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Abstract. To describe the functioning of pulsating heat pipe, one needs to understand
the dynamics of evaporation of thin liquid films deposited by the oscillating meniscus
inside a heated capillary. Following the theory of Taylor bubbles, the dynamic profile
of the liquid-vapor interface is calculated within a 2D numerical approach using the
lubrication approximation. First, the steady vicinity of the contact line is analyzed under
evaporation for the partial wetting case to find a relation between the microscopic and
apparent contact angles. Next, the film evolution driven by the oscillating meniscus with
a pinned contact line is discussed under adiabatic conditions. Finally, the evaporation of
oscillating film is considered. It is shown that the film oscillation with a pinned contact
line is impossible when the capillary superheating exceeds a threshold; the contact line
receding needs to be taken into consideration.

1. Introduction
Pulsating Heat Pipe (PHP), a heat transfer device that is made out of a simple capillary tube,
usually contains a sequence of liquid plugs and vapor bubbles of the same substance. These
bubbles have a length much larger than the tube radius. In a properly functioning PHP, the
liquid plugs oscillate between the evaporator (heated section) and the condenser (cooled section).
Liquid films that are deposited when the menisci recede, provide the principal channel for the
heat and mass exchange in PHP [1].

Previous studies have established a relationship between the film thickness and the velocity of
constant receding meniscus, under the adiabatic conditions [2–4]. Additionally, the film thinning
due to evaporation has been investigated in the case of the continuous liquid film on tube wall
[5–7].

However, in practice, because of the evaporation, the liquid film rupture occurs in the evap-
orator of PHP, creating the triple contact lines where the heat and mass transfers are intense. It
leads to a singularity in a narrow vicinity of the contact line, where the film thickness approaches
zero and the evaporation rate in extremely high. Janeček and Nikolayev [8] present a theoretical
model that relaxes this singularity by accounting for the Kelvin effect. Nonetheless, the impact
of meniscus oscillation was not included.

In this article, we consider the simplest oscillation case, where the contact line is immobile
(pinned on a surface defect). In order to investigate the film evolution during meniscus oscillation
and with wall superheating, a 2D model that describes the dynamics of liquid-vapor interface
has been developed. This work is twofold. First, we focus on the vicinity of the immobile
contact line under evaporation by ignoring the meniscus motion. Next, we analyze the contact
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angle response to the meniscus oscillation under adiabatic conditions. Finally, we simulate both
effects together.

2. Description of the two-dimensional physical model
Consider a circular capillary tube of an inner radius R, containing a liquid plug and a long vapor
bubble of the same fluid. Due to the film evaporation, a contact line appears and is pinned.
The physical processes and the vapor-liquid interface are assumed to be symmetric with respect
to the tube axis, and film thickness h is small as compared with the radius, h� R. Therefore,
the problem can be described in 2D, in the cross-section plane of the tube, shown in Fig. 1.
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Figure 1. Meniscus moving through a capillary tube filled with liquid; the contact line is
pinned at x = 0.

The tube is assumed to be thin enough to make the gravity force negligible. Because the
vapor density and viscosity are small compared to the liquid, one can safely assume that the
vapor pressure p is spatially homogeneous in the bubble and neglect the vapor-side viscous stress
on the liquid-vapor interface.

Adopting the classical Bretherton approach [3], the interface is divided into the film and
meniscus regions. In the film region, the interface is nearly flat (|∂h/∂x| � 1), it can thus be
described with the lubrication approximation of the hydrodynamics equation. The meniscus
region is the part of interface situating in the tube center, where the interface is controlled by
the surface tension alone, thus being of constant curvature (shown in Fig. 1 with a circle of
radius Rm and center at xs).

With aforementioned assumptions, the lubrication theory [9] for the film region results in
the equation that describes the interface dynamics,

∂h

∂t
+

∂

∂x

(
h3

3µ

∂∆p

∂x

)
= −J

ρ
, (1)

where h = h(x, t) is the local film thickness, and J is the mass flux across the interface defined to
be positive at evaporation. Here, µ and ρ are the liquid shear viscosity and density, respectively.
∆p is the interface pressure jump.

Conventional hypotheses concerning the liquid film mass exchange [9] are applied. A linear
temperature profile in the radial direction is assumed in the thin liquid film, thus the energy
balance at the interface results in the mass flux

J =
k(Tw − Tint)

hL
, (2)

where Tint is the temperature of the vapor-liquid interface, k is the liquid heat conductivity, and
L is the latent heat. The problem is formulated here for a general case where the tube wall can be
superheated or subcooled with the respect to the saturation temperature Tsat corresponding to
the imposed vapor pressure p. The wall superheating is denoted ∆T . The tube wall temperature
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Figure 2. Sketch of the straight liquid wedge with no phase exchange (a), and curved wedge
at evaporation (b).

thus is Tw = Tsat + ∆T . The pressure jump ∆p = p− pl (with pl, the liquid pressure) across the
interface obeys the Laplace equation

∆p = σ

(
K +

1

R− h

)
' σ

(
∂2h

∂x2
+

1

Rm

)
, (3)

where σ is the surface tension, K is the 2D interface curvature in the axial cross-section shown
in Fig. 1; in the small-slope approximation, K ' ∂2h/∂x2. Because of this limitation, such a
film theory is not able to describe the meniscus region. The radial contribution to the curvature
R−1m is assumed to be independent of x, because h is much smaller than R. At large x, Eq. (1)
results in an increasingly larger h, where the surface tension gradually predominates over the
viscous forces and controls the interface, so its curvature ∂2h/∂x2 becomes constant. Such a
condition corresponds to a parabolic shape in the axial plane. This parabola matches the circular
meniscus, which results in the condition

∂2h/∂x2|x=xf
= R−1m , (4)

defined at the ending point (xf , hf) of the film region.

2.1. Relaxing the contact line singularity with the Kelvin effect
If the vapor-liquid interface was at a fixed saturation temperature (Tint = Tsat), the mass flux
J (Eq. 2) would diverge at the contact line h = 0 as J ∼ ∆T/h, which is nonphysical because
total evaporated mass (the integral of J) would be infinite.

The Kelvin effect, i.e. the dependence of Tint on the interfacial pressure jump ∆p

Tint = Tsat[1 + ∆p/(ρL)] (5)

can relax the singularity [8], because it allows Tint to vary along the interface. Equations (2, 5)
result in

J = [∆T −∆pTsat/(ρL)]k/(hL). (6)

Tint now can attain the wall temperature Tw at the contact line, which results in J(x→ 0) = 0
and ∆p(x → 0) = ∆pcl, where a constant pressure jump at the contact line is introduced:
∆pcl = Lρ∆T/Tsat. By combining Eqs. (1, 6), one obtains the governing equation.

Unlike other microscopic approaches [10], the problem is now regular (i.e. ∆p is not diver-
gent). As the Kelvin effect alone is capable of relaxing the contact line singularity, the other
microscopic effects such as hydrodynamic slip, Marangoni effect, and interfacial kinetic resistance
[8] are not crucial. They are not included in our model for the sake of clarity.

3. Contact line model with fixed contact angle and substrate superheating
Consider now the steady case, where the meniscus motion is ignored and the contact angle is
fixed.



Joint 20th IHPC and 14th IHPS, Gelendzhik, Russia, September, 7-10, 2021

0

3

6

9

12

0 5 10 15 20 25

0°
5°

7°
10°

θ 
(°

)
ΔT (mK)

θevp-min (ΔT)

Figure 3. θ as a function of ∆T for different θmicro computed for pentane at 1 bar. The curve
for θmicro = 0 corresponds to θevp−min(∆T ).

When Tw = Tsat, the liquid forms a straight wedge near the contact line, as shown in Fig. 2a.
When the substrate is heated, a flow inside the wedge brings the liquid towards the contact line to
compensate the mass loss due to evaporation, thus creates a viscous pressure drop. Interfacial
curvature forms near the contact line [1], which creates a difference between the microscopic
contact angle θmicro, the actual slope at the contact line, and the interface slope θ farther away
from the contact line, cf. Fig. 2b. The characteristic length for this effect is `K ∼ 10− 100 nm
[11] from the contact line. At the length scale xmeso � `K but much smaller than the film
thickness ∼ 10µm, one can define the experimentally measurable interface slope θ called the
apparent contact angle. Their relationship, cf. Fig. 6a, can be expressed as

θ = θ(∆T, θmicro), (7)

The region x < 0 < xmeso is often referred to as microregion. Numerical calculation of θ has
been completed by Janeček and Nikolayev [8]. It is based on the steady version of Eq. (12) (i.e.
with ∂h/∂t = 0) solved with the boundary conditions (8a). Instead of using ∆pcl = Lρ∆T/Tsat,
the weaker form (the second equation of (8a)) was employed for numerical proposes.

Other two boundary conditions for this fourth order differential equation are the imposed
slope θmicro at the contact line and the condition of zero (microregion scale) curvature (8b):

h (x = 0) = 0, ∂∆p/∂x|x→0 = 0, (8a)

∂h/∂x|x=0 = θmicro, ∂2h/∂x2|x=xmeso = 0. (8b)

Note that the interface slope saturates at x� `K, θ is thus independent of xmeso.
Figure 3 demonstrates an example of θ as a function of θmicro and ∆T for pentane at 1 bar,

cf, Eq. (7). θ(∆T, θmicro) monotonously grows with both θmicro and the evaporation intensity
controlled by ∆T ; evidently, θ(∆T = 0) = θmicro.

One now introduces
θevp−min(∆T ) ≡ θ(∆T, θmicro = 0), (9)

which is a lower bound for θ(∆T, θmicro), i.e. its value for the complete wetting case [11].
Therefore, θmicro = 0 curve in Fig. 3 represents θevp−min(∆T ). For example, for ∆T =25 mK,
one obtains θevp−min(∆T = 25 mK) ' 7.8◦, which signifies that the apparent angle θ will always
be larger than 7.8◦ at this ∆T value, whatever are the wetting conditions.

4. Interface profile and contact angle during meniscus oscillation
In this section, an adiabatic problem is considered, ∆T = 0 and ∆pcl = 0, which means θ =
θmicro. The mass exchange appearing at the macroscopic scale is insignificant and can be safely
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neglected. A meniscus oscillates from the pinned contact line. The center of meniscus xm,
which is the experimentally measurable quantity, travels periodically with a period P and an
amplitude A. One can assume its harmonic oscillation

xm(t) = xi +A[1− cos(2πt/P )], (10)

where xi is the initial meniscus center position. Initially, the equilibrium profile satisfying this
condition ∂h/∂t = 0 is used in Eq. (1). The contact line is pinned at x = 0. The contact angle
θmicro is expected to vary between the static advancing θadv and the static receding θrec angles
(the difference of which defines the wetting hysteresis) while the contact line remains immobile.

The governing equation is solved for x ∈ [0, xf ]. The boundary conditions are Eqs. (4, 8a)
and the condition h(x = xf) = hf where hf is yet to be defined. As explained in sec. 2, the
condition (4) means that the solution matches a parabola at x = xf . The parabola is in fact
a small-angle approximation of the circular meniscus shape, so its geometrical parameters can
be defined from those of the meniscus (cf. Fig. 1), in particular from its curvature radius and
the position of circle’s lowest point (xs, hs). The conditions of matching are both the continuity
and the smoothness:

hf = (xf − xs)2/(2Rm) + hs, ∂h/∂x|x=xf
= (xf − xs)/Rm, (11)

where hs is defined with the condition Rm + hs = R [4]; xs satisfies the equation Rm + xs = xm
(cf. Fig. 1).

In the present algorithm, xf is chosen in such a way that the difference xm − xf remains
constant during oscillations. This way, hf = h(xf) remains large with respect to the film thickness
and more or less constant. As discussed in [4], the solution is nearly independent of the specific
choice of hf (and thus of xf). The film shape and the unknown parameters (Rm, xs, hs, hf) can
be determined at each time moment. If the oscillation is sufficiently slow, the meniscus radius
Rm is close to R throughout the oscillation but deviates from it for larger meniscus velocities.

4.1. Numerical implementation
For the harmonic oscillation case, the meniscus velocity is U(t) = U0 sin(2πt/P ). The velocity
amplitude U0 = 2πA/P is convenient to be chosen as a characteristic velocity to define the cap-
illary number Ca0 = µU0/σ. Other variables are converted into dimensionless form as (dimen-

sionless quantities are denoted with a tilde): x = αRCa
1/3
0 x̃, h = αRCa

2/3
0 h̃, t = αRCa

1/3
0 U−10 t̃,

p = σα−1R−1p̃ and T = TsatT̃ , where α ' 1.34. αRCa
2/3
0 is the Bretherton film thickness [3]

corresponding to the maximal receding velocity U0.
With such a “natural” scaling four main dimensionless parameters are left: θi, P̃ , Ca0, and

N . All the quantities will be studied in this parametric space. The dimensionless amplitude is
linked to the period as Ã = P̃ /(2π). The governing equation in dimensionless form reads

∂h̃

∂t̃
+

∂

∂x̃

(
h̃3

3

∂∆p̃

∂x̃

)
= N

∆p̃− p̃cl
h̃

(12)

where,
N = µkTsat(LραRCa0)−2, (13)

which describes the magnitude of the Kelvin effect in the microregion.
Equation (12) is discretized using the finite volume method (FVM), which is more stable

numerically [12] than the more conventional finite difference method. The variables such as h
and their even order derivatives are defined at center of each grid segment (called node), while
the odd order derivatives are defined at the segment ends. The FVM has the advantage that the
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liquid flux is continuous at the segment ends. Nonlinear terms are managed by iteration: they
include values from the previous iteration. The numerical algorithm is similar to that used by
Nikolayev [9]. The mesh size is exponentially refined near the contact line (as x̃→ 0) to capture
the contact angle variation without considerably increasing the total number of nodes [9].

4.2. Interface profile during oscillation
Fig. 4 illustrates numerical results of the interface profiles at several time moments during
oscillation. The meniscus motion follows the harmonic law (10). The liquid film is deposited
until t = P/2. For t > P/2, the meniscus advances over the deposited film. The interface has
the wavy appearance near the end of film, resembling the ripples that appears during the steady
meniscus advancing discussed in Nikolayev and Sundararaj [5]. The interface profiles h̃(x̃, 0)
and h̃(x̃, P̃ ) are indistinguishable, which confirms the periodicity of oscillation.

0
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0 5 10 15
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x~

t=0

0.25P

0.5P0.75PP

0.15P

0.85P

0.35P
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Figure 4. Periodic interface shape variation at oscillation for P̃ = 50, Ca0 = 1 × 10−3 and
θi = 20◦. The labels give the times corresponding to each profile, and the arrows indicate the
meniscus motion direction.

The numerical results are compared with the experiments of Lips et al. [13]. In the exper-
iments, a capillary tube (inner radius 1.2mm) contains two vapor bubbles and a short liquid
plug of pentane. The variation of pressure difference between the vapor bubbles forces the plug
oscillate, with the frequency 3.7 Hz and the velocity amplitude U0 = 0.24 m/s approximately.
The plug motion is recorded by the high-resolution camera and the velocity and the curvature
of meniscus are then recovered from the image analysis. Because the motion is not perfectly
harmonic, these experimental data were used in the numerical calculations in Eqs. (10) and (4).

In their experiments, the Weber number We0 = 2RρU2
0 /σ = 5.66 is larger than unity. The

Reynolds number Re0 = 2RρU0/µ = 1521 is quite high and the impact of inertia on the shape
of the central meniscus part must be taken into consideration. However, the thin film can still
be considered as controlled by the viscosity only, because Ca0 ∼ 3.74×10−3 remains low. Under
these conditions, the film ripples in the transition region close to the meniscus, which appear
during the plug advancing, can be compared to the calculations.

Figure 5 presents several snapshots of plug oscillation. The left column shows the original
images of Lips et al. [13] and the corresponding simulation results. The liquid film in transition
region (in the block) is enlarged in the right column. The wavy appearance of the interface is
truthfully captured by the numerical calculation.

Unfortunately, the quantitative comparison of the film thickness (i.e. the vertical coordinate)
is hardly possible since the cylindrical aberration of the glass capillary is not corrected and the
contact line cannot be distinguished. One can nonetheless compare the axial lengths. The size
of one pixel in mm can be obtained from the known outer tube diameter (4 mm) that is visible in
the original images. From the experimental images, the axial distance between the crest and the
trough (Fig. 5) of the film ripple is 0.50±0.02 mm, while in the simulation, it is 0.51±0.01 mm.
This distance is almost constant in time. Evidently, the agreement is excellent.
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Figure 5. Liquid film shape during meniscus oscillation: comparison with experimental results
by Lips et al. [13].
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Figure 6. Contact angle and interface variation for Ca0 = 10−3, P̃ = 50.

4.3. Contact angle variation
A typical variation of θ during oscillation is plotted in Fig. 6a. The initial contact angle θi is
the maximum contact angle achieved during the periodical motion.

In the beginning of a period, the capillary forces lead to the fast contact angle reduction until
the meniscus recedes far enough so the curvature gradient reduces and the contact angle becomes
nearly constant for a large part of a period. This nearly constant value is quite insensitive to
both θi and P . θ slowly decreases until the ripples in the near-meniscus region approach the
contact line during the backward stroke (Fig. 6b) at the end of a period. This causes the contact
angle oscillations, during which its minimal value θmin is attained:

θ(t) ≥ θmin, (14)

which depends quite weakly on θi (Fig. 6a). This minimal value of contact angle is of importance
(cf. sec. 5 below). Since the motion is periodical, the contact angle θi is attained at t = P .

5. Combining film evaporation and meniscus oscillation
In this section we consider the meniscus oscillations together with the evaporation effect (i.e.,
for a positive ∆T ). Two approaches are considered. First, by applying a multi-scale reasoning,
we combine the results of sections 3 and 4. Second, the problem of meniscus oscillation with
evaporation is solved numerically.
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5.1. Multi-scale approach
In this section we combine the above results for the case of heating conditions. Consider a case
of small ∆T . The evaporation in the film and meniscus regions can thus be neglected during
an oscillation period and the macroscopic results of sec. 4 still apply. However, because of
the contact line singularity, the evaporation is not negligible in the microregion and leads to
a difference between the apparent contact angle θ and the microscopic contact angle θmicro, as
defined in sec. 3. First, instead of solving Eq. (12) for this case, we apply here the multi-scale
reasoning introduced in sec. 3.

When a solution of the full problem exists, the micro and macro regions can be matched for
a given ∆T . They are connected through the relationship (7), which means the oscillatory film
shape eventually imposes the value of θmicro.

In the sprite of the multi-scale reasoning, θ must simultaneously satisfy the conditions:

1. Similarly to the case where ∆T = 0, during oscillations with a pinned contact line, the
moving film imposes the θ value. This implies that the inequality (14) should hold for
∆T > 0, cf. Fig. 6a.

2. On the other hand, θ is defined by Eq. (7), which is bounded from below: θ ≥ θevp−min(∆T ).

The condition (ii) suggests that θ(t), throughout oscillation, should remain larger than
θevp−min(∆T ). From the inequality (14), one obtains

θmin ≥ θevp−min(∆T ), (15)

which presents a necessary condition for matching of two regions. With the equality sign θmin =
θevp−min(∆Tmax), this equation defines a superheating limit ∆Tmax. Since θevp−min(∆T ) is an
increasing function (cf. Fig. 3), the superheating limit ∆Tmax is an upper bound. Thus the
inequality (15) is satisfied when ∆T < ∆Tmax.

To determine ∆Tmax graphically, Fig. 7 presents an example where θ(t) (bottom and vertical
axes, extracted from Fig. 6a) is plotted together with θevp−min(∆T ) (top and vertical axes,
extracted from Fig. 3). During the oscillation, the minimum value θmin ' 2◦ is attained. From
the dependence θevp−min(∆T ), one can deduce that ∆Tmax ' 1 mK. A solution of oscillation
problem with evaporation should be nonexistent if ∆T > 1mK.

5.2. Numerical approach
In this section, we describe the results of the numerical solution of Eq. (12). In Fig. 8, variations
of θmicro during meniscus oscillation are plotted for small ∆T of 0.2mK, 0.5mK, 0.7mK and
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Figure 9. Film thickness and pressure profiles in the micro-region around the moment t =
0.968P when the minimal θmicro is achieved: ∆T=0.7mK, θi = 10◦, P̃ = 50.

0.9mK. θmicro attains the minimal value near the time moment t = 0.968P . The minimum value
of θmicro decreases with superheating, which implies that θmicro reaches zero for certain ∆T .
The minimal values for ∆T = 0.2mK, 0.5mK, 0.7mK and 0.9mK, are 1.2◦, 0.82◦, 0.53◦ and
0.2◦ respectively. The simulations confirm that the reasoning of the previous section is correct,
because the minimal value of θmicro tends to zero when ∆T approaches ' 1mK.

Moreover, the variation of θmicro is strong near the minimum. It corresponds to the short
time lapse when the largest ripple formed near the meniscus (cf. Fig. 4) approaches the contact
line, cf. Fig. 9a. The interface curvature exhibits the rapid and strong changes near this time
moment, cf. Fig. 9b. After the ripple disappearance (for t > 0.968P ), the pressure jump quickly
relaxes to the steady-state profile, in which ∆p saturates towards both the contact line and the
meniscus, and decreases monotonically in between, for example see the curve for t = 0.974P .

5.3. Paradox and its solution
Both above approaches show that the solution of the oscillation problem is nonexistent when the
capillary superheating exceeds a tiny value, much smaller than the realistic superheating. The
reason for this paradox is the pinned contact line: if the contact line receded, another degree
of liberty would appear so the contact angle would not be constrained any more. The contact
line is necessarily depinned when θ attains θ (∆T, 0) (actually, a larger value θ (∆T, θrec) but
θ (∆T, 0) gives a lower bound).

As this maximum superheating is considerably smaller than that encountered in practice
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(where it is rather of several degrees K, see e.g. Fourgeaud et al. [7]), one can deduce that
the contact line receding at evaporation is inevitable and necessary to be accounted for in PHP
modeling.

While the calculation has been completed here only for the pentane case, one can safely
state that ∆Tmax is substantially smaller than realistic superheating used in thermal engineering
applications for many other fluids.

6. Conclusions
Contact line effects have been investigated during meniscus oscillation and film evaporation
for the simplest case, where the contact line is pinned. Apparent contact angle varies during
oscillation and encounters a minimal value of several degrees. This minimal value exhibits a
weak dependence on the initial value of contact angle. Because the apparent contact angle
monotonically grows with the superheating for a fixed microscopic contact angle, the minimum
places an upper bound for the tube superheating. This upper bound of the order of 1mK is
considerably smaller than a typical experimental superheating, which means that the contact line
receding is inevitable at oscillations so the dry spots should grow during the meniscus receding
in the PHP evaporator. This also means the necessity to include the contact line receding when
modeling the oscillation and film evaporation effects simultaneously.
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