Liquid film dynamics in pulsating heat pipes
Xiaolong Zhang

To cite this version:
Xiaolong Zhang. Liquid film dynamics in pulsating heat pipes. Les Journées CNES Jeunes Chercheurs 2021, Oct 2021, Toulouse, France. hal-03388037

HAL Id: hal-03388037
https://hal.science/hal-03388037
Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pulsating heat pipe (PHP, Caloduc Oscillant in French)

- Promising, high-efficient, passive heat transfer devices, particularly in thermal control systems for aerospace applications.
- A capillary meandering between evaporators (heat sources) and condensers (heat sinks), with optional adiabatic sections.
- Partially filled with working fluid: vapor bubbles and liquid plugs.
- Self-sustained oscillation of liquid plugs as a result of pressure imbalance among the CASHBUBBLEs.
- Liquid films are deposited by receding plugs.

Motivation

- Liquid film dynamics is crucial, because heat exchange through the films is its dominant mechanism.

Film profile with pinned contact line and oscillating meniscus, under adiabatic condition

1. Comparison to experiments of Liu et al. (2010)
 - An oscillating liquid plug in a cylindrical capillary tube.
 - When the meniscus advances, a plug and a condenser (C). Inside the tube a bubble, a meniscus (film) and a plug.

2. Contact angle variation
 - Variation of θ is periodic, because θ is imposed by the film shape (controlled by the meniscus).
 - The initial θ is the maximum value achieved during oscillation: minimum nearly constant for a large part of a period, because the meniscus is away from the contact line.

3. Contact line recession
 - Minimal contact angle decreases with ΔT, which implies that it will reach zero for a certain ΔT. For larger ΔT, the solution does not exist.
 - CAm monotonically increases with ΔT, which is more significant than that on θ, which signifies that the evaporation effect prevails.

The Lubrication Approximation and Kelvin Effect

- Curvatures are replaced by the model lumped shape.
- Film deposition by the receding meniscus is a function of meniscus speed (from film dynamics).
- Contact line recession is uniform, but evolves with time. Results will be compared to experimental data.

Film profile with pinned contact line, oscillating meniscus and tube wall heating ΔT

1. Contact angle variation
 - Contact line receding because the ripples approach back, a minimal value appears.

2. Contact line recession
 - Minimal contact angle decreases with ΔT, which implies that it will reach zero for a certain ΔT. For larger ΔT, the solution does not exist.

Contact line motion: dewetting problem with substrate heating

1. Film speed as a function of ΔT and #

At the end of a period

- Contact angle oscillates because the ripples of the film
- A minimal value appears.

Contradiction between experiments and calculations

- At a minimal value appears.

Film dynamics with pinned contact line and meniscus oscillation

- The lubrication approximation and Kelvin effect.
- Local contact angle θ and meniscus curvature CA are oscillating.
- Meniscus velocity U is slow; shape determined by surface tension (hemi-spherical).
- Films: mostly flat and thin (~100 μm), low Re number and strong viscous forces.

Contact line motion: dewetting problem

- Contact line recession because of capillary action and liquid evaporation.
- Dewetting ridge forms by collecting the liquid.