argument J > 1 times yields

E®(M,N) _ 1 /& (W)
m = E< Z(hs,s)i + S Z Ur,(x; — xj)>FM’N

i-1

i1 T 1<i<j<my

— C.. RV —ce—C6

M
> %< D (heys)i + % > Ug,(zi— xj)>FM,N

i=1 1<i<j<M
J
— C.,RYY —Ce—C.6.

Note that the double sum in the first inequality has M j(M;—1)/2 terms. Therefore,
a correction should arise from the approximation (M; —1)/M; > 1 — C’MJ_1 but,

using [|Ur, || oo gy < CR;?, it is also bounded by CM R;> < CRY* . For every
B € (0,2/3), taking J € N\ {0} such that N~5/2 > R; = RUT/20)7 > N—F (recall

that R ~ N~2%/ 3), we conclude the proof. ]
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