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It is well-known that the widely popular Interconnection and Damping Assignment Passivity-based Control (IDA-PBC) is "universally stabilizing", in the sense that it generates all asymptotically stabilizing controllers for general nonlinear systems of the form ẋ = f (x, u). Unfortunately, the proof of this fact relies in the construction of a control law that is not globally defined. Although a standard regularization procedure may be used to enforce the required smoothness properties to the control signal, this procedure is quite technical and not constructive. To overcome this problem we provide an alternative construction that yields a continuous IDA-PBC law.

Notation. For x ∈ R n , we denote the Euclidean norm |x| 2 := x x. Given a C 1 function f : R n → R we define the differential operator ∇f := ∂f ∂x .

Background Material

Interconnection and Damping Assignment Passivitybased Control (IDA-PBC) is a widely popular stabilization procedure applicable for general nonlinear systems of the form ẋ = f (x, u), (1) where x ∈ R n and u ∈ R m and f (x, u) ∈ C 1 . IDA-PBC was first introduced in [START_REF] Ortega | Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems[END_REF]-see also [START_REF] Ortega | Interconnection and Damping Assignment Passivity-Based Control: A Survey[END_REF][START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF]-and has been successfully applied in various engineering applications. 1 The basic idea of IDA-PBC is to transform, via static state feedback, the system (1) into a port-Hamiltonian This work is supported by China Scholarship Council. Corresponding author. Email addresses: dongjun.wu@l2s.centralesupelec.fr, wdjhit@163.com (Dongjun Wu ), ortega@lss.supelec.fr (Romeo Ortega), g.r.duan@hit.edu.cn (Guangren Duan). 1 The article [START_REF] Ortega | Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems[END_REF] has 1441 cites in Google Scholar until May 2020.

(pH) system [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] with a desired Hamiltonian function. That is, we are looking for a function u(x) ∈ R m such that the matching equation

f CL (x) := f (x, u(x)) = [J (x) -R(x)]∇H(x) (2) 
holds, where J (x) = -J (x), R(x) = R (x) ≥ 0 are the interconnection and damping matrices, respectively, and the Hamiltonian function H(x) ∈ R has some desired properties. For instance, for stabilization of an assignable equilibrium x * ∈ R n , that is, a vector such that f (x * , u(x * )) = 0, it is required that

x * = arg min H(x).
In such a case x * is a stable equilibrium of the closedloop with Lyapunov function H(x).

In classical IDA-PBC the matrices J (x) and R(x) are fixed a priori-hence the name IDA-and the Hamiltonian is obtained via solution of a partial differential equation. An alternative approach, first proposed in [START_REF] Fujimoto | Canonical transformations and stabilization of generalized Hamiltonian systems[END_REF], is to fix H(x) and solve some nonlinear algebraic equations for J (x) and R(x).

A natural question that arises regarding IDA-PBC is whether the procedure is conservative, in the sense that there are stabilizable systems [START_REF] Fujimoto | Canonical transformations and stabilization of generalized Hamiltonian systems[END_REF], that cannot be transformed to the pH form. A negative answer to this question was provided in [3, Proposition 2], where it is shown that if there exists a function u(x) ∈ C 1 rendering the equilibrium x * of the closed-loop system asymptotically stable, then there exists J (x), R(x) and H(x) such that (2) holds. Unfortunately, the construction of the matrices J (x), R(x) relies on a non-globally defined operation, namely, a division by |∇H(x)|. Although, as indicated in [START_REF] Ortega | Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems[END_REF], a standard regularization procedure may be used to enforce the required smoothness properties, this procedure is quite technical and not constructive. In this paper, we provide a constructive method, where no smoothing techniques are needed and the desired functions can be obtained explicitly.

Caveat To simplify the presentation we give a global version of all the results, in particular, refer to global stability. The main result can be easily modified in a local context.

A Robust Universally Stabilizing IDA-PBC

The main contribution of this paper, which is given in the proposition below, is to provide an alternative construction of the IDA-PBC law that ensures the matrices J (x), R(x) are (at least) C 0 .

Proposition 1 Assume there exists a function u(x) ∈ C 1 rendering the equilibrium x * of the closed-loop system ẋ = f CL (x) globally asymptotically stable, with f CL (x) Lipschitz continuous. Then, there exist a C 1 positive definite function H(x) and C 0 matrices J (x) = -J (x) and R(x) = R (x) ≥ 0 such that the matching equation (2) holds.

Proof 1 From the converse Lyapunov theorem [START_REF] Wilson | Smoothing derivatives of functions and applications[END_REF] we know the existence of a smooth non-negative function V (x), satisfying V (x * ) = 0, and V (x) > 0, for all x = x * , such that

[∇V (x)] f CL (x) < 0, ∀x = x * , and [∇V (x * )] f CL (x * ) = 0. Define R(x) and J (x) as 2 R(x) := - f CL (x) ∇V (x) |∇V (x)| 4-α ∇V (x)∇ V (x) (3) 
J (x) := f CL (x)∇ V (x) -∇V (x)f CL (x) |∇V (x)| 2-α (4) 
2 Define at the equilibrium point J (x * ) = R(x * ) = 0.

where 0 < α < 1 is a constant to be determined. The two matrices are well defined and are C 0 except at x * . Moreover, R(x) = R (x) ≥ 0 and J (x) = -J (x).

It can be easily verified that f CL (x) can be expressed as

f CL (x) = (J (x) -R(x)) ∇V (x) |∇V (x)| α .
The derivative of ∇V /|∇V | α reads

∇ ∇V |∇V | α = |∇V | -α-1 ∇V ∇ V + |∇V | -α ∇ 2 V,
which is smooth and symmetric when x = x * . By Poincare's lemma, there exists a C 1 function H(x) such that

∇H(x) = ∇V (x) |∇V (x)| α , ∀x = x * . (5) 
Since

∇V (x) |∇V (x)| α ≤ |∇V (x)| 1-α
, the value of the right hand side of (5) at x * can be set as 0. By doing this, ∇H(x) become a continuous function. Now that ∇H(x) is continuous, H(x) is C 1 . And H(x * ) is defined as the limit of H(x) at that point. It remains to check the regularity of J (x) and R(x). Since f CL (x) is Lipschitz, there exists a constant c 1 , such that

|f CL (x) -f CL (x * )| ≤ c 1 |x -x * |. (6) 
|∇V (x)| is a positive definite function. So it is bounded below by a function ϕ(|x -x * |), with ϕ(r) class K. We assume d j ϕ/dr j (0) = c 2 = 0 for some positive j ≥ 1.

Then we have

|∇V (x) -∇V (x * )| ≥ ϕ(|x -x * |) ≥ c 3 |x -x * | k . (7)
for some positive constant c 3 and integer k. The following estimate follows from ( 6) and (7):

|R(x)| = f CL ∇V |∇V | 4-α ∇V ∇ V ≤ |f CL (x)| • |∇V (x)| 3 |∇V (x)| 4-α = |f CL (x)| |∇V (x)| 1-α = |f CL (x) -f CL (x * )| |∇V (x) -∇V (x * )| 1-α ≤ c 1 |x -x * | (c 3 |x -x * | k ) 1-α = c 1 c 1-α 3 |x -x * | k(α+ 1 k -1) .
Recalling that 0 < α < 1, by choosing α sufficiently close to 1 such that

α + 1 k > 1 (8)
one obtain R(x) → 0 as x → 0. Thus, setting R(x * ) = 0, R(x * ) becomes a C 0 function. The same construction being used for J (x) will complete the proof.

Remark 1 We point out that when the parameter α is set to zero in ( 3) and ( 4), the proposed method reduces to the constructions of Lemma 1 ( [START_REF] Ortega | Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems[END_REF]). From the proof of Proposition 1, we see when α is zero, the proof cannot be carried out. Thus α plays the crucial role in solving the singularity problem.

An Example

Consider the system ẋ1 = -x 3 1

+ x 2 ẋ2 = -x 1 -x 2 . It admits a Lyapunov function V (x) = 1 2 (x 2 1 + x 2 2 ), sat- isfying V = x 1 (-x 3 1 + x 2 ) + x 2 (-x 1 -x 2 ) = -x 4 1 -x 2 2 ≤ 0.
Hence the origin is globally asymptotically stable. If we construct the pH form (2) with the formulas given in [3, Lemma 1], R(x) will have a singular point at the origin. Because in

- f ∇V |∇V | 4 ∇V ∇ V = x 4 1 + x 2 2 (x 2 1 + x 2 2 ) 2 x 2 1 x 1 x 2 x 1 x 2 x 2 2 the term (x 4 1 + x 2 2 )x 1 x 2 (x 2 1 + x 2 
2 ) 2 has no limit at the origin. This can be seen by taking the limit along the line x 2 = kx 1 ,

(x 4 1 + x 2 2 )x 1 x 2 (x 2 1 + x 2 2 ) 2 = kx 2 1 + k 3 (1 + k 2 ) 2 → k 3 (1 + k 2 ) 2 , as |x 1 | → 0
which varies as k varies. Therefore R(0) is not defined at the origin. So the method proposed in [START_REF] Ortega | Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems[END_REF] has singularities. Now we construct the pH form of this system following the proof of Proposition 1.

First we have to identify ϕ(x) in (7). This is done by calculating ∇V (x):

|∇V (x)| = |x|.
Thus k can be taken as 1 and c 3 = 1. In order to verify (8), α can be chosen as 2 3 . We should look for H(x) that verifies

∇H(x) = ∇V (x) |∇V (x)| 2 3 
.

Simple calculation shows that

H(x) = 3 4 (x 2 1 + x 2 2 ) 2 3 .
Then, R(x) and J (x) can be calculated using ( 3) and (4) as

R(x) = - f ∇V |∇V | 4-α ∇V ∇ V = x 4 1 + x 2 2 (x 2 1 + x 2 2 ) 5 3 x 2 1 x 1 x 2 x 1 x 2 x 2 2 . J (x) = f ∇ V -∇V f |∇V | 2-α = 1 (x 2 1 + x 2 2 ) 2 3
0 j(x)

-j(x) 0 where we defined the function j(x) := -x 3 1 x 2 + x 1 x 2 + x 2 1 + x 2 2 .

One can easily check that R(x) and J (x) are continuous near the origin. Indeed, when |x| is sufficiently small,

(x 4 1 + x 2 2 ) • x 1 x 2 (x 2 1 + x 2 2 ) 5 3 ≤ 1 2 (x 2 1 + x 2 2 ) 2 (x 2 1 + x 2 2 ) 5 3 = 1 2 (x 2 1 + x 2 2 )