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The Hsp90 cochaperone TTT promotes cotranslational maturation of PIKKs prior to complex assembly

In brief

The Hsp90 cochaperone TTT promotes cotranslational maturation of PIKKs prior to complex assembly INTRODUCTION Most proteins function as part of multimeric complexes rather than in isolation. These complexes adopt specific quaternary structures that are important for their functions, for example, enabling allosteric regulation. Describing the principles that govern their assembly is key to understanding their organization, function, and regulation. Pioneering work revealed that complexes assemble through ordered pathways that appear evolutionarily conserved [START_REF] Marsh | Protein complexes are under evolutionary selection to assemble via ordered pathways[END_REF]. However, compared with our knowledge of the structure, biochemical composition, and regulatory activities of protein complexes, less is known about the mechanisms and factors controlling their biogenesis.

Two distinct mechanisms promote assembly while minimizing misfolding and non-specific interactions, thereby preventing proteotoxic stress [START_REF] Marsh | Structure, dynamics, assembly, and evolution of protein complexes[END_REF]. First, both pleiotropic and dedicated chaperones assist the folding of newly synthesized subunits and promote protein-protein interactions, sometimes at specific organelles [START_REF] Kramer | Mechanisms of cotranslational maturation of newly synthesized proteins[END_REF]. Second, cotranslational interactions between subunits of the same complex recently emerged as a mechanism driving protein maturation [START_REF] Natan | Regulation, evolution and consequences of cotranslational protein complex assembly[END_REF]. Various proteins can indeed recognize the nascent polypeptide of their interacting partner in prokaryotes and eukaryotes, indicating a general phenomenon [START_REF] Duncan | Widespread cotranslational formation of protein complexes[END_REF][START_REF] Shiber | Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling[END_REF][START_REF] Shieh | Operon structure and cotranslational subunit association direct protein assembly in bacteria[END_REF]. These mechanisms might be mutually exclusive, because subunits that do not engage cotranslationally require specific chaperones for their assembly [START_REF] Shiber | Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling[END_REF]. However, which features dictate whether a nascent polypeptide requires its partner or dedicated assembly factors for folding and maturation are not well understood. Moreover, whether both mechanisms cooperate to drive the biogenesis of certain complexes is unclear.

These studies typically focused on complexes with relatively simple architecture and formed by a small number of subunits. Comparatively less is known about the assembly of large complexes containing multiple distinct modules. Their biogenesis may follow an ordered pathway, with each step involving a distinct mechanism. For example, proteasome assembly requires both concerted action of dedicated chaperones and cotranslational interactions between specific subunits [START_REF] Funakoshi | Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base[END_REF][START_REF] Panasenko | Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes[END_REF][START_REF] Roelofs | Chaperone-mediated pathway of proteasome regulatory particle assembly[END_REF][START_REF] Saeki | Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle[END_REF]. Similarly, although less characterized, the assembly of transcription complexes involves both mechanisms. Cotranslational interactions have been observed between some subunits of the SET1C histone methyltransferase, the general transcription factor TFIID, or the SAGA coactivator [START_REF] Halbach | Cotranslational assembly of the yeast SET1C histone methyltransferase complex[END_REF][START_REF] Kamenova | Cotranslational assembly of mammalian nuclear multisubunit complexes[END_REF][START_REF] Kassem | Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA[END_REF]. In contrast, both the TFIID-specific subunit TAF5 and its SAGA-specific paralog TAF5L require the CCT chaperonin for their incorporation into pre-assembled modules [START_REF] Antonova | Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly[END_REF]. Likewise, we recently showed that assembly of the Tra1/TRRAP subunit into the SAGA and NuA4/TIP60 transcription complexes requires a dedicated assembly factor, called the Triple T complex (TTT) [START_REF] Detilleux | The TRRAP transcription cofactor represses interferon-stimulated genes in colorectal cancer cells[END_REF]Elı ´as-Villalobos et al., 2019a).

Yeast Tra1 and its human ortholog TRRAP are evolutionarily conserved members of the family of phosphatidylinositol 3-kinase (PI3K)-related kinases (PIKKs) [START_REF] Mcmahon | The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins[END_REF][START_REF] Saleh | Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes[END_REF][START_REF] Vassilev | The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily[END_REF]. However, Tra1/TRRAP lacks the residues required for catalytic activity and is the only pseudokinase of this family. Tra1/TRRAP functions as a large protein interaction hub and is essential for the activity of many transcription factors. Active PIKKs function as serine/threonine kinases, mediating signal transduction in diverse biological contexts [START_REF] Lempia ¨inen | Emerging common themes in regulation of PIKKs and PI3Ks[END_REF]. DNA-PK, ATM, and ATR have essential roles in DNA damage sensing, signaling, and repair. MTOR is a central regulator of metabolism, cell growth, and survival in response to nutrients and growth factors. Finally, SMG1 mediates the decay of mRNAs with premature stop codons or splicing defects. Although PIKKs are generally conserved across eukaryotic clades, yeasts lack orthologs of DNA-PK and SMG1 (Elı ´as-Villalobos et al., 2019b). Despite these diverse functions, PIKKs share a characteristic domain architecture and are structurally related [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF]. A long stretch of Huntingtin, EF3A, ATM, TOR (HEAT) repeats precedes the FRAP, ATM and TRRAP (FAT) domain, which consists of tetratricopeptide (TPR) repeats, followed by the kinase (KIN) domain. Both HEAT and TPR repeats form extended arrays of a-solenoidal repeats that fold into extended superhelical structures. Topologically, the FAT domain forms a single FATKIN unit with the KIN domain and the PIKK regulatory domain (PRD). Its C-terminal (C-ter) end, the FATC motif, is composed of short, hydrophobic a-helices buried inside the structure, close to the activation loop. The FATKIN unit is highly conserved and has a similar architecture between PIKKs [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF]. In contrast, the N-terminal (N-ter) HEAT repeats are more variable, both in length and in topology. In addition, both ATM and ATR lack the FKBP-rapamycin-binding (FRB) domain, a short region between the FAT and the KIN domains. PIKKs also differ in their oligomerization and interaction with regulatory factors. For example, MTOR dimerizes constitutively and interacts with specific partners to form either TORC1 or TORC2 complexes. Tra1/ TRRAP is always monomeric but part of larger complexes, the SAGA and NuA4/TIP60 transcription coactivators.

The biogenesis of PIKK complexes remained uncharacterized for many years, until seminal work revealed that PIKKs share a dedicated heat shock protein 90 (Hsp90) cochaperone, the TTT complex, for their maturation and de novo assembly [START_REF] Anderson | Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break[END_REF][START_REF] Hurov | A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability[END_REF][START_REF] Izumi | Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex[END_REF][START_REF] Kaizuka | Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly[END_REF][START_REF] Takai | Tel2 regulates the stability of PI3K-related protein kinases[END_REF][START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF]. TTT was initially discovered in Schizosaccharomyces pombe and is composed of three conserved, specific subunits: Tel2, Tti1, and Tti2 [START_REF] Hayashi | Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits[END_REF][START_REF] Shevchenko | Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment[END_REF][START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF]. Functional studies performed mostly in yeast and mammalian cells implicated TTT in PIKK signaling pathways, for example, in response to DNA damage or metabolic stress [START_REF] Ahmed | C. elegans RAD-5/CLK-2 defines a new DNA damage checkpoint protein[END_REF][START_REF] Anderson | Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break[END_REF][START_REF] Brown | MNK Controls mTORC1:Substrate Association through Regulation of TELO2 Binding with mTORC1[END_REF][START_REF] David-Morrison | WAC Regulates mTOR Activity by Acting as an Adaptor for the TTT and Pontin/Reptin Complexes[END_REF][START_REF] Goto | Two separate pathways regulate protein stability of ATM/ATRrelated protein kinases Mec1 and Tel1 in budding yeast[END_REF][START_REF] Hoffman | Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response[END_REF][START_REF] Hurov | A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability[END_REF][START_REF] Izumi | Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex[END_REF][START_REF] Kaizuka | Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly[END_REF][START_REF] Kim | Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex[END_REF][START_REF] Rao | Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2[END_REF][START_REF] Shikata | Tel2 is required for activation of the Mrc1-mediated replication checkpoint[END_REF][START_REF] Takai | Tel2 regulates the stability of PI3K-related protein kinases[END_REF][START_REF] Xu | A tel2 Mutation That Destabilizes the Tel2-Tti1-Tti2 Complex Eliminates Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint and Leads to Telomere Shortening in Fission Yeast[END_REF]. Although catalytically inactive, Tra1/TRRAP stability, complex assembly, and transcriptional activity also require TTT and Hsp90 [START_REF] Detilleux | The TRRAP transcription cofactor represses interferon-stimulated genes in colorectal cancer cells[END_REF]Elı ´as-Villalobos et al., 2019a;[START_REF] Hurov | A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability[END_REF][START_REF] Izumi | Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex[END_REF][START_REF] Kaizuka | Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly[END_REF][START_REF] Takai | Tel2 regulates the stability of PI3K-related protein kinases[END_REF]. However, the molecular mechanism by which TTT recognizes PIKKs specifically and promotes their maturation is not known. Here, using S. pombe, we show that TTT interacts with PIKKs cotranslationally and recognizes nascent PIKK polypeptides in a non-native state until synthesis is completed.

RESULTS

Proteomic characterization of the S. pombe TTT cochaperone Fission yeast offers several advantages to study how the Hsp90 cochaperone TTT regulates PIKK biogenesis. Its genome has six genes, each encoding a PIKK present only in one complex (Figure 1A). In Saccharomyces cerevisiae and mammals, Tra1/ TRRAP is shared between the SAGA and the NuA4/TIP60 complexes. In contrast, S. pombe has two paralogs, Tra1 and Tra2, which have non-redundant roles that are specific for SAGA and NuA4, respectively [START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF]. Similarly, MTOR has two paralogs, Tor2 and Tor1, which incorporate into the TORC1 and TORC2 complexes, respectively [START_REF] Hayashi | Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits[END_REF]. Finally, Rad3 is the S. pombe ortholog of Mec1/ ATR, which interacts with the Ddc2/ATRIP ortholog Rad26, and Tel1 is the ortholog of Tel1/ATM, which interacts with the MRN complex [START_REF] Blackford | ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response[END_REF].

We first performed an unbiased proteomic characterization of TTT in S. pombe, using tandem affinity purification of endogenous Tel2, Tti1, and Tti2 followed by quantitative mass spectrometry (TAP-MS). Consistent with previous studies [START_REF] Hayashi | Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits[END_REF][START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF], Tti2 interacts with Tel2 and Tti1 almost stoichiometrically (Figures 1B andS1A; Table S1). Interestingly, Tti2 also pulls down Asa1, a protein previously identified in Rvb1 purifications from both S. cerevisiae and S. pombe [START_REF] Shevchenko | Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment[END_REF] and involved in PIKK stability [START_REF] Goto | Two separate pathways regulate protein stability of ATM/ATRrelated protein kinases Mec1 and Tel1 in budding yeast[END_REF][START_REF] Rozario | Saccharomyces cerevisiae Tel2 plays roles in TORC signaling and telomere maintenance that can be mutationally separated[END_REF][START_REF] Stirling | The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components[END_REF]. In contrast, the AAA+ ATPases Rvb1 and Rvb2 were detected with poorer specificity and reproducibility, suggesting weaker or more transient interaction with Tti2. The Hsp90 chaperone was not specifically detected in Tti2 purifications, possibly because of its high abundance in protein extracts. Similar observations were made in quantitative mass spectrometry (MS) analyses of Tel2 and Tti1 purifications (Figure S1A; Table S2).

In addition, most PIKKs were specifically and reproducibly enriched in Tti2,Tel2,and Tti1 purifications,including Tra1,Tra2,Tor2,and Tor1 (Figures 1B and S1A;Table S2). We observed no and weak interaction with Tel1 and Rad3, respectively, possibly because of their low abundance and negligible DNA damage in exponentially growing cells. We found no detectable interaction between TTT and subunits from PIKK-containing complexes, such as SAGA, NuA4, TORC1, and TORC2. One notable exception is Wat1, a subunit shared between the TORC1 and the Cell Reports 37, 109867, October 19, 2021 3
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TORC2 complexes, which interacts with all three TTT components. Altogether, our quantitative proteomic analyses indicate that Tti2, Tel2, and Tti1, together with Asa1, form a stable multimeric complex that interacts with most PIKKs in S. pombe (Figure 1A).

TTT regulates PIKK functions

We next examined the effect of TTT on PIKK-dependent processes. As shown in other organisms, Tel2, Tti1, and Tti2 are essential for viability in S. pombe [START_REF] Inoue | CK2 phospho-independent assembly of the Tel2-associated stress-signaling complexes in Schizosaccharomyces pombe[END_REF][START_REF] Shikata | Tel2 is required for activation of the Mrc1-mediated replication checkpoint[END_REF]. We thus constructed strains in which TTT subunits can be conditionally depleted. We first used the auxin-inducible degron (AID), which allows rapid depletion and has been successfully implemented in S. pombe [START_REF] Kanke | Auxin-inducible protein depletion system in fission yeast[END_REF][START_REF] Nishimura | An auxin-based degron system for the rapid depletion of proteins in nonplant cells[END_REF]. Western blot analyses of endogenous AID-tagged Tel2, Tti1, and Tti2 shows auxin-dependent depletion in TIR1-expressing strains, although Tti2 appears partially destabilized even without auxin (Figure S1B). Depletion of each protein reduces S. pombe viability and proliferation compared with control strains and culture conditions (Figures S1C andS1D). Previous work demonstrated that TTT is required for activation of the DNA replication checkpoint by Rad3 [START_REF] Shikata | Tel2 is required for activation of the Mrc1-mediated replication checkpoint[END_REF][START_REF] Xu | A tel2 Mutation That Destabilizes the Tel2-Tti1-Tti2 Complex Eliminates Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint and Leads to Telomere Shortening in Fission Yeast[END_REF]. We thus characterized the contribution of TTT to the functions of other PIKKs, particularly Tra1 and Tor2. Both have crucial roles in the switch between proliferation and sexual differentiation in S. pombe as part of the SAGA and TORC1 complexes, respectively [START_REF] Laribee | Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway[END_REF]. We used qRT-PCR to determine the effect of TTT depletion on the expression of two sexual differentiation genes, ste11+ and mei2+. We observed that the mRNA levels of both genes increase upon depletion of Tel2, Tti1, and Tti2 compared with control strains and conditions (Figures S1E and S1F). This phenotype is reminiscent of that observed in the absence of Tra1 or upon partial inactivation of Tor2 [START_REF] Alvarez | Fission yeast Tor2 promotes cell growth and represses cell differentiation[END_REF][START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF]. Therefore, similar to Tra1 and Tor2, TTT represses sexual differentiation genes in nutrient-rich conditions. Finally, we examined TORC1 activity in TTT-depleted cells. Western blotting showed decreased phosphorylation of the ribosomal protein S6, a canonical TORC1 substrate, following Tel2, Tti1, and Tti2 depletion (Figure S1G). We conclude that the TTT complex promotes proliferation and inhibits sexual differentiation when nutrients are present, presumably by incorporating Tra1 and Tor2 into SAGA and TORC1, respectively.

TTT promotes PIKK stability Genetic and biochemical studies established that TTT sustains PIKK steady-state levels in yeast, mouse, and human cell lines [START_REF] Anderson | Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break[END_REF][START_REF] Ferna ´ndez-Sa ´iz | SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma[END_REF][START_REF] Genereaux | Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1[END_REF][START_REF] Goto | Two separate pathways regulate protein stability of ATM/ATRrelated protein kinases Mec1 and Tel1 in budding yeast[END_REF][START_REF] Hoffman | Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response[END_REF]Ho rej sı ét al., 2010;[START_REF] Hurov | A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability[END_REF][START_REF] Izumi | Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex[END_REF][START_REF] Kaizuka | Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly[END_REF][START_REF] Rao | Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2[END_REF][START_REF] Rozario | Saccharomyces cerevisiae Tel2 plays roles in TORC signaling and telomere maintenance that can be mutationally separated[END_REF][START_REF] Stirling | The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components[END_REF][START_REF] Takai | Tel2 regulates the stability of PI3K-related protein kinases[END_REF][START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF][START_REF] Xu | A tel2 Mutation That Destabilizes the Tel2-Tti1-Tti2 Complex Eliminates Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint and Leads to Telomere Shortening in Fission Yeast[END_REF]. Surprisingly, we found that auxin-induced depletion of Tel2, Tti1, and Tti2 had no detectable effect on PIKK protein levels in S. pombe. However, AID targeting of TTT subunits causes incomplete depletion and partial growth defects, even after prolonged auxin treatment (Figures S1B-S1D). We thus switched to a conditional gene deletion strategy, based on inducible CreER-loxP-mediated recombination. We previously generated and characterized a conditional knockout allele of tti2+ (tti2-CKO), which allows complete, b-estradiol-induced loss of Tti2 (Elı ´as-Villalobos et al., 2019a). To measure the effect of TTT on both PIKK steady-state levels and stability, we performed a cycloheximide (CHX) chase using different tti2-CKO strains in which endogenous PIKKs were FLAG-tagged at their N-ter end. Western blotting followed by quantification of signal intensities showed that both the steady-state levels and the stability of Tra1, Tra2, and Tor1 decrease following Tti2 depletion (Figures 1C-1F). Surprisingly, despite a strong decrease of Tor2 steady-state levels, its stability appears unaffected, even increasing 6 h after CHX treatment. It is possible that Tor2 is subjected to rapid turnover and compensatory mechanisms boosting its synthesis. Indeed, S. pombe can resist CHX and continue to grow, although more slowly. Despite several attempts, we were unable to reproducibly detect endogenous Rad3 and Tel1, precluding analysis of their expression by this approach. However, a study isolated a tel2 mutation that destabilizes the TTT complex and reduces Rad3 and Tel1 protein levels in S. pombe [START_REF] Xu | A tel2 Mutation That Destabilizes the Tel2-Tti1-Tti2 Complex Eliminates Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint and Leads to Telomere Shortening in Fission Yeast[END_REF]. Finally, our published transcriptomic analysis of tti2-CKO mutants showed that PIKK mRNA levels remain unaffected following Tti2 depletion (Figure S1H) (Elı ´as-Villalobos et al., 2019a), indicating that TTT regulates their expression at the protein level. In conclusion, together with previous work [START_REF] Shikata | Tel2 is required for activation of the Mrc1-mediated replication checkpoint[END_REF][START_REF] Xu | A tel2 Mutation That Destabilizes the Tel2-Tti1-Tti2 Complex Eliminates Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint and Leads to Telomere Shortening in Fission Yeast[END_REF], our results show that in S. pombe, the TTT cochaperone promotes the stability of PIKKs and contributes to their regulatory roles. This function of TTT is therefore conserved among budding yeast, fission yeast, and mammals.

TTT binds to PIKKs cotranslationally

We then sought to determine where TTT recognizes PIKKs within the cell. We recently showed that TTT promotes Tra1 and Tra2 incorporation into SAGA and NuA4, respectively, and contributes to their gene regulatory activities (Elı ´as-Villalobos et al., 2019a). However, chromatin immunoprecipitation (ChIP) revealed no enrichment of Tel2 over background at SAGA-bound (mei2+) and NuA4-bound (ssa2+) promoters (Figure S2A), suggesting that TTT does not control Tra1 and Tra2 assembly at promoters. Furthermore, fluorescent live microscopy showed that endogenous GFP-tagged Tel2 does not localize to the nucleus in standard growth conditions (Figure S2B). We thus hypothesized that rather than acting at chromatin, TTT recognizes newly synthesized Tra1 and Tra2.

To test this possibility, we performed RNA immunoprecipitation (RIP) of TTT. Previous work has shown that RIP can detect cotranslational interactions between a protein and a nascent polypeptide (Duncan andMata, 2011, 2014). Conventional and qRT-PCR analyses revealed a specific enrichment of the tra1 + mRNA in RIPs of all three TTT subunits, Tel2, Tti1, and Tti2, compared with several negative controls (Figures 2A and2B). These include a non-reverse transcribed (no RT) control, a strain lacking the epitope tag used to purify TTT (no hemagglutinin [HA]), and a strain in which the HA tag was fused to the TORC2 subunit Ste20, which does not interact with Tra1 and SAGA. In addition, we measured the binding of TTT to mRNAs encoding proteins unrelated to PIKK biogenesis and function. Specifically, we tested the vacuolar serine protease Isp6, the glutathione S-transferase RNA immunoprecipitation of TTT subunits followed by qRT-PCR analyses (RIP-qPCR). Immunoprecipitation (IP) using anti-HA (A-F) and anti-MYC (H-J) antibodies from exponentially growing cells (A-F) and treated with either DMSO or b-estradiol for 16 h (H-J). Ratios of IP to input (IP/IN) from independent experiments are shown as individual points (n R 3) overlaid with the mean and standard deviation (SD). The isp6+ mRNA is used as the negative control. An untagged strain is used as a control for the background IP signal. (C-F) For translation inhibition, cultures were treated with 1 mg/mL puromycin for 15 min. For ribosome dissociation, total extracts were supplemented with 25 mM EDTA. (A) Evolutionary conservation analysis of S. pombe PIKKs. Conservation scores were calculated using ConSurf [START_REF] Ashkenazy | ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules[END_REF] from multiple sequence alignments generated using Clustal Omega [START_REF] Madeira | The EMBL-EBI search and sequence analysis tools APIs in 2019[END_REF]. Scores were averaged in 25-residue bins, shown as a heatmap (see the color scale), and aligned to Tra1 domains (HEAT, FAT, FRB, KIN, and FATC). (B) Illustration of S. pombe Tra1 truncations, which remove the FATC domain (tra1-1); the KIN and FATC domains (tra1-2); half of the FAT, KIN, and FATC domains (tra1-3); the entire FAT, KIN, and FATC domains (tra1-4); the HEAT repeats (tra1-5); or the . The first and last residues of each truncated mutant are shown.

(legend continued on next page)
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Gst2, and the cell-surface endo-1,3-beta-glucanase Eng1.

Compared with control purifications, we found no enrichment of the isp6 + , gst2 + , and eng1 + mRNAs in Tti2, Tel2, and Tti1 RIPs (Figures 2B andS2C), confirming the specificity of the interaction between TTT and tra1 + .

To determine whether this interaction occurs cotranslationally, we then repeated Tti1 RIPs in cells treated either with puromycin, an inhibitor of translation elongation, or with EDTA, which dissociates ribosomes. Both treatments abolished Tti1 binding to tra1 + (Figure 2C). Likewise, mutating the tra1 ATG start codon to TAA reduced the binding of Tti2 to background levels (Figure 2C). Next, we observed comparable enrichment of tra2 + , tor2 + , and tor1 + , and to a lesser extent rad3 + and tel1 + , in Tti1 RIPs (Figures 2D-2F). Tti1 binding to all mRNAs decreases to background levels following translation inhibition and ribosome dissociation, using puromycin and EDTA, respectively. We verified that our brief puromycin treatment does not affect Tti1 protein levels (Figure S2D). Finally, the presence of an intron within tra2 + allowed us to confirm that Tti1 binds the mature isoform of tra2 + , but not its pre-mRNA (Figure 2D). Altogether, these observations indicate that TTT binds all PIKK-encoding mRNAs in S. pombe. This interaction most likely occurs indirectly, because TTT subunits do not have predicted RNA-binding motifs. Furthermore, TTT requires active and intact ribosomes to bind these mRNAs, indicating that TTT recognizes nascent PIKK polypeptides during their translation (Figure 2G).

Tti1 and Tti2 contribute to TTT cotranslational binding to PIKKs

We next asked which TTT subunit mediates its interaction with PIKKs by repeating these experiments in conditional deletion mutants of Tti2, Tel2, and Tti1. Similar to the strategy used to obtain the tti2-CKO strain, we constructed tel2-CKO and tti1-CKO mutants in which tel2 + and tti1 + , respectively, can be conditionally deleted upon inducible CreER-loxP-mediated recombination (Figures S3A-S3D). Both strains showed b-estradiol-induced loss of Tel2 and Tti1, which correlated with progressive proliferation defects, whereas no obvious decrease in viability was observed within the time frame analyzed (Figures S3E-S3I). We then backcrossed each mutant with strains in which Tti2, Tel2, or Tti1 was tagged with a MYC epitope. Western blotting showed that the steady-state levels of each subunit remained unaffected by the loss of the two other components (Figures S3I-S3K), allowing TTT purifications.

We next performed RIPs of each TTT subunit in the tti2-, tel2-, and tti1-CKO strains, followed by qRT-PCR analysis of the tra1 + mRNA a proxy for the other PIKKs. We observed about a twofold reduction of Tti1 and Tel2 binding upon Tti2 depletion . In contrast, Tti2 and Tti1 interaction with tra1 + does not change in the absence of Tel2 (Figure 2I), whereas loss of Tti1 caused a strong decrease of Tti2 and Tel2 binding (Figure 2J). We conclude that Tti1, and to a lesser extent Tti2, recruits TTT to nascent Tra1 polypeptides. Even without Tti1, the tra1 + mRNA remains detectable in TTT RIPs compared with isp6 + . This residual binding may involve Tti2 or other factors, such as Asa1.

The FATKIN unit of Tra1 mediates its cotranslational interaction with TTT To understand how TTT recognizes PIKKs, we performed a structure-function analysis of their interaction. For this, we focused on Tra1 and Tor1 for two reasons. First, Tel1 and Rad3 interact weakly with TTT in normal growth conditions (Figure 1). Second, both Tra2 and Tor2 are essential for viability, complicating genetic analyses [START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF][START_REF] Weisman | The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine[END_REF]. Indeed, we wanted to construct endogenous truncation mutants and measure their interaction with TTT in vivo. We reasoned that using recombinant fragments may not recapitulate the binding of TTT to nascent polypeptides.

PIKKs are large proteins, ranging from 2,335 residues for Tor1 to 3,661 residues for Tra1 in S. pombe. We first constructed a series of mutants that sequentially shorten Tra1 from either its C-ter or its N-ter end (Figures 3A and3B) and quantified their interaction with TTT using quantitative TAP-MS (Figure 3C). Analysis of the tra1-2, tra1-3, and tra1-4 mutants showed that Tra1 does not interact with Tti2 when either the KIN domain, including the FRB region, or larger portions of the FAT and KIN domains are deleted. In contrast, analysis of the tra1-1 mutant showed that removing the FATC region does not affect Tra1 interaction with Tti2. Similarly, the Tra1-5 mutant, which lacks the long N-ter HEAT repeats, still interacts with Tti2. These observations suggest that the HEAT repeats are not required for Tti2 binding to Tra1, whereas the FATKIN unit is both necessary and sufficient. However, comparing the tra1-2 with the tra1-6 mutant showed that Tti2 does not recognize the KIN domain alone, although it is required for the interaction.

One caveat from these TAP-MS quantifications is the absence of normalization to the amount of each mutant protein in the extract. This issue is important because truncated proteins might be unstable. We thus verified that all mutants are expressed at comparable levels using western blotting of total extracts from strains with each tra1 mutant FLAG-tagged at its N-ter end (Figure 3D). In addition, we used these strains to perform coimmunoprecipitation (coIP) and, overall, confirmed the results obtained by quantitative MS. We observed no detectable interaction between Tti2 and Tra1 truncation mutants missing either a portion (C) LC-MS/MS analysis of Tti2 purified from WT and tra1 mutants. LFQ ratios of Tra1 to Tti2 from at least two independent experiments (n R 2) are plotted individually with the mean. (D) CoIPs of FLAG-Tra1 and Tti2-TAP using WT and isogenic truncation mutant strains. An untagged strain is used as a control for the background IP signal. Western blots of IPs and inputs were probed with anti-FLAG and anti-TAP antibodies. Ponceau red served as loading control for the inputs. # labels an unspecific anti-FLAG band in S. pombe. * labels Tra1 degradation products. Data are representative of two independent experiments (n = 2). (E) RIP-qPCR of tra1 + in Tti2-HA purified from WT and tra1 mutant strains, analyzed as described in Figure 2. The ATG start codon is mutated to TAA in the tra1-5-ATG* strain. IP/IN ratios from independent experiments are shown as individual points (n R 3) overlaid with the mean and SD. The bottom diagram shows the position of the primers used for tra1+ qPCR. Statistical significance was determined by one-way ANOVA followed by Tukey's multiple comparison tests (*p < 0.05).

Cell Reports 37, 109867, October 19, 2021 7 Article or the entire FATKIN unit (Figure 3D). In contrast, Tti2 interacts with a mutant lacking the HEAT repeats, similar to full-length Tra1. These coIPs also confirmed that the FATKIN unit binds to Tti2, whereas the KIN domain alone does not. Contrasting with the MS results, quantification of western blot signal intensities revealed a two-fold decrease Tti2 interaction with the FATC truncation mutant, Tra1-1 (tra1-1) (Table S3). This discrepancy might result from the lack of normalization of TAP-MS values to input levels of Tra1-1, which appears proteolytically unstable (Figure 3D), or to differences in quantification and normalization methods between MS and western blotting. Nevertheless, these results indicate that the FAT and KIN domains mediate Tti2 interaction with Tra1.

Finally, we tested whether the FATKIN unit is also important for Tti2 cotranslational binding to Tra1. For this, we measured the interaction between Tti2 and each tra1 mutant mRNA by performing RIPs in the same strains used for protein-protein interaction experiments. All RIPs were compared with a control mRNA, isp6 + , and a control no-tag purification. qRT-PCR analyses of Tti2 RIPs showed a pattern similar to that observed in TAP-MS and coIPs (Figure 3E). We observed reduced binding of Tti2 to tra1-2 and tra1-4 mutants, in which the KIN and FATKIN domains are deleted, respectively (Figure 3E). In contrast, Tti2 interacts with tra1-1, although less efficiently than with full-length tra1+, as observed in coIPs, suggesting that the FATC region does not have a major contribution to this interaction. Conversely, analysis of the tra1-5 and tra1-6 mutants showed that Tti2 interacts with an mRNA fragment encoding the FATKIN unit, whereas the KIN domain alone is not sufficient (Figure 3E). Finally, mutating the starting ATG codon of the tra1-5 allele abolished its binding to Tti2, confirming that this interaction requires translation of the truncated mRNA. Overall, our structure-function analysis indicates that the FATKIN unit of Tra1 is both necessary and sufficient for interaction with Tti2, whereas the HEAT repeats are dispensable. These findings suggest that Tti2 is recruited to nascent Tra1 polypeptides at a late stage of translation elongation, only as the FATKIN unit emerges from the ribosome.

TTT recognizes other PIKKs through their FATKIN unit

We next tested whether this model applies to Tor1, another PIKK amenable to mutational analysis. Guided by the results obtained for Tra1, we constructed three Tor1 truncation mutants that remove the KIN domain (tor1-2), the FAT and the KIN domains (tor1-4), or the HEAT repeats, leaving the FATKIN unit intact (tor1-5) (Figures S4A andS4B). Each truncation mutant was tagged with a FLAG epitope and analyzed by coIPs using TAPtagged Tti2 as bait. Western blotting showed that all mutants are expressed at comparable levels (Figure S4C). We found that the Tor1-4 truncation mutant shows no detectable interaction with Tti2 compared with the background signal (Figure S4C). In contrast, the Tor1-5 mutant, which lacks the HEAT repeats, interacts with Tti2 as efficiently as full-length Tor1. Unexpectedly, we detected an interaction between Tti2 and the Tor1-2 mutant as opposed to what we observed with the corresponding Tra1-2 mutant protein, suggesting different roles of the KIN domain. RIPs followed by qRT-PCR analyses of the cotranslational interaction between Tti2 and the tor1 mutant mRNAs confirmed these results. Specifically, we observed no detectable interaction be-tween Tti2 and tor1-4, whereas Tti2 binds to the tor1-5 mRNA as efficiently as with full-length tor1 + (Figure S4D), showing the essential role of the FATKIN unit for this interaction. Finally, in agreement with coIPs, Tti2 interacts with tor1-2, from which only the KIN domain is absent. Again, this result contrasts with the lack of interaction observed between Tti2 and the analogous tra1-2 mutant (Figure 3E).

Our results so far indicate that Tti2 recognizes both Tra1 and Tor1 through their FAT and KIN domains, rather than their HEAT repeats. However, Tti2 does not require the Tor1 KIN domain for binding, whereas it requires both the FAT and the KIN domains of Tra1. To explore this apparent discrepancy, we re-examined multiple sequence alignments of S. pombe PIKKs and their metazoan orthologs. The Tor1-2 mutant protein contains a stretch of conserved residues that show similarity to the MTOR FRB domain, whereas the Tra1-2 mutant lacks this region (Figures 3B andS4B). We thus constructed the tor1-3 allele, which removes an additional 165 residues from the Tor1-2 mutant protein to remove the FRB domain entirely (Figures S4B andS4D). RIP-qPCR analysis showed that Tti2 does not interact with tor1-3, indicating that Tti2 requires the FRB domain to interact with Tor1.

Finally, we characterized the cotranslational interaction between Tti2 and the Tel1 PIKK, in which the human ortholog ATM does not have an FRB domain inserted between the FAT and the KIN domains. RIP-qPCR analyses showed that compared with isp6 + , Tti2 interacts with a tel1-2 mutant mRNA lacking the KIN domain, but not with a tel1-4 mutant in which both the FAT and the KIN domains are removed (Figure S5). Thus, Tti2 requires the KIN domains of both Tra1 and Tor1 for binding, whereas it requires the FAT domain of Tel1, possibly because the latter does not contain an FRB domain. However, even for Tra1, we demonstrated that the FAT domain contributes to this interaction too (Figures 3C-3E). We therefore conclude that the FATKIN unit of PIKKs mediates their cotranslational recognition by TTT. In agreement, the FAT and KIN domains show the highest structural and sequence similarities between PIKKs [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF], which we confirmed for S. pombe Tra1 and Tor1 (Figures 3A andS4A).

TTT does not interact with PIKK partners

Most PIKKs function as part of large, multimeric complexes. In S. pombe, these include SAGA, NuA4, TORC1, and TORC2, which contain Tra1, Tra2, Tor2, and Tor1, respectively (Figure 1A). Previous work in fission yeast and mammalian cells established that TTT is required for de novo incorporation of PIKKs (Elı ´as- Villalobos et al., 2019a;[START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF]. We thus hypothesized that TTT promotes the cotranslational assembly of nascent PIKKs into their complexes. To test this possibility, we used RIPs to measure the cotranslational interaction between TTT and SAGA, NuA4, TORC1, and TORC2 subunits. All RIPs were compared with a control mRNA, isp6 + , and a control no-tag purification. We first probed Tel2 and Tti2 RIPs for the presence of mRNAs encoding Spt20, Taf12, and Ada1, which are either direct or close interactors of Tra1 within SAGA (Elı ´as-Villalobos et al., 2019a; [START_REF] Papai | Structure of SAGA and mechanism of TBP deposition on gene promoters[END_REF][START_REF] Wang | Structure of the transcription coactivator SAGA[END_REF]. qRT-PCR analyses showed that unlike tra1 + , neither Tti2 nor Tel2 interacts with ada1 + , spt20 + , and taf12 + (Figure 4A). We next tested whether TTT interacts with mRNAs encoding the NuA4 subunits Vid21, Epl1, and Eaf7. The S. cerevisiae ortholog of Vid21, Eaf1, makes extensive contacts with Tra1 in the NuA4 complex [START_REF] Wang | Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex[END_REF]. We observed no enrichment of vid21 + , epl1 + , and eaf7 + in Tti2 RIPs, unlike tra2 + (Figure 4B). Finally, the TORC1 and TORC2 complexes are each defined by specific subunits that, in S. pombe, are the RPTOR ortholog Mip1 and the RICTOR ortholog Ste20, respectively. Again, compared with tor2 + and tor1 +, neither Tti2 nor Tel2 interacts with mip1 + and ste20 + (Fig- ures 4C and4D).

In agreement with these findings, we found no evidence of protein-protein interaction between TTT and subunits of SAGA, NuA4, TORC1, or TORC2 in our quantitative TAP-MS analyses, except Wat1 (Table S2). Likewise, in mammals, TELO2 associates with all PIKKs, but not with their partners [START_REF] Takai | Tel2 regulates the stability of PI3K-related protein kinases[END_REF][START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF]. Conversely, TTT subunits are not detected in affinity purifications of PIKK complexes, such as SAGA or NuA4 (Elı ´as- Villalobos et al., 2019a;[START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF]. TTT is only detected when the Tra1, Tra2, Tor2, and Tor1 PIKKs are used as baits [START_REF] Hayashi | Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits[END_REF][START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF][START_REF] Inoue | CK2 phospho-independent assembly of the Tel2-associated stress-signaling complexes in Schizosaccharomyces pombe[END_REF]. Altogether, these observations suggest that PIKKs interact with TTT and their partners in a mutually exclusive manner.

PIKKs do not assemble cotranslationally

Recent work revealed widespread cotranslational assembly of protein complexes [START_REF] Shiber | Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling[END_REF], including of human and S. cerevisiae SAGA subunits [START_REF] Kamenova | Cotranslational assembly of mammalian nuclear multisubunit complexes[END_REF][START_REF] Kassem | Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA[END_REF]. We thus determined whether PIKKs can engage in cotranslational interactions with their partners. For this, we performed RIPs of SAGA-, NuA4-, TORC1-, and TORC2-specific subunits and quantified mRNAs encoding the corresponding PIKK. All RIPs were compared with a control mRNA, isp6 + , and a control no-tag purification. qRT-PCR showed that the tra1 + mRNA is not enriched in purifications of the SAGA subunit Taf12 (Figure 5A). Similarly, the NuA4 subunit Mst1 did not copurify with tra2 + (Figure 5B). Finally, we found no detectable enrichment of tor2 + and tor1 + in Mip1 and Ste20 purifications, respectively (Figures 5C and5D). We included two types of positive controls to strengthen these observations. First, concomitant purifications of Tti2 robustly enriched tra1 + , tra2 + , tor2 + , and tor1 + , as expected (Figures 5A-5D). Second, the ability of a protein to copurify with its own mRNAs during translation (Duncan and Mata, 2011) allowed us to directly control the efficiency of each RIP. All anti-HA RIPs are performed using strains in which the protein of interest is C-ter-tagged with an HA-TAP fusion, but Cell Reports 37, 109867, October 19, 2021 9

Article the HA sequence is located 5 0 of a $500 base-pair-long TAP sequence. We reasoned that this distance may be sufficient to capture Taf12, Mst1, Mip1, and Ste20 binding to their own mRNAs. Indeed, we found robust enrichment of taf12 + , mst1 + , mip1 + , and ste20 + in the corresponding RIPs (Figures 5A-5D).

As a putative control for cotranslational interaction, we also tested whether each bait interacts with mRNAs encoding other subunits from each complex. For SAGA, we found no enrichment of both ada1 + and spt20 + in Taf12 RIPs (Figure S6A), although these subunits interact directly with each other within the (legend continued on next page)
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Article complex [START_REF] Papai | Structure of SAGA and mechanism of TBP deposition on gene promoters[END_REF]. For NuA4, we observed that epl1 + , but not vid21 + , is robustly enriched in Mst1 RIPs compared with a control purification (Figure S6B). This result is consistent with the observation that Epl1 directly interacts with Mst1 within the HAT module [START_REF] Xu | The NuA4 Core Complex Acetylates Nucleosomal Histone H4 through a Double Recognition Mechanism[END_REF] and suggests that these subunits might assemble cotranslationally. Finally, for TORC1 and TORC2, we found no detectable enrichment of toc1 + and sin1 + in RIPs of the TORC1 subunit Mip1 and the TORC2 subunit Ste20, respectively (Figures S6C andS6D).

Cotranslational interactions typically occur unidirectionally, with only one subunit binding to the nascent polypeptide of the interacting partner [START_REF] Natan | Regulation, evolution and consequences of cotranslational protein complex assembly[END_REF]. We therefore tested whether PIKKs engage with nascent polypeptides of SAGA, NuA4, TORC1, and TORC2 subunits, rather than partners engaging with nascent PIKKs. For this, we performed RIPs of Tra1, Tra2, Tor2, and Tor1 using strains in which each endogenous PIKK is N-ter-tagged. qRT-PCR analyses showed no interaction for the tested pairwise combinations (Figures 5E-5H) compared with a control no-tag purification and isp6 + . As a positive control, we found robust enrichment of each PIKK mRNA upon its own purification.

In conclusion, the nascent Tra1, Tra2, Tor2, and Tor1 polypeptides interact specifically with TTT, but not with their interacting partners within SAGA, NuA4, TORC1, or TORC2. Furthermore, we found no evidence supporting the cotranslational assembly of PIKKs into their complexes.

The C-ter FATC region is essential for PIKK functions

Our observations suggest a model by which TTT promotes the cotranslational maturation of PIKKs early during their biogenesis, before they incorporate into a functional complex. We next sought to understand why PIKK biogenesis follows an ordered pathway in which folding and assembly would occur sequentially. A distinctive feature of all PIKKs is the $30-residue-long FATC region at their C-ter end (Figure 6A), where highly conserved hydrophobic residues form a helical structure buried inside the protein, close to the catalytic site [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF]. We reasoned that the C-ter FATC region might be important for PIKKs to adopt their native state and interact with their partners, and, consequently, that the final steps of PIKK folding only proceed once translation has been completed. This hypothesis predicts that the FATC region is essential for PIKK stability and functions. Previous studies in different organisms have reported that mutations in this region affect PIKK expression and activity [START_REF] Dasilva | The C-terminal residues of Saccharomyces cerevisiae Mec1 are required for its localization, stability, and function[END_REF][START_REF] Genereaux | Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1[END_REF][START_REF] Hoke | Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1[END_REF][START_REF] Morita | Distant N-and C-terminal domains are required for intrinsic kinase activity of SMG-1, a critical component of nonsense-mediated mRNA decay[END_REF][START_REF] Priestley | Molecular and biochemical characterisation of DNA-dependent protein kinase-defective rodent mutant irs-20[END_REF][START_REF] Takahashi | Carboxyl-terminal region conserved among phosphoinositide-kinase-related kinases is indispensable for mTOR function in vivo and in vitro[END_REF]. To strengthen these observations, we systematically tested the effect of mutating the FATC of each PIKK in S. pombe. Specifically, we substituted the last two residues of the FATC, and hence of the entire protein, with alanine residues in Tra1, Tra2, Tor2, Tor1, Rad3, and Tel1 (Figure 6A).

Phenotypic analyses of tra1-AA mutants, as well as of strains carrying single tra1-WA and tra1-AL mutations, showed that all tra1 FATC mutants are sensitive to replicative stress, similar to tra1D deletion mutants (Figure 6B). Likewise, using RNA sequencing (RNA-seq), we found a positive correlation between the changes observed in tra1-AA and tra1D mutants compared with a wild-type (WT) control strain (Figure 6C). Similarly, tor1 FATC mutants phenocopied tor1D deletion mutants in all conditions tested, including oxidative stress, replicative stress, high osmolarity, and high temperature (Figure 6D). In addition, both tor1-AA and tor1D mutants are defective in mating (Figure 6E). Last, phosphorylation of a canonical TORC2 substrate, the S. pombe AKT ortholog Gad8, is almost undetectable in extracts from tor1-AA mutants (Figure 6F).

Both Tra2 and Tor2 are essential for viability in S. pombe [START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF][START_REF] Weisman | The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine[END_REF]. To test the role of their FATC regions, we generated either tra2+/tra2-AA or tor2+/tor2-AA heterozygous diploids, which sporulation showed 2:2 segregation of a lethality phenotype (Figures 6G and6H). Marker analysis confirmed that the genotype of all viable spores is WT for tra2 + and tor2 + . An identical phenotype is observed in tra2 + /tra2D diploids [START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF]) and tor2 + /tor2D diploids [START_REF] Weisman | The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine[END_REF], indicating that tra2-AA and tor2-AA mutants phenocopy tra2 + and tor2 + deletions, respectively.

Finally, we characterized the growth phenotypes of strains simultaneously carrying FATC mutations in the rad3 + and tel1 + genes. Indeed, rad3D tel1D double-deletion mutants show a severe growth phenotype in standard conditions [START_REF] Naito | Circular chromosome formation in a fission yeast mutant defective in two ATM homologues[END_REF]. For this, we crossed rad3-AA and tel1-AA strains to generate rad3 + /rad3-AA tel1 + /tel1-AA double heterozygous diploids. Sporulation and marker segregation analyses demonstrated that rad3-AA tel1-AA double mutants have severe growth defects in rich media compared with rad3-AA and tel1-AA single mutants, and WT controls (Figure 6I). Altogether, our comprehensive genetic analysis demonstrates that mutating the last two residues of all PIKKs phenocopies the loss-of-function phenotypes observed in the corresponding deletion mutants. The C-ter residues of PIKKs are therefore essential for their functions.

The C-ter FATC region is critical for PIKK stability

We then determined the effect of PIKK C-ter residues on their stability. For this, we performed western blot analyses of the endogenously FLAG-tagged Tra1-AA and Tor1-AA mutants.

(I) tel1+/tel1-AA rad3+/rad3-AA double heterozygous diploid strains were sporulated, dissected, and germinated to show the growth phenotype of all four possible genotypes. Each spore colony from one tetrad was isolated, and ten-fold serial dilutions of exponentially growing cells were spotted on rich medium. (J) FLAG-Tra1 stability in WT (tra1+) and tra1-AA mutant strains grown to the exponential phase in rich medium and treated with 100 mM CHX for 3 and 6 h. Western blots of protein extracts were probed with anti-FLAG and anti-Rpb1 antibodies. Numbers below show the mean signal intensity of Tra1 normalized to Rpb1 (n = 3). (K) FLAG-Tor1 steady-state levels in WT (tor1+) and tor1-AA mutant strains grown to the exponential phase in rich medium. Western blots of 2-fold dilutions of protein extracts were probed with anti-FLAG and anti-tubulin antibodies. Ponceau red served as a loading control. Numbers below show the mean signal intensity of Tor1 normalized to tubulin (n = 3). (L) qRT-PCR of tor1+ mRNA in WT (tor1+) and tor1-AA mutant strains grown to the exponential phase in rich medium. act1+ served as internal control for normalization across samples. Values from independent experiments are shown as individual points (n = 9) overlaid with the mean and SD.

Compared with Tra1, we observed normal steady-state levels of the Tra1-AA protein, but a CHX chase showed decreased stability (Figure 6J). We found that Tor1-AA levels decrease already at steady state about 2-to 3-fold compared with Tor1 (Figure 6K). We were unable to perform a CHX chase of Tor1-AA, likely because of their slow growth. qRT-PCR analyses revealed that tor1 + mRNA levels do not change in tor1-AA mutants (Figure 6L), indicating that mutating the FATC region affects Tor1 protein levels specifically. By analogy with Tra1-AA, we speculate that this observation is explained by decreased stability of Tor1-AA, although we cannot exclude that these mutations affect its synthesis. In conclusion, the loss-of-function phenotypes observed when the Tra1 and Tor1 hydrophobic C-ter ends are mutated likely result from protein misfolding and degradation.

Supporting this conclusion, we found that Tra1 FATC mutants cannot interact with SAGA (Figures S7A andS7B). Silver staining and quantitative TAP-MS analyses showed that Tra1 is absent from SAGA purified from tra1-AA and tra1-1 strains, in which the FATC is mutated and deleted, respectively. As expected, similar results were obtained in tra1 mutants with longer C-ter truncations that remove the KIN and FAT domains. We verified that the levels of the bait, Spt7, were comparable across strains. The effect of the FATC region on Tra1 incorporation into SAGA is indirect, because we previously identified a short, 40-residue region at the start of the FAT domain that mediates its interaction with SAGA (Elı ´as- Villalobos et al., 2019a). Examination of the S. cerevisiae Tra1 structure shows that these residues are located about 45 A ˚from the FATC region and have no direct intramolecular contacts with the FATC (PDB: 5OJS) (Dı ´az-Santı ´n et al., 2017).

TTT recognizes PIKKs in a non-native state during translation Overall, we accumulated functional and biochemical evidence confirming the structural importance of the hydrophobic residues at the C-ter end of PIKKs. This property implies that the nascent PIKK polypeptide, at least the FATKIN unit, stays in a non-native state during translation until ribosomes reach the end of the transcript and produce the FATC region. We thus hypothesized that TTT acts as a bona fide chaperone, binding to nascent PIKKs in a non-native state.

To test this, we assessed the interaction between TTT and PIKK FATC mutants, which are likely misfolded (Figures 6, S7A, andS7B). Quantitative TAP-MS showed that Tti2 interacts with both Tra1-AA and Tor1-AA mutants, similar to WT controls (Figures 7A and 7B). RIP-qPCR analyses indicated that Tti2 binds to both tra1-AA and tor1-AA mRNAs compared with a control no-tag purification and isp6 + (Figures 7C and7D). Western blotting confirmed that Tti2 levels are comparable among all mutants in both total extracts and purification eluates (Figure S7C). Tti2 interaction with tra1-AA is reduced about two-fold compared with Tra1, contrasting with results from protein-protein interaction experiments. Regardless, these observations indicate that Tti2 is able to recognize and engage with misfolded forms of Tra1 and Tor1. Furthermore, in contrast to what we observed for SAGA (Figures S7A andS7B), TTT does not require an intact FATC region for interaction (Figures 3 and7), suggesting that SAGA and TTT recognize Tra1 in distinct structural conformations. Together with our observations that TTT and SAGA subunits likely interact with Tra1 in a mutually exclusive manner, these results indicate that TTT is a cotranslational chaperone of PIKKs.

DISCUSSION

Seminal work in yeast and mammals established that the TTT complex is an Hsp90 cochaperone dedicated to the stabilization of PIKKs [START_REF] Hayashi | Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits[END_REF][START_REF] Takai | Tel2 regulates the stability of PI3K-related protein kinases[END_REF]. Here we provide mechanistic insights into how TTT regulates PIKK biogenesis. Our work suggests a model by which TTT acts at a late step during PIKK translation and is important to ensure that folding is completed before assembly, rather than concurrently (Figure 7E). TTT would maintain nascent PIKKs in a non-native state during synthesis of the FAT and KIN domains, until the last residues are released by the ribosome. These residues form the highly conserved C-ter FATC region, whose hydrophobicity is essential for the final steps of PIKK folding. This model has two important implications. First, PIKK maturation is most likely completed after translation termination. Second, nascent PIKKs should not engage in cotranslational interactions with their partners, which we verified experimentally. We thus propose a general principle of PIKK biogenesis by which folding and maturation are coupled to translation, whereas incorporation into a functional complex occurs at a later step (Figure 7E). Our study contributes to better understand of how chaperones control the maturation of specific classes of substrates and the assembly of multimeric complexes.

We established that TTT binds to its substrates cotranslationally in fission yeast, indicating that TTT acts early during PIKK biogenesis. Additional evidence supports this conclusion. First, protein-protein and protein-RNA interaction analyses correlated remarkably well (Figures 3 andS4). Second, work in mammalian cells showed that TELO2 binds newly synthesized PIKKs and promotes the formation of nascent MTOR complexes [START_REF] Takai | Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes[END_REF]. Likewise, in S. pombe, Tti2 is essential for the de novo assembly of Tra1 into SAGA (Elı ´as-Villalobos et al., 2019a). This finding implies that TTT is specifically recruited to PIKK-translating polysomes, although by a mechanism that remains unclear. Our attempts to profile TTT distribution using sucrose gradient density centrifugation failed to detect an enrichment of TTT in polysomal fractions. However, this interaction is probably transient, restricted to a few polysomes, and therefore may be difficult to detect.

Together with the recent description of the human TTT structure [START_REF] Pal | Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone[END_REF], our work brings insights into how TTT interacts with PIKKs in vivo. First, Tti1 has a major contribution in substrate binding, consistent with its central position in the complex [START_REF] Pal | Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone[END_REF]. Second, our structure-function analyses showed that TTT binds to the nascent FAT and KIN domains of Tra1, Tor1, and Tel1, although TTT may interact differently with each PIKK. The structures of PIKKs revealed an intricate network of interactions between these domains, forming a single FATKIN unit [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF], which shows the strongest sequence similarity between PIKKs (Figures 3A andS4A). It is therefore tempting to speculate that TTT recognizes all PIKKs through this unit. Conversely, this similarity may be essential for the folding of FATKIN into a topologically conserved architecture, as observed in structural studies [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF]. We thus propose that TTT recognizes a specific, non-native conformation adopted by the FAT and KIN domains as they emerge from polysomes, rather than particular sequence motifs. Surprisingly, TTT does not interact with the HEAT repeats, although they represent more than half of each PIKK, form a massive super-helical structure, and make extensive contacts with other domains that are essential for the native structure. Interestingly, their sequence and structure are more variable between PIKKs [START_REF] Imseng | Architecture and activation of phosphatidylinositol 3-kinase related kinases[END_REF], suggesting that they might be chaperoned by specific factors, such as PIKK partners. However, we failed to detect cotranslational interactions with subunits of PIKK complexes (Figures 4 and5). The HEAT repeats may thus require either general ribosome-associated chaperones or an unknown, dedicated assembly factor.

The observation that PIKKs do not engage in cotranslational interactions with their partners was somewhat surprising, because recent studies established that cotranslational assembly is a prevalent mechanism for promoting protein-protein interactions [START_REF] Duncan | Widespread cotranslational formation of protein complexes[END_REF][START_REF] Shiber | Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling[END_REF]. In contrast, PIKK complexes use both dedicated factors and cotranslational engagement of subunits for their assembly. For example, we show here that NuA4 assembly involves both the TTT cochaperone for Tra2 and the cotranslational interactions between Mst1 and Epl1. Why would PIKKs require a dedicated factor for cotranslational maturation, rather than the chaperoning activity of their interacting partners? We propose that the presence of hydrophobic residues at the C-ter end of the protein dictates this choice. Although this region is an integral part of the KIN domain, positioned adjacent to the activation loop, its disruption affects both active and inactive PIKKs similarly (Figure 6), suggesting that its primary role is structural rather than regulatory. Consequently, despite their large size, nascent PIKKs remain in a non-native state during translation and cannot engage in premature interactions with their partners. TTT might therefore prevent PIKK partners from binding prematurely to nascent PIKKs. Several regions from the FAT and KIN domains make direct contact with interacting subunits, particularly for SAGA and NuA4 [START_REF] Papai | Structure of SAGA and mechanism of TBP deposition on gene promoters[END_REF][START_REF] Sharov | Structure of the transcription activator target Tra1 within the chromatin modifying complex SAGA[END_REF][START_REF] Wang | Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex[END_REF][START_REF] Wang | Structure of the transcription coactivator SAGA[END_REF]. In this model, the hydrophobic FATC region would be essential for PIKK incorporation by promoting the dissociation of TTT from the FATKIN after translation, thereby uncovering interaction surfaces for binding partners. Finally, our observation that TTT and PIKK partners do not stably interact suggests that TTT might not be directly involved in PIKK complex assembly. These interactions might be transient, and we cannot exclude a role of TTT. However, other factors likely help PIKK complexes acquire their quaternary structures. An obvious candidate is the Particle for Arrangement of Quaternary structure (PAQosome), which comprises the R2TP and Prefoldin-like complexes and promotes the formation of various multimeric complexes [START_REF] Houry | The PAQosome, an R2TP-Based Chaperone for Quaternary Structure Formation[END_REF][START_REF] Mun ˜oz-Herna ´ndez | Advances on the Structure of the R2TP/Prefoldin-like Complex[END_REF]. Surprisingly, however, both RPAP3 and PIH1D1 lack orthologs in Schizosaccharomyces genomes, despite their widespread conservation in all major eukaryotic clades. One possibility is that Asa1 functionally compensates for the absence of R2TP in S. pombe. Asa1 copurifies with TTT (Figure 1) and interacts genetically and physically with TTT and PIKKs [START_REF] Goto | Two separate pathways regulate protein stability of ATM/ATRrelated protein kinases Mec1 and Tel1 in budding yeast[END_REF][START_REF] Rozario | Saccharomyces cerevisiae Tel2 plays roles in TORC signaling and telomere maintenance that can be mutationally separated[END_REF][START_REF] Stirling | The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components[END_REF]. To conclude, studying how TTT, its partners, and the network of associated chaperones control the cotranslational maturation and assembly of PIKKs will continue to bring insights into the biogenesis, function, and regulation of large multimeric complexes.

STAR+METHODS

Cloning strategies and primers were designed using the online fission yeast database, PomBase [START_REF] Lock | PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information[END_REF]. All primer sequences are listed in Table S5. Transformants were screened for correct integration by PCR and, when appropriate, verified by Sanger sequencing or western blotting. For each transformation, 2-4 individual clones were purified and analyzed.

Because the tel2+, tti1+, and tti2+ genes are essential for viability in S. pombe [START_REF] Inoue | CK2 phospho-independent assembly of the Tel2-associated stress-signaling complexes in Schizosaccharomyces pombe[END_REF][START_REF] Shikata | Tel2 is required for activation of the Mrc1-mediated replication checkpoint[END_REF], C-ter epitope tagging was performed in diploids, to generate heterozygous alleles. Their sporulation demonstrated that all C-terly tagged Tel2, Tti2, or Tti2 strains grew similarly to wild-type controls in all conditions tested (data not shown). The same strategy was used to construct tra1-AA, tra2-AA, tor2-AA, tor1-AA, rad3-AA, and tel1-AA mutants (Figure 6).

METHOD DETAILS Proliferation and cell viability assays

Proliferation assays were performed by inoculating single colonies in either rich (YES) or minimal (EMM) media, growing cells at 32 C, and counting their number at different time points during the exponential phase. Cell viability was assessed using 10 mL of the colorimetric dye methylene blue, which was incubated with a 50 mL suspension of exponentially growing yeast cells resuspended in PBS 1X. The number of blue dead cells was counted under a light microscope.

RT-qPCR analysis

Reverse transcription and quantitative PCR analyses of cDNA were performed using RNA extracted from 50 mL of exponentially growing cells, as described in [START_REF] Laboucarie | TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability[END_REF], and according to the MIQE guidelines [START_REF] Bustin | The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[END_REF]. Briefly, total RNA was purified using hot, acidic phenol and contaminating DNA was removed by DNase I digestion, using the TURBO DNAfree kit. 1 mg of RNA was then reverse transcribed (RT) at 55 C with random hexanucleotide primers, using the SuperScript III First-Strand System. Fluorescence-based quantitative PCR was performed with SYBR Green and used to calculate relative cDNA quantities, from the slope produced by standard curves for each primer pair, in each experiment. DNase-treated RNA samples were used as controls for the presence of genomic DNA contaminants. Standard curve slopes were comprised between À3.5 (90% efficiency) and À3.15 (110% efficiency), with an r 2 > 0.9. All primer sequences are listed in Table S5.

Protein extraction

Protein extracts were prepared as described in [START_REF] Laboucarie | TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability[END_REF]. Briefly, 10 to 25 mL cultures of exponentially growing cells were homogenized by glass bead-beating in a FastPrep (MP Biomedicals). Proteins extracted using either standard lysis buffer (WEB: 40 mM HEPES-NaOH pH 7.4, 350 mM NaCl, 0.1% NP40, and 10% glycerol) or trichloroacetic acid (TCA) precipitation. WEB was supplemented with protease inhibitors, including cOmplete EDTA-free cocktails tablets, 1 mM PMSF, 1 mg/ml bestatin, and 1 mg/ml pepstatin A.

Western blotting and antibodies

Western blotting was performed using the peroxidase-anti-peroxidase (PAP), anti-Calmodulin binding protein (CBP), anti-a-Tubulin, anti-FLAG, anti-MYC, and anti-HA antibodies. Protein concentrations were measured by the Bradford method and used to load equal amounts of proteins across samples. Ponceau red or Coomassie blue staining were used to normalize for total protein levels across samples. Quantification of signal intensity was performed using staining, film exposure, or digital acquisition that were within the linear range of detection, as verified by loading serial dilutions of one sample, and analyzed with ImageJ [START_REF] Schindelin | Fiji: an open-source platform for biological-image analysis[END_REF].

Chromatin immunoprecipitation

ChIP experiments were performed as previously described [START_REF] Helmlinger | Tra1 has specific regulatory roles, rather than global functions, within the SAGA co-activator complex[END_REF]. Briefly, cell cultures were crosslinked in 1% formaldehyde for 30 min. Cells were then broken using a FastPrep (MP Biomedicals), and the chromatin fraction was sheared to 200-500 bp fragments using a Branson sonicator for 9 cycles (10 s ON, 50 s OFF) at an amplitude of 20%. For immunoprecipitation (IP), 3-5 mg of anti-HA (16B12) or anti-Myc antibodies (9E11) were incubated overnight at 4 C with the chromatin extracts and then coupled with 50 mL of protein-G-Sepharose beads during 4h at 4 C. ChIP DNA was quantified by fluorescence-based quantitative PCR using SYBR Green, as described for RT-qPCR analysis. Input (IN) samples were diluted 200-fold while IP samples were diluted 3-fold. Relative occupancy levels were determined by dividing the IP by the IN value (IP/IN) for each amplicon. To determine the specificity of enrichment of the tagged protein, the corresponding untagged control samples were included in each ChIP experiment. All primer sequences are listed in Table S5.

RNA immunoprecipitation

RIP experiments were done as described previously in [START_REF] Duncan | Widespread cotranslational formation of protein complexes[END_REF], with minor modifications. Briefly, 100 mL of exponentially growing cells were harvested and broken using a FastPrep (MP Biomedicals). Immunoprecipitation (IP) was performed using Dynabeadsâ Pan-Mouse IgG that were pre-incubated with 3 mg of anti-HA (16B12), anti-MYC (9E11) or anti FLAG (M2) antibodies overnight at 4 C. Four mg of total protein extracts were incubated for 2 hours at 4 C. Input (IN) and IP RNAs were extracted using the Invitrogen Purelink RNA Mini and Micro Scale kits, respectively. DNase treatment, reverse transcription, and qPCR analyses of cDNA were performed as described for RT-qPCR analysis. IN samples were diluted 50-fold while IP samples were diluted 3-to-5-fold.

Relative binding levels were determined by dividing the IP by the IN value (IP/IN) for each amplicon. To determine the specificity of enrichment of the tagged protein, the corresponding untagged control samples were included in each RIP experiment. All primer sequences are listed in Table S5.

Affinity purification

Protein complexes were purified by the tandem affinity purification (TAP) method, as described previously [START_REF] Helmlinger | The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8[END_REF][START_REF] Rigaut | A generic protein purification method for protein complex characterization and proteome exploration[END_REF], with minor modifications. 1-4 l of exponentially growing cells were harvested, snap-frozen as individual droplets, and grinded in liquid nitrogen using a Freezer/Millâ (Spex SamplePrep). Protein extraction was performed in either WEB buffer or CHAPS-containing lysis buffer (CLB) buffer (50mM HEPES-NaOH pH 7.4, 300mM NaCl, 5mM CHAPS, 0.5mM DTT), supplemented with protease and phosphatase inhibitors. Following purifications, 10% of 2 mM EGTA eluates were concentrated and separated on 4%-20% gradient SDS-polyacrylamide Tris-glycine gels (Biorad). Total protein content was visualized by silver staining, using the SilverQuest kit. For quantitative mass spectrometry analyses, 90% of 2 mM EGTA eluates were precipitated with TCA and analyzed by mass spectrometry (MS). A downscaled version of the TAP procedure was used for standard co-immunoprecipitation followed by western blot analysis, as described in [START_REF] Laboucarie | TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability[END_REF].

Mass spectrometry and data analysis

Dry TCA precipitates from TAP eluates were denatured, reduced and alkylated. Briefly, each sample was dissolved in 89 mL of TEAB 100 mM. One microliter of DTT 1 M was added and incubation was performed for 30 min at 60 C. A volume of 10 mL of IAA 0.5 M was added (incubation for 30 min in the dark). Enzymatic digestion was performed by addition of 1 mg trypsin in TEAB 100 mM and incubation overnight at 30 C. After completing the digestion step, peptides were purified and concentrated using OMIX Tips C18 reverse-phase resin (Agilent Technologies Inc.) according to the manufacturer's specifications. Peptides were dehydrated in a vacuum centrifuge.

Samples were resuspended in 9 mL formic acid (0.1%, buffer A) and 2 mL were loaded onto a 15 cm reversed phase column (75 mm inner diameter, Acclaim Pepmap 100â C18, Thermo Fisher Scientific) and separated with an Ultimate 3000 RSLC system (Thermo Fisher Scientific) coupled to a Q Exactive Plus (Thermo Fisher Scientific) via a nanoelectrospray source, using a 143-min gradient of 2 to 40% of buffer B (80% ACN, 0.1% formic acid) and a flow rate of 300 nl/min. MS/MS analyses were performed in a data-dependent mode. Full scans (375 -1,500 m/z) were acquired in the Orbitrap mass analyzer with a 70,000 resolution at 200 m/z. For the full scans, 3 3 106 ions were accumulated within a maximum injection time of 60 ms and detected in the Orbitrap analyzer. The twelve most intense ions with charge states R 2 were sequentially isolated to a target value of 1 3 10 5 with a maximum injection time of 45 ms and fragmented by HCD (Higher-energy collisional dissociation) in the collision cell (normalized collision energy of 28%) and detected in the Orbitrap analyzer at 17,500 resolution. Raw spectra were processed using the MaxQuant environment (v.1.5.5.1) [START_REF] Cox | MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[END_REF] and Andromeda for database search with label-free quantification (LFQ), match between runs and the iBAQ algorithm enabled [START_REF] Cox | Andromeda: a peptide search engine integrated into the MaxQuant environment[END_REF]. The MS/MS spectra were matched against the UniProt Reference proteome (Proteome ID UP000002485) of S. pombe (strain 972 / ATCC 24843) (Fission yeast) (release 2017_10; https://www.uniprot.org/) and 250 frequently observed contaminants as well as reversed sequences of all entries. Different release versions were used, depending on the date of analysis (Table S6). Enzyme specificity was set to trypsin/P, and the search included cysteine carbamidomethylation as a fixed modification and oxidation of methionine, and acetylation (protein N-term) and/or phosphorylation of Ser, Thr, Tyr residue (STY) as variable modifications. Up to two missed cleavages were allowed for protease digestion. FDR was set at 0.01 for peptides and proteins and the minimal peptide length at 7.

The relative abundance of proteins identified in each affinity purification was calculated as described in [START_REF] Smits | Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics[END_REF]. Briefly, label-free quantification (LFQ) intensity-based values were transformed to a base 2 logarithmic scale (Log2), to fit the data to a Gaussian distribution and enable the imputation of missing values. Normalized LFQ intensities were compared between replicates, using a 1% permutation-based false discovery rate (FDR) in a two-tailed Student's t test. The threshold for significance was set to 1 (fold change = 2), based on the FDR and the ratio between TAP and 'no TAP' samples. The relative abundance of subunits in each purification eluate was obtained by dividing the LFQ intensity of that interactor (prey) to the LFQ intensity of the TAP purified protein (bait).

RNA-seq and data analysis

All strains were done in triplicate. RNA was extracted from 50 mL of exponentially growing cells RNA using TRIzol reagent. DNA was removed by DNase I digestion, using the TURBO DNA-free kit and RNA was cleaned using the RNeasy Mini kit. Total RNA quality and concentration was determined using an Agilent Bioanalyzer. Transcripts were purified by polyA-tail selection. Stranded dual-indexed cDNA libraries were constructed using the Illumina TruSeq Stranded mRNA Library Prep kit. Library size distribution and concentration were determined using an Agilent Bioanalyzer. 48 libraries were sequenced in one lane of an Illumina HiSeq 4000, with 1x 50 bp single reads, at Fasteris SA (Plan-les-Ouates, Switzerland). After demultiplexing according to their index barcode, the total number of reads ranged from 6 to 10 million per library.

Adaptor sequences were trimmed from reads in the Fastq sequence files. Reads were aligned using HISAT2 [START_REF] Kim | HISAT: a fast spliced aligner with low memory requirements[END_REF], with strand-specific information (-rna-strandness R) and otherwise default options. For all 48 samples, the overall alignment rate was over 95%, including over 90% of reads mapping uniquely to the S. pombe genome. Reads were then counted for gene and exon features e4 Cell Reports 37, 109867, October 19, 2021 Article using htseq-count [START_REF] Anders | HTSeq-a Python framework to work with high-throughput sequencing data[END_REF] in union mode (-mode union), reverse stranded (-stranded Reverse), and a minimum alignment quality of 10 (-minaqual 10). For all samples, over 95% of reads were assigned to a feature (-type gene). Variancemean dependence was estimated from count tables and tested for differential expression based on a negative binomial distribution, using DESeq2 [START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF]. Pairwise comparison or one-way analysis of variance were run with a parametric fit and genotype as the source of variation (factor: 'mutant' or 'control'). All computational analyses were run in R or Python.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed using RStudio (version 1.3.1056) and R (version 3.6.0) for RNA-seq data and GraphPad Prism (version 9.2.0) for proteomic data. All other experiments were analyzed using GraphPad Prism. t tests were used when comparing two means. Oneway or two-way analyses of variance (ANOVA) were performed for comparing more than two means, across one (for example ''genotype'') or two distinct variables (for example ''genotype'' as a between-subject factor and ''bait'' as a within-subject factor). One-way and two-way ANOVAs were followed by Tukey and Bonferroni post hoc pairwise comparisons, respectively. A significance level (a) of 0.01 was used a priori for all statistical tests, except otherwise indicated. Comparisons that are statistically significant (p % 0.01) are marked with one asterisk. Statistical details of experiments can be found in the figure legends, including the statistical tests used, the minimum value of biological replicates n shown (n = isogenic clones of each strain), and a description of the center and dispersion statistics shown. Quantitative values are typically represented as individual values (n) overlaid with the mean (black bar) and standard deviation (SD). (E,F) Expression of ste11+ (E) and mei2+ (F) using quantitative RT-qPCR of RNA extracted from tel2-, tti1-and tti2-HA-AID strains, cultured as in (B). act1+ served as internal control for normalization across samples. mRNA levels were normalized to one control (WT) strain grown in EtOH, which value was arbitrarily set to 1, to allow comparison between genotypes and culture conditions. Values from independent experiments are shown as individual points (n = 5), overlaid with the mean and SD. Statistical significance was calculated by unpaired t-tests (*P < 0.05).

(G) Western blot analysis of S6 protein phosphorylation (P-S6) in tel2-, tti1-and tti2-HA-AID strains, cultured as in (B), using anti-HA and anti-PAS antibodies. An anti-Tubulin antibody served as loading control.

(H) TTT does not affect PIKK mRNA levels. Analysis of tra1+, tra2+, tor2+, tor1+, tel1+ and rad3+ expression upon conditional knock-out of tti2+. mRNA levels were measured by extracting read counts from htseq analysis of RNA-seq.

RNAs were extracted from tti2-CKO strains grown to exponential phase in rich medium supplemented with DMSO or 1 µM β-estradiol. creER (WT) strains were used as controls. Individual points represent the value from one experiment, overlaid with the mean and SD (n = 3). (A-B) The TTT subunit Tel2 does not localize to the nucleus in S. pombe.

(A) Tel2 is not detectable at Spt7-bound promoters. ChIP-qPCR analysis of Tel2-HA occupancy at the ssa2+ and mei2+ promoters. An Spt7-HA strain was used as a positive control. An untagged strain was used as control for background IP signal (no HA). Ratios 

Figure 1 .

 1 Figure 1. TTT interacts with PIKKs and promotes their stability(A) Illustration of TTT complex components (gray) and the interacting PIKK substrates, shown within their complexes. Shown are S. pombe names with human orthologs in superscript. (B) Mass spectrometry analysis (LC-MS/MS) of tandem affinity-purified Tti2. Volcano plot showing the average ratios of label-free quantification (LFQ) intensities in Tti2-TAP over control ''no TAP'' purifications against normalized p values (q) (n = 4). Each dot represents one protein, colored as in (A). (C-F) PIKK steady-state levels and stability upon conditional deletion of tti2+. tti2-CKO strains in which endogenous Tra1 (C), Tra2 (D), Tor2 (E), and Tor1 (F) are FLAG-tagged were grown to the exponential phase, treated with either DMSO (+Tti2) or b-estradiol (ÀTti2) for 20 h, and then treated with 100 mM cycloheximide (CHX) for 3 and 6 h before harvesting. Western blots of protein extracts were probed with anti-FLAG, anti-HA, and anti-tubulin antibodies. Numbers below show the mean signal intensity for each PIKK, normalized to tubulin (n = 2).
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 2 Figure 2. TTT recognizes PIKKs cotranslationally through Tti1 and Tti2
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 3 Figure 3. The FATKIN unit of Tra1 mediates its binding to TTT

Figure 4 .

 4 Figure 4. TTT does not interact with PIKK partners Tel2 and Tti2 RIP-qPCR analyzed as described in Figure 2. IP/IN ratios from independent experiments are shown as individual points (n R 3) overlaid with the mean and SD. (A) tra1+, ada1+, spt20+, and taf12+ levels in Tti2-HA and Tel2-HA IPs. (B) tra2+, vid21+, epl1+, and eaf7+ levels in Tti2-MYC IPs. (C) tor2+ and mip1+ levels in Tti2-HA IPs. (D) tor1+ and ste20+ levels in Tti2-HA and Tel2-HA IPs.

Figure 6 .

 6 Figure 5. PIKKs do not assemble cotranslationally

Figure 7 .

 7 Figure 7. TTT recognizes PIKKs in a non-native state during translation (A and B) LC-MS/MS analysis of Tti2 purified from WT, tra1-AA (A), and tor1-AA (B) strains. LFQ ratios of Tra1 or Tor1 to Tti2 from at least three independent experiments (n R 3) are plotted individually with the mean. (C and D) RIP-qPCR of tra1+ (C) and tor1+ (D) mRNAs in Tti2-HA purified from WT, tra1-AA (C), and tor1-AA (D) strains, analyzed as described in Figure 2. IP/IN ratios from independent experiments are shown as individual points (n R 4) overlaid with the mean and SD. (E) Working model for the stepwise biogenesis of PIKKs and control by the Hsp90 cochaperone TTT. See Discussion for details.

Figure S1 .

 S1 Figure S1. Related to Figure 1. Biochemical and functional characterization of the S. pombe TTT complex.(A) Mass spectrometry characterization of the TTT complex and its interacting partners in S. pombe. Comparative mass spectrometry analysis (LC-MS/MS) of tandem affinity purified Tel2, Tti1, and Tti2. Individual points represent label-free quantification (LFQ) intensities of interacting proteins enriched in each TAP eluates (n =1). Only proteins enriched at least 3-fold compared to a 'no TAP' control purification are shown. Each bait is depicted next to each axis. The blue-coloured y-axis allows comparing Tel2 with Tti1 eluates, whereas the red-coloured y-axis allows comparing Tel2 with Tti2 eluates. The black dashed line shows a 1:1 ratio.(B-G) TTT controls PIKK-dependent processes. (B) Western blot analysis of Tel2-, Tti1-, Tti2-HA-AID expression in strains grown to exponential phase in minimal medium supplemented with either ethanol (EtOH) or 0.5 mM auxin (IAA) for 16 hours. An anti-Tubulin antibody served as loading control. (C,D) Viability and proliferation of tel2-, tti1-and tti2-HA-AID strains, cultured as in (B). (C) Ten-fold serial dilutions were spotted on corresponding solid media and grown for 4 days at 25°C. (D) Proliferation was estimated by counting at least 200 cells at the indicated time points. Shown are the mean and SD of 3 independent experiments (n = 3). (E,F) Expression of ste11+ (E) and mei2+ (F) using quantitative RT-qPCR of RNA extracted from tel2-, tti1-and tti2-HA-AID strains, cultured as in (B). act1+ served as internal control for normalization across samples. mRNA levels were normalized to one control (WT) strain grown in EtOH, which value was arbitrarily set to 1, to allow comparison between genotypes and culture conditions. Values from independent experiments are shown as individual points (n = 5), overlaid with the mean and SD. Statistical significance was calculated by unpaired t-tests (*P < 0.05). (G) Western blot analysis of S6 protein phosphorylation (P-S6) in tel2-, tti1-and tti2-HA-AID strains, cultured as in (B), using anti-HA and anti-PAS antibodies. An anti-Tubulin antibody served as loading control.

Figure S2 .

 S2 Figure S2. Related to Figure 2. Controls for TTT cotranslational interactions.

  of anti-HA ChIP to input (IP/IN) from three independent experiments are shown as individual points (n = 3), overlaid with the mean and SD. (B) Tel2 is not detectable in the nucleus. Tel2-GFP localisation was assessed by live fluorescent microscopy of exponentially growing S. pombe cells. Nuclei were stained with DAPI and delimited with white dashed lines. (C-D) Specificity of the cotranslational interaction between Tti2 and Tra1.(C) Quantitative RT-PCR analysis of the gst2 + and eng1 + mRNAs Tti2 RIPs. Anti-HA IPs were performed using RNA extracted from cells grown to exponential phase. Ratios of IP to input (IP/IN) from independent experiments are shown as individual points (n = 3), overlaid with the mean and SD. Data for the tra1 + and isp6 + mRNAs are shown as a positive and a negative control, respectively and reused from Figure2. An untagged strain was used as a control for background IP signal. (D) Tti1 protein levels are not affected by puromycin treatment in conditions used for RIPs. Cultures were treated with 1 mg/ml puromycin for 15 minutes and total protein extracts were analyzed by Western blot with an antibody against the HA epitope. Ponceau red was used as loading control.

  

Cell Reports

37, 109867, October 19, 2021Article

Cell Reports 37, 109867, October 19, 2021 Article

Cell Reports 37, 109867, October 19, 2021 Article

SAGA, NuA4, TORC1, and TORC2 subunit RIP-qPCR analyzed as described in Figure2. IP/IN ratios from independent experiments are shown as individual points (n R 3) overlaid with the mean and SD. (A) tra1+ and taf12+ levels in Taf12-HA and Tti2-HA IPs. (B) tra2+ and epl1+ levels in Mst1-HA and Tti2-HA IPs. (C) tor2+ and mip1+ levels in Mip1-HA and Tti2-HA IPs. (D) tor1+ and ste20+ levels in Ste20-HA and Tti2-HA IPs. (E) spt20+ and tra1+ levels in FLAG-Tra1 IPs. (F) epl1+ and tra2+ levels in FLAG-Tra2 IPs. (G) mip1+ and tor2+ levels in FLAG-Tor2 IPs. (H) ste20+ and tor1+ levels in FLAG-Tor1 IPs. 10 Cell Reports 37, 109867, October 19, 2021 Article
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All yeast strains generated in this study are available from the lead contact upon request. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

S. pombe procedures and growth conditions

Standard culture media and genetic manipulations were used, as described in [START_REF] Forsburg | Basic methods for fission yeast[END_REF]. For auxin-inducible targeted protein degradation (AID), cells were grown at 25 C and treated with either 0.5 mM indol-3-acetic acid (IAA, I2886, Sigma) or ethanol. For CreER-loxP-mediated recombination, cells were treated with either 1 mM b-estradiol (E2758, Sigma) or DMSO alone for 16 hours, unless otherwise indicated. For translation inhibition, cells were treated with 1 mg/mL puromycin dihydrochloride (Santa Cruz Biotechnology, sc-108071B) and incubated for 15 minutes. For cycloheximide chase, cells were treated with 100 mM cycloheximide (C7698, Sigma).

S. pombe strain construction

All S. pombe strains used are listed in Table S4 and were constructed by standard procedures, using either chemical transformation or genetic crosses. Genetic crosses were performed by mating strains at 25 C on SPAS medium. Strains with gene deletions, truncations, or C-terly epitope-tagged proteins were constructed by PCR-based gene targeting of the respective open reading frame (ORF) with kanMX6, natMX6 or hphMX6 cassettes, amplified from pFA6a backbone plasmids [START_REF] Ba ¨hler | Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe[END_REF][START_REF] Hentges | Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe[END_REF]. For insertion of loxP sites, the same resistance cassettes were amplified from the pUG6 or pUG75 plasmids (Euroscarf #P30114, and #P30671, respectively) [START_REF] Gueldener | A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast[END_REF]. Alternatively, CRISPR-Cas9-mediated genome editing was used, as described in [START_REF] Zhang | A Cloning-Free Method for CRISPR/Cas9-Mediated Genome Editing in Fission Yeast[END_REF], particularly for marker-less N-ter epitope tagging of tra1+, tra2+, tor2+, tor1+, rad3+, and tel1+. DNA fragments used for homologous recombination were generated by PCR, gene synthesis, and Gibson assembly cloning. (I-K) TTT subunit levels are not affected by the loss of TTT components.

(I) Anti-MYC Western blot analyses of Tti1-MYC (lanes 1-2) and Tel2-MYC (lanes 3-4) expression upon tti2+ deletion (tti2-CKO), using lox-tti2-lox-HA tti1-MYC and lox-tti2-lox-HA tel2-MYC strains, respectively. Exponentially growing cells were treated with either DMSO or β-estradiol for 16 hours before protein extraction. An anti-HA antibody was used to confirm Tti2 deletion. Ponceau red staining is used as a loading control. The star (*) symbol labels an unspecific band detected by the anti-MYC antibody in S. pombe.

(J) Anti-MYC Western blot analyses of Tti2-MYC (lanes 1-2) and Tel2-MYC (lanes 3-4) expression upon tti1+ deletion (tti1-CKO), using lox-tti1-lox-T7 tti2-MYC and lox-tti1-lox-T7 tel2-MYC strains, respectively. Exponentially growing cells were treated with either DMSO or β-estradiol for 16 hours before protein extraction. An anti-T7 antibody was used to confirm Tti1 deletion. Ponceau red staining is used as a loading control.

(K) Anti-MYC Western blot analyses of Tti2-MYC (lanes 1-2) and Tti1-MYC (lanes 3-4) expression upon tel2+ deletion (tel2-CKO), using lox-tel2-lox-T7 tti2-MYC and lox-tel2-lox-T7 tti1-MYC strains, respectively. Exponentially growing cells were treated with either DMSO or β-estradiol for 16 hours before protein extraction. An anti-T7 antibody was used to confirm Tti1 deletion. Ponceau red staining is used as a loading control.. Table S3. Related to Figure 3. Quantification of Western blot signal intensities of FLAG-Tra1 and Tti2-TAP in input and IP fractions. Ratios of IP to input (IP/IN) from two independent experiments (n = 2) were averaged and normalized to the ratios obtained in coIPs of WT Tra1.