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THE CONDENSATION OF A TRAPPED DILUTE BOSE GAS

WITH THREE-BODY INTERACTIONS

PHAN THÀNH NAM, JULIEN RICAUD, AND ARNAUD TRIAY

Abstract. We consider a trapped dilute gas of N bosons in R
3 interacting via

a three-body interaction potential of the form N V (N1/2(x − y, x − z)). In the
limit N → ∞, we prove that every approximate ground state of the system is
a convex superposition of minimizers of a 3D energy-critical nonlinear Schrö-
dinger functional where the nonlinear coupling constant is proportional to the
scattering energy of the interaction potential. In particular, the N-body ground
state exhibits complete Bose–Einstein condensation if the nonlinear Schrödinger
minimizer is unique up to a complex phase.
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1. Introduction

Bose–Einstein condensation was predicted in 1924 [6, 14], but it was not until
1995 that it was first realized experimentally in gases of alkali atoms [1, 12], leading
to the 2001 Nobel prize in Physics of Cornell, Wieman, and Ketterle. While the
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theoretical works of Bose and Einstein [6, 14, 15] focused only on the ideal gas,
interactions among particles do not only make the analysis more involved but also
lead to new phenomena, one of the most famous being superfluidity [21, 5]. In dilute
regimes, where collisions occur rarely, the interaction is most often described by an
effective two-body potential v2B(x1 − x2) which is computed by integrating out the
possible internal degrees of freedom of two particles placed at x1 and x2, in the ideal
situation where all the others are infinitely far away. This approximation, enough for
most applications, might break down if a third particle nearby affects strongly the
internal structure of the two others. In this case, one can add a correction by using
another effective interaction potential v3B(x1 − x2, x1 − x3) in the ideal situation
where three-particles are close and the others infinitely far away, etc. —namely,

U(x1, . . . , xN ) ≃
∑

16i<j6N

v2B(xi − xj) +
∑

16i<j<k6N

v3B(xi − xj , xi − xk) + . . . .

In this many-body expansion, the three- and higher-order corrections, although
small, are not always negligible: three-body interactions account for 2% of the bind-
ing energy of liquid He4 [35] and even 14% for water [34], preventing the two-body
approximation from explaining certain of their physical properties [42, 50]. In the
realm of condensed matter, the Bose–Hubbard model with two-body and three-body
interactions was derived from cold polar molecules, where the two-body interaction
can independently be tuned and even switched off [8]. Finally, in the study of ul-
tracold gases, three-body interactions have received a strong interest with the hope
of observing exotic states like self-trapped droplets or Pfaffian states [41]. In partic-
ular, a repulsive three-body interaction can stabilize a condensate against collapse
due to an attractive two-body interaction, the competing contributions can lead
to crystallization and is believed to be a good candidate for observing super-solid
states [3, 4].

In this work, we consider a system of N bosons in R
3 trapped by a confining

potential and interacting via three-body interactions. It would be also interesting to
include two-body interactions in the model, but we do not do so here in order to sim-
plify the problem. We study the Gross–Pitaevskii-like regime where the interaction
potential scales like

VN (x− y, x− z) = NV
(
N1/2(x− y, x− z)

)
.

We prove that the ground state energy and approximate ground states of the system
are effectively described by the 3D energy-critical nonlinear Schrödinger functional
where the nonlinear term is proportional to the scattering energy of the interaction
potential. To our knowledge, it is the first time that the ground state problem of
a dilute Bose gas with three-body interactions is investigated rigorously. In fact, a
simpler result with the weaker interaction potential of the form

N6β−2V
(
Nβ(x− y, x− z)

)

with β > 0 small can be handled by following the method in [24] (see also the
subsequent [38, 45, 49] for further developments of relevant techniques). In this
case, the usual mean-field approximation is correct to the leading order. The critical
case β = 1/2 that we consider here is more difficult since the three-body correlation
between particles yields a leading order correction to the ground state energy, which
is similar to the Gross–Pitaevskii regime of the two-body interaction studied in [31,
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27, 28, 39]. We refer to [30, 43, 44] for pedagogical reviews on relevant results in the
two-body interaction case.

In the time-dependent problem, the potential N6β−2V
(
Nβ(x− y, x− z)

)
with

β > 0 small already received some attention [9, 10, 51, 11, 22, 40, 25]. The critical
regime β = 1/2 is again more difficult and the corresponding dynamical problem
remains open. In the two-body interaction case, the Gross–Pitaevskii regime was
first studied in [17, 16], see also the reviews [46, 20, 2] for further results.

1.1. Model. Let us now explain the mathematical setting in detail. We consider a
system of N > 3 identical bosons in R

3 described by the Hamiltonian

HN =

N∑

i=1

hi +
∑

16i<j<k6N

VN (xi − xj , xi − xk) , (1)

acting on the symmetric space

H
N = L2

s

(
(R3)N

)
=

N⊗

s

L2(R3) ,

where, following the most mathematically demanding setting in the two-body inter-
action case [28, 39], we consider the one-body operator of the form

h := (−i∇x +A(x))2 + Vext(x) on L2(R3) . (2)

Here, we assume that the external trapping potential satisfies

Vext ∈ L∞
loc(R

3,R) and Vext(x) > C|x|α + 1 for a.e. x ∈ R
3 , (3)

for some constant α > 0, while the vector potential (accounting for a magnetic field
or a rotation) satisfies

A ∈ L3
loc(R

3) and lim
|x|→∞

|A(x)|2e−C|x| = 0 , (4)

for some constant C > 0. Moreover, the interaction potential is chosen of the form

VN (x, y) = NV (N1/2(x, y)) for all x, y ∈ R
3 , (5)

where V : R3×R
3 → R is nonnegative, bounded, compactly supported, and has the

symmetry properties

V (x, y) = V (y, x) and V (x− y, x− z) = V (y − x, y − z) = V (z − y, z − x) (6)

which ensure that HN leaves the bosonic space HN invariant. Thus, HN models a
trapped dilute Bose gas where the range of the interaction potential is much smaller
than the average distance between particles: N−1/2 ≪ N−1/3.

Under our conditions (3)–(6), the Hamiltonian HN is well-defined and bounded

from below with core domain
⊗N

s C∞
c (R3). Hence, it can be extended to a self-

adjoint operator on HN by Friedrichs’ method. The extension, still denoted by HN ,
is bounded from below and has compact resolvent since Vext(x) → ∞ as |x| → ∞.
In particular, a ground state exists.

In the present paper, we are interested in the ground state energy

EN = inf
||Ψ||

HN=1
〈Ψ,HNΨ〉 (7)

and the corresponding ground states in the limit N → ∞. When N becomes large, it
is in general impossible to compute, both analytically and numerically, the ground
state energy EN and the ground states from the full many-body description (1).
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Hence, for practical computations it is important to derive an effective theory which
relies on less variables.

The usual mean-field approximation suggests to restrict to the complete conden-
sation ansatz of N particles

ΨN ≈ u⊗N (x1, . . . , xN ) =

N∏

j=1

u(xj) with u ∈ L2(R3) . (8)

However, the correlation due to the strong interaction between particles at short
distances will also play a role to leading order. Since the gas is dilute, the corre-
lation structure is encoded in the scattering problem associated to the three-body
interaction potential VN (x− y, x− z). Let us consider the three-body operator

−∆x1 −∆x2 −∆x3 + VN (x1 − x2, x1 − x3) on L2
(
(R3)3

)
.

We can remove the center of mass by change of variables:

r1 =
1

3
(x1 + x2 + x3), r2 = x1 − x2, and r3 = x1 − x3 . (9)

Denoting the momentum variable px = −i∇x, with x ∈ R
3 and i2 = −1, we have

px1 =
1

3
pr1 + pr2 + pr3 , px2 =

1

3
pr1 − pr2 , px3 =

1

3
pr1 − pr3 ,

and, consequently,

−∆x1 −∆x2 −∆x3 + VN (x1 − x2, x1 − x3)

=

(
1

3
pr1 + pr2 + pr3

)2

+

(
1

3
pr1 − pr2

)2

+

(
1

3
pr1 − pr3

)2

+ VN (r1, r2)

=
1

3
p2r1 + 2(p2r2 + p2r3 + pr2pr3) + VN (r2, r3) . (10)

Thus, after removing the center of mass, we are left with the two-body operator

2(p2x + p2y + pxpy) + VN (x, y) = −2∆M + VN (x, y) on L2
(
(R3)2

)
,

where −∆M = |M∇R6 |2 = divR6(M2∇R6) and the matrix M : R3 ×R
3 → R

3 ×R
3

is given by

M :=

(
1

2

(
2 1
1 2

))1/2

=
1

2
√
2

(√
3 + 1

√
3− 1√

3− 1
√
3 + 1

)
.

The operator −2∆M + VN (x, y) is associated to the (modified) scattering energy

bM(VN ) := inf
ω∈Ḣ1(R6)

ˆ

R6

(
2|M∇ω(x)|2 + VN (x)|1 − ω(x)|2

)
dx .

Recall the standard scattering energy of a potential W : Rd → R

b(W ) := inf
ω∈Ḣ1(Rd)

ˆ

Rd

(
2|∇ω(x)|2 +W (x)|1− ω(x)|2

)
dx . (11)

By change of variables, the modified scattering energy can be written as

bM(V ) = b(V (M·)) detM .

Here, detM = 3
√
3/8. Moreover, the specific choice in (5) ensures that

bM(VN ) =
bM(V )

N2
.
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In summary, to the leading order we expect that

VN (x, y) ≈ bM(V )

N2
δx=y=0 . (12)

Putting the formal approximations (8) and (12) together, we arrive at

EN

N
≈ eGP := inf

||u||L2(R3)=1
EGP(u) , (13)

where EGP(u) is the 3D energy-critical nonlinear Schrödinger (NLS) functional

EGP(u) :=

ˆ

R3

(
|(−i∇+A(x))u(x)|2 + Vext(x)|u(x)|2 +

bM(V )

6
|u(x)|6

)
dx . (14)

Let us denote by MGP the set of minimizers of EGP. The existence of a mini-
mizer u0 of EGP follows straightforwardly from standard variational methods, where
the compactness in L2(R3) of minimizing sequences is guaranteed by the trapping
condition Vext(x) → ∞ as |x| → ∞. The solution solves the nonlinear equation

(
h+ bM(V )|u0(x)|4/2− ε0

)
u0(x) = 0 for all x ∈ R

3 ,

for some chemical potential ε0 ∈ R
3 (the Lagrange multiplier associated with the

mass constraint ||u||L2(R3) = 1). Moreover, with our assumptions on Vext and A, the

absolute value of the resolvent kernel of h + bM(V )|u0|4/2 + 1 is bounded by the
one of −∆ + 1 (see for instance [47, Sect. 15]), which implies u0 ∈ L∞(R3) by the
Sobolev embedding H2(R3) ⊂ L∞(R3).

In the absence of the magnetic field, i.e. A ≡ 0, the minimizer u0 of EGP is
unique up to a complex phase (this can be seen by a standard convexity argument).
However, in the general case A 6≡ 0, EGP may have several minimizers which indicates
the presence quantized vortices. We refer to [31, 28, 39] and the reviews [30, 43, 44]
for the related discussions in the two-body interaction case where the nonlinear term
|u|6 in (14) is replaced by |u|4.

1.2. Main results. Our first result is a rigorous justification of (13).

Theorem 1 (Ground state energy). Let Vext, A, and VN satisfy (3)–(6). Then, the
ground state energy of HN in (1) satisfies

lim
N→∞

EN

N
= eGP = inf

||u||L2(R3)=1
EGP(u) , (15)

where the effective functional EGP(u) is given in (14).

As a by-product of our proof of Theorem 1, we also obtain that every approximate
ground state of HN behaves as a convex superposition of the pure tensor products as
in (8). Note that the approximation (8) is expected to hold not in the norm topology
of HN , but rather in a weaker topology defined by reduced density matrices. Recall

that for every 1 6 k 6 N , the k-body density matrix γ
(k)
ΨN

of a normalized wave

function ΨN ∈ HN is a nonnegative trace class operator on Hk = L2
s((R

3)k) with
kernel1

γ
(k)
ΨN

(z; z′) =
ˆ

(R3)N−k

ΨN (z, xk+1, . . . , xN )ΨN (z′, xk+1, . . . , xN ) dxk+1 · · · dxN .

1In our convention, inner products in (complex) Hilbert spaces are linear in the second argument
and anti-linear in the first.
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Equivalently, we can also write γ
(k)
ΨN

= Trk+1→N |ΨN 〉〈ΨN |, where the partial trace

is taken over all but the first k variables. The proper meaning of (8) is

γ
(k)
ΨN

≈ |u⊗k〉〈u⊗k| , k = 1, 2, . . . , (16)

which is often referred to as the complete Bose–Einstein condensation.
Our second result is a rigorous justification of (16) for ground states, or more

generally for approximate ground states, of HN .

Theorem 2 (Condensation of approximate ground states). Let Vext, A, and VN be
as in Theorem 1. Assume that ΨN is an approximate ground state for HN —namely,

||ΨN ||HN = 1 and lim
N→∞

〈ΨN ,HNΨN 〉
N

= eGP .

Then, up to a subsequence as N → ∞, there exists a Borel probability measure
supported on MGP, the set of minimizers of EGP, such that

lim
N→∞

γ
(k)
ΨN

=

ˆ

MGP

|u⊗k〉〈u⊗k| dµ(u) , k = 1, 2, . . . ,

in trace norm.
In particular, if EGP has a unique minimizer u0 (modulo a complex phase), then

the whole sequence {γ(k)ΨN
}N converges towards |u⊗k

0 〉〈u⊗k
0 | for all k ∈ N \ {0}.

Let us give some quick remarks about our results.

Remark 3 (Less singular interactions). From our approach, we also find that for
every 0 < β < 1/2, the ground state energy of the Hamiltonian

HN,mf =
N∑

i=1

hi +
∑

16i<j<k6N

N6β−2V (Nβ(xi − xj, xi − xk)) (17)

satisfies

lim
N→∞

EN

N
= inf

||u||L2(R3)=1

{
〈u, hu〉L2(R3) +

V̂ (0)

6

ˆ

R3

|u(x)|6 dx
}
. (18)

This is an analogue of (15) where the scattering energy bM(V ) in the nonlinear func-

tional is replaced by its first Born approximation V̂ (0) =
´

R6 V . Consequently, we
also obtain the convergence of approximate ground states of HN,mf to the minimizer
of the right side of (18).

When β > 0 is small (depending on the growth of Vext), (18) can be proved
by a standard mean-field technique, for example using a quantitative quantum de
Finetti theorem as proposed by Lewin, Nam, and Rougerie [24]. The proof of (18)
for the whole range 0 < β < 1/2 is more difficult and can be obtained from a
simplification of our method. The critical case β = 1/2 in Theorem 1 is the hardest
one since the strong correlation yields a leading order correction to the mean-field
approximation. △
Remark 4 (Dynamical problem). In the context of quantum dynamics, it was proved
by Chen and Holmer [11] for β < 1/9, then by Nam and Salzmann [40] for β <

1/6, that the Schrödinger evolution ΨN (t) = eitH
0
N,mfΨN (0) with initial condition

γ
(1)
ΨN (0) ≈ |u(0)〉〈u(0)| exhibits the complete condensation γ

(1)
ΨN (t) ≈ |u(t)〉〈u(t)| for
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any time t > 0, where the condensate u(t) is determined by the time-dependent
equation

i∂tu(t, x) =

(
−∆+

1

2
V̂ (0)|u(t, x)|4

)
u(t, x) . (19)

Here, H0
N,mf is the Hamiltonian as in (17) but without the external potential and

the magnetic field. We expect that the same result holds for all 0 < β < 1/2 and

that the factor V̂ (0) in (19) is replaced in the critical case β = 1/2 by the scattering
energy bM(V ). This is still an open question. The results in the present paper
justify the initial condition of the dynamical problem. △
Remark 5 (Comparison to the two-body interaction case). The derivation of the
Gross–Pitaevskii functional, the analogue of (14) with |u|6 replaced by |u|4, from the
many-body problem with a two-body interaction potential of the form N2V (N(x−
y)) goes back to the seminal papers of Lieb, Seiringer, and Yngvason [32, 31, 27, 28].
There are four levels of difficulty. First, for the homogeneous system of N bosons
trapped in a unit torus (A ≡ 0 and Vext ≡ 0), the convergence of the ground
state energy (similar to Theorem 1) follows from the analysis in [32]. Second, the
extension of the energy convergence to the inhomogeneous trapped case in R

3 (A ≡ 0
and Vext 6≡ 0) was solved in [31]. Third, the proof of the Bose–Einstein condensation
(similar to Theorem 2), which is harder, was first achieved in [27]. Finally, in the
most mathematically demanding setting of a general trapped case with a magnetic
field (A 6≡ 0 and Vext 6≡ 0), the convergences of both the energy and the states were
settled in [28]. See also [39] for an alternative proof.

Here, we aim at extending the results from the two-body interaction case, in
the most difficult setting from [28, 39], to the three-body interaction case. For the
homogeneous gas, a simpler version of our analysis can be found in [37] where we
combine a variant of Dyson’s lemma of the present paper with the argument in [32] in
order to quickly derive the energy convergence (the analysis can even be done in the
thermodynamic limit). On the other hand, the proof in the present paper is much
more complicated than that in [37] since we handle the full generality of the one-
body operator and we prove Bose–Einstein condensation, for which the argument
in [37] is insufficient.

In comparison to the existing works in the two-body interaction case [32, 31, 27,
28, 39], the analysis in the three-body interaction case requires three new ingredients.
First, we are unable to derive the energy upper bound from a Jastrow–Dyson type
state and a cubic (in annihilation/creation operators) transformation is hence needed
in order to create the correct correlation structure. Second, for the energy lower
bound, we have to extend Dyson’s lemma to the new scattering problem, which is
in particular relevant for non-radial potentials. Third, the core novel technique of
our proof lies in a bootstrap argument where we repeatedly apply Dyson’s lemma in
order to implement the mean-field approximation. This new technique is not only
crucial to handle the three-body interaction case, which is energy-critical, but is
also helpful to simplify the proof in the two-body interaction case (see Appendix 7).
More details are given below. △
1.3. Ingredients of the proof. Now let us explain the main ingredients of the
proof.

Upper bound. The uncorrelated trial state as in (8) is insufficient to get the leading
order upper bound EN 6 NeGP + o(N). In fact, the energy per particle over the
Hartree states u⊗N is given by a functional similar to EGP(u) but where the scattering
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energy bM(V ) in front of the nonlinear term |u|6 is replaced by V̂ (0) =
´

R6 V . Hence,
it is important to take some correlation into account. Heuristically, we can think of
the Jastrow–Dyson type state

ΨN (x1, . . . , xN ) =

N∏

j=1

u0(xj)

N∏

p<k<ℓ

fN (xp − xk, xp − xℓ) , (20)

where u0 is a minimizer of eGP and fN : R3 × R
3 → R is a function satisfying the

symmetry (6) and solving, for almost every x ∈ R
6, the scattering equation

−2∆MfN(x) + VN (x)fN (x) = 0 ,

which is equivalent to solve, for almost every x, y, z ∈ R
3, the equation

(−∆x −∆y −∆z)fN (x− y, x− z) + (VNfN )(x− y, x− z) = 0 . (21)

The existence of such a function is proved in Theorem 8. In particular, the scattering
energy is encoded in fN as

ˆ

R6

VNfN = bM(VN ) = N−2bM(V ) .

Unfortunately, we are not able to compute the ground state energy per particle of the
trial state (20) to the leading order, even if we replace fN by a modified version fN,ℓ

satisfying fN,ℓ(x) = 1 for |x| > ℓ: the computation is significantly more complicated
than for the two-body interaction case.

Here, we follow an alternative approach. First, for ease of computation, we
extend HN to the operator HN = 0 ⊕⊕∞

M=1HM,N acting on the bosonic Fock
space F(H) := C⊕⊕∞

M=1H
M

HM,N =
M∑

j=1

hj +
∑

16i<j<k6M

NV (N1/2(xi − xj , xi − xk)) .

This extension can be written conveniently as

HN =

ˆ

R3

a∗xhxax dx+
1

6

ˆ

(R3)3
VN (x− y, x− z)a∗xa

∗
ya

∗
zaxayaz dxdy dz

using the standard creation and annihilation operators a∗x, ax. To capture the con-
densation, we define the Weyl operator

W (f) = exp(a∗(f)− a(f)) for all f ∈ L2(R3) ,

which is a unitary operator on the Fock space and satisfies

W (f)∗a(g)W (f) = a(g) + 〈g, f〉 for all f, g ∈ L2(R3) .

In order to create the desired correlation structure encoded in the scattering solution
fN in (21), we introduce another unitary transformation

UN := exp
[
1(N 6 N1/2)B∗

1 −B11(N 6 N1/2)
]
,

where N =
´

a∗xaxdx is the number operator on the Fock space and

B∗
1 = −1

6
N

3
2

ˆ

(R3)3
(1− fN )(x− y, x− z)u0(x)u0(y)u0(z)a

∗
xa

∗
ya

∗
z dxdy dz . (22)

We choose the cut-off on the particle number to be N1/2 such that UN does not
create too many excited particles. We will prove (see Theorem 21 below) that

〈Ω, U∗
NW (

√
Nϕ)∗HNW (

√
Nϕ)UNΩ〉 6 NeGP +O(N2/3) ,
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where Ω is the vacuum. Note that the trial state W (
√
Nϕ)UNΩ does not belong

to the N -body space HN , but it essentially lives on sectors of N + O(
√
N) particle

number. Following an idea of Solovej [48], by controlling the fluctuations of the

particle number of W (
√
Nϕ)UNΩ, we are able to construct a trial state in the

N -body Hilbert space and to obtain the desired upper bound

EN 6 NeGP + o(N) .

In the two-body interaction case, a similar trial state has been used [2, 36] where
equation (22) is replaced by a kernel that is quadratic in terms of creation and
annihilation operators, which simplifies the computation greatly since UNΩ is a
quasi-free state. In our case, the computation with the cubic kernel in equation (22)
is more complicated, but technically manageable. The details will be explained in
Section 6.

Lower bound. We will follow the overall strategy from the two-body interaction
case [28, 39], namely we replace the singular potential VN = NV (N1/2·) by a softer
potential using a Dyson lemma and then we apply the mean-field approximation.
However, to handle the three-body interaction case, we have to use the Dyson lemma
several times (instead of only one time as in the two-body interaction case) and
this iteration procedure requires new ideas which eventually lead to a substantial
improvement over the overall strategy.

Let us quickly explain our approach. The general idea of the Dyson lemma is that
for any 0 < ν 6 1 and 0 < β′ < β 6 1/2, we have the operator inequality

− 2ν∆M + VN,β(x) > UN,β′(x)
(
1− CNβ′−β

)
(23)

on L2(R6), with the scaling convention

VN,β(x) = N6β−2V (Nβx) , UN,β′(x) = N6β′−2U(Nβ′

x)

where V,U ∈ C∞
c (R6) are essentially fixed and

ˆ

R6

U = νN2bM(ν−1VN,β) .

In our first use of the Dyson lemma, by taking ν = 1 we can replace the original
Gross–Pitaevskii scaling β = 1/2 by a simpler scaling 0 < β′ < 1/2 with

ˆ

R6

UN,β′ = bM(VN,β=1/2) = N−2bM(V ) = the desired scattering energy.

While the above estimate holds for all 0 < β < 1/2, lifting it to the many-body level
requires the additional condition β > 1/3 which is technically needed to control
several error terms. On the other hand, the mean-field techniques in [24] only work
for a smaller β.

To reduce further β, we will apply the Dyson lemma again. Note that thanks to
the sub-critical scaling β′ < 1/2, the equality

νbM(ν−1UN,β′) =

ˆ

R6

UN,β′(1 + o(1)) = N−2bM(V )(1 + o(1))

holds for all Nβ′−1/2 ≪ ν 6 1, namely the scattering energy of ν−1UN,β′ is well
approximated by its first Born approximation

´

R6 ν
−1UN,β′ . This allows us to apply

the Dyson lemma with some 0 < ν ≪ 1, namely we sacrifice very little kinetic energy
and still get

− 2ν∆M + UN,β′(x) > UN,β′′(x)(1 + o(1)) (24)
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with 0 < β′′ < β′. Repeating this step finitely many times, we end up with a soft
potential which can be handled by the techniques in [24].

On the technical side, we will derive a many-body version of (23) with suitable
cut-offs in the configuration and momentum spaces. In order to control various error
terms and make the iteration procedure work, we will use the bosonic symmetry to
adjust the relevant number of particles in each step of the bootstrap argument.

Now let us go for a more detailed explanation of our lower bound proof.

Step 1: Dyson’s lemma. We will prove in Theorem 10 that, given the potential
VN > 0 supported in |x| 6 O(N−1/2) and R ≫ N−1/2, we can find a function U > 0
in L1(R6) supported in {|x| 6 R} such that UR satisfies the symmetry (6),

UR(x, y) 6 CR−6
1{|x|6R}1{|y|6R} ,

ˆ

R6

UR = bM(V )(1 + o(1)N→∞) ,

and

− 2∆M + VN (x) > N−2UR(x) on L2
(
R
6
)
. (25)

Actually we will derive need an improved version of (25), with M∇x1{|x|6
√
2R}M

instead of ∆M, but let us ignore the technical cut-off in the introductory discussion.
Note that all existing proofs of the Dyson lemma and its generalizations rely on

the radial symmetry of the potential (see [31, 29]), which is not satisfied by our
potential V : R6 → R. We will derive (25) from a general result on the standard
scattering energy (see Theorem 9) which holds for a large class of potentials and
could be of independent interest.

Now, coming back to the Hamiltonian HN and using (25), we obtain in Lemma 11
the following lower bound for all 1 > ε > 0,

(1−ε)−1HN + CεR
3N2 (26)

>

N∑

i=1

h̃i +
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR(xi − xj, xi − xk)
∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)
,

where

h̃ = h− (1− ε)p21{|p|>ε−1} and θR := 1{|x|>R} .

Note that (26) implicitly contains an improved version of (25), where only the high-
momentum part |p| > ε−1 of the kinetic energy is needed to replace VN by N−2UR,
and the low-momentum part |p| 6 ε−1 is kept in order to recover the full nonlinear
functional in (14). The same idea of saving the the low-momentum part has been
also used in the two-body interaction case [28, 39].

Removing the cut-off and estimating four-body error terms. The cut-off
θ2R(x) = 1{|x|>2R} appears in (26) due to the fact that we exclude the event of
having four particles within a distance O(R). This is a disadvantage of the use of
the Dyson lemma and the four-body problem here is similar to the three-body one
in the two-body interaction case [28, 39]. The standard way to remove the cut-off
θ2R is to use Bernoulli’s inequality

∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)
=

∏

ℓ 6=i,j,k

(
1− χ2R

(
xi + xj + xk

3
− xℓ

))

> 1−
∑

ℓ 6=i,j,k

χ2R

(
xi + xj + xk

3
− xℓ

)
,
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where χR(x) := 1{|x|6R} = 1 − θR(x). Consequently, the interaction in (26) can be
bounded from below as

1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR(xi − xj , xi − xk)
∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)

>
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR(xi − xj, xi − xk)

− C

N2R6

∑

16i,j,k6N
i 6=j 6=k 6=i

∑

ℓ 6=i,j,k

χ4R(xi − xj)χ4R(xi − xk)χ4R(xi − xℓ) .

(27)

Due to the energy-critical nature of the problem, we are unable to control the four-
body error term using the second-moment argument as in [39] (and its variants,
e.g. a third-moment argument, seem also insufficient). Nevertheless, following the
approach in [28], we can show (see Lemma 15) that, up to a replacement of N by
M ≈ N if necessary, the zero-temperature limit of the bosonic Gibbs state ΓN of
HN satisfies the four-body collision estimate

Tr

4∏

ℓ=2

χR(x1 − xℓ)ΓN 6 CR9 .

Therefore, the expectation against ΓN of the error term in (27) is bounded by
CN2R3, which coincides with the error in (26). In summary, from (26) and (27) we
deduce that

EN

N
>

1− ε

N
Tr

( N∑

i=1

h̃i +
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR(xi − xj, xi − xk)

)
ΓN − CεNR3 , (28)

where ΓN is the zero-temperature limit of the bosonic Gibbs state of HN . In order
to keep the error of order o(1), we need to take

N−1/3 ≫ R ≫ N−1/2 . (29)

These constraints on R are optimal in order to make the Dyson lemma useful: the
condition R ≫ N−1/2 ensures that we replace VN by a less singular potential, while
the condition R ≪ N−1/3 keeps us in the dilute regime where there are essentially
no four-body collisions. Under these conditions, applying the Dyson lemma does
not change the energy to the leading order.

Step 2: Mean-field approximation. So far we follow closely the existing
analysis in the two-body interaction case [28, 39]. Let us now explain a crucial new
difficulty in the three-body interaction case, which implicitly relies on the fact that
we are dealing with an energy-critical problem here. In the two-body interaction
case, as soon as we arrive at an analogue of (28), the right-hand side can be treated
using now standard mean-field techniques, e.g. using the coherent state method as
in [28] or using the quantum de Finetti theorem as in [39]. A key ingredient needed
in [28, 39] is the two-body inequality

|W (x− y)| 6 C ||W ||L1(R3) (1−∆x)(1 −∆y) on L2
(
(R3)2

)
. (30)

Together with the so-called “second moment estimates”, this inequality allows to
control the interaction potential efficiently by the kinetic operator. The bound (30)
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also plays an essential role in the study of the Gross–Pitaevskii dynamics in [18]. In
fact, as proved in [39], the refinement

|W (x− y)| 6 Cη ||W ||L1(R3) (1−∆x)
3/4+η(1−∆y)

3/4+η on L2
(
(R3)2

)
(31)

of (30) holds for every η > 0 and is useful in combination with the so-called second
moment estimates (which ones are out of reach for the three-body case in the regime
we consider). Roughly speaking, (31) can be interpreted as a variant of the Sobolev
embedding theorem L∞(R3) ⊂ H3/2+2η(R3), where the total (3/2 + 2η) derivatives
on x− y are divided equally between the variables x and y. In the three-body inter-
action case, the analogue of (31) is the following operator inequality on L2((R3)3):

|W (x− y, x− z)| 6 Cη ||W ||L1(R6) (1−∆x)
1+η(1−∆y)

1+η(1−∆z)
1+η (32)

for every η > 0, which should be compared with the Sobolev embedding theorem
L∞(R6) ⊂ H3+3η(R6). In particular, there is no extension of (30) to the three-body
case, namely one cannot take η = 0 in (32). For that reason, we are not able to apply
directly the mean-field techniques as in [28, 39] in order to handle the right-hand
side of (28). More precisely, one could try to replace (32) by the bound

|W (x− y, x− z)| 6 Cp ||W ||Lp(R6) (1−∆x)(1−∆y)(1−∆z) ,

for p > 1, but in our application ||UR||Lp(R6) ∼ R−6(p−1) is then too large due to the

constraint R ≪ N−1/3 in (29). Therefore, to overcome this difficulty, we have to

relax the condition R ≪ N−1/3 before applying the mean-field techniques, and this
requires new ideas.

Repeated use of the Dyson lemma. We will replace UR by softer potentials
by applying the Dyson lemma again, in the spirit of (24) where N−2UR plays the
role of UN,β and R plays the role of N−β. As we already mentioned before, in our
second use of the Dyson lemma, we only use a very small fraction of the kinetic
energy. More precisely, for every 0 < R ≪ R1 ≪ 1 we can find 0 < ν ≪ 1 such that

− ν∆M +N−2UR(x) > N−2UR1(x)(1 + o(1)) . (33)

However, the latter bound is not very helpful since if we use it to deal with the N -
body Hamiltonian, then we have to impose the additional condition R1 ≪ N−1/3,
which is similar to (29), in order to control the corresponding four-body error terms.
Therefore, to proceed further we have to introduce a new technique to relax the
condition on R1.

Adjustment of the number of particles. To relax the condition on R1, we
will replace the N -body Hamiltonian by a N1-body Hamiltonian with N1 ≪ N .
Heuristically, if we can replace N by N1 ≪ N , then the constraint on R1 becomes

R1 ≪ N
−1/3
1 which is much better than the previous condition R1 ≪ N−1/3. This

can be done rigorously using the bosonic symmetry of ΨN , namely we can rewrite
the main term on the right-hand side of (28) as

1

N
Tr

( N∑

i=1

h̃i +
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR(xi − xj , xi − xk)

)
ΓN

≈ 1

N1
Tr

( N1∑

i=1

h̃i +
1

6N2
1

∑

16i,j,k6N1
i 6=j 6=k 6=i

UR(xi − xj , xi − xk)

)
ΓN (34)
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for N ≫ N1 ≫ 1. For the N1-body Hamiltonian, the following bound

−ν∆M +N−2
1 UR(x) > N−2

1 UR1(x)(1 + o(1)),

can be used instead of (33), and we can replace UR on the right-hand side of (34)
by UR1 for a lower bound as soon as

N
−1/3
1 ≫ R1 ≫ R ≫ N

−1/2
1 .

The latter constraints are comparable to (29). By choosing N1 suitably, we can
fulfill these conditions provided that

R2/3 ≫ R1 ≫ R ,

and obtain

1

N
Tr

( N∑

i=1

h̃i +
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR(xi − xj , xi − xk)

)
ΓN

>
1− ε

N
Tr

( N∑

i=1

h̃i +
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

UR1(xi − xj, xi − xk)

)
ΓN + o(1) .

Here, we already used the bosonic symmetry again to replace N1 by N on the right-
hand side. Repeating this procedure, we can replace UR by URℓ

for every fixed ℓ ∈ N

provided that

R
2/3
ℓ−1 ≫ Rℓ ≫ Rℓ−1 .

Thus, for every η > 0 small arbitrarily, we can choose Rℓ = N−η with ℓ = ℓ(η)
sufficiently large. Putting it all together, we deduce from (28) that

EN

N
>

(1− ε)ℓ+1

N
Tr

( N∑

i=1

h̃i +
1

6N2

∑

16i,j,k6N
i 6=j 6=k 6=i

URℓ
(xi − xj, xi − xk)

)
ΓN + o(1)

with a soft potential URℓ
that can be handled by the mean-field techniques from [24].

The details will be discussed in Section 5. Taking ε → 0+ at the end, we obtain the
desired lower bound

EN

N
> inf

||u||L2(R3)=1

(
〈u, hu〉L2(R3) +

bM(V )

6

ˆ

R3

|u(x)|6 dx
)
+ o(1) .

This completes our sketch of the proof of Theorem 1.

Proof of the BEC. Theorem 2 follows from a Hellmann–Feynman argument as in [39],
where we will derive the energy convergence of Theorem 1 for a perturbed problem.
This will be discussed in Section 7.

Organization of the paper. In Section 2, we discuss basic facts on the scattering
energy in (11). Then, we derive several versions of the Dyson lemma in Section 3,
which will be used to replace the potential VN by softer ones in Section 4. In
Section 5, we conclude the energy lower bound in Theorem 1. The matching energy
upper bound is proved in Section 6. Finally, the convergence of states in Theorem 2
is obtained in Section 7.

Notation. From now on and for shortness, we will denote ||·||p := ||·||Lp(Rd) when

there is no possible confusion on the dimension d.
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2. Scattering energy

2.1. General setting. In this section we discuss the zero-scattering problem of
nonnegative potentials which are not necessarily radial. We refer to [30, Appendix
C] for a related discussion in the case of radial potentials.

Let d > 3 and 0 6 v ∈ L∞(Rd) be compactly supported. We define the zero–
scattering energy of v by

b(v) := inf
ϕ∈Ḣ1(Rd)

ˆ

Rd

(
2|∇ϕ(x)|2 + v(x)|1 − ϕ(x)|2

)
dx . (35)

Here, Ḣ1(Rd) is the space of functions g : Rd → C vanishing at infinity with
|∇g| ∈ L2(Rd), denoted by D1(Rd) in Lieb–Loss [26, Section 8.3].

Theorem 6 (General scattering solution). Let d > 3 and 0 6 v ∈ L∞(Rd) be
compactly supported. Then, the variational problem (35) has a unique minimizer
ω = (−2∆ + v)−1v. It solves, for almost every x ∈ R

d, the scattering equation

−2∆ω(x) + v(x)(ω(x) − 1) = 0

and satisfies, for all x ∈ R
d, the pointwise estimates

0 6 ω(x) < 1 , ω(x) 6
Cd,v

|x|d−2 + 1
, and |∇ω(x)| 6 Cd,v

|x|d−1 + 1
. (36)

Moreover, the scattering energy satisfies

b(v) =

ˆ

Rd

v(x)(1 − ω(x)) dx and 0 6

ˆ

Rd

v − b(v) 6 Cd ||v||22d
d+2

. (37)

Proof. Let {ϕn}∞n=1 ⊂ Ḣ1(Rd) be a minimizing sequence for the functional

E [ϕ] =

ˆ

Rd

(
2 |∇ϕ(x)|2 + v(x) |1− ϕ(x)|2

)
dx .

We can assume that ϕn is real-valued, since we can ignore the imaginary part of
ϕn without increasing E [ϕn], and that 0 6 ϕn 6 1, since we can replace ϕn by
min(max(ϕn, 0), 1) without increasing E [ϕn]. Given that E [ϕn] is bounded and v

nonnegative, ϕn is bounded in Ḣ1(Rd) and
√
v(1−ϕn) is bounded in L2(Rd). By the

Banach–Alaoglu theorem, we can assume up to a subsequence that ϕn ⇀ ω weakly
in Ḣ1(Rd) and

√
v(1 − ϕn) ⇀

√
v(1 − ω) weakly in L2(Rd). By Fatou’s lemma,

we conclude that ω is a minimizer. The minimizer ω is unique since the functional
ϕ 7→ E [ϕ] is strictly convex.

The above proof also gives 0 6 ω 6 1. Moreover, E [ω] 6 E [ω + tϕ] for t > 0 and
any function ϕ ∈ C∞

c (Rd). Hence,

0 6
d

dt |t=0
E [ω + tϕ] = 2

ˆ

Rd

(
2∇ω · ∇ϕ+ v(ω − 1)ϕ

)
.

Thus

− 2∆ω + v(ω − 1) = 0 (38)



THE CONDENSATION OF A BOSE GAS WITH THREE-BODY INTERACTIONS 15

in the distributional sense. Since 0 6 v(1 − ω) 6 v ∈ L1(Rd) ∩ L∞(Rd), we get
ω ∈ H2(Rd) ∩ C1(Rd) by the standard elliptic regularity [26, Theorem 10.2]. Thus,
equation (38) holds in the pointwise sense (almost everywhere).

The scattering equation can be written as

ω(x) = (−2∆)−1[v(1 − ω)](x) =
1

2|Sd−1|(d− 2)

ˆ

Rd

v(y)(1 − ω(y)) dy

|x− y|d−2
(39)

where |Sd−1| is the surface area of the (d − 1) dimensional sphere S
d−1. Since

v(1 − ω) ∈ L1(Rd) and it has compact support, we deduce from (39) that ω(x)
decays as O(|x|2−d) as |x| → ∞. Since 0 6 ω 6 1 everywhere, we conclude that

ω(x) 6
Cd,v

|x|d−2 + 1
for all x ∈ R

d .

Moreover, note that (38) is equivalent to −2∆f + vf = 0 pointwise with f = 1−w.
Therefore, from v ∈ L∞(Rd), f > 0 everywhere, and f is not identically zero (since
it does not vanish at infinity), we find that f > 0 everywhere by [26, Theorem 9.10].
Thus, ω < 1 everywhere.

From (39), we also obtain

∇ω(x) = − 1

2|Sd−1|

ˆ

Rd

v(y)(1 − ω(y))(x − y) dy

|x− y|d . (40)

This implies that |∇ω(x)| decays as O(|x|1−d) as |x| → ∞. Moreover, since ω ∈
C1(Rd), we conclude that

|∇ω(x)| 6 Cd,v

|x|d−1 + 1
for all x ∈ R

d .

Finally, since ω is a minimizer for (35) we have

b(v) =

ˆ

Rd

(
2|∇ω(x)|2 + v(x)|1 − ω(x)|2

)
dx .

On the other hand, from the scattering equation we have
ˆ

Rd

(
2|∇ω(x)|2 + v(x)(ω(x) − 1)ω(x)

)
dx = 0 .

Thus, we can rewrite

b(v) =

ˆ

Rd

(
v(x)|1 − ω(x)|2 − v(x)(ω(x) − 1)ω(x)

)
dx =

ˆ

Rd

v(x)(1 − ω(x)) dx .

Using the scattering equation ω = (−2∆+v)−1v and the Hardy–Littlewood–Sobolev
inequality, we can estimate

0 6

ˆ

Rd

v − b(v) =

ˆ

Rd

vω =

ˆ

Rd

v (−2∆ + v)−1 v

6
1

2

ˆ

Rd

v (−∆)−1 v 6 Cd ||v||22d
d+2

. �

Remark 7. It is well-known (see for example [7, 44]) that, by repeatedly using the
scattering equation ω = (−2∆ + v)−1v and the resolvent formula, we can write the
scattering energy as a Born series expansion

b(v) =

ˆ

Rd

v −
ˆ

Rd

v(−2∆ + v)−1v =

ˆ

Rd

v −
ˆ

Rd

v(−2∆)−1v + . . . .

If v > 0 and v 6≡ 0, then b(v) <
´

Rd v since (−2∆ + v)−1 > 0 on L2(Rd). △
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2.2. Three-body symmetry. Let V : R6 → R+ satisfy the three-body symme-
try (6). One can check that (6) is equivalent to

V (x, y) = V (y, x) = V (x− y,−y) for all (x, y) ∈ R
3 × R

3 .

Put differently, V = V (g·) when g : R3 × R
3 → R

3 × R
3 is equal to

S :=

(
0 1
1 0

)
or A :=

(
1 −1
0 −1

)
.

Note that both S and A are symmetries (S2 = A2 = 1) and that SAS = ASA.
Thus, the group generated by A and S is finite and is given by

G = {I, S,A,AS, SA,ASA} . (41)

In summary, the symmetry (6) is equivalent to the fact that V = V (g·) for all g ∈ G
—namely, V is invariant under the action of G.

Next, let us consider the scattering problem associated to the three-body inter-
action potential V (x− y, x− z). Consider the operator

−∆x1 −∆x2 −∆x3 + V (x1 − x2, x1 − x3) on L2
(
(R3)3

)
.

After removing the center of mass, we are left with the two-body operator

−2∆M + V (x, y) on L2
(
(R3)2

)
,

where −∆M = |M∇R6 |2 with the matrix M : R3 × R
3 → R

3 × R
3 given by

M :=

(
1

2

(
2 1
1 2

))1/2

=
1

2
√
2

(√
3 + 1

√
3− 1√

3− 1
√
3 + 1

)
. (42)

We define the modified scattering energy

bM(V ) := inf
ϕ∈Ḣ1(Rd)

ˆ

Rd

(
2|M∇ϕ(x)|2 + V (x)|1 − ϕ(x)|2

)
dx . (43)

As we will see, by a change of variables, the results from the previous section on the
standard scattering energy b(V ), defined in (35), can be used to understand bM(V ),
defined in (43). To be precise, from Theorem 6 we have the following.

Theorem 8 (Modified scattering solution). Let 0 6 V ∈ L∞(R6) be compactly
supported and satisfy the symmetry (6). Then, the variational problem (43) has a
unique minimizer ω = (−2∆M+V )−1V . The function ω satisfies the symmetry (6),
it solves, for almost every x ∈ R

6, the modified scattering equation

−2∆Mω(x) + V (x)(ω(x) − 1) = 0

—which is equivalent to solve, for almost every x, y, z ∈ R
3, the equation

(−∆x −∆y −∆z)ω(x− y, x− z) + (V (ω − 1))(x− y, x− z) = 0—,

and it satisfies, for all x ∈ R
6, the pointwise estimates

0 6 ω(x) < 1 , ω(x) 6
CV

|x|4 + 1
, and |∇ω(x)| 6 CV

|x|5 + 1
.

The modified scattering energy satisfies

bM(V ) =

ˆ

R6

V (x)(1 − ω(x)) dx and 0 6

ˆ

R6

V − bM(V ) 6 C ||V ||23
2
. (44)

Moreover, bM(V ) = b(V (M·)) detM for b defined in (35). Here, detM = 3
√
3/8.
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Proof. Note that for every ϕ ∈ Ḣ1(R6) we have
ˆ

R6

2|M∇ϕ|2 + V |1− ϕ|2 =

ˆ

R6

(
2|M(∇ϕ)(M·)|2 + V (M·)|1 − ϕ(M·)|2

)
detM

= detM
ˆ

R6

2|∇(ϕ(M·))|2 + V (M·)|1 − ϕ(M·)|2 . (45)

Moreover, it is obvious that ϕ ∈ Ḣ1(R6) if and only if ϕ(M·) ∈ Ḣ1(R6). Therefore,

bM(V ) = inf
ϕ∈Ḣ1(Rd)

ˆ

Rd

2|∇Mϕ|2 + V |1− ϕ|2

= detM inf
ϕ∈Ḣ1(Rd)

ˆ

R6

2|∇(ϕ(M·))|2 + V (M·)|1 − ϕ(M·)|2

= detM inf
ϕ∈Ḣ1(Rd)

ˆ

R6

2|∇ϕ|2 + V (M·)|1 − ϕ|2 = b(V (M·)) detM .

Thanks to (45), it is straightforward that the minimizer of bM(V ) in (43) is
ω = ω̃(M−1·) with ω̃ the unique minimizer of b(V (M·)) defined in (35). Thus, most
of the statements in Theorem 8 follow from Theorem 6. From the equation

−2∆Mω(x) + V (x)(ω(x) − 1) = 0 for a.e. x ∈ R
6 ,

we can also deduce that

(−∆x−∆y−∆z)ω(x− y, x− z)+ (V (ω−1))(x− y, x− z) = 0 for a.e. x, y, z ∈ R
3 ,

by removing the center of mass similarly to (10).
Finally, let us prove that ω is invariant under the actions of G. Since V is invariant

under the actions of G and ω = (−2∆M + V )−1V , it remains to check that −∆M is
also invariant under the actions of G. For every ϕ ∈ C∞

c (R6) and g ∈ G, using
gM2g† = M2 (46)

and |det g| = 1, we have

〈ϕ(g·),−∆Mϕ(g·)〉L2(R6) =

ˆ

R6

|M∇(ϕ(gx))|2 dx =

ˆ

R6

|Mg†(∇ϕ)(gx)|2 dx

=

ˆ

R6

|M(∇ϕ)(x)|2|det g|dx =

ˆ

R6

|M(∇ϕ)(x)|2 dx

= 〈ϕ,−∆Mϕ〉L2(R6) .

Thus, ω = ω(g·) for all g ∈ G and it therefore satisfies the symmetry (6). �

3. Dyson lemmas

3.1. Dyson lemma for non-radial potentials.

Theorem 9 (Dyson lemma for non-radial potentials). Let d > 3, 0 6 v ∈ L∞(Rd)
with Supp v ⊂ {|x| 6 R0}, and 0 6 U ∈ C(Rd) be radial with

´

Rd U = 1 and
SuppU ⊂ {R1 6 |x| 6 R2}. Then, we have the operator inequality

−2∇x1{|x|6R2}∇x + v(x) > b(v)

(
1− CdR0

R1

)
U(x) on L2(Rd)

with a constant Cd > 0 depending only on the dimension d.

We will later use Theorem 9 for d = 6. Note that we need the characteristic
function 1{|x|6R2} since we will apply the Dyson lemma to a specific region of the
configuration space where three particles are in the same neighborhood.
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Proof. If R1 < 2R0, then we can take Cd = 2 and the desired inequality holds
trivially since the right-hand side is negative. Thus, it remains to consider the case
R1 > 2R0.

Let ω be the scattering solution to b(v) as in Theorem 6. Then, the function
f := 1− ω satisfies

0 < f 6 1 , −2∆f + vf = 0 , and lim
|x|→∞

f(x) = 1 .

We now take an arbitrary function ϕ ∈ C∞
c (Rd) and denote η = ϕ/f . For every

R ∈ [R1, R2], integrating by parts and using the scattering equation, we have
ˆ

B(0,R)
2|∇ϕ|2 + v|ϕ|2 =

ˆ

B(0,R)
2f2|∇η|2 +2|η|2|∇f |2 +2f(∇f)∇(|η|2) + vf2|η|2

=

ˆ

B(0,R)
2f2|∇η|2 +

ˆ

B(0,R)
|η|2f (−2∆f + vf) +

ˆ

∂B(0,R)
2|η|2f(∇f) · ~n

=

ˆ

B(0,R)
2f2|∇η|2 +

ˆ

∂B(0,R)
2|ϕ|2 (∇f) · ~n

f
,

where B(0, R) = {|x| 6 R} and ~nx = x/|x| is the outward unit normal vector on
the sphere ∂B(0, R). Therefore, for every R ∈ [R1, R2], we can bound
ˆ

B(0,R2)
2|∇ϕ|2 + v|ϕ|2 >

ˆ

B(0,R)
2|∇ϕ|2 + v|ϕ|2 > 2

ˆ

∂B(0,R)
|ϕ|2 (∇f) · ~n

f
. (47)

Let us now compute ((∇f) · ~n)/f on the sphere ∂B(0, R). Recall from (40) that

∇f(x) · ~nx =
1

2|Sd−1|

ˆ

Rd

v(y)f(y)
(x− y)

|x − y|d · ~nx dy .

For every |x| > 2R0 and |y| 6 R0, a Taylor expansion gives
∣∣∣∣
x− y

|x− y|d − x

|x|d
∣∣∣∣ 6 Cd

R0

|x|d , hence
x− y

|x− y|d · ~nx >
1

|x|d−1

(
1− Cd

R0

|x|

)
,

where the triangle inequality was used to obtain the second estimate. Since Supp v ⊂
B(0, R0) and b(v) =

´

Rd vf , we have for all |x| > 2R0 that

∇f(x) · ~nx >
1

2|Sd−1|

ˆ

Rd

v(y)f(y)

|x|d−1

(
1− Cd

R0

|x|

)
dy =

b(v)

2|Sd−1||x|d−1

(
1− CdR0

|x|

)
.

(48)
Consequently, on one hand, for every R ∈ [R1, R2] such that 1 − CdR0/R > 0,
inserting (48) in (47) and using 1/f > 1, we get

ˆ

B(0,R2)
2|∇ϕ|2 + v|ϕ|2 >

b(v)

|Sd−1|Rd−1

(
1− CdR0

R

)
ˆ

∂B(0,R)
|ϕ|2 . (49)

On the other hand, if 1− CdR0/R < 0, then (49) holds trivially since the left-hand
side is always nonnegative. Thus, (49) holds for all R ∈ [R1, R2]. Integrating both
sides of (49) against |Sd−1|Rd−1U(R) with R ∈ [R1, R2] and using

´

Rd U = 1 for the
left-hand side, we conclude that

ˆ

B(0,R2)
2|∇ϕ|2 + v|ϕ|2 > b(v)

(
1− CdR0

R1

)
ˆ

Rd

U |ϕ|2 .

Since the latter bound holds for all ϕ ∈ C∞
c (Rd), we obtain the desired operator

inequality. �
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3.2. Dyson lemma with the three-body symmetry. We have the following
variant of Theorem 9 for interaction potentials with the three-body symmetry.

Theorem 10 (Dyson lemma with modified scattering energy). Let 0 6 V ∈ L∞(R6)

be supported in B(0, R0) and satisfy the symmetry (6). Let 0 6 Ũ ∈ C(R6) be radial

with
´

R6 Ũ = 1 and Supp Ũ ⊂ {R1 6 |x| 6 R2}. Define

U :=
1

6

∑

g∈G
Ũ(M−1g·) det(M−1) , (50)

where G and M are given in (41) and (42). Then, 0 6 U ∈ C(R6) satisfies the

symmetry (6),
´

R6 U = 1, and SuppU ⊂ {
√

2/3R1 6 |x| 6
√
2R2}. Moreover, we

have the operator inequality

−2M∇x1{|x|6
√
2R2}M∇x + V (x) > bM(V )

(
1− CR0

R1

)
U(x) on L2

(
R
6
)
.

Here, C > 0 is a universal constant (independent of V,U,R0, R1, R2).

Proof. From the definition (50), it is clear that U(x) = U(gx) for all g ∈ G. Thus, U
satisfies the symmetry (6). On the other hand, it is straightforward to diagonalize

M and find that its spectrum is equal to {
√

1/2,
√

3/2}, which in particular implies

that
√

1/2 6 M 6
√

3/2. Combining these bounds with (46), we find that

|M−1gx| = |M−1x| ∈
[√

2/3|x|,
√
2|x|

]
for all x ∈ R

6 .

Therefore, from the assumption Supp Ũ ⊂ {R1 6 |x| 6 R2}, we deduce that

SuppU ⊂ {
√

2/3R1 6 |x| 6
√
2R2} .

Moreover,
´

R6 U =
´

R6 Ũ = 1 by change of variables and using |det g| = 1 for g ∈ G.
Next, we prove the operator inequality. We start by applying Theorem 9 to

V (M·). Note that SuppV (M·) ⊂ B(0,
√

3/2R0), since SuppV ⊂ B(0, R0) and√
1/2 6 M 6

√
3/2. Hence, Theorem 9 gives

−2∇x1{|x|6R2}∇x + V (Mx) >

(
1− CR0

R1

)
b(V (M·))Ũ (x) on L2

(
R
6
)
.

Since V = V (g·) for g ∈ G, the change of variable x = M−1gy gives, on L2(R6),

−2M∇y1{|M−1y|6R2}M∇y + V (y) >

(
1− CR0

R1

)
b(V (M·))Ũ (M−1gy) .

On the left-hand side, we use 1{|M−1y|6R2} 6 1{|y|6
√
2R2} since |M−1y| >

√
1/2|y|.

On the right-hand side, we average over g ∈ G and use b(V (M·)) = bM(V ) detM−1

(see Theorem 8). The proof is therefore complete as it yields

−2M∇y1{|y|6
√
2R2}M∇y + V (y) >

(
1− CR0

R1

)
bM(V )U(y) on L2

(
R
6
)
. �

3.3. Many-body Dyson lemma. We have the following many-body version of the
Dyson lemma.

Lemma 11 (Many-body Dyson lemma). Let 0 6 W ∈ L∞(R6) be supported in

B(0, R0) and satisfy the symmetry (6). Let 0 6 Ũ ∈ L∞(R6) be radial with
´

R6 Ũ = 1
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and Supp Ũ ⊂ {1/8 6 |x| 6 1/4}. Define U as in (50) and UR = R−6U(R−1·).
Then, for all s > 0 and 0 < ε < 1, we have

M∑

i=1

p2i1{|pi|>s} +
1

6

∑

16i,j,k6M
i 6=j 6=k 6=i

W (xi − xj , xi − xk) (51)

>
bM(W )(1− ε)

6

(
1− CR0

R

)

×
∑

16i,j,k6M
i 6=j 6=k 6=i

U(xi − xj, xi − xk)
∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)

− Cε−1s5R3M2 .

Here, C > 0 is a universal constant (independent of W,U,M,R, ε, s).

Note that in (51) we only use the high-momentum part of the kinetic energy on
the left-hand side. This is important for our application, since we need the low-
momentum part to recover the NLS functional. If we use fully the kinetic energy,
then the bound becomes simpler:

M∑

i=1

p2i +
1

6

∑

16i,j,k6M
i 6=j 6=k 6=i

W (xi − xj , xi − xk)

>
bM(W )

6

(
1− CR0

R

)

×
∑

16i,j,k6M
i 6=j 6=k 6=i

U(xi − xj , xi − xk)
∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)
.

(52)

The latter bound follows from from (51) by taking s → 0 and then ε → 0.

Proof. Denote χR(x) = 1{|x|6R} = 1− θR(x) for x ∈ R
3. For (x1, . . . , xM ) ∈ (R3)M

and i, j, k ∈ {1, 2, . . . ,M} with i 6= j 6= k 6= i, we denote

Fijk := χR(xi − xj)χR(xi − xk)χR(xj − xk)
∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)
.

Clearly Fijk ∈ {0, 1}. Moreover, by the triangle inequality

Fijk 6 χR(xi − xj)χR(xi − xk)
∏

ℓ 6=i,j,k

θR (xi − xℓ) .

Hence, for every 1 6 i 6 M , there is at most one pair j, k such that Fijk = Fikj 6= 0.
Thus, we have the “no four-body collision” bound

∑

16j,k6M
i 6=j 6=k 6=i

Fijk 6 2 .

Multiplying the above inequalities from the right and from the left by pi1{|pi|>s},
where pi = −i∇xi , then summing over i, we obtain

M∑

i=1

p2i1{|pi|>s} >
1

2

∑

16i,j,k6M
i 6=j 6=k 6=i

1{|pi|>s}piFijkpi1{|pi|>s} . (53)
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Let us now remove the momentum cut-off on the right-hand side of (53). By
decomposing 1{|pi|>s} = 1 − 1{|pi|6s} and using the Cauchy–Schwarz inequality, we
obtain for all 0 < ε < 1

1{|pi|>s}piFijkpi1{|pi|>s} > (1− ε)piFijkpi − ε−1
1{|pi|6s}piFijkpi1{|pi|6s} .

Hence, we deduce from (53) that

M∑

i=1

p2i1{|pi|>s} >
1− ε

2

∑

16i,j,k6M
i 6=j 6=k 6=i

piFijkpi −
ε−1

2

∑

16i,j,k6M
i 6=j 6=k 6=i

1{|pi|6s}piFijkpi1{|pi|6s} .

(54)
For every 1 6 i, j 6 M with i 6= j, we have

∑

16k6M
k 6=i,j

Fijk 6 χR(xi − xj) .

On the other hand, using

||f(x)g(p)||S2(L2(Rd)) = (2π)−d/2 ||f ||L2(Rd) ||g||L2(Rd) ,

where S2(L2(Rd)) is the space of Hilbert–Schmidt operators, we find that

0 6 1{|pi|6s}piχR(xi − xj)pi1{|pi|6s}

6
∣∣∣∣1{|pi|6s}piχR(xi − xj)pi1{|pi|6s}

∣∣∣∣
op

6
∣∣∣∣1{|pi|6s}piχR(xi − xj)

∣∣∣∣2
S2(L2(R3,dxi))

= (2π)−3
∣∣∣∣1{|pi|6s}|pi|

∣∣∣∣2
L2(R3,dpi)

||χR(xi − xj)||2L2(R3,dxi)
6 Cs5R3 .

Thus, we can bound the last term on the right-hand side of (54) as
∑

16i,j,k6M
i 6=j 6=k 6=i

1{|pi|6s}piFijkpi1{|pi|6s} 6
∑

16i,j6M
i 6=j

1{|pi|6s}piχR(xi − xj)pi1{|pi|6s}

6 Cs5R3M2 .

Hence, (54) reduces to

M∑

i=1

p2i1{|pi|>s} >
1− ε

6

∑

16i,j,k6M
i 6=j 6=k 6=i

∑

n∈{i,j,k}
pnFijkpn − Cε−1s5R3M2 ,

which is equivalent to

M∑

i=1

p2i1{|pi|>s} +
1− ε

6

∑

16i,j,k6M
i 6=j 6=k 6=i

W (xi − xj , xi − xk)

>
1− ε

6

∑

16i,j,k6M
i 6=j 6=k 6=i


 ∑

n∈{i,j,k}
pnFijkpn +W (xi − xj, xi − xk)


 −Cε−1s5R3M2 .

Now, let us show that for any given (i, j, k) with i 6= j 6= k 6= i, we have
∑

n∈{i,j,k}
pnFijkpn +W (xi − xj, xi − xk)
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>

(
1− CR0

R

)
bM(W )U(xi − xj , xi − xk)

∏

ℓ 6=i,j,k

θ2R

(
xi + xj + xk

3
− xℓ

)
. (55)

We do the change of variables similarly to (9):

ri =
1

3
(xi + xj + xk) , rj = xi − xj , and rk = xi − xk .

Then,

pxi =
1

3
pri + prj + prk , pxj =

1

3
pri − prj , and pxk

=
1

3
pri − prk ,

hence
∑

n∈{i,j,k}
pnFijkpn = pxiFijkpxi + pxjFijkpxj + pxk

Fijkpxk

=

(
1

3
pri + prj + prk

)
Fijk

(
1

3
pri + prj + prk

)

+

(
1

3
pri − prj

)
Fijk

(
1

3
pri − prj

)
+

(
1

3
pri − prk

)
Fijk

(
1

3
pri − prk

)

=
1

3
priFijkpri + 2prjFijkprj + 2prkFijkprk + prjFijkprk + prkFijkprj .

We can remove priFijkpri > 0 for a lower bound. Moreover, by introducing the
notation rjk = (rj , rk) ∈ R

6 we have

Fijk = χR(rj)χR(rk)χR(rj − rk)
∏

ℓ 6=i,j,k

θ2R(ri − xℓ) > 1{|rjk|6R/2}
∏

ℓ 6=i,j,k

θ2R(ri − xℓ) .

Thus,

∑

n∈{i,j,k}
pnFijkpn

> 2prjFijkprj + 2prkFijkprk + prjFijkprk + prkFijkprj = 2MprjkFijkMprjk

> 2Mprjk1{|rjk|6R/2}Mprjk
∏

ℓ 6=i,j,k

θ2R(ri − xℓ) .

Since W > 0, we have the obvious bound

W (xi − xj , xi − xk) = W (rjk) > W (rjk)
∏

ℓ 6=i,j,k

θ2R(ri − xℓ) .

Using Theorem 10, we obtain

∑

n∈{i,j,k}
pnFijkpn +W (xi − xj, xi − xk)

>
(
2Mprjk1{|rjk|6R/2}Mprjk +W (rjk)

) ∏

ℓ 6=i,j,k

θ2R(ri − xℓ)

> (1− CR0/R)bM(W )UR(rjk)
∏

ℓ 6=i,j,k

θ2R(ri − xℓ) .

Thus, (55) holds, completing the proof of Lemma 11. �
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4. Reduction to softer interaction potentials

In this section, we prove Lemma 12 below. This is the central piece for the proof
of the lower bound on the energy EN , defined in (7), which is given in the next
section (Theorem 16). It allows to replace the singular potential VN by a potential
whose scaling is as close to the mean-field scaling as wanted. For Lemma 12 to hold,
we need some extra condition on the magnetic potential which will be lifted in the
end of the proof of Theorem 16 —namely,

lim
|x|→∞

|A(x)|2
Vext(x)

= 0 . (56)

Lemma 12 (Reduction to softer potentials). Let β ∈ (0, 3/8], 0 < ε < 1 < s, and
δ ∈ (0, ε2/2). Assume Vext to be as in (3) and A ∈ L3

loc(R
3) to satisfy (56). Let

0 6 Ũ ∈ L∞(R6) be radial with
´

R6 Ũ = 1 and Supp Ũ ⊂ {1/8 6 |x| 6 1/4}. Define

U as in (50) and UR = R−6U(R−1·). Then, for all integers N > 3, there exist an

integer M ∈ [(1− ε)N,N ] and R ∈ [N−β, N−β/2] such that

EN > inf σL2
s(R

3M )

( M∑

i=1

(hε,s)i +
bM(V )

6(M − 1)(M − 2)

∑

16i,j,k6M
i 6=j 6=k 6=i

UR(xi − xj, xi − xk)

)

− Cε,s,β,δR
2/7N − εCβN − δCεN ,

where hε,s := h− (1− ε)1{|p|>s}p2 with h defined in (2).

Note that, thanks to (56), the operator hε,s is bounded below for all ε ∈ (0, 1)
and s > 1. In fact, for all ε ∈ (0, 1), there is Cε such that

hε,s >
ε

2
p2 − Cε for all s > 1 . (57)

We first state and prove some preliminary results before giving the proof of Lemma 12
in Section 4.3.

4.1. Binding inequality. Consider the Hamiltonian

HM,N =

M∑

i=1

hi +
∑

16i<j<k6M

NV (N1/2(xi − xj), N
1/2(xi − xk)) (58)

and denote by E(M,N) its ground state energy and by ΓM,N the zero-temperature
limit of the bosonic Gibbs state —that is, the uniform average over all ground states
of HM,N . For any observable A, we denote 〈A〉ΓM,N

= TrAΓM,N .

Lemma 13. There exists a constant C > 0 such that for any integer N > 3 and
any 0 < ε < 1, there exists an integer M ≡ M(N, ε) ∈ [(1 − ε)N,N ] satisfying

E(M,N)− E(M − 4, N) 6 Cε−1 . (59)

Proof. Denote

Z := min
m∈[(1−ε)N,N ]∩N

(E(m,N)− E(m− 4, N)) .

Since Vext > 0 and V > 0, E(m,N) is nonnegative and increasing in m. Hence,

4E(N,N) >
∑

m∈[(1−ε)N,N ]∩N
(E(m,N)− E(m− 4, N)) > Z(εN − 1) .
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Combined with the simple upper bound E(N,N) 6 CN —take for instance u⊗N

with u ∈ C∞
c —, it gives Z 6 Cε−1. �

Remark 14. Using the concavity of the NLS functional in the parameter in front of
the nonlinearity and following the argument in the proof of [28, Proposition 1], we
can even find, for all N , an M ≡ M(N) such that N − o(N) 6 M 6 N and

E(M,N) − E(M − 4, N) 6 C .

However, this stronger conclusion is not needed for our purpose. △
4.2. Four-body estimate.

Lemma 15. Let M ≡ M(N, ε) be as in Lemma 13. Then, the zero temperature
limit of the Gibbs state ΓM,N of HM,N satisfies

〈 4∏

i=2

1{|x1−xi|6R}

〉

ΓM,N

6 CεR
9 . (60)

Proof. With an immediate adaptation of the proof of [28, Lemma 2] to three-body
interaction potentials, in particular using that Vext > 0 and V > 0, we obtain

〈ξ(x1, x2, x3, x4)〉ΓM,N
6 e(E(M,N)−E(M−4,N))

∣∣∣∣∣

∣∣∣∣∣
√

ξ
4∏

i=1

e∆xi

√
ξ

∣∣∣∣∣

∣∣∣∣∣
op

for any measurable function ξ(x1, x2, x3, x4) > 0, where the operator norm in the
right-hand side is the one in L2(R12). In particular, applying this bound to

ξ(x1, x2, x3, x4) =

4∏

i=2

1{|x1−xi|6R} , xi ∈ R
3 ,

and using E(M,N) − E(M − 4, N) 6 Cε−1, we find that

〈 4∏

i=2

1{|x1−xi|6R}

〉

ΓM,N

6 Cε

∣∣∣∣∣

∣∣∣∣∣

4∏

i=2

1{|x1−xi|6R}

4∏

i=1

e∆xi

4∏

i=2

1{|x1−xi|6R}

∣∣∣∣∣

∣∣∣∣∣
op

6 Cε

4∏

i=2

∣∣∣
∣∣∣1{|x1−xi|6R}e

− 1
2
p2i

∣∣∣
∣∣∣
2

S2(L2(R3,dxi))

= Cε

4∏

i=2

(2π)−3
∣∣∣∣1{|x1−xi|6R}

∣∣∣∣2
L2(R3,dxi)

∣∣∣
∣∣∣e−

1
2
p2i

∣∣∣
∣∣∣
2

L2(R3, dpi)
6 CεR

9 ,

where we used that ||K||2S2(L2(R3)) =
´

R3×R3 |K(x, y)|2 dxdy for any operator K ∈
S2(L2(R3)) with kernel K(x, y). �

4.3. Proof of Lemma 12. We now are ready to conclude.

Proof of Lemma 12. Step 1. Let s > 1 > ε > 0 be independent of N . Let M , with
(1− ε)N 6 M 6 N , be as in Lemma 13 and ΓM,N be the zero temperature limit of
the Gibbs state for HM,N in (58). We first prove a bound on E(M,N) and deduce,
in the last step of this proof, the desired estimate for E(N,N). Let

M−1/2 ≪ R0 ≪ M−1/3 . (61)
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Applying Lemma 11 with W = NV (N1/2·), which is supported in B(0, CN−1/2)
and has bM(W ) = bM(V )/N2, we have the operator inequality on L2

s(R
3M )

M∑

i=1

p2i1{|pi|>s} +
1

6

∑

16i,j,k6M
i 6=j 6=k 6=i

NV (N1/2(xi − xj), N
1/2(xi − xk))

>
bM(V )(1 − ε)

6N2

(
1− C

N1/2R0

)

×
∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)
∏

ℓ 6=i,j,k

θ2R0

(
xi + xj + xk

3
− xℓ

)

− Cε−1s5R3
0M

2 .

Multiplying both sides by (1− ε)/M and using (1− ε)N 6 M 6 N , we obtain

HM,N

M
>

bM(V )(1− ε)4

6M3

(
1− C

M1/2R0

)

×
∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)
∏

ℓ 6=i,j,k

θ2R0

(
xi + xj + xk

3
− xℓ

)

+
1

M

M∑

i=1

(hε,s)i − Cε,sMR3
0 , (62)

where we recall that hε,s = h− (1− ε)1{|p|>s}p
2.

Next, we remove the four-body cut-off in the interaction term on the right-hand
side of (62). Recall that χR(x) = 1{|x|6R} = 1 − θR(x). Using SuppUR ⊂ B(0, R)
and Bernoulli’s inequality, we have for every 1 6 i, j, k 6 M with i 6= j 6= k 6= i,

0 6 UR0(xi − xj, xi − xk)

[
1−

∏

ℓ 6=i,j,k

θ2R0

(
xi + xj + xk

3
− xℓ

)]

6
C

R6
0

χR0(xi − xj)χR0(xi − xk)

[
1−

∏

ℓ 6=i,j,k

θ2R0

(
xi + xj + xk

3
− xℓ

)]

6
C

R6
0

χR0(xi − xj)χR0(xi − xk)

[
1−

∏

ℓ 6=i,j,k

θ4R0 (xi − xℓ)

]

=
C

R6
0

χR0(xi − xj)χR0(xi − xk)

[
1−

∏

ℓ 6=i,j,k

(1− χ4R0 (xi − xℓ))

]

6
C

R6
0

∑

ℓ 6=i,j,k

χ4R0(xi − xj)χ4R0(xi − xk)χ4R0(xi − xℓ) .

Combining it with Lemma 15, we find that
∑

16i,j,k6M
i 6=j 6=k 6=i

〈
UR0(xi − xj, xi − xk)

[
1−

∏

ℓ 6=i,j,k

θ2R0

(
xi + xj + xk

3
− xℓ

)]〉

ΓM,N

6
C

R6
0

∑

16i,j,k6M
i 6=j 6=k 6=i

∑

ℓ 6=i,j,k

〈χ4R0(xi − xj)χ4R0(xi − xk)χ4R0(xi − xℓ)〉ΓM,N
6 CεM

4R3
0
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thence, from (62), that

E(M,N)

M
=

1

M
〈HM,N〉ΓM,N

>
1

M

〈 M∑

i=1

(hε,s)i +
bε

6M2

(
1− C

M1/2R0

) ∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)

〉

ΓM,N

− Cε,sMR3
0 , (63)

where we used the notation bε = bM(V )(1−ε)4. Combining it with the simple upper
bound E(M,N) 6 CM , we get

bε
6M3

〈 ∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

6 Cε,s . (64)

Hence, (63) can be simplified to

E(M,N)

M
>

1

M

〈 M∑

i=1

(hε,s)i +
bε

6M2

∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

− Cε,s

(
1

M1/2R0
+MR3

0

)
. (65)

The optimal choice of R0 is determined by 1/(M1/2R0) = MR3
0 —namely,

R0 = M−3/8 .

The condition (61) is clearly satisfied. With this choice, we have

E(M,N)

M
>

1

M

〈 M∑

i=1

(hε,s)i +
bε

6M2

∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

− Cε,sM
−1/8 . (66)

Step 2. The error term MR3
0 in (65) forbids to directly take R0 ∼ N−β and

to conclude. Essentially, it means that (65) is only useful in the dilute regime

R0 . M−1/3. We now use the bosonic symmetry to reformulate the energy as
the one of a system with fewer particles M1 ≪ M , broadening the range of the
interaction for which the system is dilute. Using again the Dyson Lemma, we replace

the potential UR0 by a softer one UR1 for R0 ≪ R1 ≪ M
−1/3
1 . Unlike in Step 1, here,

we can only use a small fraction of the kinetic energy. For that reason, we replace
the particle number M by a smaller parameter M1 in order to improve the error
caused by the removal of the four-body cut-off. Keeping in mind that R0 = M−3/8,
the parameters M1 and R1 are chosen such that

M
−1/3
1 ≫ R1 ≫ R0 ≫ M

−1/2
1 . (67)
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To be precise, by the bosonic symmetry of ΓM,N , the main term in (66) can be
written as

1

M

〈 M∑

i=1

(hε,s)i +
bε

6M2

∑

16i,j,k6M
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)

〉

ΓM,N

=
1

M1

〈 M1∑

i=1

(hε,s)i +
bε(M − 1)(M − 2)

6M2(M1 − 1)(M1 − 2)

∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

>
1

M1

〈 M1∑

i=1

(hε,s)i +
bε

6M2
1

∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

. (68)

Here, we used that

(M − 1)(M − 2)

M2
>

(M1 − 1)(M1 − 2)

M2
1

> 0 for all M > M1 > 2 .

Next, we take a small parameter δ ∈ (0, ε2/2) and apply the Dyson lemma to the
potential W = δ−1bεM

−2
1 UR0 , which is supported in B(0, R0) and has the scattering

energy

bM(W ) > ||W ||L1(R6) − C ||W ||2L3/2(R6) >
bε

δM2
1

(
1− Cε,δ

M2
1R0

4

)
.

Here, we used (44) in the latter estimate (the condition R0 ≫ M
−1/2
1 ensures that

the scattering energy of W is well approximated by its first Born approximation).
Thus, from (52), after multiplying both sides by δ, we have the operator inequality
on L2

s(R
3M1)

δ

M1∑

i=1

p2i +
bε

6M2
1

∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)

>
bε

6M2
1

(
1− Cε,δ

M2
1R0

4

)(
1− CR0

R1

)

×
∑

16i,j,k6M1
i 6=j 6=k 6=i

UR1(xi − xj, xi − xk)
∏

ℓ 6=i,j,k

θ2R1

(
xi + xj + xk

3
− xℓ

)
.

Thanks to Lemma 15, we can remove the four-body cut-off in the interaction term
similarly to Step 1 —namely,

∑

16i,j,k6M1
i 6=j 6=k 6=i

〈
UR1(xi − xj , xi − xk)

[
1−

∏

ℓ 6=i,j,k

θ2R1

(
xi + xj + xk

3
− xℓ

)]〉

ΓM,N

6
C

R6
1

∑

16i,j,k6M1
i 6=j 6=k 6=i

∑

ℓ 6=i,j,k

〈χ4R1(xi − xj)χ4R1(xi − xk)χ4R1(xi − xℓ)〉ΓM,N
6 CεM

4
1R

3
1 .

Hence,
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1

M1

〈 M1∑

i=1

δp2i +
bε

6M2
1

∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)

〉

ΓM,N

>
bε

6M3
1

(
1− Cε,δ

M2
1R0

4

)(
1− CR0

R1

)〈 ∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

− CεM1R
3
1 .

From (57) and δ ∈ (0, ε2/2), we obtain δp2 6 εhε,s+ δCε. Inserting the latter bound
in (68), we deduce from (66) that

E(M,N)

M(1− ε)
>

1

M1

〈 M1∑

i=1

(hε,s)i

〉

ΓM,N

+
bε

6M2
1

(
1− Cε,δ

M2
1R0

4

)(
1− CR0

R1

)〈 ∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj, xi − xk)

〉

ΓM,N

− Cε,sM
−1/8 − CεM1R

3
1 − Cεδ . (69)

Combined with the simple bound E(M,N) 6 CM , it gives an analogue of (64):

bε
6M3

1

〈 ∑

16i,j,k6M1
i 6=j 6=k 6=i

UR1(xi − xj, xi − xk)

〉

ΓM,N

6 Cε,s .

Thus, (69) can be simplified into

E(M,N)

M(1− ε)
>

1

M1

〈 M1∑

i=1

(hε,s)i +
bε

6M2
1

∑

16i,j,k6M1
i 6=j 6=k 6=i

UR0(xi − xj , xi − xk)

〉

ΓM,N

− Cε,sM
−1/8 − Cε,δ

(
M1R

3
1 +

1

M2
1R0

4 +
R0

R1

)
− Cεδ .

We can choose M1 and R1 such that

M1R
3
1 =

1

M2
1R

4
0

=
R0

R1
=

(
(
M1R

3
1

)2 1

M2
1R

4

(
R0

R1

)6
)1/9

= R0
2/9,

namely

R1 = R0
7/9 and M1 =

R0
2/9

R3
1

= R
−19/7
1 .

The condition (67) is clearly satisfied. With this choice of parameters, we also have

M−1/8 ≪ R
2/7
1 , hence we arrive at

E(M,N)

M(1− ε)
>

1

M1

〈 M1∑

i=1

(hε,s)i +
bε

6M2
1

∑

16i,j,k6M1
i 6=j 6=k 6=i

UR1(xi − xj , xi − xk)

〉

ΓM,N

− Cε,s,δR
2/7
1 − Cεδ .
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Step 3. We can iterate the argument in Step 2 in order to reach softer potentials.
Denote

Rj = R
7/9
j−1 and Mj = R

−19/7
j for all j = 1, 2, . . . . (70)

Then, by induction, we can prove that, for every J ∈ N \ {0},

E(M,N)

M(1− ε)J
>

1

MJ

〈 MJ∑

i=1

(hε,s)i +
bε

6M2
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj , xi − xk)

〉

ΓM,N

− Cε,s,δ,JR
2/7
J − Cε,Jδ . (71)

Indeed, the case J = 1 has been handled in Step 2 and the general case is very similar
so we only mention some main estimates for the reader’s convenience. Assuming
that (71) holds for J − 1, we can write by the bosonic symmetry that

E(M,N)

M(1− ε)J−1
+ Cε,s,δ,JR

2/7
J−1 + Cεδ

>
1

MJ−1

〈MJ−1∑

i=1

(hε,s)i +
bε

6M2
J−1

∑

16i,j,k6MJ−1
i 6=j 6=k 6=i

URJ−1
(xi − xj, xi − xk)

〉

ΓM,N

>
1

MJ

〈 MJ∑

i=1

(hε,s)i +
bε

6M2
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ−1
(xi − xj, xi − xk)

〉

ΓM,N

.

Applying the Dyson lemma to W = δbεM
−2
J URJ−1

, we deduce from (52) that

δ

MJ∑

i=1

p2i +
bε

6M2
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ−1
(xi − xj, xi − xk)

>
bε

6M2
J

(
1− Cε,δ

M2
JR

4
J−1

)(
1− CRJ−1

RJ

)

×
∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj , xi − xk)

∏

ℓ 6=i,j,k

θ2RJ

(
xi + xj + xk

3
− xℓ

)
.

The four-body cut-off can be removed by Lemma 15, leading to
∑

16i,j,k6MJ
i 6=j 6=k 6=i

〈
URJ

(xi − xj , xi − xk)

[
1−

∏

ℓ 6=i,j,k

θ2RJ

(
xi + xj + xk

3
− xℓ

)]〉

ΓM,N

6
C

R6
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

∑

ℓ 6=i,j,k

〈χ4RJ
(xi − xj)χ4RJ

(xi − xk)χ4RJ
(xi − xℓ)〉ΓM,N

6 CεM
4
JR

3
J .

Moreover, combining it with the simple upper bound E(M,N) 6 CM , we get

bε
6M3

J

〈 ∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj, xi − xk)

〉

ΓM,N

6 Cε,s . (72)

Hence,
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1

MJ

〈
δ

MJ∑

i=1

p2i +
bε

6M2
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ−1
(xi − xj, xi − xk)

〉

ΓM,N

>
bε

6M3
J

〈 ∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj , xi − xk)

〉

ΓM,N

− Cε,s,δ

(
MJR

3
J +

CRJ−1

RJ
+

1

M2
JR

4
J−1

)
.

Thus, using again that δp2 6 εhε,s + δCε, we obtain

E(M,N)

M(1− ε)J
>

1

MJ

〈MJ−1∑

i=1

(hε,s)i +
bε

6M2
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj, xi − xk)

〉

ΓM,N

−Cε,s,δ,JR
2/7
J−1 −Cε,s,δ

(
MJR

3
J +

1

M2
JR

4
J−1

+
RJ−1

RJ

)
− Cεδ .

With the choice in (70), we have

MJR
3
J =

1

M2
JR

4
J−1

=
RJ−1

RJ
= R

2/9
J−1 = R

2/7
J

and the desired estimate (71) follows.

Step 4. To conclude, we choose J ∈ N \ {0} depending only on β such that

β

2
<

3

8

(
7

9

)J

6 β .

Then,

N−β/2 ≫ RJ = (R0)
( 7
9)

J

= M− 3
8(

7
9)

J

> N−β .

From (71) and (72), we have

E(M,N)

M(1− ε)J

>
1

MJ

〈 MJ∑

i=1

(hε,s)i +
bε

6M2
J

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj , xi − xk)

〉

ΓM,N

− Cε,s,δ,JR
2/7
J − Cεδ

=
1

M

〈 M∑

i=1

(hε,s)i +
bε(MJ − 1)(MJ − 2)

6M2
J (M − 1)(M − 2)

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj , xi − xk)

〉

ΓM,N

− Cε,s,δ,JR
2/7
J − Cεδ

>
1

M

〈 M∑

i=1

(hε,s)i +
bM(V )

6(M − 1)(M − 2)

∑

16i,j,k6M
i 6=j 6=k 6=i

URJ
(xi − xj, xi − xk)

〉

ΓM,N

− Cε,s,δ,JR
2/7
J − εCJ − Cεδ ,
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where we used that 1 − (MJ−1)(MJ−2)
M2

J
6 CM−1

J and |bε − bM(V )| 6 Cε, together

with the estimate
〈

1

6(M − 1)(M − 2)

∑

16i,j,k6MJ
i 6=j 6=k 6=i

URJ
(xi − xj, xi − xk)

〉

ΓM,N

6 C 〈URJ
(x1 − x2, x1 − x3)〉ΓM,N

6 CJ

(
E(M,N)

M
+ 1

)
6 CJ .

Since N > M > N(1−ε) and CN > EN > E(M,N), we have the immediate bound

E(M,N)

M(1− ε)J
6

EN

N(1− ε)J+1
6

EN

N
+ εCJ .

The desired conclusion of Lemma 12 follows. �

5. Conclusion of the energy lower bound

Recalling that

eGP = inf
||u||2=1

EGP(u) = inf
||u||2=1

{
〈u, hu〉+ bM(V )

6

ˆ

R3

|u|6
}
,

as defined in (13)–(14), this section is devoted to the proof of the following theorem.

Theorem 16 (Energy lower bound). Suppose that Vext and A satisfy (3) and (4).
Then,

lim
N→∞

EN

N
> eGP .

Proof. We prove Theorem 16 with the extra assumption that A satisfies (56). This
assumption can be removed, at the end, following an argument of [39, Sect. 4B] that
we omit here.

Recall that hε,s = h− (1− ε)1{|p|>s}p2. For all ε > 0, there exist Cε, c0 > 0 such

that, on L2(R3), we have

hε,s >
ε

2
p2 + Vext(x)− Cε−1|A(x)|2 >

ε

4
p2 +

1

2
Vext(x)− Cε >

ε

4
p2 + c0|x|α − Cε .

Let us therefore define h̃ε,s = hε,s − κε,s, where κε,s := inf σ(hε,s) − 1. Thanks to
the Lieb–Thirring inequality in [13, Theorem 3], we have

Tr((−∆+ |x|α + 1)−q) 6

ˆ

R3

ˆ

R3

1

(|2πk|2 + |x|α + 1)q
dk dx < ∞

for any q > q∗(α) := 3
2 + 3

α . Thus, Tr(h̃−q
ε,s) 6 Cε. Therefore, if we introduce the

projections

P = 1(h̃ε,s 6 L), Q = 1− P = 1(h̃ε,s > L)

for some parameter L > 0, then we have

TrP = Tr1(h̃ε,s 6 L) 6 Tr

(
Lq

h̃qε,s

)
6 CεL

q . (73)
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Let β > 0 be small (depending on q). In view of Lemma 12, we consider the
Hamiltonian

H̃M :=

M∑

i=1

(h̃ε,s)i +
bM(V )

6(M − 1)(M − 2)

∑

16i,j,k6M
i 6=j 6=k 6=i

UR(xi − xj, xi − xk) (74)

for some N > M > (1−ε)N and N−β/2 > R > N−β. Recall that UR = R−6U(R−1·)
for a fixed function 0 6 U ∈ L∞(R6) satisfying the three-body symmetry (6) and
´

R6 U = 1.

Let ΨM be a ground state for H̃M and let us denote γM = |ΨM 〉〈ΨM |. Its k-body
density matrix is the operator

γ
(k)
M := Trk+1→M [γM ]

on L2
s(R

3k) with kernel

γ
(k)
M (x1, . . . , xk; y1, . . . , yk) =

ˆ

R3(M−k)
ΨM(x1, . . . , xk, xk+1, . . . , xM )

×ΨM (y1, . . . , yk, xk+1, . . . , xM ) dxk+1 . . . dxM .

Thus, γ
(k)
M > 0 and Tr γ

(k)
M = 1. Using this notation, we can write

ẼM

M
:=

1

M
inf σL2

s(R
3M )H̃M =

〈
ΨM , H̃MΨM

〉

M
= Tr

[
h̃ε,sγ

(1)
M

]
+
bM(V )

6
Tr
[
URγ

(3)
M

]
.

Notice that, since UR > 0 and γ
(3)
M > 0, this implies in particular that

Tr
[
h̃ε,sγ

(1)
M

]
6

ẼM

M
6 Cε , (75)

for some constant Cε > 0 independent of N .
Now let us impose the finite dimensional cut-off P and use the quantitative

quantum de Finetti theorem. We want to replace γ
(3)
M by some γ̃

(3)
M satisfying

γ̃
(3)
M = P⊗3γ̃

(3)
M P⊗3 that will be chosen later using the quantum de Finetti theo-

rem. We bound from below the one-body term as follows

3Tr
[
h̃ε,sγ

(1)
M

]
= Tr

[(
h̃1 + h̃2 + h̃3

)
γ
(3)
M

]

> Tr

[(
3∑

i=1

h̃i

)
P⊗3γ

(3)
M P⊗3

]

= Tr

[(
3∑

i=1

h̃i

)
γ̃
(3)
M

]
+Tr

[(
3∑

i=1

h̃i

)(
P⊗3γ

(3)
M P⊗3 − γ̃

(3)
M

)]

>
1

1 + ε
Tr

[(
3∑

i=1

h̃i

)
γ̃
(3)
M

]
+Tr

[(
3∑

i=1

h̃i

)(
P⊗3γ

(3)
M P⊗3 − γ̃

(3)
M

)]
, (76)

for any γ̃
(3)
M = P⊗3γ̃

(3)
M P⊗3 and where we used the shortened notation h̃i := (h̃ε,s)i.

For the three-body term, we apply the Cauchy–Schwarz inequality, with 0 < ε <
1, as follows

UR =
(
1
⊗3 − P⊗3 + P⊗3

)
UR

(
1
⊗3 − P⊗3 + P⊗3

)
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= P⊗3URP
⊗3 +

(
1
⊗3 − P⊗3

)
URP

⊗3 + P⊗3UR

(
1
⊗3 − P⊗3

)

+
(
1
⊗3 − P⊗3

)
UR

(
1
⊗3 − P⊗3

)

>

(
1− ε

1 + ε

)
P⊗3URP

⊗3 +

(
1− 1 + ε

ε

)(
1
⊗3 − P⊗3

)
UR

(
1
⊗3 − P⊗3

)

>
1

1 + ε
P⊗3URP

⊗3 − ε−1 C

R6

(
1
⊗3 − P⊗3

)
,

where we used for the second inequality that

(
1
⊗3 − P⊗3

)
UR

(
1
⊗3 − P⊗3

)
6 ||UR||∞

(
1
⊗3 − P⊗3

)2
6

C

R6

(
1
⊗3 − P⊗3

)
.

Moreover, since

1
⊗3 = Q⊗ 1

⊗2 + P ⊗ 1
⊗2 =: Q1 + P ⊗ 1

⊗2

= Q1 + P ⊗Q⊗ 1+ P ⊗ P ⊗Q+ P⊗3 6 Q1 +Q2 +Q3 + P⊗3 ,

we have

UR >
1

1 + ε
P⊗3URP

⊗3 − ε−1 C

R6
(Q1 +Q2 +Q3) .

Recall that γ
(3)
M := Tr4→M [γM ] and that γ̃

(3)
M = P⊗3γ̃

(3)
M P⊗3 by assumption. Now

using that

Tr
[
P⊗3URP

⊗3γ
(3)
M

]
= Tr

[
URP

⊗3γ
(3)
M P⊗3

]

= Tr
[
URγ̃

(3)
M

]
+Tr

[
UR

(
P⊗3γ

(3)
M P⊗3 − γ̃

(3)
M

)]

and

Tr
[
(Q1 +Q2 +Q3) γ

(3)
M

]
= 3Tr

[
Qγ

(1)
M

]
6 3Tr

[
h̃ε,s
L

γ
(1)
M

]
6

3

L

ẼM

M

by (75), we obtain

Tr
[
URγ

(3)
M

]
>

1

1 + ε
Tr
[
URγ̃

(3)
M

]
+

1

1 + ε
Tr
[
UR

(
P⊗3γ

(3)
M P⊗3 − γ̃

(3)
M

)]
− 3C

εLR6

ẼM

M
.

(77)
Combining (76) and (77), we have

ẼM

M
>

1

1 + ε
Tr

[(
h̃1 + h̃2 + h̃3

3
+

bM(V )

6
UR

)
γ̃
(3)
M

]

+
1

3
Tr

[(
3∑

i=1

h̃i

)(
P⊗3γ

(3)
M P⊗3 − γ̃

(3)
M

)]

+
1

1 + ε

bM(V )

6
Tr
[
UR

(
P⊗3γ

(3)
M P⊗3 − γ̃

(3)
M

)]
− C

εLR6

ẼM

M
,

hence
(
1 +

C

εLR6

)
ẼM

M
>

1

1 + ε
Tr

[(
h̃1 + h̃2 + h̃3

3
+

bM(V )

6
UR

)
γ̃
(3)
M

]

−




∣∣∣
∣∣∣
∣∣∣P⊗3(h̃1 + h̃2 + h̃3)P

⊗3
∣∣∣
∣∣∣
∣∣∣

3
+

C

R6


Tr

∣∣∣P⊗3γ
(3)
M P⊗3 − γ̃

(3)
M

∣∣∣ ,
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for any γ̃
(3)
M = P⊗3γ̃

(3)
M P⊗3. We will now use the quantum de Finetti theorem to find

such a γ̃
(3)
M to approximate P⊗3γ

(3)
M P⊗3 in trace norm. We recall its formulation [24,

Theorem 3.1] for the convenience of the reader.

Theorem 17 (Quantitative quantum de Finetti theorem in finite dimen-

sion). Let K be a finite dimensional Hilbert space and k ∈ N \ {0}. For every state

Gk on Kk :=
⊗k

s K and every p = 1, 2, . . . , k, we have

TrKp

∣∣∣∣Trp+1→k[Gk]−
ˆ

SK
|u⊗p〉〈u⊗p| dµGk

(u)

∣∣∣∣ 6
4p dimK

k
Tr[Gk] ,

where

dµGk
(u) := dimKk

〈
u⊗k, Gku

⊗k
〉
du

with du being the normalized uniform (Haar) measure on the unit sphere SK.

Following exactly [24, Lemma 3.4], which deals with two-body density matrices,
we derive now a localized version for the three-body density matrices.

Let H := L2(R3) and define the notations P− := P and P+ := Q. Let γN be an
arbitrary N -body (mixed) state. Then, there exist localized states G−

N = GN and

G+
N = G⊥

N (we use both notations) in the Fock space F(H) = C ⊕ H ⊕ H2 ⊕ · · · of
the form

G±
N = G±

N,0 ⊕G±
N,1 ⊕ · · · ⊕G±

N,N ⊕ 0⊕ · · ·
whose reduced density matrices satisfy, for any 0 6 n 6 N ,

P⊗n
± γ

(n)
N P⊗n

± =
(
G±

N

)(n)
=

(
N

n

)−1 N∑

k=n

(
k

n

)
Trn+1→k[G

±
N,k] . (78)

As reminded in the aforementioned paper, the relations (78) determine uniquely the
localized states GN and G⊥

N and ensure that they are (mixed) states on the Fock
spaces F(PH) and F(QH), respectively:

N∑

k=0

Tr[GN,k] =

N∑

k=0

Tr[G⊥
N,k] = 1 . (79)

We now apply the quantitative de Finetti Theorem 17 to K = PH, Gk = GN,k,
and p = 3. We obtain the following Lemma, already proven in [33, Lemma 3.2] (see
also [19, Theorem 3.2] for an improved version). We prove it here for the convenience
of the reader.

Lemma 18 (Quantitative quantum de Finetti for the localized state). Let
γN be an arbitrary N -body (mixed) state. Then,

TrH3

∣∣∣∣P
⊗3γ

(3)
N P⊗3 −

ˆ

SPH

∣∣u⊗3
〉〈
u⊗3

∣∣ dµN(u)

∣∣∣∣ 6
12TrP

N
, (80)

where

dµN(u) =

N∑

k=3

k!(N − 3)!

N !(k − 3)!
dµN,k(u) , dµN,k(u) = dim(PH)ks

〈
u⊗k, GN,ku

⊗k
〉
du .

(81)

Proof. The proof follows the lines of the one in [24, Lemma 3.4]. Applying Theo-
rem 17 to K = PH, Gk = GN,k, and p = 3, we have
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Tr(PH)3

∣∣∣∣Tr4→k[GN,k]−
ˆ

SPH

∣∣u⊗3
〉〈
u⊗3

∣∣ dµN,k(u)

∣∣∣∣

6
12 dim(PH)

k
Tr[GN,k] =

12TrP

k
Tr[GN,k] ,

where we notice that, on the left-hand side, we can replace Tr(PH)3 by TrH3 . Com-
bining this and (78), the triangle inequality gives

TrH3

∣∣∣∣P
⊗3γ

(3)
N P⊗3 −

ˆ

SPH

∣∣u⊗3
〉〈
u⊗3

∣∣ dµN (u)

∣∣∣∣

6

N∑

k=3

(
N

3

)−1(k
3

)
12TrP

k
Tr[GN,k] 6 12

TrP

N

N∑

k=3

Tr[GN,k] 6 12
TrP

N
,

where the last inequality is due to (79). �

We return to our lower-bound and apply Lemma 18 to γM . We therefore choose

γ̃
(3)
M :=

ˆ

SPH

∣∣u⊗3
〉〈
u⊗3

∣∣ dµM(u) ,

in our ongoing lower bound. It obviously satisfies P⊗3γ̃
(3)
M P⊗3 = γ̃

(3)
M as required.

This yields
(
1 +

Cε

LR6

)
ẼM

M
>

(1− ε)4

1 + ε

ˆ

SPH

Eε,s,R(u) dµM (u)− Cε

(
L+R−6

) Lq

M

> eε,s,R
(1− ε)4

1 + ε

ˆ

SPH

dµM(u)− Cε

(
L+R−6

) Lq

M
, (82)

where we defined the functional Eε,s,R and the associated groundstate energy ẽε,s,R
by

eε,s,R := inf
SH

Eε,s,R(u) := inf
SH

(〈
u, h̃ε,su

〉
+

bM(V )

6

〈
u⊗3, URu

⊗3
〉)

and we used that

Tr

[(
h̃1 + h̃2 + h̃3

3
+

bM(V )

6
UR

)
γ̃
(3)
M

]
> (1− ε)4

ˆ

SPH

Eε,R(u) dµM (u) ,

where we recall that bε = (1 − ε)4bM(V ) and where we have denoted SH :=
{u ∈ H | ||u||2 = 1}.

To go further, we need to estimate µN (SPH) ≃ 1 and eε,s,R by below in terms
of eGP. For the first part, we use the following lemma (proved at the end of this
section).

Lemma 19. Let γN and dµN be as in (81). Then,

1 >

ˆ

SPH

dµN (u) > 1− 3Tr(Qγ
(1)
N )− 12Tr(P )

N
.

In particular, if γM = |ΨM 〉〈ΨM | is a ground state for H̃M in (74), then

Tr(Qγ
(1)
M ) 6 L−1 Tr

(
h̃ε,sγ

(1)
M

)
6 CεL

−1

thanks to the kinetic energy bound (75). Moreover, recalling that TrP 6 CεL
q

from (73), if L is chosen such that 1 ≪ L ≪ N1/q, then Lemma 19 gives

1 >

ˆ

SPH

dµN(u) > 1− CεL
−1 − Cε

Lq

N
> 1 + o(1) .
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We now deal with eε,s,R. The first step is to approximate the interaction term.
To this purpose, we define the functional Eε,s and its groundstate energy eε,s by

eε,s := inf
||u||2=1

Eε,s(u) := inf
||u||2=1

〈
u, h̃ε,su

〉
+

bM(V )

6
||u||66 for all s > 1 > ε > 0 ,

and we use this other lemma (also proved at the end of this section).

Lemma 20. For any ε, s > 0, there exists a constant Cε,s > 0 such that

eε,s,R > −Cε,sR+ eε,s .

Hence, using that eε,s 6 C − κε,s, with C independent of ε and s, (82) becomes

ẼM

M
> eε,s − (C − κε,s)ε− Cε(L

−1R−6 + Lq+1M−1 + LqR−6M−1) .

Recall that ẼM = inf σL2
s(R

3M )H̃M , defined in (74). Using Lemma 12, M > (1−ε)N ,
and Lemma 20, we obtain

EN

N
> (1− ε)

ẼM

M
+ (1− ε)κε,s − Cε,s,δR

2/7 − (C − κε,s)ε− δCε

> (1− ε)(eε,s + κε,s)− (C − κε,s)ε− Cεδ

− Cε,s,δ,β(L
−1R−6 + Lq+1M−1 + LqR−6M−1 +R2/7) for all δ > 0 .

Recall that N > M > (1 − ε)N and N−β/2 > R > N−β. Therefore, choosing

L = N1/(q+2), we obtain

EN

N
> (1− ε)(eε,s + κε,s)− (C − κε,s)ε

− Cεδ − Cε,s,δ,β(N
6β− 1

q+2 +N
−1
q+2 +N

6β− 2
q+2 +N−β/7) .

Taking 0 < β < 1/(6(q + 2)), we obtain

lim inf
N→∞

EN

N
> (1− ε)(eε,s + κε,s)− (C − κε,s)ε− Cεδ for all δ > 0 .

In particular, we can take δ → 0 in order to remove the last term above. Finally,
by a standard compactness argument (see, e.g., [28] or [39, Sect. 4B]), we have
lims→∞ κε,s = inf σ(h) − 1 and

lim
ε→0

lim
s→∞

eε,s + κε,s = eGP .

This finishes the proof of Theorem 16 up to the proofs of Lemmas 19 and 20 that
we give below, concluding this section. �

Proof of Lemma 19. Note that, from (81), we obtain
´

dµN 6 1 since every measure
µN,k is normalized. It remains to prove the lower bound. From (80) and the triangle
inequality, we have

ˆ

dµN > Tr(P⊗3γ
(3)
N P⊗3)− 12Tr(P )

N
.

On the other hand, by the cyclic property of the trace, we can decompose

1 = Tr(γ
(3)
N ) = Tr((P1 +Q1)γ

(3)
N (P1 +Q1)) = Tr(P1γ

(3)
N P1) + Tr(Q1γ

(3)
N Q1)

= Tr(P1(P2 +Q2)γ
(3)
N (P2 +Q2)P1) + Tr(Q1γ

(3)
N Q1)

= Tr(P1P2γ
(3)
N P2P1) + Tr(P1Q2γ

(3)
N Q2P1) + Tr(Q1γ

(3)
N Q1)
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= Tr(P1P2P3γ
(3)
N P3P2P1) + Tr(P1P2Q3γ

(3)
N Q3P2P1) + Tr(P1Q2γ

(3)
N Q2P1)

+ Tr(Q1γ
(3)
N Q1)

6 Tr(P⊗3γ
(3)
N P⊗3) + 3Tr(Qγ

(1)
N ) . �

We now the give proof of Lemma 20, which is an adaptation of the one of [24,
Lemma 4.1].

Proof of Lemma 20. We have

Eε,s,R(u)− Eε,s(u) =
bM(V )

6

(〈
u⊗3, URu

⊗3
〉
− ||u||66

)
.

Rewriting
〈
u⊗3, URu

⊗3
〉
by a change of variables, we have

〈
u⊗3, URu

⊗3
〉
=

ˆ

R9

|u(x)|2|u(y)|2|u(z)|2R−6U(R−1(x− y), R−1(x− z)) dxdy dz

=

ˆ

R9

|u(x)|2|u(x−Ry)|2|u(x−Rz)|2U(y, z) dxdy dz

and, since
´

R6 U = 1, we obtain

〈
u⊗3, URu

⊗3
〉
− ||u||66

=

ˆ

R9

|u(x)|2U(y, z)
(
|u(x−Ry)|2|u(x−Rz)|2 − |u(x)|4

)
dxdy dz .

We now write the term in parenthesis as an integral:

|u(x−Ry)|2|u(x−Rz)|2 − |u(x)|4 =

ˆ 1

0

d

dt

(
|u(x− tRy)|2|u(x− tRz)|2

)
dt

=

ˆ 1

0
∇|u|2(x− tRy) ·Ry |u(x− tRz)|2 dt

+

ˆ 1

0
|u(x− tRy)|2∇(|u|2)(x− tRz) · Rz dt .

Using that
ˆ

R3

|u(x− tRy)|2
∣∣∇|u|2(x− tRz)

∣∣ dx 6 2 ||u||36 ||∇|u|||2

for all z, y ∈ R
3, t ∈ (0, 1), and R > 0, we obtain

∣∣∣
〈
u⊗3, URu

⊗3
〉
− ||u||66

∣∣∣ 6 CR ||u||22 ||∇u||42
∣∣∣
∣∣∣z ||U(·, z)||L∞(R3)

∣∣∣
∣∣∣
1
.

We used above the Sobolev inequality and that ||∇|u|||2 6 ||∇u||2, see [26, Theorem
7.8]. Therefore, we have

|Eε,s(u)− Eε,s,R(u)| 6 CR
(
1 + ||∇u||42

) ∣∣∣
∣∣∣z ||U(·, z)||L∞(R3)

∣∣∣
∣∣∣
1

for all u ∈ SH ,

and, since ||∇u||22 6 2ε−1Eε,s,R(u), we obtain

inf
SH

Eε,s 6 Eε,s(u) 6 Eε,s,R(u) + CR
(
1 + 2ε−1Eε,s,R(u)

)2
for all u ∈ SH .

Applying this to a minimizing sequence {un}n ⊂ SH for eε,s,R and passing to the
limit gives

inf
SH

Eε,s 6 eε,s,R + CR
(
1 + 2ε−1eε,s,R

)2
6 eε,s,R + Cε,sR for all u ∈ SPH ,
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where we used the simple estimate eε,s,R 6 C independently of R, s, ε > 0. �

6. Energy upper bound

Let us recall that VN := NV (N1/2·) and that ω = 1− f , where f is the solution
to the scattering equation of V , satisfies, for all x ∈ R

6, the estimates

0 6 ω(x) < 1 , ω(x) 6
C

|x|4 + 1
, and |∇ω(x)| 6 C

|x|5 + 1
. (83)

We define ωN := ω(N1/2·) and fN := f(N1/2·).
Let us also recall, for M ∈ N \ {0}, the notation

HM,N =
M∑

j=1

hj +
∑

16i<j<k6M

NV (N1/2(xi − xj , xi − xk)) (84)

and the definition

HN := 0⊕
⊕

M>1

HM,N

=

ˆ

R3

a∗xhxax dx+
1

6

ˆ

(R3)3
VN (x− y, x− z)a∗xa

∗
ya

∗
zaxayaz dxdy dz .

For f ∈ L2(R3), we define the Weyl operator

W (f) = exp(a∗(f)− a(f))

which is a unitary operator and, for g ∈ L2(R3), satisfies

W (f)∗a(g)W (f) = a(g) + 〈g, f〉 and W (f)∗a∗(g)W (f) = a∗(g) + 〈f, g〉 .
We also define, for ϕ ∈ H2(R3), B ≡ B[ϕ] ∈ L2(R9) as

B(x, y, z) = ωN (x, y, z)ϕ(x)ϕ(y)ϕ(z)

and B1 ≡ B1[ϕ] as

B1 = −1

6
N

3
2

ˆ

(R3)3
B(x, y, z)axayaz dxdy dz . (85)

Finally, we denote

Θ ≡ Θ(N ) := 1[0,N1/2](N ) , B := ΘB∗
1 −B1Θ , and UN := e−B . (86)

This section is devoted to the proof of the following theorem and its corollary.

Theorem 21 (Energy upper bound). Let ϕ ∈ D(h)∩L∞(R3) with ||ϕ||2 = 1. Then,
there exists Cϕ > 0, depending only on ||hϕ||2 and ||ϕ||∞, such that

〈
Ω, U∗

NW (
√
Nϕ)∗HNW (

√
Nϕ)UNΩ

〉
6 NEGP(ϕ) + CϕN

1/2 ,

where Ω is the vacuum.

Corollary 22. There exists a constant C > 0, independent of N , such that

EN 6 NeGP + CN2/3 .

As a convention for this section, the constants C only depend on ||hϕ||2 and
||ϕ||∞. Also, note that since h > Vext > 1, the diamagnetic inequality gives ||hϕ||2 >∣∣∣∣h1/2ϕ

∣∣∣∣
2
> ||∇|ϕ|||2.
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6.1. The transformation UN . Let p ∈ N \ {0}, denote ♯ = (♯1, . . . , ♯p) ∈ {·,∗ }p,
and define κ(♯) = 2#{i|♯i = ∗} − p. Then,

a♯1x1
. . . a

♯p
xp{N = n} ⊂ {N = n+ κ(♯)} , n = 0, 1, 2, . . . .

Therefore, we have UNΩ ∈ {N ∈ 3N0} and if κ(♯) /∈ 3Z0, then

〈Ω, U∗
Na♯1x1

. . . a
♯p
xpUNΩ〉 = 0 . (87)

For example, we have 〈Ω, U∗
Nax1UNΩ〉 = 〈Ω, U∗

Nax1ax2UNΩ〉 = 0. We now state two
lemmas, which will be used in the proof of Theorem 21.

Lemma 23. Let ϕ ∈ C∞(R3) and B1 be as in (85). Then, there exists Cϕ > 0,
depending only on ||hϕ||2 and ||ϕ||∞, such that

∀N ∈ N \ {0}, ± ([B1, B
∗
1 ]−Q(ϕ)) 6 Cϕ

N 2

N
,

where

Q(ϕ) =
1

24

ˆ

R9

N3ωN (x, y, z)2|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz > 0 .

Moreover, there exists C > 0 such that

∀N ∈ N \ {0} , ∀ϕ ∈ C∞(R3) , Q(ϕ) 6 C ||ϕ||4∞ ||ϕ||22 ||ω||2L2(R6) .

Lemma 24. Define B as in (86). Then, for all k ∈ N ∪ {0}, there exists Ck > 0
such that

∀ (λ,N) ∈ [−1, 1] × (N \ {0}) ,
〈
Ω, e−λBN keλBΩ

〉
6 Ck . (88)

In particular, for all k ∈ N ∪ {0}, there exists Ck > 0 such that

∀N ∈ N \ {0} ,
〈
Ω, U∗

NN kUNΩ
〉
6 Ck . (89)

Proof of Lemma 23. On the bosonic Fock space F(H), we have

[axayaz, a
∗
x′a∗y′a

∗
z′ ] = 6δx=x′δy=y′δz=z′ + 18a∗xax′δy=y′δz=z′ + 9a∗xa

∗
yax′ay′δz=z′ . (90)

Hence,

[B1, B
∗
1 ] =

1

24

ˆ

R9

N3ωN (x, y, z)2|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz

+
1

8

ˆ

R12

N3/2ωN (x, y, z)

×N3/2ωN (x′, y, z)ϕ(x)ϕ(x′)|ϕ(y)|2|ϕ(z)|2a∗xax′ dxdx′ dy dz

+
1

16

ˆ

R15

N3/2ωN (x, y, z)N3/2ωN (x′, y′, z)

× ϕ(x)ϕ(x′)ϕ(y)ϕ(y′)|ϕ(z)|2a∗xa∗yax′ay′ dxdx
′ dy dy′ dz

= (I) + (I) + (III) ,

which defines the terms (I), (I), and (III). In order to estimate these terms, let us
first define

T (f)(z) = ϕ(z)

ˆ

R6

N
3
2ωN(x, y, z)ϕ(x)ϕ(y)f(x, y) dxdy
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for any (z, f) ∈ R
3 × L2(R6). The terms (I), (I), and (III) are respectively pro-

portional to ||T ||2S2(L2(R6)), to the second quantization of TT ∗, and to the second

quantization of T ∗T . We have

||T ||2S2(L2(R6)) 6 C ||ϕ||4∞ ||ϕ||22
∣∣∣
∣∣∣N3/2ωN

∣∣∣
∣∣∣
2

L2(R6)
6 C ||ϕ||4∞ ||ϕ||22 ||ω||2L2(R6) ,

proving the statement about Q(ϕ) =: (I). Note that, contrarily to the two-body
interaction case, here we have ω ∈ L2(R6). To bound the other terms, let us com-
pute ||T ||op. Using (83), for all z ∈ R

3, we have

|T (f)(z)|

6
C

N
1
2

|ϕ(z)|
ˆ

R3

|ϕ(y)|
(
ˆ

R3

ϕ(x)|f(x, y)|
(|x− y|2 + |y − z|2)2 dx

)
dy

6
C

N
1
2

|ϕ(z)|
ˆ

R3

|ϕ(y)|
(
ˆ

R3

du

(u2 + |y − z|2)4
) 1

2
(
ˆ

R3

|ϕ(x)|2|f(x, y)|2 dx
) 1

2

dy

6
C

N
1
2

||ϕ||2∞ |ϕ(z)|
ˆ

R3

1

|y − z|5/2 ||f(·, y)||L2(R3) dy .

Hence, by the Hardy–Littlewood–Sobolev inequality, we obtain

〈g, T (f)〉L2(R3) 6
C

N
1
2

||ϕ||2∞ ||ϕ||6 ||g||2 ||f ||L2(R6) for all g ∈ L2(R3) .

Therefore, ||T ||op 6 CϕN
−1/2 and we obtain

(II) 6 C ||T ||2opN 6 CϕN
−1N and (III) 6 C ||T ||2opN (N − 1) 6 CϕN

−1N 2 . �

Proof of Lemma 24. The case k = 0 is immediate.
Let k ∈ N \ {0}, ξ(N ) := N k, and

∂ξ = ξ(·+ 3)− ξ .

Then, ξ is such that ξ(0) = 0 and ∂jξ > 0 for j > 0. Using the Duhamel formula,
we have

e−λBξ(N )eλB = ξ(N )− λ[B, ξ(N )] + λ2

ˆ 1

0

ˆ s

0
e−λuB [B, [B, ξ(N )]]eλuB duds .

We are only interested in the expectation on the vacuum Ω, hence, since ξ(0) = 0,
only the third term will give a non zero contribution. Using that axN = (N +1)ax,
we obtain

−[B, ξ(N )] = [B1Θ, ξ(N )] + h.c. = ∂ξ(N )B1Θ+ h.c.

and

[B, [B, ξ(N )]] = [B1Θ−ΘB∗
1 , ∂ξ(N )B1Θ] + h.c.

= ∂2ξ(N ) (B1Θ)2 −ΘB∗
1∂

2ξ(N )B1Θ

+ ∂ξ(N ) [B1Θ,ΘB∗
1 ] + h.c. (91)

The last term, which is the most regular, is controlled using that ∂ξ(N ) is non-
negative and commutes with [B1Θ,ΘB∗

1 ], and that

[B1Θ,ΘB∗
1 ] = ∂ΘB∗

1B1 +Θ(N + 3)[B1, B
∗
1 ]

6 Θ(N + 3)[B1, B
∗
1 ] 6 Θ(N + 3)

(
Q(ϕ) + C

N 2

N

)
6 CΘ(N + 3) ,
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where we used that Θ and B∗
1B1 commute, that ∂Θ 6 0 for the first inequality, and

Lemma 23 for the second inequality.
The first two terms in (91) are controlled using the Cauchy–Schwarz inequality:

∂2ξ(N )(B1Θ)2 −ΘB∗
1∂

2ξ(N )B1Θ+ h.c

= (B1Θ)∂2ξ(N − 3)(B1Θ)− 2ΘB∗
1∂

2ξ(N )B1Θ

6 (B1Θ)∂2ξ(N − 3)(ΘB∗
1) + (ΘB∗

1)∂
2ξ(N − 3)(ΘB1)− 2ΘB∗

1∂
2ξ(N )B1Θ

= ∂2ξ(N )[B1Θ,ΘB∗
1 ] +

(
∂2ξ(N ) + ∂2ξ(N − 6)− 2∂2ξ(N − 3)

)
ΘB∗

1B1Θ

= ∂2ξ(N )[B1Θ,ΘB∗
1 ] + ∂4ξ(N − 6)ΘB∗

1B1Θ

6 C∂2ξ(N ) + C∂4ξ(N − 6)(N + 1)3 .

Gathering the last three inequalities, we obtain

[B, [B, ξ(N )]] 6 C
(
∂ξ(N ) + ∂2ξ(N )

)
+ C∂4ξ(N − 6)(N + 1)3 .

Choosing ξ(N ) = N , the above inequality shows that (88) holds for k = 1. For any
integer k > 2, we have ξ(N ) = N k and, using that ∂iξ is a linear combination of N j

for i ∈ N \ {0} and 0 6 j 6 k − i, one concludes the proof by induction. �

6.2. Proof of Theorem 21. We first conjugate HN with the Weyl operator, we
obtain

W (
√
Nϕ)∗ dΓ(h)W (

√
Nϕ) = dΓ(h) +

√
Na∗ (hϕ) +

√
Na (hϕ) +N 〈ϕ, hϕ〉

and

1

6

ˆ

R9

VN (x− y, x− z)W (
√
Nϕ)∗a∗xa

∗
ya

∗
zaxayazW (

√
Nϕ) dxdy dz =

6∑

i=0

Li ,

where

L6 =
1

6

ˆ

R9

VN (x− y, x− z)a∗xa
∗
ya

∗
zaxayaz dxdy dz ,

L5 =
N1/2

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
ya

∗
zaxayϕ(z) dxdy dz + h.c. ,

L4 =
N

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
ya

∗
zaxϕ(y)ϕ(z) dxdy dz + h.c.

+
N

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
yaxazϕ(y)ϕ(z) dxdy dz + h.c.

+
N

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
yaxay|ϕ(z)|2 dxdy dz

=: L(1)
4 + L(2)

4 + L(3)
4 ,

L3 =
N3/2

6

ˆ

R9

VN (x− y, x− z)a∗xa
∗
ya

∗
zϕ(x)ϕ(y)ϕ(z) dxdy dz + h.c.

+
N3/2

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
yaxϕ(y)|ϕ(z)|2 dxdy dz + h.c.

+
N3/2

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
yazϕ(x)ϕ(y)ϕ(z) dxdy dz + h.c.

=: L(1)
3 + L(2)

3 + L(3)
3 ,
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L2 =
N2

2

ˆ

R9

VN (x− y, x− z)a∗xa
∗
yϕ(x)ϕ(y)|ϕ(z)|2 dxdy dz + h.c.

+
N2

2

ˆ

R9

VN (x− y, x− z)a∗xax|ϕ(y)|2|ϕ(z)|2 dxdy dz

+N2

ˆ

R9

VN (x− y, x− z)a∗xayϕ(x)ϕ(y)|ϕ(z)|2 dxdy dz

=: L(1)
2 + L(2)

2 + L(3)
2 ,

L1 =
N5/2

2

ˆ

R9

VN (x− y, x− z)a∗xϕ(x)|ϕ(y)|2|ϕ(z)|2 dxdy dz + h.c. ,

and

L0 =
N

6

ˆ

R9

N2VN (x− y, x− z)|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz .

Gathering up the constant terms, we obtain

N

{
〈ϕ, hϕ〉L2(R3) +

1

6

ˆ

R9

N3V
(
N

1
2 (x− z, y − z)

)
|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz

}
,

which is the mean-field energy associated to the particle ϕ. This quantity does not
take into account the contribution from the scattering process. To obtain it, one

must include contributions hidden in the terms dΓ(h), L(1)
3 , and L6. We will first

prove that the other terms are negligible and then extract the main contribution
from the aforementioned terms.

6.2.1. Controlling the error terms. Using (87), we obtain

〈
Ω, e−BAeBΩ

〉
= 0 for all A ∈

{
a∗ (hϕ) ,L1,L(1)

2 ,L(2)
3 ,L(3)

3 ,L(1)
4 ,L5

}

because they create or annihilate a number of particles which is coprime with 3. It
remains to bound the following terms.

Lemma 25. There exists Cϕ > 0, depending only on ||ϕ||∞, such that
〈
Ω, e−B(L(2)

2 + L(3)
2 )eBΩ

〉
6 C and

〈
Ω, e−B(L(2)

4 + L(3)
4 )eBΩ

〉
6 CϕN

1/2 .

Proof. We prove

L(2)
2 + L(3)

2 6 C ||V ||L1(R6) ||ϕ||2∞ ||ϕ||22 N
and

L(2)
4 + L(3)

4 6 C sup
x∈R3

||V (·, x)||L1(R3) ||ϕ||2∞N1/2N 2 ,

since the result then follows by (89). The first bound comes from

L(2)
2 =

1

2

ˆ

R3

〈V (x− ·, x− ·)〉ϕ⊗2 a∗xax dx 6 C ||V ||L1(R6) ||ϕ||4∞N

and, using the Cauchy–Schwarz inequality,

L(3)
2 6

ˆ

R9

N3V (N1/2(x− y, x− z))
(
a∗xax|ϕ(y)|2 + a∗yay|ϕ(x)|2

)
|ϕ(z)|2 dxdy dz

6 C ||V ||L1(R6) ||ϕ||4∞N .
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For the second bound, on the one hand, using the pointwise inequality
ˆ

R3

N2V (N1/2(x− y, x− z))|ϕ(z)|2 dz 6 N1/2 ||ϕ||2∞ sup
x∈R3

||V (x, ·)||L1(R3) ,

we obtain
L(3)
4 6 C sup

x∈R3

||V (x, ·)||L1(R3) ||ϕ||2∞N1/2N 2 ,

and, on the other hand, by the Cauchy–Schwarz inequality, we have

L(2)
4 6

N

2

ˆ

R9

VN (x− y, x− z)
(
a∗xa

∗
yaxay|ϕ(z)|2 + a∗xa

∗
zaxaz|ϕ(y)|2

)
dxdy dz

6 C sup
x∈R3

||V (x, ·)||L1(R3) ||ϕ||2∞N1/2N 2 . �

6.2.2. Contribution from dΓ(h).

Lemma 26. There exists Cϕ > 0, depending only on ||hϕ||2 and ||ϕ||∞, such that
〈
Ω, e−B dΓ(h)eBΩ

〉

6
1

6
N3

ˆ

R9

(VNfNωN )(x− z, y − z)|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz + CϕN
1/2 .

Proof. We have

e−B dΓ(h)eB = dΓ(h)−
ˆ 1

0
e−sB[B, dΓ(h)]esB ds . (92)

Let us compute

−[B, dΓ(h)]

= [B1Θ, dΓ(h)] + h.c.

=

ˆ

R9

ˆ

R3

B(x, y, z)[axayazΘ, a∗x′hx′ax′ ] dxdy dz dx′ + h.c.

= 3

ˆ

R9

(h1B)(x, y, z)axayazΘdxdy dz + h.c.

= − 1

2
N3/2

ˆ

R9

(
(−∆1ωN (x, y, z))ϕ(x)ϕ(y)ϕ(z) − ωN (x, y, z)(hϕ)(x)ϕ(y)ϕ(z)

− 2i∇1ωN (x, y, z) ·
(
[−i∇+A](ϕ)(x)

)
ϕ(y)ϕ(z)

)
axayazΘdxdy dz + h.c.

=: K1 +K2 +K3 .

The main contribution comes from K1. Indeed, using the Hölder inequality with
∣∣∣
∣∣∣N3/2∇1ωN (x, y, z) · ([−i∇ +A](ϕ)(x))ϕ(y)ϕ(z)

∣∣∣
∣∣∣
L2(R9)

6 ||(−i∇+A)ϕ||2 ||ϕ||2∞
∣∣∣
∣∣∣N3/2∇1ωN

∣∣∣
∣∣∣
L2(R6)

6 CN1/2

and ∣∣∣
∣∣∣N3/2ωN (x, y, z)(hϕ)(x)ϕ(y)ϕ(z)

∣∣∣
∣∣∣
L2(R9)

6 ||ω||L2(R6) ||hϕ||2 ||ϕ||∞ 6 C ,

we obtain
± (K2 +K3) 6 C(1 +N1/2)(N + 1)3/2 . (93)

Noticing that

−∆1ωN (x, y, z) −∆2ωN (x, y, z) −∆3ωN (x, y, z) = −2∆MωN(x− z, y − z)
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= −(VNfN )(x− z, y − z)

and using symmetry, we can rewrite K1 as

K1 = −1

6
N3/2

ˆ

R9

(VNfN )(x− z, y − z)ϕ(x)ϕ(y)ϕ(z)axayazΘdxdy dz + h.c.

From (92)–(93), we obtain

e−B dΓ(h)eB = dΓ(h) +

ˆ 1

0
e−sB(K1 +K2 +K3)e

sB ds

6 dΓ(h) +K1 −
ˆ 1

0

ˆ s

0
e−uB [B,K1]e

uB duds

+ CN1/2

ˆ 1

0
e−sB(N + 1)3/2esB ds .

Since we test against the vacuum, the first two terms will not contribute and the
last one will give a contribution of order N1/2. Let us then compute

− [B,K1]

= − 1

6
N3/2

ˆ

R9

(VNfN )(x− z, y − z)ϕ(x)ϕ(y)ϕ(z) [axayazΘ,ΘB∗
1 ] dxdy dz + h.c.

= − 1

6
N3/2

ˆ

R9

ˆ

R9

(VNfN)(x− z, y − z)ϕ(x)ϕ(y)ϕ(z)b(x′ , y′, z′)

×Θ(N + 3)[axayaz, a
∗
x′a∗y′a

∗
z′ ] dxdy dz dx

′ dy′ dz′ + h.c

− 1

6
N3/2

ˆ

R9

ˆ

R9

(VNfN )(x− z, y − z)ϕ(x)ϕ(y)ϕ(z)b(x′ , y′, z′)

× ∂Θa∗x′a∗y′a
∗
z′axayaz dxdy dz dx

′ dy′ dz′ + h.c.

=: Θ(N + 3)K1,1 + ∂ΘK1,2 ,

where we recall that ∂Θ = Θ(N + 3)−Θ. The main contribution comes from K1,1.
Indeed, using |∂Θ| 6 CN−1(N + 1)2, we have

±∂ΘK1,2 6 C|∂Θ|
∣∣∣
∣∣∣N3/2(VNfN )ϕ⊗3

∣∣∣
∣∣∣
L2(R9)

||B||L2(R9) (N + 1)3 6 C(N + 1)5 .

Expanding the commutator in K1,1, we obtain

K1,1 =
1

3
N3

ˆ

R9

(VNfNωN)(x− z, y − z)|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz

+N3

ˆ

R12

(VNfN )(x, y, z)ωN (x′, y, z)ϕ(x)ϕ(x′)|ϕ(y)|2|ϕ(z)|2

× a∗xax′ dxdx′ dy dz

+
1

2
N3

ˆ

R15

(VNfN)(x, y, z)ωN (x′, y′, z)ϕ(x)ϕ(y)ϕ(x′)ϕ(y′)|ϕ(z)|2

× a∗xa
∗
yax′ay′ dxdx

′ dy dy′ dz

=: (I) + (II) + (III) .

Of course (I) is the main contribution. Let us bound the other terms. From (36),
we have
ˆ

R3

N2ωN (x′, y, z)|ϕ(x′)|dx′ 6 C

ˆ

R3

||ϕ||∞
(|x′ − y|2 + |y − z|2)2

dx′ 6 C
||ϕ||∞
|y − z| ,
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which leads to

(II) 6 CN3

ˆ

R12

(VNfN )(x, y, z)ωN (x′, y, z)|ϕ(x)ϕ(x′)||ϕ(y)|2|ϕ(z)|2

× (a∗xax + a∗x′ax′) dxdx′ dy dz

6 C ||ϕ||∞N

ˆ

R9

(VNfN )(x, y, z)|ϕ(x)| |ϕ(y)|
2 |ϕ(z)|2

|y − z| a∗xax dxdy dz

+ CN
5
2

ˆ

R9

ωN (x′, y, z)|ϕ(x′)||ϕ(y)|2|ϕ(z)|2a∗x′ax′ dx′ dy dz

6 C ||ϕ||4∞
∣∣∣∣
∣∣∣∣|ϕ|2 ∗

1

| · | ∗ 1
{

|·|6CN−
1
2

}

∣∣∣∣
∣∣∣∣
L∞(R3)

N2N

+ C

∣∣∣∣
∣∣∣∣|ϕ|2 ∗

1

| · |

∣∣∣∣
∣∣∣∣
L∞(R3)

||ϕ||4∞N
1
2N

6 C (||hϕ||2 + ||ϕ||∞)6N
1
2N .

Similar computations give

(III) 6 N3

ˆ

R15

(VNfN )(x, y, z)ωN (x′, y′, z)ϕ(x)ϕ(y)ϕ(x′)ϕ(y′)|ϕ(z)|2

×
(
a∗xa

∗
yaxay + a∗x′a∗y′ax′ay′

)
dxdx′ dy dy′ dz

6 C ||ϕ||2H1(R3) ||ϕ||4∞N
1
2N 2 .

We therefore obtain

K1,1 6
1

3
N3

ˆ

R9

(VNfNωN )(x− z, y − z)|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz

+ CN
1
2 (1 +N 2) .

Noting that
´ 1
0

´ s
0 duds = 1/2 and 0 6 1 − Θ 6 N−1/2N , an application of

Lemma 24 concludes the proof of Lemma 26. �

6.2.3. Contribution from L6.

Lemma 27. There exists Cϕ > 0, depending only on ||hϕ||2 and ||ϕ||∞, such that

〈
Ω, e−BL6e

BΩ
〉

6
1

6
N3

ˆ

R9

(VNω2
N )(x− z, y − z)|ϕ(x)|2|ϕ(y)|2|ϕ(z)|2 dxdy dz + CϕN

1
2 .

Proof. We have

e−BL6e
B = L6 −

ˆ 1

0
esB [B,L6]e

−sB ds .

When estimated against the vacuum, only the last term gives a non zero contribu-
tion. Let us therefore focus on it. Using that [XY,Z] = X [Y,Z] when [X ,Z] = 0,
we have

− [B,L6]

= − 1

36

ˆ

R9

ˆ

R9

VN (x− y, x− z)[axayaz, a
∗
x′a∗y′a

∗
z′ ]axayaz

×ΘN3/2ωN (x′, y′, z′)ϕ(x′)ϕ(y′)ϕ(z′) dxdy dz dx′ dy′ dz′ + h.c.



46 P.T. NAM, J. RICAUD, AND A. TRIAY

= −1

6

ˆ

R9

N3/2VN (x− y, x− z)ωN (x, y, z)ϕ(x)ϕ(y)ϕ(z)axayazΘdxdy dz + h.c.

− 2

ˆ

R12

N3/2VN (x− y, x− z)ωN (x′, y, z)ϕ(x′)ϕ(y)ϕ(z)

× a∗xaxayazax′Θdxdy dz dx′ + h.c.

− 1

4

ˆ

R15

N3/2VN (x− y, x− z)ωN (x′, y′, z)ϕ(x′)ϕ(y′)ϕ(z)

× a∗xa
∗
yaxayax′ay′azΘdxdy dz dx′ dy′ + h.c.

=: L̃(1)
6 + L̃(2)

6 + L̃(3)
6 .

We now prove that only the contribution of L̃(1)
6 is of order N .

On one hand, using the Cauchy–Schwarz inequality, we obtain for all η > 0 that

L̃(2)
6 6 Cη

ˆ

R12

Θa∗xa
∗
ya

∗
za

∗
x′ (N + 1)−3/2 axayazax′ dxdy dz dx′

+ Cη−1

ˆ

R3

Θ(N + 3)

(
ˆ

R9

N3VN (x− y, x− z)2ωN (x′, y, z)2

×|ϕ(x′)|2|ϕ(y)|2|ϕ(z)|2 dy dz dx′
)
a∗x (N + 1)3/2 ax dx

6 Cη(N + 1)5/2 + η−1N1/2 ||ϕ||4∞
∣∣∣
∣∣∣N3/2ωN

∣∣∣
∣∣∣
2

L2(R6)

×
∣∣∣
∣∣∣|ϕ|2 ∗N3/2

1{|·|6CN−1/2}
∣∣∣
∣∣∣
L∞(R3)

(N + 1)5/2

6 CN1/4(N + 1)5/2 ,

where we used that VN (x, y, z) 6 CN1{|x−z|6CN−1/2} and optimized over η.

On the other hand, and similarly, we have for all η > 0 that

L̃(3)
6 6 Cη

ˆ

R15

a∗xa
∗
ya

∗
za

∗
x′a∗y′ (N + 1)−3/2 axayazax′ay′ dxdy dz dx

′ dy′

+ Cη−1

ˆ

R15

N5V (N1/2(x− y, x− z))2ωN (x′, y′, z)2|ϕ(x′)|2|ϕ(y′)|2|ϕ(z)|2

× a∗xa
∗
y (N + 1)3/2 axay dxdy dz dx

′ dy′

6 Cη (N + 1)7/2 + η−1N1/2 ||ϕ||4∞
∣∣∣
∣∣∣N3/2ωN

∣∣∣
∣∣∣
2

L2(R6)

×
∣∣∣
∣∣∣|ϕ|2 ∗N3/2

1{|·|6CN−1/2}
∣∣∣
∣∣∣
L∞(R3)

(N + 1)7/2

6 CN1/4 (N + 1)7/2 ,

where we also optimized over η in order to obtain the last inequality.

Finally, to access the contribution of L̃(1)
6 , we apply one more time the Duhamel

formula:
ˆ 1

0
e−sBL̃(1)

6 esB ds = L̃(1)
6 −

ˆ 1

0

ˆ s

0
e−uB [B, L̃(1)

6 ]euB duds .

As before, the first term vanishes when tested against the vacuum state Ω and we
focus therefore on the second term. Introducing the notations

L̃(1,◦)
6 := −1

6

ˆ

R9

N3/2VN (x− y, x− z)ωN (x, y, z)ϕ(x)ϕ(y)ϕ(z)axayaz dxdy dz
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and L̃(1,†)
6 := (L̃(1,◦)

6 )∗, we have

L̃(1)
6 = ΘL̃(1,†)

6 + L̃(1,◦)
6 Θ .

A direct computation gives [B1Θ, L̃(1,◦)
6 Θ] = 0, from which we obtain

−[B, L̃(1)
6 ] = [B1Θ−B∗

1Θ, L̃(1,◦)
6 Θ] + h.c. = [L̃(1,◦)

6 Θ,ΘB∗
1 ] + h.c.

= Θ(N + 3)[L̃(1,◦)
6 , B∗

1 ] + ∂ΘB∗
1L̃

(1,◦)
6 + h.c.

6 [L̃(1,◦)
6 , B∗

1 ] + h.c.+ C(N + 1)5 ,

where we applied the Cauchy–Schwarz inequality and used

B∗
1B1 6 C (N + 1)3 , L̃(1,†)

6 L̃(1,◦)
6 6 CN2(N + 1)3 , and ∂Θ 6 CN−1(N + 1)2 .

In view of (90), we have

[L̃(1,◦)
6 , B∗

1 ] =
1

6

ˆ

R9

N3(VNω2
N )(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz

+
1

2
N3

ˆ

R12

(VNωN )(x, y, z)ω(x, y, z′)|ϕ(x)|2|ϕ(y)|2ϕ(z)ϕ(z′)a∗zaz′ dxdy dz dz′

+
1

4
N3

ˆ

R15

(VNωN )(x, y, z)ω(x, y′, z′)|ϕ(x)|2ϕ(y)ϕ(z)ϕ(y′)ϕ(z′)

× a∗ya
∗
zay′az′ dxdy dy

′ dz dz′

hence

[L̃(1,◦)
6 , B∗

1 ] + h.c. 6
1

6

ˆ

R9

N3(VNω2
N )(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz

+ C(N1/2N +N 2) , (94)

where we used VN 6 ||V ||∞N and computations similar to the ones in the proof of
Lemma 23. This concludes the proof of Lemma 27. �

6.2.4. Contribution from L(1)
3 .

Lemma 28. There exists Cϕ > 0, depending only on ||hϕ||2 and ||ϕ||∞, such that
〈
Ω, e−BL(1)

3 eBΩ
〉

6 −1

3

ˆ

R9

N3(VNωN )(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz + CϕN
1/2 .

Proof. Let us first introduce the notations

L†
3 =

N3/2

6

ˆ

R9

VN (x− y, x− z)a∗xa
∗
ya

∗
zϕ(x)ϕ(y)ϕ(z) dxdy dz

and L◦
3 = (L†

3)
∗, so that L(1)

3 = L†
3 + L◦

3. Still denoting Θ = 1[0,N1/2](N ), we have

(1−Θ)L†
3 + L◦

3(1−Θ)

6 (1−Θ)

(
ˆ

N3VN (x− y, x− z)2|ϕ(x)ϕ(y)ϕ(z)|2 dxdy dz
) 1

2

(N + 1)
3
2

6 CN ||V ||L2(R6) ||ϕ||2∞ ||ϕ||2 (1−Θ) (N + 1)
3
2 6 C (N + 1)

7
2 . (95)
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Therefore, L(1)
3 6 ΘL†

3 + L◦
3Θ+ C(N + 1)7/2 and it is enough to look at

e−B(ΘL†
3 + L◦

3Θ)eB = (ΘL†
3 + L◦

3Θ)−
ˆ 1

0
esB [B,ΘL†

3 + L◦
3Θ]e−sB ds .

The first term vanishes when tested against Ω. Let us compute the commutator.
Using (90), we obtain

−[B,ΘL†
3 + L◦

3Θ] = −[B,L◦
3Θ] + h.c. = [B1Θ−ΘB∗

1 ,L◦
3Θ] + h.c.

= [L◦
3Θ,ΘB∗

1 ] + h.c. = Θ(N + 3)[L◦
3, B

∗
1 ] + ∂ΘB∗

1L◦
3 + h.c.

6 [L◦
3, B

∗
1 ] + h.c. + C(N + 1)5 ,

where we used that |∂Θ| 6 N−1(N + 1)2 and a computation similar to (95). Then,
the same computations as in (94) give

[L◦
3, B

∗
1 ] + h.c.

= − 1

36

ˆ

R9×R9

N3VN (x, y, z)ωN (x′, y′, z′)ϕ(x)ϕ(y)ϕ(z)ϕ(x′)ϕ(y′)ϕ(z′)

× [axayaz, a
∗
x′a∗y′a

∗
z′ ] dxdy dz dx

′ dy′ dz′ + h.c.

6 −1

3

ˆ

R9

N3(VNωN )(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz + C(N1/2N +N 2) ,

which concludes the proof. �

6.2.5. Conclusion of the proof of Theorem 21: collecting the leading contributions.
In Lemmas 26, 28, and 27, we extracted the contributions of dΓ(h),L3 and L6 to
the leading order. Adding the contribution from L0 and controlling the remainder
terms using Lemma 25, we obtain

〈Ω, e−BW (
√
Nϕ)∗HNW (

√
Nϕ)eBΩ〉

6 N

ˆ

R3

(
|(−i∇+A(x))ϕ(x)|2 + Vext(x)|ϕ(x)|2

)
dx

+
N

6

ˆ

R9

(N2VNfN )(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz

+

ˆ

R9

(
fN + ωN

6
− 1

3
+

1

6

)
(N2VNωN)(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz

+ CN1/2

6 NEGP(ϕ) + CN1/2 .

We have used that f + ω = 1, so that the third term above vanishes, and also that

1

6

ˆ

R9

(N2VNfN )(x, y, z)|ϕ(x)|2 |ϕ(y)|2|ϕ(z)|2 dxdy dz 6
bM(V )

6

ˆ

R3

|ϕ(x)|6 dx ,

which is obtained from the Hölder inequality and from that bM(V ) =
´

R6 V f =
||V f ||1. This concludes the proof of Theorem 21.

6.3. Proof of Corollary 22. For µ > 0, denote

Eµ(M,N) = inf σ(HM,N )− µ(M +M3/N2) ,

where HM,N is defined in (84), and E(M,N) := E0(M,N). We claim that there ex-
ists µ0 > 0 such that, for all µ > µ0 and N ∈ N, {Eµ(M,N)}M∈N is a non-increasing
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sequence. Indeed, let ΓM−1,N = |ΨM−1,N〉 〈ΨM−1,N | be the density matrix of a
ground state ΨM−1,N of HM−1,N , then we have the inequalities

E(M,N) 6 M TrL2(R3N ) h1ΓM−1,N +

(
M

3

)
TrL2(R3N ) VN (x1, x2, x3)ΓM−1,N

6 E(M − 1, N) + TrL2(R3N )

{(
M

M − 1
− 1

)
h1

+

(
M

M − 3
− 1

)(
M − 1

3

)
VN (x1, x2, x3)

}
ΓM−1,N

6 E(M − 1, N) +
C

M
E(M − 1, N)

6 E(M − 1, N) + C
∣∣∣
∣∣∣h1/2ϕ

∣∣∣
∣∣∣
6

2

(
1 +

M2

N2

)
,

where we bounded E(M − 1, N) by the energy of the ansatz ϕ⊗M−1 in the last

inequality. Hence, it suffices to choose µ0 = C
∣∣∣∣h1/2ϕ

∣∣∣∣6
2
.

Let Ñ = N −N2/3 and let us denote ΨN := W (
√

Ñϕ)UNΩ ∈ F(L2(R3)). As a
consequence of (87), (89), and

W (
√

Ñϕ)∗NW (
√

Ñϕ) = N +
√

Ñ(a∗(ϕ) + a(ϕ)) + Ñ ,

ΨN satisfies

〈ΨN ,NΨN 〉 = N −N2/3 +O(1) , (96)

〈ΨN , (N − 〈ΨN ,NΨN 〉)2 ΨN 〉 = O(N) , (97)

and

〈ΨN ,N 3ΨN 〉 = N3 +O(N8/3) . (98)

Let us first argue that

〈HN 〉ΨN
6 NEGP(ϕ) + CN2/3 . (99)

Indeed, following the proof of Theorem 21, we have

〈Ω,W (
√

Ñϕ)∗HNW (
√

Ñϕ)〉UNΩ

= 〈Ω, U∗
NW (

√
Nϕ)∗HNW (

√
Nϕ)〉UNΩ

+ (Ñ −N) 〈ϕ, hϕ〉 +
6∑

i=0

(
(Ñ/N)(6−i)/2 − 1

)
〈Li〉UNΩ .

Therefore, using Theorem 21 and that |〈Li〉UNΩ| 6 CN (see the proof of Theo-

rem 21), we obtain (99).
Let us now denote ΨM,N = 1N=MΨN . For µ > µ0, using that {Eµ(M,N)}M∈N

is a non-increasing sequence and noticing that
∑

M6N ||ΨM,N ||2 = 1 − 〈1N>N 〉ΨN
,

we have

(
1− 〈1N>N〉ΨN

)
Eµ(N,N)
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6
∑

M6N

Eµ(M,N) ||ΨM,N ||2

=
∞∑

M=0

Eµ(M,N) ||ΨM,N ||2 −
∑

M>N

Eµ(M,N) ||ΨM,N ||2

6

〈
HN − µ

(
N +

N 3

N2

)
+ µ1N>N

(
N +

N 3

N2

)〉

ΨN

,

Now, using (96)–(98) and Chebyshev’s inequality, we obtain that

〈1N>N 〉ΨN
=

〈
1N>〈N〉ΨN

+N
2
3+O(1)

〉

ΨN

6 CN− 4
3

〈(
N − 〈N〉ΨN

)2〉

ΨN

6 CN− 1
3 ,

〈1N>NN〉ΨN
=
〈
1N>N

(
N − 〈N〉ΨN

)〉
ΨN

+ 〈1N>N〉ΨN
〈N〉ΨN

6 CN− 2
3

〈(
N − 〈N〉ΨN

)2〉

ΨN

+ CN− 1
3 〈N〉ΨN

6 CN
2
3 ,

and
〈
1N>N

N 3

N2

〉

ΨN

= N−2

〈
1N>N

(
N − 〈N〉ΨN

)3〉

ΨN

+ 3N−2

〈
1N>N

(
N − 〈N〉ΨN

)2〉

ΨN

〈N〉ΨN

+ 3N−2
〈
1N>N

(
N − 〈N〉ΨN

)〉
ΨN

〈N〉2ΨN

+N−2 〈1N>N〉ΨN
〈N〉3ΨN

6 N−2

〈(
N − 〈N〉ΨN

)3〉

ΨN

+ CN
2
3 6 CN

2
3 .

Hence, we deduce from the above inequality on Eµ(N,N) that

Eµ(N,N) 6
(
1 + CN−1/3

)
〈HN 〉ΨN

− 2µN + CN2/3 .

Using (99) for ϕ = u0, the GP minimizer, finishes the proof. �

7. Convergence of ground states

The convergence of states in Theorem 2 follows from a simple adaption of the
proof in [39, Sect. 4C] to our method of proof for the lower bound. Let us briefly
explain the main steps for the reader’s convenience. Let ΨN be a normalized state
in HN satisfying

lim
N→∞

〈ΨN ,HNΨN 〉
N

= eGP .

Since TrhγΨN
6 C and h has compact resolvant, we know by the de Finetti

theorem [23, Corollary 2.4] that, up to a subsequence as N → ∞, there exists a
Borel probability measure µ on the unit sphere SH such that

lim
N→∞

∣∣∣∣γ
(k)
ΨN

−
ˆ

SH
|u⊗k〉〈u⊗k| dµ(u)

∣∣∣∣ = 0 , k = 1, 2, . . . .



THE CONDENSATION OF A BOSE GAS WITH THREE-BODY INTERACTIONS 51

Hence, it only remains to prove that the support of µ is contained in the set of
minimizers of EGP. To this end, it is enough prove

ˆ

SH
|〈v, u〉|2k dµ(u) 6 sup

u∈MGP

|〈v, u〉|2k (100)

for all v ∈ L2(R3) and k ∈ N \ {0}. Indeed, one can easily verify that passing to
the limit k → ∞ in (100) implies that Suppµ ⊂ MGP. Proving (100) is done by
means of a Hellmann–Feynman argument, which we now explain. Keeping the same
notations as in [39, Lemma 4.3], for v ∈ L2(R3) and N, k ∈ N \ {0}, we define

SN
k,v =

k!

Nk−1

∑

16i1<···<ik6N

|v⊗k〉〈v⊗k| .

The above operator is bounded uniformly in N and one can easily check that we
can carry out the proof of Theorem 16 (lower bound) with HN − SN

k,v to obtain

lim inf
N→∞

inf σ(HN − SN
k,v)

N
> inf

||u||2=1

{
EGP(u)− |〈v, u〉|2k

}
.

Note, in particular, that the binding inequality (59) is satisfied with HM,N replaced
by HM,N − SN

k,v and that the proof of [28, Lemma 2] easily adapts to yield the

four-body estimate (60). Therefore, for all t > 0, implementing the change of

parameter v → t1/(2k)v and dividing by t, we obtain

ˆ

SH
|〈v, u〉|2k dµ(u) = lim

N→∞

〈ΨN ,HNΨN〉 − 〈ΨN , (HN − SN
k,t1/(2k)v

)ΨN 〉
tN

6 t−1

(
eGP − inf

||u||2=1

{
EGP(u)− t|〈v, u〉|2k

})
.

By standard compactness arguments, one can show that taking the limit t → 0
above gives (100). This concludes the sketch of the proof of Theorem 2.

Appendix. The two-body interaction case: lower bound

In the two-body interaction case, our proof of the lower bound simplifies and it
gives a shorter alternative to [28, 39]. Moreover, we only need the L1-condition on
the interaction potential, relaxing therefore some regularity assumptions in [28, 39].
Since this simplification may be interesting in its own right, we give some details
below.

We consider W ∈ L1(R3), a nonnegative and compactly supported potential, and
we assume A and Vext to be as in Theorem 1. For N,M ∈ N \ {0}, let us denote

E2B(M,N) := inf σ(H2B
M,N ) with H2B

M,N :=

M∑

i=1

hi +
∑

16i<j6M

WN (xi − xj) ,

where hi ≡ hxi , h ≡ hx := (−i∇x +A(x))2 + Vext(x), and WN = N2W (N ·). Define

E2B(u) :=
ˆ

R3

(
|(−i∇+A(x))u(x)|2 + Vext(x)|u(x)|2 +

b(V )

2
|u(x)|4

)
dx

with b(V ) given in (35). We have the following result.
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Theorem 29. The ground state energy of H2B
N,N satisfies

lim
N→∞

E2B(N,N)

N
= inf

||u||2=1
E2B(u) .

This result has been proved in [28, 39] (under a slightly stronger condition on W ).
Here, we will sketch an alternative proof of the lower bound. Note that from our
proof, it is also possible to derive the convergence of states similar to Theorem 2.
For a technical reason, we will work under the additional assumption (56) on A,
which can be removed following an argument in [39, Sect. 4B].

The main step in the proof of Theorem 29 is obtained via the following lemma.

Lemma 30 (Reduction to softer potentials). Let β ∈ (0, 2/3], 0 < ε < 1 < s, and
δ ∈ (0, ε2/2). We assume Vext to be as in (3) and A ∈ L3

loc(R
3) to satisfy (56).

Let 0 6 Ũ ∈ L∞(R3) be radial with
´

R3 Ũ = 1 and Supp Ũ ⊂ {1/8 6 |x| 6 1/4}.
Define U as in (50) and UR = R−3U(R−1·). Then, for all N , there exist an integer

M ∈ [(1− ε)N,N ] and R ∈ [N−β , N−β/2] such that

E2B(N,N) > inf σL2
s(R

3M )

( M∑

i=1

(hε,s)i +
b(W )

(M − 1)

∑

16i<j6M

UR(xi − xj)

)

− Cε,s,β,δR
2/7N − εCβN − δCεN ,

where hε,s = h− (1− ε)1{|p|>s}p2.

With Lemma 30 at hand, we can apply for instance [24, Theorem 2.5] with 0 <
β < (21/2+3/α)−1 in order to obtain the desired lower bound in Theorem 29. This
part is similar to the analysis in Section 5. Thus, it remains to prove the lemma.

Proof of Lemma 30. By adapting Lemma 13 to the two-body interaction case, we
find that there is a constant C > 0, such that for all N ∈ N \ {0} and 0 < ε < 1/2,
we can find M ≡ M(N, ε) ∈ N such that N(1− ε) 6 M 6 N and

E2B(M,N)− E2B(M − 3, N) 6 Cε−1 .

This replaces a convexity argument in Step 1 of the proof of [28, Theorem 1]. Using
this binding inequality and the heat kernel estimate in [28, Lemma 2], we obtain for
the zero temperature limit ΓM,N of the Gibbs state of H2B

M,N the following analogue
to Lemma 15:

〈
1{|x1−x2|6R}1{|x1−x3|6R}

〉
ΓM,N

6 CεR
6 .

Then, using

M∑

j=1
j 6=i

1{|xj−xi|6R}

M∏

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|>2R} 6 1 , i = 1, . . . ,M ,

we obtain

M∑

i=1

1{|pi|>s}p
2
i +

∑

16i<j6M

WN (xi − xj)
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>

M∑

i=1

M∑

j=1
j 6=i

(
1{|pi|>s}pi1{|xi−xj |<R}pi1{|pi|>s} +

1

2
WN (xi − xj)

) M∏

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|>2R}

> (1− ε)
M∑

i=1

M∑

j=1
j 6=i

(
pi1{|xi−xj |<R}pi +

1

2
WN (xi − xj)

) M∏

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|>2R}

− Cε−1
M∑

i=1

M∑

j=1
j 6=i

pi1{|pi|<s}1{|xi−xj |<R}pi1{|pi|<s}

>

M∑

i=1

M∑

j=1
j 6=i

b(W )

N

(
1− C

RN

)
UR(xi − xj)

M∏

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|>2R} − Cεs
5M2R3 .

We used the Cauchy–Schwarz inequality for the second inequality and the third
inequality is a consequence of Lemma 9 together with the estimate
∣∣∣
∣∣∣1{|pi|6s}pi1{|xi−xj |6R}pi1{|pi|6s}

∣∣∣
∣∣∣
HS

= (2π)−3
∣∣∣∣1{|pi|6s}|pi|

∣∣∣∣2
L2(R3,dpi)

∣∣∣
∣∣∣1{|xi−xj |6R}

∣∣∣
∣∣∣
2

L2(R3, dxi)
6 Cs5R3 .

From this and the lower bound
M∏

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|>2R} > 1−
M∑

ℓ=1
ℓ 6=i,j

(1− 1{|xj−xℓ|>2R}) = 1−
M∑

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|62R} ,

we obtain

E2B(M,N)

>

〈 M∑

i=1

(hε,s)i + b(W )
∑

16i<j6M

M−1UR(xi − xj)

〉

ΓM,N

− C

〈 ∑

16i<j6M

M−1UR(xi − xj)

( M∑

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|62R} +
1

RN
+ ε

)〉

ΓM,N

− Cε,sM
2R3 .

(101)

Recall that N > M > (1− ε)N . To bound the error term in (101), note that

CR−3

〈 ∑

16i<j6M

M∑

ℓ=1
ℓ 6=i,j

M−1UR(xi − xj)1{|xj−xℓ|62R}

〉

ΓM,N

6 CR−3M2 〈1|x1−x2|62R1|x2−x3|62R〉ΓM,N
6 CN ×MR3

by the bosonic symmetry of ΓM,N and that, using (101), we also have
〈 ∑

16i<j6M

M−1UR(xi − xj)

〉

ΓM,N

6 C(E(M,N) + CM2R3) 6 CN(1 +MR3) .

Hence, (101) becomes
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E2B(M,N) >

〈 M∑

i=1

(hε,s)i + b(W )
∑

16i<j6M

M−1UR(xi − xj)

〉

ΓM,N

− Cε,sN(M−1R−1 +MR3)− CNε .

To ensure that the error term N(M−1R−1 +MR3) is o(N), we need

M−1/3 ≫ R ≫ M−1 .

We can take for example

R = (M−1 ×M−1/3)1/2 ∼ N−2/3 .

This is still too singular in order to apply the mean-field technique in [24, Theorem
2.5]. However, the main simplification over [28, 39] comes when we use again the
bosonic symmetry to rewrite (101), for 1 6 M1 6 M , as

E2B(M,N)

M
>

1

M1

〈 M1∑

i=1

(hε,s)i +
b(W )

M1

∑

16i<j6M1

UR(xi − xj)

〉

ΓM,N

− Cε,s(M
−1R−1 +MR3)− CMε . (102)

We will now apply Dyson’s lemma to W̃ = δ−1M−1
1 b(W )UR which, by (37), satisfies

b(W̃ ) > ‖W̃‖L1(R3) −C‖W̃‖2
L6/5(R3)

>
b(W )

δM1

(
1− C

δM1R

)
.

For R1 ≫ R, following the above estimates, we obtain

〈 M1∑

i=1

δp2i +
b(W )

M1

∑

16i<j6M1

UR(xi − xj)

〉

ΓM,N

>

〈
b(W )

M1

∑

16i<j6M1

UR1(xi − xj)

〉

ΓM,N

− C

〈
1

M1

∑

16i<j6M1

UR1(xi − xj)

( M1∑

ℓ=1
ℓ 6=i,j

1{|xj−xℓ|62R1} +
1

δM1R

)〉

ΓM,N

>

〈
b(W )

M1

∑

16i<j6M1

UR1(xi − xj)

〉

ΓM,N

− CδM1

(
M1R

3
1 +M−1

1 R−1
)
.

In order for the error M1(M1R
3
1 +M−1

1 R−1) to be o(M1), we need

M
−1/3
1 ≫ R1 ≫ R ≫ M−1

1 > M−1 ,

which can be satisfied with for example the choices

M1 = (M ×R−1)1/2 = (R−3/2 ×R−1)1/2 = R−5/4

and

R1 = (R×M
−1/3
1 )1/2 = (R ×R5/12)1/2 = R17/24 .

Now, using (57) and that δ ∈ (0, ε2/2), we have δp2 6 εhε,s + δCε. Inserting the
above inequality in (102), we obtain



THE CONDENSATION OF A BOSE GAS WITH THREE-BODY INTERACTIONS 55

E2B(M,N)

(1− ε)M
>

1

M1

〈 M1∑

i=1

(hε,s)i +
b(W )

M1

∑

16i<j6M1

UR1(xi − xj)

〉

ΓM,N

− Cε,sR
1/4 − Cε− Cεδ .

Defining R0 := R and, for j = 1, . . . , J , Rj := R
17/24
j−1 = R(17/24)j and Mj := R

−5/4
j−1 ,

repeating this argument J > 1 times yields

E2B(M,N)

(1− ε)M
>

1

MJ

〈 MJ∑

i=1

(hε,s)i +
b(W )

MJ

∑

16i<j6MJ

URJ
(xi − xj)

〉

ΓM,N

− Cε,sR
1/4J − Cε− Cεδ

>
1

M

〈 M∑

i=1

(hε,s)i +
b(W )

M

∑

16i<j6M

URJ
(xi − xj)

〉

ΓM,N

− Cε,sR
1/4J − Cε− Cεδ .

Note that the double sum in the first inequality has MJ(MJ−1)/2 terms. Therefore,
a correction should arise from the approximation (MJ − 1)/MJ > 1 − CM−1

J but,

using ||URJ
||L∞(R3) 6 CR−3

J , it is also bounded by CMJR
−3
J 6 CR1/4J . For every

β ∈ (0, 2/3), taking J ∈ N \ {0} such that N−β/2 > RJ = R(17/24)J > N−β (recall

that R ∼ N−2/3), we conclude the proof. �
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[18] L. Erdős and H.-T. Yau, Derivation of the nonlinear Schrödinger equation from a many body

Coulomb system, Adv. Theor. Math. Phys., 5 (2001), pp. 1169–1205.
[19] T. Girardot, Average field approximation for almost bosonic anyons in a magnetic field,

J. Math. Phys., 61 (2020), p. 071901.
[20] F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic

and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, A. Muntean,
J. Rademacher, and A. Zagaris, eds., vol. 3 of Lecture Notes in Applied Mathematics and
Mechanics, Springer, Cham, 2016, pp. 1–144.

[21] L. Landau, Theory of the Superfluidity of Helium II, Phys. Rev., 60 (1941), pp. 356–358.
[22] J. Lee, Rate of convergence towards mean-field evolution for weakly interacting bosons with

singular three-body interactions, (2020). arXiv:2006.13040.
[23] M. Lewin, P. T. Nam, and N. Rougerie, Derivation of Hartree’s theory for generic mean-

field Bose systems, Adv. Math., 254 (2014), pp. 570–621.
[24] , The mean-field approximation and the non-linear Schrödinger functional for trapped

Bose gases, Trans. Amer. Math. Soc., 368 (2016), pp. 6131–6157.
[25] Y. Li and F. Yao, Derivation of the nonlinear Schrödinger equation with a general nonlin-

earity and Gross–Pitaevskii hierarchy in one and two dimensions, J. Math. Phys., 62 (2021),
p. 021505.

[26] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American
Mathematical Society, second ed., 2001.

[27] E. H. Lieb and R. Seiringer, Proof of Bose–Einstein Condensation for Dilute Trapped Gases,
Phys. Rev. Lett., 88 (2002), p. 170409.

[28] , Derivation of the Gross–Pitaevskii equation for rotating Bose gases, Commun. Math.
Phys., 264 (2006), pp. 505–537.

[29] E. H. Lieb, R. Seiringer, and J. P. Solovej, Ground-state energy of the low-density

Fermi gas, Phys. Rev. A, 71 (2005), p. 053605.
[30] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, The mathematics of the Bose

gas and its condensation, vol. 34 of Oberwolfach Semin., Basel: Birkhäuser, 2005.
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