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Abstract

Owing to its efficiency and aptitude for a massive parallelization, the lattice
Boltzmann method generally outperforms conventional solvers in terms of execu- 15

tion time in weakly-compressible flows. However, the authorized time-step (being
inversely proportional to the speed of sound) becomes prohibitively small in the in-
compressible limit, so that the performance advantage over continuum-based solvers
vanishes. A remedy to increase the time-step is provided by artificially tailoring the
speed of sound throughout the simulation, so as to reach a fixed target Mach number 20

much larger than the actual one. While achieving considerable speed-ups in certain
flow configurations, such adaptive time-stepping comes with the flaw that the con-
tinuities of mass density and pressure cannot be fulfilled conjointly when the speed
of sound is varied. Therefore, a trade-off is needed. By leaving the mass density
unchanged, the conservation of mass is preserved but the pressure presents a discon- 25

tinuity in the momentum equation. In contrast, a power-law rescaling of the mass
density allows us to ensure the continuity of the pressure term in the momentum
equation (per unit mass) but leaves the mass density locally discontinuous. This
algorithm, which requires a rescaling operation of the mass density, will be called
“adaptive time-stepping with correction” in the article. Interestingly, we found that 30

this second trade-off is generally preferable.
In the case of a thermal plume, whose movement is governed by the balance

of buoyancy and drag forces, the correction of the mass density (to ensure the
continuity of the pressure force) has a beneficial impact on the resolved velocity
field. In a pulsatile channel flow (Womersley’s flow) driven by an external body 35

force, no difference was observed between the two versions of adaptive time-stepping.
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On the other hand, if the pulsatile flow is established by inlet and outlet pressure
conditions, the results obtained with a continuous pressure force agree much better
with the analytical solution. Finally, by using adaptive time-stepping in a channel
entrance flow, it was shown that the correction is compulsory for the Poiseuille flow40

to develop. The expected compressibility error due to the discontinuity in the mass
density remains small to negligible, and the convergence rate is not notably affected
compared to a simulation with a constant time step.

Keywords— Lattice Boltzmann method, adaptive time-stepping, time-step op-
timization45

1 Introduction

The lattice Boltzmann (lb) method has gained prominence as a statistical approach
used to simulate continuum fluid dynamics [Suc15; Krü+17]. Nonetheless, to make
it a competitive alternative to conventional solvers, a series of simplifications are
necessary that eventually narrow its scope of application. Concretely, the macro-50

scopic equivalent to the standard stream-and-collide lb algorithm reduces to an
isothermal, weakly compressible Navier-Stokes model [Del01].

Due to the low symmetry of standard lattices, the lb method can only be used
with confidence in the range of Mach number

Ma =
|u|max

cs
≤ 0.3 (1)

where compressible effects may be considered weak to negligible; |u|max denotes55

the maximum flow velocity and cs is the speed of sound in the fluid. The restric-
tion to isothermal fluids is another consequence of the low symmetry of the lattice,
which fails to properly express the conservation of internal energy with a varying
temperature field [Del01]. Moreover, the lb method is by nature a compressible
method.60

A variety of techniques exist to lift the restrictions to low Mach numbers and
isothermal fluids in the lb approach [Qia93; CK06; FST15; Li+07]. On the contrary,
improvements to address incompressible fluids are rather limited. Incompressible
lb models have been postulated in the past but they only decrease the order of
compressibility errors in steady flows [HL97; Zou+95; Del03].65

In continuum fluid mechanics, the principal motivation behind an incompressible
description stems from the numerical benefit of an increased time-step. In general,
the maximum time-step is expressed as

∆tmax =
cfl ∆x

vmax
(2)

where the Courant-Friedrichs-Lewy (cfl) number may be viewed as the normalized
maximum velocity at which flow variations can be robustly propagated by the nu-70

merical scheme [CFL28]. For compressible Navier-Stokes solvers, vmax is the speed
of sound relative to the maximum flow velocity, i.e.

vmax = cs + |u|max and ∆tmax =
cfl ∆x

cs(1 + Ma)
(3)

If one supposes a cfl number of unity and ∆x ≈ 10−3 m then ∆tmax for air at stan-
dard conditions (cs ' 343 m/s) is approximately 3×10−6/(1+Ma) seconds yielding
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very small time-steps. The assumption of a (truly) incompressible fluid removes the 75

speed of sound from the reference velocity vmax. Therefore, the maximum time-step
becomes

∆tmax =
cfl ∆x

|u|max
(4)

so that the same cfl number yields considerably larger values at very small Mach
number. Typically,

∆tincomp.
max ' ∆tcomp.

max

Ma
. (5)

Conceptually, the sound speed is viewed as infinite in the incompressible model 80

implying that pressure and velocity fields adapt instantaneously. Mathematically,
an additional Poisson equation arises (by taking the divergence of the momentum
equation) to describe the evolution of pressure (and in turn to project velocity
in divergence-free/solenoidal space). One possibility, which is known to belong to
the class of simple algorithms, solves the Poisson equation while the pressure and 85

velocity fields are updated in a (semi-implicit) iterative process [PS72]. Another
possibility is the artificial compressibility method (acm), where a pressure term is
substituted into the continuity equation via an isothermal equation of state. This
circumvents the iterative stepwise update of the pressure and velocity fields, but
reintroduces an artificial speed of sound [Cho67]. In that situation, pseudo-waves 90

propagating with a finite speed are introduced to “distribute the pressure”.
In the lb method, the distribution functions move from one lattice node to

another during exactly one time-step, i.e. with a characteristic speed c = ∆x/∆t.
On the other hand, the propagation of sound is related to the effective transport of
mass-density variations via the distribution functions. Therefore, the speed of sound 95

and the speed of microscopic propagation are physically related (but not strictly
equal because the distribution functions also undergo collisions). For a standard
isothermal lattice, this relation is

c = c0
√

3 (6)

where c0 =
√
p/ρ represents here an isothermal speed of sound directly linking the

pressure and the mass density. Let us note that in the following, we will distinguish 100

the physical speed of sound, e.g. cs ' 343 m/s for air at standard conditions,
from the possibly variable speed of sound c0 introduced in the lb framework. As
evidenced by Eq. (6), the speed of sound cannot be removed from the statistical
approach. Thus, a commonly used technique to accelerate a lb simulation is to
artificially decrease c0, or equivalently, to increase the compressibility of the fluid. 105

This is the same technique used to maximize the time-step in acm. In fact the
two approaches share a striking similarity [HDC02; Asi+12]. Obviously, the Mach
number should not exceed a critical value (Ma = 0.3) to remain in the domain of
validity where compressibility effects are weak.

In practice, to determine an appropriate artificial speed of sound, the maximum 110

expected flow velocity is usually overestimated to allow for a certain room of ma-
neuver and to prevent the Mach number from exceeding its maximal allowed value
during the simulation. Moreover, in unsteady simulations the maximum velocity
may vary by orders of magnitude. As a consequence the time-step of these simula-
tions is often unnecessarily small. A solution is given by using an adaptive time-step, 115

which can be changed throughout a simulation as a function of the current max-
imum flow velocity. This technique allows for an optimization of the time-step,
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however, it has a side effect on the distribution functions. Being a probability mea-
sure to find a particle with a microscopic velocity c, this probability changes when
the speed of sound is modified according to Eq. (6). In literature, very few studies120

exist that describe how to handle a change of the speed of sound. Under the name
of Mach number annealing, it is demonstrated in [AHS03] that the Mach number
may be changed artificially during a simulation while preserving the dynamics of
the flow characterized by a Reynolds number (Re) and a Strouhal number (St). Un-
fortunately, the reader is deprived of the actual algorithm. This is not the case in125

[Thü+06], where a comprehensive description of the adaptive time-stepping rescal-
ing operations is provided for the simulation of a gradient-driven free-surface flow.
In particular, the off-equilibrium part of the distribution functions is reconstructed
from the rescaled Maxwellian distribution in conjunction with a rescaling operation
that is used in mesh refinement algorithms [FH98]. In [Lat07], the author introduces130

adaptive time-stepping for the regularized lb method. Here the populations are re-
constructed entirely from the rescaled macroscopic variables. The readjustment of
distribution functions f(x, t, c) due to a change in c is common to the aforemen-
tioned studies, whether in dimensional or non-dimensional space. However, the
continuity of the pressure is not preserved in these algorithms. In the present study135

we will comment on this impact and propose a correction to optimize the use of
adaptive time-stepping for unsteady weakly-compressible flows.

The paper is organized as follows. Sec. 2 contains a description of the physical
impact of a sudden change in the speed of sound on the fluid dynamics. Sec. 3
provides a brief recap of the lb method. Sec. 4 presents the different algorithms140

that have been tested in this study. Sec. 5 shows results of each algorithm for three
different test cases, while concluding remarks are given in Sec. 6.

2 Physical aspects of the adaptive time-stepping

The following considerations apply to an isothermal fluid satisfying the equation
of state rT0 = c20 with r being the specific gas constant and c0 an isothermal145

speed of sound. In this case, the governing gas kinetic equation under the Bhatna-
gar–Gross–Krook (bgk) approximation [BGK54] reads for the distribution function
f(x, c, t) as

∂f

∂t
+ (c ·∇) f +

(
fext
ρ
·∇c

)
f = −1

τ
(f − feq) (7)

where the equilibrium distribution feq is represented by the Maxwellian distribution

feq(x, c, t) =
ρ(x, t)

(2πc20)3/2
exp

(
− (c− u(x, t))2

2c20

)
. (8)

fext represents a possible external force (per unit volume) acting on the fluid. Fur-150

thermore, we make the assumption that a particular flow is uniquely defined by its
Reynolds number

Re =
UD

ν

and, possibly, its Strouhal number

St =
fD

U
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where U and D are respectively a reference velocity and length scale, f is a frequency
of oscillation of the flow and ν is the kinematic viscosity of the fluid. The invariance 155

of the Reynolds and Strouhal numbers implies that U and hence ν must remain
unaffected when the speed of sound is changed. In addition, the theory provides a
direct relation between the kinematic viscosity and the speed of sound, namely

ν = τc20 (9)

where τ is the relaxation time that directly intervenes in the bgk collision operator
of Eq. (7). It follows that changing the speed of sound requires modifying the 160

relaxation time inversely in order to keep the viscosity constant. The relaxation
towards equilibrium thus occurs at a larger time-scale when c0 is decreased. The
physical explanation is straightforward. Under the equation of state rT0 = c20, the
speed of sound is directly related to the temperature. As a consequence a sudden
drop in c0 means that molecular activity is abruptly lowered. With the particles 165

acting in a more sedate fashion, the collisional time-scale is increased.
On the other hand, the isothermal speed of sound expresses as

c20 =
p

ρ
(10)

which implies that adaptive time-stepping will lead to discontinuities in either the
pressure or the density field. In order to determine the physical consequences of
this relation, it is informative to consider the macroscopic equivalent to Eq. (7), 170

which is obtained through a Chapman-Enskog multiple time-scale analysis up to
second-order in the Knudsen and Mach numbers [Suc15; Krü+17]. Namely,

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρuu) = −∇p+ µ∆u + fext.

(11)

By applying the chain rule to the momentum equation and accounting for the mass
conservation, the above equations may be reformulated as

∂ρ′

∂t
+∇ · (ρu) = 0 (12)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇
(
ρ′c20

)
+ ν∆u + a (13)

where the mass density is decomposed into ρ (x, t) = ρref+ρ
′ (x, t), ν is the kinematic 175

fluid viscosity and a ≡ fext/ρ. By default, the above Navier-Stokes model is contin-
uous in ρ (x, t). As a consequence, the pressure force (per unit mass) −∇

(
ρ′c20

)
/ρ

in the momentum equation will be affected by an abrupt change of c0. It is possible
to derive a pressure-continuous Navier Stokes model, but in this case the density
field has to be adapted. More precisely, if the speed of sound is changed from c0 to 180

c∗0 = λc0 (14)

the continuity of the pressure force per unit mass requires that

− c20
ρ
∇ρ′ = − (λc0)

2

ρ∗
∇ρ′∗ (15)
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where – here and in the following – the superscript ∗ denotes a quantity rescaled in
response to a modified speed of sound. After some calculus (detailed in the Appendix
A) we obtain the rescaling of the density

ρ∗ = ρref

(
ρ

ρref

) 1
λ2

. (16)

In summary, we note the following changes as a consequence of a modified speed185

of sound: i) Decreasing the speed of sound with the purpose to increase the time-step
also increases τ , which has a decelerating effect on the relaxation process. ii) By
default, the Navier-Stokes model with adaptive time-stepping is density continuous.
Nevertheless, a modification of the density field (Eq. (16)) allows us to render it
pressure force (per unit mass) continuous and, therefore, leave Eq. (13) unaffected190

by the change of c0. Let us note that it is here essential to consider the pressure
force per unit mass, and not the pressure force per unit volume, to preserve the
spatio-temporal evolution of the velocity itself, and not ρu, in coherency with the
incompressible limit. On the other hand, injecting Eq. (16) into Eq. (12) yields a
spurious source term in the mass conservation equation:195

∂ρ∗′

∂t
+∇ · (ρ∗u) =

λ2 − 1

λ2
ρ∗ (∇ · u) ' λ2 − 1

λ2
ρref (∇ · u) . (17)

Since λ is supposed to be close to unity and ∇ · u ' 0 in the weakly-compressible
regime, this term is expected to remain small in practice.

3 The lattice Boltzmann model

Besides the physical consequences of adaptive time-stepping on the continuous Boltz-
mann equation (developed in Sec. 2), the discrete model requires some additional200

rescaling operations. For the sake of clarity, we shall start from the dimensional
discrete-velocity Boltzmann equation with external force term

∂fα
∂t

+ (cα · ∇) fα = −1

τ
(fα − feqα ) + Fα (18)

where α = 1 · · · q − 1 spans a discrete set of microscopic velocities (for a DdQq
lattice) and

feqα = ωαρ

(
1 +

cα · u
c20

+
(cα · u)2

2c40
− u2

2c20
+O(Ma3)

)
(19)

is the discrete second-order (in Mach number) Maxwellian distribution that is as-205

sociated with isothermal lattice molecules; ωα are lattice weights. According to
[GZS02] the additional term that arises from the external force (per unit volume)
fext may be written as

Fα = ωα

(
cα − u

c20
+

cα (cα · u)

c40

)
· fext. (20)
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The velocity moments are expressed as discrete sums such that

q−1∑
α=0

fα =

q−1∑
α=0

feqα = ρ (21)

q−1∑
α=0

cαfα =

q−1∑
α=0

cαf
eq
α = ρu (22)

q−1∑
α=0

cαcαfα = P +O(Ma3) (23)

where P is the momentum flux tensor. Similarly, the zeroth and first-order velocity 210

moments of the forcing term are given by

q−1∑
α=0

Fα = 0 and

q−1∑
α=0

cαFα = fext. (24)

Concerning the discretization in space and time, the left-hand-side of Eq. (18) is
viewed as a substantial derivative, which is integrated (for each α) over a time-step
∆t along the characteristics dxα(t) = cαdt. The collision operator and the force
term are then approximated by a trapezoidal rule, which leads to a semi-implicit 215

scheme. In order to render this scheme explicit, the following change of variable is
applied

gα = fα +
∆t

2τ
(fα − feqα )− ∆t

2
Fα. (25)

It can be noted that Fα is at least first-order in the Chapman-Enskog multiple time-
scale expansion. Therefore, it could formally be added to the non-equilibrium part
of the distribution functions. Here, we refrain from this manipulation and treat 220

separately the three contributions to gα as

gα = geqα + gneqα − ∆t

2
Fα (26)

with geqα = feq and gneqα ≡ (1 + ∆t/2τ)(fα − feqα ). In consequence, the moments of
geqα and gneqα remain unaffected by the external force, whereas

q−1∑
α=0

gα = ρ and

q−1∑
α=0

cαgα = ρu− ∆t

2
fext (27)

according to Eq. (24).
The resulting discrete Boltzmann equation then reads 225

gα(x, t+ ∆t) = gα(x− cα∆t, t)− ∆t

τg
(gα(x− cα∆t, t)− geqα (x− cα∆t, t))

+

(
1− ∆t

2τg

)
∆tFα(x− cα∆t, t) (28)

which can here be simplified to

gα(x, t+ ∆t) = gα(x− cα∆t, t)− ∆t

τg
gneqα (x− cα∆t, t)

+ ∆tFα(x− cα∆t, t) (29)

with τg = τ + ∆t/2 and gneqα defined by Eq. (26).
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4 The algorithm

The algorithm that is presented in the following applies to the classical stream-and-
collide formulation on an isothermal lattice, e.g. D2Q9, D3Q19, D3Q27. In this230

case, the time-step is given by

∆t =
∆x√
3c0

. (30)

In the adaptive time-stepping algorithm, the speed of sound is tailored in order to
maintain a constant target Mach number Mat so that

c∗0(t) =
umax(t)

Mat
(31)

with the maximum velocity umax(t) ≡ supx∈D ‖u(x, t)‖ in the simulation domain.
In unsteady simulations, this (artificial) numerical speed of sound is therefore a235

function of time. Nevertheless, at a particular instant, it is constant throughout the
fluid and proportional to umax. This should not be confused with the (real-world)
physical speed of sound cs(x, t) that may vary in time and space as a result of a
non-constant temperature (due to compressibility effects).

The time-step (after tailoring the speed of sound) is then maximal for each240

iteration according to

∆t∗(t) =
Mat ∆x√
3 umax(t)

. (32)

In other words, the time-step is dynamically adapted so that the maximal Mach
number of the flow reaches a desired target value. By considering the multiplicative
factor λ (cf. Eq. (14)), we therefore obtain that the time-step is modified inversely
as245

∆t∗ =
1

λ
∆t. (33)

t ∆t∗∆t

∆x

∆x cα

c∗α

1

2+3

4

c∗α

x

Figure 1: Sketch of the stream-and-collide algorithm with adaptive time-stepping. The
different stages of the algorithm are (1) streaming (prior rescaling), (2+3) rescaling and
collision – (4) streaming (after rescaling).

An illustration of the adaptive time-stepping algorithm is shown in Fig. 1. The
successive stages of the algorithm are:
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1. Standard streaming of the post-collision state ĝα with the original time-step
∆t

gα(x, t) = ĝα(x− cα∆t, t−∆t) (34)

2. Rescaling of the distribution functions as if they were streamed with velocity 250

c∗α (cf. the dashed arrow in Fig. 1) plus rescaling of the relaxation time

3. Collision of the rescaled distributions

ĝ∗α(x, t) = g∗α(x, t)− ∆t∗

τ∗g
g∗neqα (x, t) + ∆t∗F ∗α(x, t) (35)

4. Streaming of the distribution functions over the adapted time-step ∆t∗

g∗α(x + c∗α∆t∗, t+ ∆t∗) = ĝ∗α(x, t) (36)

This sequence can a priori be repeated at each or more iterations leading to an
optimized time step with respect to a target Mach number. 255

The remainder of this section will detail the algorithm. It should be noted
that the above algorithm uses quantities in dimensional units, whereas the stream-
and-collide algorithm is usually solved in non-dimensional lattice units for which
∆x̃ = ∆t̃ = 1. Somewhat against our intuition, the speed of sound in this framework
remains constant and equal to c̃0 = 1/

√
3. By simple reasoning it thus follows 260

that the fluid velocity ũ (entering in the definition of the equilibrium distribution)
requires rescaling to keep c̃0 ·Mat constant when the time-step is adapted. We recall
that Mat is the target Mach number that shall not be exceeded during a simulation.
In other words, the rescaled maximum fluid velocity ũ∗max (in lattice units) must
remain constant. 265

4.1 The rescaling

The rescaling of gα is achieved by separately adapting geqα , Fα and gneqα . In lattice
units the second-order equilibrium function of the lattice Boltzmann equation reads

geqα = ωαρ

(
1 + 3 (eα · ũ) +

9

2
(eα · ũ)

2 − 3

2
ũ2 +O(Ma3)

)
(37)

where ũ = u∆t/∆x and eα = c̃α represents the lattice link in the direction α.
Changing the time-step from ∆t to ∆t∗ thus changes the non-dimensional fluid 270

velocity. The rescaling of geqα is therefore achieved in three steps:

(i) The computation of the fluid velocity from Eq. (27)

ũ =
1

q−1∑
α=0

gα

(
q−1∑
α=0

gαeα +
f̃ext

2

)

(ii) The rescaling of the fluid velocity ũ∗ = ũ/λ with λ defined by c∗0 = λc0

(iii) The computation of the rescaled equilibrium function g∗ eqα (ρ∗, ũ∗). At this
point it is possible to consider either that the mass density is not affected, i.e. 275

ρ∗ = ρ, or that the mass density is modified according to Eq. (15) to preserve
the continuity of the pressure force (per unit mass).
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The contribution of an external force is taken into account similarly. In lattice
units, the forcing term expresses as

F̃α = ωα (3(eα − ũ) + 9(eα(eα · ũ))) · f̃ext (38)

In addition to updating the fluid velocity, the external force needs to be modified280

in the previous equation. This is done by considering

f̃∗ext = fext
(∆t∗)2

∆x
=

1

λ2
f̃ext. (39)

The rescaling of gneqα is not straightforward since its projection onto moment
space includes non-hydrodynamic moments, whose rescaling is not intuitive. A pos-
sible solution would be to reconstruct a regularized non-equilibrium distribution,
as suggested in [LC06; Lat07]. Rescaling by regularization relies on the continuity285

of
∑
α g

neq
α cαcα. Strictly speaking, this expression does not lead to any particular

properties at the macroscopic level; only the second-order moment of the genuine dis-
tributions fneqα yields the deviatoric stress (at second order in the Knudsen number).
In addition, regularization should be applied to each (local) time step in order not
to mix regularized and non-regularized distributions, which can induce a significant290

computational overload, in particular when it comes to composite multi-resolution
lattices [TRL14].

Here an alternative to the rescaling by regularization is favored by exploiting the
continuity of the rate-of-strain tensor. This assumption is again motivated by the
preservation of the velocity field and its spatial derivatives in Eq. (13).295

Before detailing this method, we first establish the rescaling of the non-dimensional
relaxation time τ̃g = τ/∆t + 1/2. Clearly one possibility would be to replace τ by
Eq. (9) and substitute for ∆t∗ and c∗0. However, in order to avoid the return to
dimensional space it may be preferable to compute τ̃∗g directly from τ̃g. Therefore,
considering that the viscosity must remain unaltered with300

ν =

(
τ̃g −

1

2

)
c0∆x√

3
, (40)

and changing the speed of sound from c0 to λc0 directly leads to

τ̃∗g =
1

λ

(
τ̃g −

1

2

)
+

1

2
. (41)

The rescaling of gneqα can now be processed as follows. A Chapman-Enskog analysis
establishes that

q−1∑
α=0

gneqα cαcα = −2ρτgc
2
0S +O(Ma3) (42)

where S represents the rate-of-strain tensor [Del01; Krü+17]. The continuity of S
then gives305

q−1∑
α=0

gneqα cαcα

ρτgc20
=

q−1∑
α=0

g∗neqα c∗αc
∗
α

ρ∗τ∗g c
∗ 2
0

(43)

which is equivalent (in lattice units) to

q−1∑
α=0

gneqα eαeα

ρτ̃g∆t
=

q−1∑
α=0

g∗neqα eαeα

ρ∗τ̃∗g∆t∗
(44)
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and eventually yields

g∗neqα =
1

λ

ρ∗

ρ

τ̃∗g
τ̃g

gneqα (45)

by assuming that all the gneqα ’s are rescaled by a same factor. This assumption is
consistent with the idea that changing c0 expands or contracts the velocity space
isotropically. Therefore, there is a priori no reason to favor a particular direction. 310

Let us clarify that in the case of a continuous density field ρ∗ = ρ in the above
equation.

4.2 Summary of the algorithm

As seen previously, the implementation of adaptive time-stepping can be achieved in
several ways that differ by the physical arguments used. An important issue is the 315

entanglement of p and ρ via the speed of sound c0, which unavoidably introduces
a (small) discontinuity in either the mass or momentum transport equation. While
previous studies are based on the default setting, which ensures the continuity of ρ
but not of p, it is questionable whether this is always a good choice in particular when
it comes to numerical accuracy. The main objective of this study is to specifically 320

address this question . Attention has also been paid to verify that varying c0 does
not deteriorate the stability of the lb scheme itself. In the following, ats will refer
to adaptive time-stepping with the continuity of the density field, whereas “ats
with correction” will indicate the continuity of the pressure force by accounting for
an additional step (cf. Eq. (16)) in the algorithm. An overview of the algorithm 325

employed here is provided in Table 1.

Table 1: Stream-and-collide algorithm with adaptive time-stepping. The different oper-
ations are presented in lattice units (indicated by a tilde).

step (1) Update gα via streaming by using Eq. (34)

step (2) Compute ρ, f̃ext, ũ, and geqα to obtain gneqα by using Eq. (26)
step (3) Compute ũmax and λ = ũmax / c̃0Mat
step (4) Compute ρ∗ by using Eq. (16) for ats with correction

step (5) Compute ũ∗ = ũ/λ and f̃∗
ext = f̃ext/λ

2

step (6) Compute g∗ eqα and F̃ ∗
α by applying Eqs. (37) and (38) with the rescaled

variables
step (7) Compute τ̃∗g by using Eq. (41)

step (8) Compute g∗neqα using Eq. (45) together with gneqα from step (2)
step (9) Compute ĝ∗α by using Eq. (35)

5 Validation

Our first two test cases are chosen to highlight the various benefits of the ats
algorithm. Let us recall that the algorithm presented in this study relies on a fixed
Mach number that is defined prior to each simulation. This target Mach number is a 330

trade-off between performance gain and stability. The classical bgk scheme is said to
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remain stable for Mach numbers up to 0.4 [SC96]. Nevertheless, the time-step does
not necessarily have to be at the stability limit for this method to be highly efficient.
The strength of the algorithm is to adapt to the current maximum flow velocity. This
is of interest for simulations, where the maximum velocity is either unknown or335

varies significantly. Explicit examples are natural convection phenomena in thermal
flows and oscillating flows, respectively. Therefore, we present a thermal plume
and a Womersley channel flow in two dimensions for both, the ats and the “ats
with correction” algorithm. The former test case shall provide the reader with an
intuitive understanding of this numerical technique, while the latter will examine340

in more detail the influence and the accuracy of the additional correction step for
different simulation setups. In the absence of an oscillating pressure gradient, the
Womersley channel flow becomes a Poiseuille channel flow, which constitutes the
third test case. Designed as a channel entrance flow with a uniform inlet velocity,
it features the standard boundary conditions used for many industrial applications345

and is worth being assessed in the context of an adaptive time-step. The correction
of the density is found essential in that situation.

5.1 Natural convection in thermal flow

Although an isothermal lattice Boltzmann model is used in this study, it is possible to
introduce a temperature-driven buoyancy force into the modelling via the Boussinesq350

hypothesis
fb(x, t) = ρ(x, t)gβ (T (x, t)− T0) (46)

where β is the coefficient of thermal expansion of the fluid, g is the gravitational
acceleration and T0 is the temperature at rest. We use a simple two-dimensional
Gaussian distribution to introduce a variation in the temperature field, i.e.

T (x, t0) = T0 + exp

(
−x

2 + y2

R2

)
∆T (47)

where R is the radius of the hot spot and ∆T is the maximum temperature difference355

with respect to the background temperature T0.
The interest of this test case lies in the time-dependent variation of the flow

velocity. Initialized in a fluid at rest, i.e. u(x, 0) = 0, the thermal plume will
accelerate until buoyancy and drag forces are balanced. The velocity field is taken
into account by the Boltzmann equation with the force fb, while the development360

of the temperature field is governed by a simple advection-diffusion equation

∂T

∂t
+ (u · ∇)T = κ∇2T (48)

where κ is the thermal diffusivity of the fluid (air). The above equation is discretized
using a finite-difference approach on the same spatio-temporal grid as the discrete
Boltzmann scheme. Commonly referred to as an hybrid lb method, it is here eas-
ily brought in line with the adaptive time-stepping algorithm. In non-dimensional365

velocity space, a discrete form of Eq. (48) writes as

T (x, t+ 1) = T (x, t)− (ũ · ∇h)T + κ̃∆hT, (49)

where ∇h and ∆h stand for finite-difference gradient and Laplacian operators.
Given that the lattice Boltzmann scheme already provides the rescaled bulk ve-
locity ũ∗, the only modification required is the rescaling of thermal diffusivity, i.e.
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Stream ĝα
truefalse

adapt time step

Compute λ

Compute ρ∗

Compute ρ, ũ(f̃ext)

g∗neqα

Compute geqα → gneqα

Compute ũmax

Compute ũ∗, f̃∗ext

Collide g∗α

Compute τ̃∗

update T

update T

Compute κ̃∗

LBMFD

f̃ext = f̃b
Eq. (46)

g∗ eqα , F ∗α

Figure 2: Diagram of the adaptive time-stepping (ats) algorithm in lattice units. Blue
boxes coincide with the original algorithm found in [Thü+06] that is extended here by
accounting for an external force. White boxes indicate the extension to thermal dynam-
ics using finite differences to solve a advection-diffusion equation for the temperature.
Finally, the red box indicates the operation required on the density field (to ensure the
continuity of the pressure force) that leads to the “ats with correction” algorithm.
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κ̃∗ = ν∆t∗/Pr∆x2 with the Prandtl number Pr = ν/κ. The complete algorithm is370

illustrated in Fig. 2.
The hot spot (or plume) is initialized in the center of a (nx × ny) = (250× 500)

periodic domain. The spatial resolution is ∆x = 0.4 m and R = 50∆x. The initial
speed of sound is 343.2 ms−1 and the target Mach number was fixed at Mat = 0.15.
This target Mach number was reached gradually in order to avoid abrupt changes375

in the speed of sound at the beginning of the simulation. Specifically, we have used
a caped decrease of c0 according to

c∗0 = max

(
umax

Mat
, c0.90

)
. (50)

At first, the results of the two adaptive time-stepping algorithms are compared
to a reference simulation with a constant time-step and for an initial temperature
difference of ∆T = 10 K at a reference temperature of T0 = 293.15 K. The time-step380

is reevaluated every 10 iterations. Due to the variable time-step, the simulations
are out of sync with each other. At 45.2 seconds, the simulation times match by
four decimals corresponding to 3690 and 67310 iterations for the adaptive and con-
stant time-stepping algorithms, respectively. The corresponding temperature fields
are shown in Fig. 3. Qualitatively, the solutions agree with each other. The plume385

has reached the same elevation in the three simulations despite the (very) different
time-steps. The contour lines of the temperature field indicate that the deforma-
tion of the rising plume is suitably captured as well. Let us mention that some
unavoidable slight differences stem from the artificial compressibility of the acceler-
ated simulations. However, these differences remain here very small at Mat = 0.15.390

The velocity norms are compared in Fig 4. The maximum velocity is slightly higher
in case of ats, whereas the results from ats with correction better agree with the
reference (as evidenced later). Since the plume has covered the same distance in the
three cases, it can only follow that the velocity field oscillate around the reference.

The evolution of the parameters related to the time-stepping is shown in Fig. 5.395

In the simulations with adaptive time-stepping, the target Mach number is reached
after a transient of only about 100 iterations (Fig. 5a), during which the artificial
speed of sound declines gradually according to the ramp defined in Eq. (50). After
this transient, the speed of sound starts being controlled by umax(t) and increases
progressively as the plume rises (Fig. 5b). As a corollary, the time-step adapts400

itself during the transient to reach the target Mach number, then decreases to keep
the Mach number constant as the flow develops (Fig. 5c). On the contrary, in the
simulation with a constant time-step, the Mach number remains small reaching a
maximum value of Ma = 0.013 at the end of the run. In Fig. 5c, the difference
between the adapted and reference time-steps directly illustrate the significant gain405

obtained on the execution time for a given physical duration. Finally, let us notice
that the ats algorithm gives rise to some oscillatory behavior towards the end of the
runs, particularly visible in the evolution of the time step. This behavior is much
less pronounced when using ats with correction.

Due to the doubly periodic boundary conditions the thermal plume test case is410

also well suited to assess the mass conservation. By defining the relative mass error
as

1
nx×ny

∑
xi,yj

ρ(xi, yj , t)

ρref
− 1
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(c) ats with correction

Figure 3: Natural convection of a Gaussian spot of temperature elevation with ∆T =
10 K after 45.3 s. L = 100 m and ∆x = 0.4 m. Left : temperature field after 67310
iterations by using a constant time-step of ∆t = 6.729 × 10−4 s. Center : after 3690
iterations by using ats. Right : after 3690 iterations by using ats with correction. The
target Mach number is Mat = 0.15.
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(c) ats with correction

Figure 4: The field of velocity magnitude ||u|| =
√
u2x + u2y in ms−1 is displayed at the

same instant as in Fig. 3

16



it can be seen in Fig. 5d that the mass remains exactly conserved (as expected) in
simulations with a constant time-step or ats. In the case of “ats with correction”,
the global mass error varies between −0.008% and 0.017% and remains negligible. 415

Let us note that the the mass variation shows a steeper increase and decline than
the time step, which reflects the fact that typically ρ′∗/ρ′ ' (∆t∗/∆t)

2
according to

Appendix A.

(a) (b)

(c) (d)

Figure 5: Evolution of the parameters related to the time-stepping during the rise of the
thermal plume over a duration (physical time) of 45.3 s. ( ): constant time-step;
( ): ats; ( ): ats with correction. Let us notice that the number of iterations
is presented on a logarithmic scale.

The robustness of ats is examined in a second experiment by varying the initial
temperature difference ∆T between the thermal plume and the surrounding fluid. 420

In addition to ∆T = 10 K, ∆T = 1 K and ∆T = 100 K are also considered. Each
simulation was run for 3690 iterations as previously. The results are expected to
be very similar with respect to the number of iterations. Qualitatively, a lower
temperature difference leads to a slower rise of the plume, which is compensated
for by a larger time-step. Conversely, a stronger difference has the opposite effect. 425

More quantitatively, the dynamics results from the balance between the buoyancy
and the drag, which justifies that T − T0 varies typically as u. Therefore, the time-
step adapts itself inversely to T − T0, and the displacement of the plume remains
(almost) constant with respect to the number of iterations. This behavior is correctly
observed in Fig. 6, where the final temperature fields are displayed. 430

The adaptation of the speed of sound and time-step remain consistent for the
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(c) ∆T = 100 K

Figure 6: Natural convection of three Gaussian hot spots using ats with initial tem-
perature differences ∆T = 0 K, 10 K and 100 K, after 3690 iterations. Iso-countours
correspond for each figure to T0 + j∆T with j = 0.2, 0.4, 0.6, 0.8 and 1.
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(a) (b)

(c) (d)

Figure 7: Evolution of the parameters related to adaptive time-stepping for various
initial temperature differences of the thermal plume: ( ): ∆T = 1 K; ( ):
∆T = 10 K; ( ): ∆T = 100 K.
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different dynamics, as evidenced in Fig. 7. Finally, let us notice that the results
obtained by ats (without correction) contain once again a wavy perturbation, which
is particularly pronounced in case of a high temperature difference. The relative
mass error behaves differently at the beginning of the simulations but converges to435

a very small value (close to −0.002%) in all three scenarios.

5.2 Womersley flow

The Womersley flow is a pulsating flow in a 2D channel. In contrast to a Poiseuille
flow, the pressure gradient oscillates according to

∂P

∂x
= A cos(ωt) (51)

where A is the amplitude and ω the pulsation. The latter is related to the pulsating440

period T as

ω = 2π f =
2π

T
. (52)

This problem has an exact solution in the laminar regime [IGC13] as the flow stays
parallel to the walls and only depends on time and on the wall normal coordinate.
Precisely,

ux(y, t) = <

{
ı
A

ρω

(
1−

cos(Λ ( 2y
Ly
− 1))

cos(Λ)

)
eı ω t

}
(53)

uy = 0

where Ly is the channel height and Λ is related to the so-called Womersley number445

α with

Λ2 = −ı α2 and α2 =
L2
y ω

4 ν
.

Similar to the Reynolds number, α relates inertial to viscous forces. Velocity profiles
for different Womersley numbers α at constant amplitude A and pulsation ω are
shown in Fig. 8. The velocity is normalized with respect to the maximum velocity
U0 achieved in a Poiseuille flow, i.e. for ω = 0. For low values of α, the velocity450

profiles remain parabolic. The maximum velocity of the Womersley flow is achieved
at the center-line of the channel and is of the same order of magnitude as U0. With
increasing α, the reluctance of the fluid to change direction increases so that it lags
behind the pressure gradient. As a result the maximum velocity decreases and its
occurrence moves towards the walls of the channel.455

This multi-parametric problem offers many different possibilities to be imple-
mented. In contrast to the previous example, there exists a maximum velocity for
each configuration, which can be obtained from the analytical solution of the flow.
For the sake of simplicity, we shall restrict our consideration to Womersley numbers
that yield an overall maximum flow velocity located at the center-line of the channel,460

i.e. Umax = max{ux(Ly/2, t) : 0 ≤ t < T}. At this point, it is important to distin-
guish between the overall maximum velocity Umax that is achieved during a period
T , and the current maximum velocity umax(t) = max{ux(y, t) : 0 ≤ y ≤ Ly}.
According to Fig. 8, umax(t) can become zero at small α, which would result here in
an infinitely large time-step. We assume that the Womersley number is sufficiently465

high to avoid this pitfall.
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Figure 8: Temporal evolution of the pressure gradient (top) and the corresponding
velocity profile ux(y, t)/U0 for different values of the Womersley number α.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.0

1.5

2.0

2.5

3.0

A

1e 4
Ma = 0.1
Ma = 0.15
Ma = 0.2

= 2.59

Figure 9: The non-dimensional amplitude Ã as a function of the Womersley number α
for different Mach numbers.
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Our ats algorithms require a target Mach number Mat as an input parameter.
In that case, c̃0 and consequently ũ∗max (after rescaling) remain constant. In a non-
dimensional framework, the scaling factor λ can therefore directly be obtained as
λ = ũmax/Ũmax so that ũ∗max = ũmax/λ = Ũmax.470

In order to achieve three target Mach numbers Mat = 0.1, 0.15 and 0.2,
the remaining parameters are selected such that Ũmax = 0.1c̃0, 0.15c̃0 and 0.2c̃0,
respectively. In accordance with [Nas+14], Re = 100 and T̃ = 5000 to mimic real life
flow phenomena that can be encountered in the smaller arteries of the human body.
Next, we determine Ã and α. According to Eq. (53), both parameters influence the475

velocity field and thus Ũmax. In the (Ã – α) space, the isolines corresponding the
three target Mach numbers (with ρ = 1 and L̃y = 48) are plotted in Fig. 9. In
the light of our preceding considerations, we picked numerically the matching pairs
for α = 2.59 with an error tolerance of 0.02% on the Mach number. Finally, the
viscosity is given by480

ν =
ωL2

y

4α2
. (54)

In the case of the Womersley flow, the pressure gradient can either be established
by an external body force, i.e.

fext(t) = −A cos(ωt)ex (55)

or by setting the respective inlet and outlet conditions with, by definition,

pin(t)− pout(t)
Lx

= c20
ρin(t)− ρout(t)

Lx
= −A cos(ωt). (56)

In the later case, by keeping the averaged density equal to the reference density, i.e.

ρin(t) + ρout(t)

2
= ρref

the inlet and outlet boundary conditions for the mass density eventually write485

ρin(t) = ρref −
ALx

2c20(t)
cos(ωt) and ρout(t) = ρref +

ALx
2c20(t)

cos(ωt). (57)

For the sake of simplicity, these two strategies will be referred to as “body-
force” and “inlet/outlet” from here onward. While the former applies directly a
pressure gradient to every node of the fluid, the latter enforces the density at the
inlet and outlet and induces the pressure gradient through the momentum equation.
Therefore, it is expected that the correction of the pressure will have an impact on490

the results obtained by the inlet/outlet strategy. The simulation parameters are
summarized in Table 2.

The domain size of the simulations is (nx×ny) = (24×48) and the total number of

iterations of each simulation is 5T̃ . The initial state is set to equilibrium with a zero
velocity field and a reference density of unity. The same values are used to impose495

non-slip boundary conditions for the top and bottom of the domain [ZH97]. The
initial speed of sound in all simulations is Umax/Mat. The adaptive time-stepping
strategy is activated at t̃ = t/T = 0.75 (after a brief transient to allow the oscillating
flow to stabilize) and applied at every iteration.

Fig. 10 compares the evolution of the speed of sound and the maximum Mach500

number, as well as the flow velocity recorded at the center point (Lx/2, Ly/2) of the
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Figure 10: Temporal evolution of non-dimensional parameters related to to the adaptive
time-stepping for the Womersley flow. The target Mach number is Mat = 0.15. Recall
that Umax is the (constant) overall maximum velocity and ux(t) refers to the probed
velocity at the center of the oscillating flow. The Mach number is Ma = umax(t)/c∗0. Left
column: body-force stirring; Right column: inlet/outlet density conditions. ( ):
constant time-step; ( ): ats; ( ): ats with correction.
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Ã α Re Mat T̃ = 2π/ω̃ T̃sound = L̃x/c̃0
6.4× 10−5 2.59 100 0.1 5000 26

9.6× 10−5 2.59 100 0.15 5000 26

1.28× 10−4 2.59 100 0.2 5000 26

Table 2: Parameters and characteristics of the simulations (in lattice units). T̃ is the
period of oscillation of the pressure gradient. For comparison, T̃sound is the time required
by a local perturbation of density to propagate through the channel. The condition
T̃sound � T̃ ensures that the pressure field has time to equilibrate for each value of the
oscillating forcing.

domain. Only results for the intermediate Mach number (Mat = 0.15) are presented
for both the body-force and the inlet/outlet strategies. The results obtained for the
two other target Mach numbers were very comparable.

In the non-adaptive case, the speed of sound remains constant at c0 = Umax/Mat.505

When adaptive time-stepping is used, c0 oscillates between Umax/Mat and a mini-
mum value, which is identical (within 5%) for the two forcing strategies (see Figs. 10a
and 10b). As a corollary, the Mach number remains constant when adaptive time-
stepping is used, whereas it oscillates when the time-step is kept constant (see
Figs. 10c and 10d). The lowest value that umax(t) attains during a cycle is ap-510

proximately Umax/10. Finally, the non-dimensional velocity ũx at the center point
of the domain normalized by Ũmax is shown in Figs. 10e and 10f. In the absence of
adaptive time-stepping, ũx closely follows a sinusoidal curve. Once the Mach number
is locked to optimize the time-step, ũx/Ũmax behaves as a periodic step function.
Therefore, the maximum gain attainable for the Womersley flow can be approxi-515

mated by the ratio between the area of a step function and the half-period of a
sine function, i.e. π/2 ≈ 1.57. With the same number of iterations, the number of
periods simulated with the proposed ats algorithms is increased by a factor of 1.53,
which is very close to the optimal gain.

So far, the forcing strategy (body-force or inlet/outlet conditions) and the cor-520

rection of the pressure field have not revealed any notable differences in the results.
In order to gain quantitative insights about the accuracy of our ats algorithms, we
measured the (normalized) L2-norm of the velocity error defined as

εu(t) =
‖u− ū‖L2

‖ū‖L2

=

√√√√√√√√√√

ny∑
yj=1

(ux(Lx/2, yj , t)− ūx(yj , t))
2

ny∑
yj=1

ūx(yj , t)
2

(58)

where ūx is the analytical solution given by Eq. (53).
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Figure 11: Temporal evolution of the L2-norm of the velocity error for standard and
adaptive time-stepping at different Mach numbers. Top row: Mat = 0.1; Middle row:
Mat = 0.15; Bottom row: Mat = 0.2. Left column: body-force stirring; Right column:
inlet/outlet density conditions. ( ): constant time-step; ( ): ats; ( ):
ats with correction.

Fig. 11 shows the error with respect to t/T for the different Mach numbers and 525

forcing strategies. In all cases, a transient error decays rapidly over the first two cy-
cles. When the flow is controlled via a (uniform) body force (see Figs. 11a, 11c and
11e), the error of the adaptive time-stepping does not depend on the Mach number
and the correction of the pressure has no influence. In that case, the pressure gra-
dient is mainly monitored by the body force and not by the density variations. The 530

error is roughly one order of magnitude higher than the one achieved with a constant
time-step, and peaks when the speed of sound is at a local minimum, i.e. during the
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flow reversal. The situation is different when considering an inlet/outlet density (or
pressure) condition. In that case, the error increases with the Mach number, which
is understandable since the flow equilibrates through pressure waves. Importantly535

though, adaptive time-stepping is significantly improved when a correction of the
pressure field is applied. As a result, the error remains of the same order as the
error encountered in a simulation with a constant time-step, while being about 1.5
times faster. Let us notice that during the flow reversal (when c0 reaches a mini-
mum), the relative error spikes as the denominator in the error estimate (Eq. (58))540

approaches zero.
In order to further assess the accuracy of our two ats algorithms the simulations

of the Womersley flow were repeated on a coarser (12 × 24) and a finer (48 × 96)
grid with a period T̃ equal to 2500 and 10000 time-steps, respectively. The error is
measured by integrating the L2-norm of the difference with the analytical solution545

over five periods, starting at t = 4T to exclude the transient phase. First, the target
Mach number was kept at Mat = 0.15 to remain consistent with the previous results.
The convergence rates (as a function of the grid resolution) are shown in Fig. 12.
In the case of a body force, the correction of the ats algorithm has no influence
on the error. The convergence rate compares well with that of the constant-time-550

step simulation, which is, however, lower than the second-order usually attributed
to lb simulations. When the pulsatile flow is established through the inlet/outlet
boundary conditions, the error at a target Mach number of 0.15 does not dependent
on the grid resolution. This behavior arises from the fact that the analytical solution
considers an incompressible fluid, while in our lb simulations the information travels555

from the boundaries through the domain at a finite speed. This latency establishes
a phase shift that dominates the overall error. After each flow reversal the numerical
solution overtakes the analytical one. To better estimate the convergence rate, and
get ride of compressibility effects, the target Mach number was therefore reduced by
a factor of ten. The results are shown in Figs. 12d and 12d. In the case of a body560

force this velocity reduction led to a shift of the error curves by the same factor,
the convergence rate remaining unchanged. When inlet/outlet density conditions
are used the situation is different. A second-order convergence is recovered in the
case of a constant time-step. Importantly, when “ats with correction” is applied,
we also observe a convergence even though at a slightly smaller rate, whereas ats565

without correction still contains an error that is independent of the grid resolution.
In summary, these results show that the correction applied to the density improve
the accuracy in all situations, and significantly increase the convergence rate of the
adaptive time-stepping algorithm in the case of inlet/outlet boundary conditions.
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Figure 12: Convergence rate of the ats algorithms with body-force (left column) and
input/output boundary condition (right column). The rows contain data from different
Mach numbers. Top row : Mat = 0.15, bottom row : Mat = 0.015.

5.3 Channel entrance flow 570

The previous observations led us to examine a final numerical experiment that specif-
ically addresses the issue of the pressure correction. By using the same channel
height (Ly) and Reynolds number as in the previous setup, the length of the chan-
nel was increased by a factor 20 to simulate a channel entrance flow [Dur+05]. This
flow scenario is achieved with a Dirichlet boundary condition for the velocity and
the pressure at the inlet and the outlet, respectively. Measurements are performed
at the position x = 0.8Lx where the flow reaches a Poiseuille parabolic velocity
profile. In order to improve the convergence and also to make the use of adaptive
time-stepping relevant, the following ramp (in time) was considered for the velocity
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at the inlet

Uin(t) = sin

(
π

2

t

Tramp

)
Ubulk for t ≤ Tramp

Uin(t) = Ubulk for t > Tramp

(59)

with Ubulk = 0.75U0 and T̃ramp = 10000 being a fifth of the total number of itera-

tions T̃tot. Let us mention that Ubulk was fixed such that the maximum velocity at
x = 0.8Lx is Umax = U0 in the asymptotic steady regime, i.e. when t� Tramp. Ini-
tially, the velocity in the channel is zero and the pressure is uniform at an arbitrary
reference value. This reference pressure is kept as the outlet boundary condition575

during the simulation. Finally, to avoid an impractically small speed of sound in the
ats algorithms, the time-step was locked until the Mach number at the inlet was
greater than 0.03. Fig. 13 summarizes the time evolution of the Mach number, the
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Figure 13: Time evolution of the Mach number (a), normalized speed of sound (b) and
L2-norm of the velocity error (c) for standard and adaptive time-stepping in a channel
entrance flow simulation. Signals are recorded at x = 0.8Lx. ( ): constant time-step;
( ): ats; ( ): ats with correction.

normalized speed of sound and the L2-norm of the velocity error defined by Eq. (58)
with the Poiseuille profile ū(y) = 4U0(Ly − y)y/L2

y. At the beginning, the Mach580

number (at x = 0.8Lx) follows the Mach number ramp imposed at the inlet in the
three simulations. When adaptive time-stepping is enabled, the Mach number jumps
by construction to the target value Mat = 0.15. Conjointly, the parabolic Poiseuille
profile begins to develop so that the Mach number in the standard algorithm starts
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to deviate from the Mach number at the inlet (Ubulk/c0) to converge to the asymp- 585

totic value Mat = U0/c0. The speed of sound remains constant in the standard
approach, while it drops instantly once it is unlocked in the ats simulations. When
the pressure correction is used, the speed of sound consistently recovers its initial
value rapidly. On the contrary, without the correction of the pressure, the speed of
sound overshoots and enters an oscillatory pattern that slowly stabilizes but remains 590

present throughout the remainder of the simulation. Such important artefact does
not occur when the pressure correction is applied. Comparing the error, it becomes
apparent that the “ats with correction” simulation remains consistent with the con-
stant time-step simulation, while the ats simulation without the pressure correction
does not converge at all. The normalized velocity profiles at x = 0.8Lx at the end of
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Figure 14: Normalized velocity profiles across the channel at x = 0.8Lx obtained with
constant and adaptive time-stepping. The grey area indicates the velocity interval, over
which the solution of the ats algorithm oscillates during the last period, i.e. between
t/Ttot = 1.013 and t/Ttot = 1.03.

595

the simulation are displayed in Fig. 14). We observe that the results obtained with
the standard and “ats with correction” algorithms match the analytical Poiseuille
profile. On the other hand, without the correction of the pressure, the discrepancy
is much higher.

6 Conclusion 600

This study presents a physically consistent framework for adaptive time-stepping
in the lb method, which constitutes an interesting technique to speed-up nearly-
incompressible unsteady simulations. Despite being employed in a handful of studies,
it is somewhat surprising that this technique has not been used to a wider extent
by the lb community. 605

A critical aspect of adaptive time-stepping is the inevitable introduction of an
error in either the mass or the momentum conservation due to an indirect entangle-
ment of density and pressure variations through the time-step. A natural reluctance
to violate the conservation of mass is probably one of the reasons why in previous
studies the continuity of the mass density was preferred, and the error always passed 610

into the momentum equation. Here, we investigate the opposite by preserving the
pressure force (per unit mass) −c20∇(log ρ) while sacrificing the continuity of the
density field. Interestingly, it was shown that even in the case of natural convection,
where the two driving forces are buoyancy and drag, the results are better when
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the error is attributed to the mass density. In channel flows with classical velocity615

inlet and pressure outlet conditions, the correction of the pressure is essential for
convergence. Otherwise, some oscillatory artefacts appear in the velocity field that
greatly deteriorate the accuracy of the solution.

A physical explanation for these observations is not straightforward. Neverthe-
less, an indication may be given by comparing the errors made either on the density620

or the pressure force when varying the time step. Let us first introduce the small
parameter

ε =
∆t∗ −∆t

∆t
(60)

quantifying the (relative) change of the time-step. The continuity of the density
field (ρ∗ = ρ) yields a relative error on the pressure force that varies as(

p∗ − p
p

)
∼
(
c∗0

2 − c20
c20

)
∼ ε. (61)

On the other hand, the continuity of the pressure force (per unit mass), which is625

equivalent to Eq. (16), gives at leading order a relative error on the density field(
ρ∗ − ρ
ρ

)
∼ ε ρ− ρref

ρ
∼ ε Ma2, (62)

where the approximation ρ′∗ ≈ (1/λ2)ρ′ from appendix A is employed. Let us
note that this qualitative estimation is consistent with the source term arising in
Eq. (17) by further considering that (λ2 − 1)/λ2 ∼ ε and (∇ · u) ∼ Ma2 in the
weakly compressible regime. For a small Mach number, this relative error is therefore630

smaller than the one obtained by keeping the density continuous. Also, if ε is smaller
or equivalent to Ma (which is a valid assumption) the error introduced by “ats with
correction” varies typically as O(Ma3). This provides a plausible justification for
the advantage of considering the continuity of the pressure force (per unit mass) in
the adaptive time-stepping.635

Using the here presented algorithm for high-Reynolds-number flows will certainly
exceed the stability limit of the BGK collision model. Remedy may, for example, be
provided by using advanced regularized collision models such as those obtained by
recursive regularization [Mal15] or hybrid recursive regularization [JMS19]. These
techniques rely on the reconstruction of first-order (in a multiple time-scale expan-640

sion) non-equilibrium distributions g
(1)
α by using their statistical moments. These

later are not obtained by a summation over the velocity space but rather from a

recursive relation between moments of increasing order, i.e. a
(n)
1 = a

(n−1)
1 u for

n ≥ 3. Adaptive time-stepping can be brought easily in line with these advanced

models. Indeed, the second-order moment of g∗neqα (cf. Eq. (45)) yields a
∗ (2)
1 while645

ũ∗ = ũ/λ. Higher moments are straightforwardly rescaled through the recursive
relation.

To our best knowledge, this is the first study that proposes a correction of the
pressure by accepting small compressibility errors in the solution. We believe that
adaptive time-stepping with correction constitutes a valuable proposal to reduce the650

execution time of nearly-incompressible flows without notably altering the accuracy
of the simulation. No prior knowledge about the maximum velocity is required and
the speed up can be considerable by optimally adapting on the flow dynamics. This
is particularly true for biological flows, transient thermal flows and oscillating flows
in general, where the maximum velocity undergoes large variations.655
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A Continuity of the pressure force

The continuity of the pressure force per unit mass in the momentum equation ex-
presses as

− c20
ρ
∇ρ′ = − (λc0)2

ρ∗
∇ρ′∗ (63)

with ρ = ρref + ρ′ and ρ∗ = ρref + ρ′
∗

by definition. This equation may be rewritten 755

as
1

ρ∗
∇ρ∗ =

1

λ2
1

ρ
∇ρ (64)

which yields the general solution

log(ρ∗) =
1

λ2
log(ρ) + C. (65)

If ρ′ = ρ′
∗

= 0 then ρ = ρ∗ = ρref . Therefore C = ln(ρref)− (1/λ2) log(ρref), which
eventually gives

ρ∗ = ρref

(
ρ

ρref

) 1
λ2

. (66)

If one assumes that the Mach number is very small, ρ′ and ρ′
∗ � ρref . Therefore, 760

ρ′
∗ ≈ (1/λ2)ρ′ as a first-order approximation , or equivalently

ρ′
∗

ρ′
≈
(

∆t∗

∆t

)2

. (67)
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