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Abstract

Owing to its efficiency and aptitude for a massive parallelization, the lattice
Boltzmann method generally outperforms conventional solvers in terms of execu- 15

tion time in weakly-compressible flows. However, in the incompressible limit, the
authorized time-step (being inversely proportional to the speed of sound) becomes
prohibitively small so that the performance advantage over continuum-based solvers
vanishes. A remedy to optimize the time-step is provided by tailoring an artificial
speed of sound, which can be fixed or variable throughout the simulation, the latter 20

case referring to an adaptive time-stepping. While achieving considerable speed-ups
in certain flow configurations, adaptive time-stepping comes with the flaw that the
continuities of mass density and pressure cannot be fulfilled conjointly when the
speed of sound is varied. Therefore, a trade-of is needed. By leaving the mass den-
sity unchanged, the conservation of mass is preserved but the pressure presents a 25

discontinuity in the momentum equation. In contrast, a manipulation of the mass
density allows us to ensure the continuity of the pressure term in the momentum
equation (per unit mass) but the conservation of mass is locally sacrificed. This algo-
rithm requires an additional scaling operation and will therefore be called “adaptive
time-stepping with correction” in the article. Interestingly, we found that this second 30

trade-off is generally preferable.
In the case of a thermal plume, whose movement is governed by the balance

of buoyancy and drag forces, the correction of the mass density (to ensure the
continuity of the pressure force) has a beneficial impact on the resolved velocity
field. In a pulsatile channel flow (Womersley flow) driven by an external body 35

force, no difference was observed between the two versions of adaptive time-stepping.
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On the other hand, if the pulsatile flow is established by inlet and outlet pressure
conditions, the results obtained with a continuous pressure force agree much better
with the analytical solution. Finally, by using adaptive time-stepping in a channel
entrance flow, it was shown that the correction is compulsory for the Poiseuille40

flow to develop. The expected compressibility error due to the discontinuity in the
mass density remains small to negligible, and the convergence rate is not affected
compared to a simulation with a constant time step.

Keywords— Lattice Boltzmann method, adaptive time-stepping, time-step op-
timization45

1 Introduction

The lattice Boltzmann (lb) method has gained prominence as a statistical approach
used to simulate continuum fluid dynamics [Suc15; Krü+17]. Nonetheless, to make
it a competitive alternative to conventional solvers, a series of simplifications are
necessary that eventually narrow its scope of application. Concretely, the macro-50

scopic equivalent to the standard stream-and-collide lb algorithm reduces to an
isothermal, weakly compressible Navier-Stokes model [Del01].

Due to the low symmetry of standard lattices, the lb method can only be used
with confidence in the range of Mach number

Ma =
|u|max

cs
≤ 0.3 (1)

where compressible effects may be considered weak to negligible; |u|max denotes the55

maximum flow velocity and cs is the speed of sound in the fluid. The restriction to
isothermal fluids is another consequence of the low symmetry of the lattice, which
fails to properly express the conservation of internal energy with a varying tempera-
ture [Del01]. Furthermore, the mere philosophy of the lb method conflicts with the
concept of an incompressible fluid, devised to omit the computation of compressible60

effects provided they are negligible. Based on the idea that a gas is composed of
particles that are taken into account as local phase densities, incompressibility would
imply that these particles travel at an infinite speed, which - even as a mathematical
concept - is difficult to reconcile.

A variety of techniques exist to lift the restrictions to low Mach numbers and65

isothermal fluids in the lb approach [Qia93; CK06; FST15; Li+07]. On the contrary,
improvements to address incompressible fluids are rather limited. Incompressible
lb models have been postulated in the past but they only decrease the order of
compressibility errors in steady flows [HL97; Zou+95; Del03].

In continuum fluid mechanics, the principal motivation behind an incompressible70

description stems from the numerical benefit of an increased time-step. In general,
the maximum time-step is expressed as

∆tmax =
cfl ∆x

c
(2)

where the Courant-Friedrichs-Lewy (cfl) number may be viewed as the normal-
ized maximum velocity at which flow variations can be robustly propagated by the
numerical scheme [CFL28]. For compressible Navier-Stokes solvers, the reference75
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velocity c is the speed of sound relative to the maximum flow velocity, i.e.

c = cs + |u|max and ∆tmax =
cfl ∆x

cs(1 + Ma)
(3)

If one supposes a cfl number of unity and ∆x ≈ 10−3 m then ∆tmax for air at
standard conditions (cs ' 343 m/s) is approximately 3 10−6/(1 + Ma) s yielding
very small time-steps. The assumption of a (truly) incompressible fluid removes the
speed of sound from the reference velocity c. Therefore, the maximum time-step 80

becomes

∆tmax =
cfl ∆x

|u|max
(4)

so that the same cfl number yields considerably larger values at (very) small Mach
number. Typically,

∆tincomp.
max ' ∆tcomp.

max

Ma
. (5)

Conceptually, the sound speed is viewed as infinite in the incompressible model
implying that pressure and velocity fields adapt instantaneously. Mathematically, 85

an additional Poisson equation arises (by taking the divergence of the momentum
equation) to describe the evolution of pressure (and in turn to project velocity
in divergence-free/solenoidal space). One possibility, which is known to belong to
the class of simple algorithms, solves the Poisson equation while the pressure and
velocity fields are updated in a (semi-implicit) iterative process [PS72]. Another 90

possibility is the artificial compressibility method (acm) where a pressure term is
substituted into the continuity equation via an isothermal equation of state. This
circumvents the iterative stepwise update of the pressure and velocity fields, but
reintroduces an artificial speed of sound [Cho67]. In that situation, pseudo-waves
propagating with a finite speed are introduced to distribute the pressure. 95

In the lb method, the distribution functions travel from one lattice node to
another during exactly one time-step, i.e. with a characteristic speed c = ∆x/∆t.
On the other hand, the propagation of sound is related to the effective transport of
mass-density variations via the distribution functions. Therefore, the speed of sound
and the speed of microscopic propagation are physically related (but not strictly 100

equal because the distribution functions also undergo collisions). For a standard
isothermal lattice, this relation is

c = c0
√

3 (6)

where c0 =
√
p′/ρ′ represents an isothermal speed of sound linking the variations

of pressure and mass density. As evidenced by Eq. (6), the speed of sound cannot
be removed from the statistical approach. Thus, a commonly used technique to 105

accelerate a lb simulation is to artificially decrease c0, or equivalently, to increase
the compressibility of the fluid. This is the same technique used to maximize the
time-step in acm. In fact the two approaches share a striking similarity [HDC02;
Asi+12]. Obviously, the Mach number should not exceed a critical value (Ma = 0.3)
to remain in the domain of validity where compressibility effects are weak. 110

In practice, to determine an appropriate artificial speed of sound, the maximum
expected flow velocity is usually overestimated to allow for a certain room of ma-
neuver and to prevent the Mach number from exceeding its maximal allowed value
during the simulation. Moreover, in unsteady simulations the maximum velocity
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may vary by orders of magnitude. As a consequence the time-step of these simula-115

tions is often unnecessarily small. A solution is given by using an adaptive time-step,
which can be changed throughout a simulation as a function of the current max-
imum flow velocity. This technique allows for an optimization of the time-step,
however, it has a side effect on the distribution functions. Being a probability mea-
sure to find a particle with a microscopic velocity c, this probability changes when120

the speed of sound is modified according to Eq. (6). In literature, very few studies
exist that describe how to handle a change of the speed of sound. Under the name
of Mach number annealing, it is demonstrated in [AHS03] that the Mach number
may be changed artificially during a simulation while preserving the dynamics of
the flow characterized by a Reynolds number (Re) and a Strouhal number (St). Un-125

fortunately, the reader is deprived of the actual algorithm. This is not the case in
[Thü+06], where a comprehensive description of the adaptive time-stepping rescal-
ing operations is provided for the simulation of a gradient-driven free-surface flow.
In particular, the off-equilibrium part of the distribution functions is reconstructed
from the rescaled Maxwellian distribution in conjunction with a rescaling operation130

that is used in mesh refinement algorithms [FH98]. In [Lat07], the author introduces
adaptive time-stepping for the regularized lb method. Here the populations are re-
constructed entirely from the rescaled macroscopic variables. The readjustment of
distribution functions f(x, t, c) due to a change in c is common to the aforemen-
tioned studies, whether in dimensional or non-dimensional space. However, the135

continuity of the pressure is not preserved in these algorithms. In the present study
we will comment on this impact and propose a correction to optimize the use of
adaptive time-stepping for unsteady weakly compressible flows.

The paper is organized as follows. Sec. 2 contains a description of the physical
impact of a sudden change in the speed of sound on the fluid dynamics. Sec. 4140

presents the different algorithms that have been tested in this study. Sec. 5 shows
results of each algorithm for three different test cases, while concluding remarks are
given in Sec. 6.

2 Physical aspects of the adaptive time-stepping

The following considerations apply to an isothermal fluid satisfying the equation145

of state rT0 = c20 with r being the specific gas constant and c0 an isothermal
speed of sound. In this case, the governing gas kinetic equation under the Bhatna-
gar–Gross–Krook (bgk) approximation [BGK54] reads for the distribution function
f(x, c, t) as

∂f

∂t
+ (c ·∇) f +

(
fext
ρ
·∇c

)
f = −1

τ
(f − feq) (7)

where the equilibrium distribution feq is represented by the Maxwellian distribution150

feq(x, c, t) =
ρ(x, t)

(2πc20)3/2
exp

(
− (c− u(x, t))2

2c20

)
. (8)

fext represents a possible external force (per unit volume) acting on the fluid. Fur-
thermore, we make the assumption that a particular flow is uniquely defined by its
Reynolds number

Re =
UD

ν
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and, possibly, its Strouhal number

St =
fD

U

where U and D are respectively a reference velocity and length scale, f is a frequency
of oscillation of the flow and ν is the kinematic viscosity of the fluid. The invariance
of the Reynolds and Strouhal numbers implies that U and hence ν must remain
unaffected when the speed of sound is changed. In addition, the theory provides a
direct relation between the kinematic viscosity and the speed of sound, namely 155

ν = τc20 (9)

where τ is the relaxation time that directly intervenes in the bgk collision operator
of Eq. (7). It follows that changing the speed of sound requires modifying the
relaxation time inversely in order to keep the viscosity constant. The relaxation
towards equilibrium thus occurs at a larger time-scale when c0 is decreased. The
physical explanation is straightforward. Under the equation of state rT0 = c20, the 160

speed of sound is directly related to the temperature. As a consequence a sudden
drop in c0 means that molecular activity is abruptly lowered. With the particles
acting in a more sedate fashion, the collisional time-scale is increased.

On the other hand, the speed of sound expresses as

c20 =
p′

ρ′
(10)

which implies that adaptive time-stepping will lead to discontinuities in either the 165

pressure or the density field. In order to determine the physical consequences of
this relation, it is informative to consider (through a Chapman-Enskog multiple-
time-scale analysis) the macroscopic equivalent to Eq. (7) up to second-order in the
Knudsen and Mach numbers [Suc15; Krü+17], i.e.

∂ρ′

∂t
+∇ · (ρu) = 0

∂u

∂t
+ (u · ∇)u = −1

ρ
∇
(
ρ′c20

)
+ ν∆u + a

(11)

with ρ (x, t) = ρref + ρ′ (x, t) and a ≡ fext/ρ. By default, the above Navier-Stokes 170

model is continuous in ρ (x, t). As a consequence, the pressure force (per unit mass)
−∇

(
ρ′c20

)
/ρ in the momentum equation will be affected by an abrupt change of c0.

It is possible to derive a pressure-continuous Navier Stokes model, but in this case
the density field has to be adapted. More precisely, if the speed of sound is changed
from c0 to 175

c∗0 = λc0 (12)

the continuity of the pressure force per unit mass requires that

− c20
ρ
∇ρ′ = − (λc0)

2

ρ∗
∇ρ′∗ (13)

where – here and in the following – the superscript ∗ denotes a quantity rescaled in
response to a modified speed of sound. After some calculus (detailed in the Appendix
A) we obtain the correction for the density

ρ∗ = ρref

(
ρ

ρref

) 1
λ2

. (14)

5



In summary, we note the following changes as a consequence of an artificially180

modified speed of sound: i) Decreasing the speed of sound with the purpose to
increase the time-step also increases τ , which has a decelerating effect on the relax-
ation process. ii) By default, the Navier-Stokes model with adaptive time-stepping
is density continuous. Nevertheless, a modification of the density field (Eq. (14))
allows us to render it pressure continuous.185

3 The lattice Boltzmann model

Besides the physical consequences of adaptive time-stepping on the continuous Boltz-
mann equation, the discrete model requires some additional rescaling operations. For
the sake of clarity, we shall start from the dimensional discrete-velocity Boltzmann
equation with external force term190

∂fα
∂t

+ (cα · ∇) fα = −1

τ
(fα − feqα ) + Fα, (15)

where α = 1 · · · q − 1 spans a discrete set of microscopic velocities (for a DdQq
lattice) and

feqα = ωαρ

(
1 +

cα · u
c20

+
(cα · u)2

2c40
− u2

2c20
+O(Ma3)

)
(16)

is the discrete second-order (in Mach number) Maxwellian distribution that is as-
sociated with isothermal lattice molecules; ωα are lattice weights. According to
[GZS02] the additional term that arises from the external force (per unit volume)195

fext may be written as

Fα = ωα

(
cα − u

c20
+

cα (cα · u)

c40

)
· fext. (17)

The velocity moments are expressed as discrete sums such that

q−1∑
α=0

fα =

q−1∑
α=0

feqα = ρ

q−1∑
α=0

cαfα =

q−1∑
α=0

cαf
eq
α = ρu

q−1∑
α=0

cαcαfα = P +O(Ma3)

where P is the momentum flux tensor. Similarly, the zeroth and first-order velocity
moments of the forcing term are given by

q−1∑
α=0

Fα = 0

q−1∑
α=0

cαFα = fext. (18)

Concerning the discretization in space and time, the left-hand-side of Eq. (15) is200

viewed as a substantial derivative, which is integrated (for each α) over a time-step
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∆t along the characteristics dxα(t) = cαdt. The collision operator and the force
term are then approximated by a trapezoidal rule, which leads to a semi-implicit
scheme. In order to render this scheme explicit, the following change of variable is
applied 205

gα = fα +
∆t

2τ
(fα − feqα )− ∆t

2
Fα. (19)

It can be noted that Fα is at least first-order in the Chapman-Enskog multiple-
timescale expansion. Therefore, it could formally be added to the non-equilibrium
part of the distribution functions. Here, we refrain from this manipulation and treat
separately the three contributions to gα as

gα = geqα + gneqα − ∆t

2
Fα (20)

with geqα = feq and gneqα ≡ (1 + ∆t/2τ)(fα − feqα ). In consequence, the moments of 210

geqα and gneqα remain unaffected by the external force, whereas

q−1∑
α=0

gα = ρ and

q−1∑
α=0

cαgα = ρu− ∆t

2
fext (21)

according to Eq. (18).
The resulting discrete Boltzmann equation then reads

gα(x, t+ ∆t) = gα(x− cα∆t, t)− ∆t

τg
[gα(x− cα∆t, t)− geqα (x− cα∆t, t)]

+

(
1− ∆t

2τg

)
∆tFα(x− cα∆t, t)

which can here be simplified to

gα(x, t+ ∆t) = gα(x− cα∆t, t)− ∆t

τg
gneqα (x− cα∆t, t)

+ ∆tFα(x− cα∆t, t)

with τg = τ + ∆t/2 and gneqα defined by Eq. (20). 215

4 The algorithm

The algorithm that is presented in the following applies to the classical stream-and-
collide formulation on an isothermal lattice, e.g. D2Q9, D3Q19, D3Q27. In this
case, the time-step is given by

∆t =
∆x√
3c0

. (22)

In the adaptive time-stepping algorithm, the speed of sound is tailored in order to 220

maintain a constant target Mach number Mat so that

c∗0(t) =
umax(t)

Mat
(23)

with the maximum velocity umax(t) ≡ supx∈D ‖u(x, t)‖ in the simulation domain.
In unsteady simulations, this (artificial) numerical speed of sound is therefore a
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function of time. Nevertheless, at a particular instant, it is constant throughout the
fluid and proportional to umax. This should not be confused with the (real-world)225

physical speed of sound cs(x, t) that may vary in time and space as a result of a
non-constant temperature (due to compressibility effects).

The time-step (obtained after tailoring the speed of sound) is then maximal for
each iteration according to

∆t∗(t) =
Mat ∆x√
3 umax(t)

. (24)

In other words, the time-step is dynamically adapted so that the maximal Mach230

number of the flow reaches a desired target value. By considering the multiplicative
factor λ (cf. Eq. (12)), we therefore obtain that the time-step is modified inversely
as

∆t∗ =
1

λ
∆t. (25)

t ∆t∗∆t

∆x

∆x cα

c∗α

1

2+3

4

c∗α

x

Figure 1: Sketch of the stream-and-collide algorithm with adaptive time-stepping. The
different stages of the algorithm are (1) streaming (prior rescaling), (2+3) rescaling and
collision – (4) streaming (after rescaling).

An illustration of the adaptive time-stepping algorithm is shown in Fig. 1. The
successive stages of the algorithm are235

1. Standard streaming of the post-collision state ĝα with the original time-step
∆t

gα(x, t) = ĝα(x− cα∆t, t−∆t) (26)

2. Rescaling of the distribution functions as if they were streamed with velocity
c∗α (cf. the dashed arrow in Fig. 1) plus rescaling of the relaxation time

3. Collision of the rescaled distributions240

ĝ∗α(x, t) = g∗α(x, t)− ∆t∗

τ∗g
g∗neqα (x, t) + ∆t∗F ∗α(x, t) (27)

4. Streaming of the distribution functions over the adapted time-step ∆t∗

g∗α(x + c∗α∆t∗, t+ ∆t∗) = ĝ∗α(x, t). (28)
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This sequence can a priori be repeated at each or more iterations leading to an
optimized time step with respect to a target Mach number.

The remainder of this section will detail the algorithm. It should be noted that
the above algorithm uses quantities in dimensional units, whereas the stream-and- 245

collide algorithm is usually solved in non-dimensional lattice units with ∆x̃ = ∆t̃ =
1. Somewhat against our intuition, the speed of sound in this framework remains
constant and equal to c̃0 = 1/

√
3. By simple reasoning it thus follows that the

fluid velocity ũ (entering in the definition of the equilibrium distribution) requires
rescaling to keep c̃0 ·Mat constant when the time-step is adapted. We recall that Mat 250

is the target Mach number that shall not be exceeded during a simulation. In other
words, the maximum fluid velocity ũmax (in lattice units) must remain constant.

4.1 The rescaling

The rescaling of gα is achieved by separately adapting geqα , Fα and gneqα . In lattice
units the second-order equilibrium function of the lattice Boltzmann equation reads 255

geqα = ωαρ

(
1 + 3 (eα · ũ) +

9

2
(eα · ũ)

2 − 3

2
ũ2 +O(Ma3)

)
(29)

with ũ = u∆t/∆x and eα = c̃α represents the lattice link in the direction α.
Changing the time-step from ∆t to ∆t∗ thus changes the non-dimensional fluid
velocity. The rescaling of geqα is therefore achieved in three steps:

(i) The computation of the fluid velocity from Eq. (21)

ũ =
1

q−1∑
α=0

gα

(
q−1∑
α=0

gαeα +
f̃ext

2

)

(ii) The rescaling of the fluid velocity ũ∗ = ũ/λ with λ defined by c∗0 = λc0

(iii) The computation of the rescaled equilibrium function g∗ eqα (ρ∗, ũ∗). At this 260

point it is possible to consider either that the mass density is not affected, i.e.
ρ∗ = ρ, or that the mass density is modified according to Eq. (13) to preserve
the continuity of the pressure force (per unit mass).

The contribution of an external force is taken into account similarly. In lattice
units, the forcing term expresses as 265

F̃α = ωα

(
3

2
(eα − ũ) +

9

2
(eα(eα · ũ))

)
· f̃ext (30)

In addition to updating the fluid velocity, the external force needs to be modified
in the previous equation. This is done by considering

f̃∗ext = fext
(∆t∗)2

∆x
=

1

λ2
f̃ext.

The rescaling of gneqα is not straightforward since its projection onto moment
space includes non-hydrodynamic moments whose rescaling is not intuitive. A pos-
sible solution would be to reconstruct a regularized non-equilibrium distribution, as
suggested in [LC06; Lat07]. Here an alternative to the rescaling by regularization is

9



favored by exploiting the continuity of the viscous stress. Let us mention that the270

rescaling by regularization relies on the continuity of
∑
α g

neq
α cαcα, which does not

lead to any particular properties at the macroscopic level. In addition, regulariza-
tion should be applied to each (local) time step in order not to mix regularized and
non-regularized distributions. This can induce a significant computational overload
compared to direct rescaling, either when adaptive time-stepping is not applied at275

every iteration or when it comes to composite multi-resolution lattices [TRL14].
Before detailing this method, we first establish the rescaling of the non-dimensional

relaxation time τ̃g = τ/∆t + 1/2. Clearly one possibility would be to replace τ by
Eq. (9) and substitute for ∆t∗ and c∗0. However, in order to avoid the return to
dimensional space it may be preferable to compute τ̃∗g directly from τ̃g. Therefore,
considering that the viscosity must remain unaltered with

ν =

(
τ̃g −

1

2

)
c0∆x√

3
,

and changing the speed of sound from c0 to λc0 directly leads to

τ̃∗g =
1

λ

(
τ̃g −

1

2

)
+

1

2
. (31)

The rescaling of gneqα can now be processed as followed. A Chapman-Enskog analysis
establishes that

q−1∑
α=0

gneqα cαcα = −2ρrefτgc
2
0S +O(Ma3) (32)

where S represent the rate-of-strain tensor. Let us remark that the density is here280

approximated by its reference value ρref . Since ρ′/ρref = O(Ma2), the resulting
discrepancy is O(Ma3), which is of the same order as the lb method itself. The
continuity of ρrefνS then gives

q−1∑
α=0

gneqcαcα

τgc20
=

q−1∑
α=0

g∗neqc∗αc
∗
α

τ∗g c
∗ 2
0

(33)

which is equivalent to

3
q−1∑
α=0

gneqeαeα

τ̃g∆t
=

3
q−1∑
α=0

g∗neqeαeα

τ̃∗g∆t∗
(34)

and eventually yields285

g∗neqα =
1

λ

τ̃∗g
τ̃g

gneqα =
1

λ

(
1

λ

(
1− 1

2τ̃g

)
+

1

2τ̃g

)
gneqα (35)

by assuming that the gneqα ’s rescale isotropically.

4.2 Summary of the algorithm

As seen previously, the implementation of adaptive time-stepping can be achieved
in several ways that differ by the physical arguments used. An important issue is
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the entanglement of p and ρ via the speed of sound c0,which unavoidably introduces 290

a (small) discontinuity in either the mass or momentum transport equation. While
previous studies are based on the default setting, which ensures the continuity of
ρ but not of p, it is questionable whether this is always a good choice. The main
objective of this study is to specifically address this question in regards of numerical
accuracy and stability issues. In the following, ats will refer to adaptive time- 295

stepping with the continuity of the density field whereas “ats with correction” will
indicate the continuity of the pressure force by accounting for an additional step (cf.
Eq. (14)) in the algorithm. An overview of the algorithm employed here is provided
in Table 1.

Table 1: Stream-and-collide algorithm with adaptive time-stepping. The different oper-
ations are presented in lattice units (indicated by a tilde).

step (1) Update gα via streaming by using Eq. (26)

step (2) Compute ρ, f̃ext, ũ, and geqα to obtain gneqα by using Eq. (20)
step (3) Compute ũmax and λ = ũmax / c̃0Mat
step (4) Compute ρ∗ by using Eq. (14) for ats with correction

step (5) Compute ũ∗ and f̃∗
ext

step (6) Compute g∗ eqα and F̃ ∗
α by applying Eqs. (29) and (30) with the rescaled

variables
step (7) Compute τ̃∗g by using Eq. (31)

step (8) Compute g∗neqα using Eq. (35) together with gneqα from step (2)
step (9) Compute ĝ∗α by using Eq. (27)

5 Validation 300

Our first two test cases are chosen to highlight the various benefits of the ats
algorithm. Let us recall that the algorithm presented in this study relies on a fixed
Mach number that is defined prior to each simulation. This target Mach number
is a trade-off between performance gain and stability. The classical bgk scheme is
said to remain stable for Mach numbers up to 0.4 [SC96]. Nevertheless, the time- 305

step does not necessarily have to be at the stability limit for this method to be
highly efficient. The strength of the algorithm is to adapt to the current maximum
flow velocity. This is of interested for simulations where the maximum velocity
is either unknown or varies significantly. Explicit examples are natural convection
phenomena in thermal flows and oscillating flows, respectively. Therefore, we present 310

a thermal plume and a Womersley channel flow in two dimensions for both ats and
“ats with correction” algorithms. The former test case shall provide the reader
with an intuitive understanding of this numerical technique, while the latter will
examine in more detail the influence of the additional correction step for different
simulation setups. In the absence of an oscillating pressure gradient, the Womersley 315

channel flow becomes a Poiseuille channel flow, which constitutes the third test case.
Designed as a channel entrance flow with a uniform inlet velocity, it features the
standard boundary conditions used for many industrial applications and is worth
being assessed in the context of an adaptive time-step. The correction of the density
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is found essential in that situation.320

5.1 Natural convection in thermal flow

Although an isothermal lattice Boltzmann model is used in this study, it is possible to
introduce a temperature-driven buoyancy force into the modelling via the Boussinesq
hypothesis

fb(x, t) = ρ(x, t)gβ (T (x, t)− T0) (36)

where β is the coefficient of thermal expansion of the fluid, g is the gravitational
acceleration and T0 is the temperature at rest. We use a simple two-dimensional
Gaussian distribution to introduce a variation in the temperature field, i.e.

T (x, t0) = T0 + exp

(
−x

2 + y2

R2

)
∆T

where R is the radius of the hot spot and ∆T is the maximum temperature difference325

with respect to the background temperature T0.
The interest of this test case lies in the time-dependent variation of the flow

velocity. Initialized in a fluid at rest, i.e. u(x, 0) = 0, the thermal plume will
accelerate until buoyancy and drag forces are balanced. The velocity field is taken
into account by the Boltzmann equation with the force fb, while the development330

of the temperature field is governed by a simple advection-diffusion equation

∂T

∂t
+ (u · ∇)T = κ∇2T (37)

where κ is the thermal diffusivity of the fluid (air). The above equation is discretized
using a finite-difference approach on the same spatio-temporal grid as the discrete
Boltzmann scheme. Commonly referred to as an hybrid lb method, it is here eas-
ily brought in line with the adaptive time-stepping algorithm. In non-dimensional
velocity space, a discrete form of Eq. (37) writes as

T (x, t+ 1) = T (x, t)− (ũ · ∇h)T + κ̃∆hT,

where∇h and ∆h stand for finite-difference gradient and Laplacian operators. Given
that the lattice Boltzmann scheme already provides the rescaled bulk velocity ũ∗,
the only modification required is the rescaling of thermal diffusivity, i.e. κ̃∗ =
ν∆tn/Pr∆x

2 with the Prandtl number Pr = ν/κ. The complete algorithm is335

illustrated in Fig. 2.
The hot spot (or plume) is initialized in the center of a 100 m× 200 m periodic

domain. The spatial resolution is ∆x = 0.4 m and R = 50∆x. The initial speed of
sound is 343.2 ms−1 and the target Mach number was fixed at Mat = 0.15. This
target Mach number was reached gradually in order to avoid abrupt changes in the340

speed of sound at the beginning of the simulation. Specifically, we have used a caped
decrease of c0 according to

c∗0 = max

(
umax

Mat
, c0.90

)
. (38)

At first, the results of the two adaptive time-stepping algorithms are compared
to a reference simulation with a constant time-step and for an initial temperature
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Stream ĝα
truefalse

adapt time step

Compute λ

Compute ρ∗

Compute ρ, ũ(f̃ext)

g∗neqα

Compute geqα → gneqα

Compute ũmax

Compute ũ∗, f̃∗ext

Collide g∗α

Compute τ̃∗

update T

update T

Compute κ̃∗

LBMFD

f̃ext = f̃b
Eq. (36)

g∗ eqα , F ∗α

Figure 2: Diagram of the adaptive time-stepping (ats) algorithm in lattice units. Blue
boxes coincide with the original algorithm found in [Thü+06] that is extended here by
accounting for an external force. White boxes indicate the extension to thermal dynam-
ics using finite differences to solve a advection-diffusion equation for the temperature.
Finally, the red box indicates the operation required on the density field (to ensure the
continuity of the pressure force) that leads to the “ats with correction” algorithm.
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(c) ats with correction

Figure 3: Natural convection of a Gaussian spot of temperature elevation with ∆T =
10 K after 45.3 s. L = 100 m and ∆x = 0.4 m. Left : Temperature field after 67310
iterations by using a constant time-step of ∆t = 6.729 × 10−4 s. Center : After 3690
iterations by using ats. Right : After 3690 iterations by using ats with correction. The
target Mach number is Mat = 0.15.
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(c) ats with correction

Figure 4: The field of velocity magnitude ||u|| =
√
u2x + u2y in ms−1 is displayed at the

same instant as in Fig. 3
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difference of ∆T = 10 K at a reference temperature of T0 = 293.15 K. The time-step345

is reevaluated every 10 iterations. Due to the variable time-step, the simulations
are out of sync with each other. At 45.2 seconds, the simulation times match by
four decimals corresponding to 3690 and 67310 iterations for the adaptive and con-
stant time-stepping algorithms, respectively. The corresponding temperature fields
are shown in Fig. 3. Qualitatively, the solutions agree with each other. The plume350

has reached the same elevation in the three simulations despite the (very) different
time-steps. The contour lines of the temperature field indicate that the deforma-
tion of the rising plume is suitably captured as well. Let us mention that some
unavoidable slight differences stem from the artificial compressibility of the acceler-
ated simulations. However, these differences remain here very small at Mat = 0.15.355

The velocity norms are compared in Fig 4. The maximum velocity is slightly higher
in case of ats, whereas the results from ats with correction better agree with the
reference (as evidenced later). Since the plume has covered the same distance in the
three cases, it can only follow that the velocity field oscillate around the reference.

The evolution of the parameters related to the time-stepping is shown in Fig. 5.360

In the simulations with ats, the target Mach number is reached after a transient
of only about 100 iterations (Fig. 5a), during which the artificial speed of sound
declines gradually according to the ramp defined in Eq. (38). After this transient,
the speed of sound starts being controlled by umax(t) and increases progressively
as the plume rises (Fig. 5b). As a corollary, the time-step adapts itself during the365

transient to reach the target Mach number, then decreases to keep the Mach number
constant as the flow develops (Fig. 5c). On the contrary, in the simulation with a
constant time-step, the Mach number remains small reaching a maximum value of
Ma = 0.013 at the end of the run. In Fig. 5c, the difference between the adapted and
reference time-steps directly illustrate the significant gain obtained on the execution370

time for a given physical duration. Finally, let us notice that the ats algorithm gives
rise to some oscillatory behavior towards the end of the runs, particularly visible in
the evolution of the time step. This behavior is much less pronounced when using
ats with correction.

The robustness of ats is examined in a second experiment by varying the initial375

temperature difference ∆T between the thermal plume and the surrounding fluid.
In addition to ∆T = 10 K, ∆T = 1 K and ∆T = 100 K are also considered. Each
simulation was run for 3690 iterations as previously. The results are expected to
be very similar with respect to the number of iterations. Qualitatively, a lower
temperature difference leads to a slower rise of the plume, which is compensated by380

a larger time-step. Conversely, a stronger difference has the opposite effect. More
quantitatively, the dynamics results from the balance between the buoyancy and
the drag, which justifies that T − T0 varies typically as u. Therefore, the time-
step adapts itself inversely to T − T0, and the displacement of the plume remains
(almost) constant with respect to the number of iterations. This behavior is correctly385

observed in Fig. 6, where the final temperature fields are displayed.
The adaptation of the speed of sound and time-step remain consistent for the

different dynamics, as evidenced in Fig. 7. Finally, let us notice that the results
obtained by ats (without correction) contain once again a wavy perturbation, which
is particularly pronounced in case of a high temperature difference.390

16



(a) (b)

(c)

Figure 5: Evolution of the parameters related to the time-stepping during the rise of the
thermal plume over a duration (physical time) of 45.3 s. ( ): constant time-step;
( ): ats; ( ): ats with correction. Let us notice that the number of iterations
is presented on a logarithmic scale.
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(c) ∆T = 100 K

Figure 6: Natural convection of three Gaussian hot spots using ats with initial tem-
perature differences ∆T = 0 K, 10 K and 100 K, after 3690 iterations. Iso-countours
correspond for each figure to T0 + j∆T with j = 0.2, 0.4, 0.6, 0.8 and 1.
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Figure 7: Evolution of the parameters related to the adaptive time-stepping for various
initial temperature differences of the thermal plume: ( ): ∆T = 1 K; ( ):
∆T = 10 K; ( ): ∆T = 100 K.

5.2 Womersley flow

The Womersley flow is a pulsating flow in a 2D channel. In contrast to a Poiseuille
flow, the pressure gradient oscillates according to

∂P

∂x
= A cos(ωt) (39)

where A is the amplitude and ω the pulsation. The latter is related to the pulsating
period T as 395

ω = 2π f =
2π

T
. (40)

This problem has an exact solution in the laminar regime [IGC13] as the flow stays
parallel to the walls and only depends on time and on the wall normal coordinate.
Precisely,

ux(y, t) = <

{
ı
A

ρω

(
1−

cos(λ ( 2y
Ly
− 1))

cos(λ)

)
eı ω t

}
(41)

uy = 0

where Ly is the channel height and λ is related to the so-called Womersley number
α with

λ2 = −ı α2 and α2 =
L2
y ω

4 ν
.
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Similar to the Reynolds number, α relates inertial to viscous forces. Velocity profiles
for different Womersley numbers α at constant amplitude A and pulsation ω are400

shown in Fig. 8. The velocity is normalized with respect to the maximum velocity
U0 achieved in a Poiseuille flow, i.e. for ω = 0. For low values of α, the velocity

0.5 0.5
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p
x

Figure 8: Temporal evolution of the pressure gradient (top) and the corresponding
velocity profile ux(y, t)/U0 for different values of the Womersley number α.

profiles remain parabolic. The maximum velocity of the Womersley flow is achieved
at the center-line of the channel and is of the same order of magnitude as U0. With
increasing α, the reluctance of the fluid to change direction increases so that it lags405

behind the pressure gradient. As a result the maximum velocity decreases and its
occurrence moves towards the walls of the channel.

This multi-parametric problem offers many different possibilities to be imple-
mented. In contrast to the previous example, there exists a maximum velocity for
each configuration, which can be obtained from the analytical solution of the flow.410

For the sake of simplicity, we shall restrict our consideration to Womersley numbers
that yields an overall maximum flow velocity located at the center-line of the chan-
nel, i.e. Umax = max{ux(Ly/2, t) : 0 ≤ t < T}. At this point, it is important to
distinguish between the overall maximum velocity Umax that is achieved during a pe-
riod T , and the current maximum velocity umax(t) = max{ux(y, t) : 0 ≤ y ≤ Ly}.415

According to Fig. 8, umax(t) can become zero at small α, which would result here in
an infinitely large time-step. We assume that the Womersley number is sufficiently
high to avoid this pitfall.

Our ats algorithm requires a target Mach number Mat as an input parameter.
In that case, c̃0 and consequently ũ∗max (after rescaling) remain constant. In a non-420

dimensional framework, the scaling factor λ can therefore directly be obtained as
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Figure 9: The non-dimensional amplitude Ã as a function of the Womersley number α
for different Mach numbers.

λ = ũmax/Ũmax so that ũ∗max = ũmax/λ = Ũmax.
In order to select the three target Mach numbers Mat = 0.1, 0.15 and 0.2, the

remaining parameters are now selected such that Ũmax = 0.1c̃0, 0.15c̃0 and 0.2c̃0,
respectively. In accordance with [Nas+14], Re = 100 and T̃ = 5000 to mimic real life 425

flow phenomena that can be encountered in the smaller arteries of the human body.
Next, we determine Ã and α. According to Eq. (41), both parameters influence the
velocity field and thus Ũmax. In the (Ã – α) space, the isolines corresponding the
three target Mach numbers (with ρ = 1 and L̃y = 48) are plotted in Fig. 9. In
the light of our preceding considerations, we picked numerically the matching pairs 430

for α = 2.59 with an error tolerance of 0.02% on the Mach number. Finally, the
viscosity is given by

ν =
ωL2

y

4α2
. (42)

In the case of Wormerley flow, the pressure gradient can either be established
by an external body force, i.e.

fext(t) = −A cos(ωt)ex (43)

or by setting the respective inlet and outlet conditions with, by definition,

pin(t)− pout(t)
Lx

= c20
ρin(t)− ρout(t)

Lx
= −A cos(ωt).

By keeping the averaged density equal to the reference density, i.e.

ρin(t) + ρout(t)

2
= ρref

we eventually obtain the following boundary conditions for the mass density 435

ρin(t) = ρref −
ALx

2c20(t)
cos(ωt) and ρout(t) = ρref +

ALx
2c20(t)

cos(ωt). (44)
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For the sake of simplicity, the two strategies will be referred to as “body-force”
and “inlet/outlet” from here onward. While the former applies directly a pressure
gradient to every node of the fluid, the latter enforces the density at the inlet and
outlet and induce the pressure gradient through the momentum equation. Therefore,
it is expected that the correction of the pressure will have an impact on the results440

obtained by the inlet/outlet strategy. The simulation parameters are summarized
in Table 2.

Ã α Re Mat T̃ = 2π/ω̃ T̃sound = L̃x/c̃0
6.4× 10−5 2.59 100 0.1 5000 26

9.6× 10−5 2.59 100 0.15 5000 26

1.28× 10−4 2.59 100 0.2 5000 26

Table 2: Parameters and characteristics of the simulations (in lattice units). T̃ is the
period of oscillation of the pressure gradient. For comparison, T̃sound is the time required
by a local perturbation of density to propagate through the channel. The condition
T̃sound � T̃ ensures that the pressure field has time to equilibrate for each value of the
oscillating forcing.

The domain size of the simulations is (nx×ny) = (24×48) and the total number of

iterations of each simulation is 5T̃ . The initial state is set to equilibrium with a zero
velocity field and a reference density of unity. The same values are used to impose445

non-slip boundary conditions for the top and bottom of the domain [ZH97]. The
initial speed of sound in all simulations is Umax/Mat. The adaptive time-stepping
strategy is activated at t̃ = t/T = 0.75 (after a brief transient to allow the oscillating
flow to stabilize) and applied at every iteration.

Fig. 10 compares the evolution of the speed of sound and the maximum Mach450

number, as well as the flow velocity recorded at the center point (Lx/2, Ly/2) of the
domain. Only results for the intermediate Mach number (Mat = 0.15) are presented
for both the body-force and the inlet/outlet strategies. The results obtained for the
two other target Mach numbers were very comparable.

In the non-adaptive case, the speed of sound remains constant at c0 = Umax/Mat.455

When adaptive time-stepping is used, c0 oscillates between Umax/Mat and a mini-
mum value, which is identical (within 5%) for the two forcing strategies (see Figs. 10a
and 10b). As a corollary, the Mach number remains constant when ats is used,
whereas it oscillates when the time-step is kept constant (see Figs. 10c and 10d).
The lowest value that umax(t) attains during a cycle is approximately Umax/10. Fi-460

nally, the non-dimensional velocity ũx at the center point of the domain normalized
by Ũmax is shown in Figs. 10e and 10f. In the absence of adaptive time-stepping, ũx
closely follows a sinusoidal curve. Once the Mach number is locked to optimize the
time-step, ũx/Ũmax behaves as a periodic step function. Therefore, the maximum
gain attainable for the Womersley flow can be approximated by the ratio between465

the area of a step function and the half-period of a sine function, i.e. π/2 ≈ 1.57.
With the same number of iterations, the number of periods simulated with the pro-
posed ats algorithms is increased by a factor of 1.53, which is very close to the
optimal gain.

So far, the forcing strategy (body-force or inlet/outlet conditions) and the cor-470

rection of the pressure field have not revealed any notable differences in the results.
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Figure 10: Temporal evolution of non-dimensional parameters related to to the adaptive
time-stepping for the Womersley flow. The target Mach number is Mat = 0.15. Recall
that Umax is the (constant) overall maximum velocity and ux(t) refers to the probed
velocity at the center of the oscillating flow. The Mach number is Ma = umax(t)/c0 when
c0 is the speed of sound. Left column: body-force stirring; Right column: inlet/outlet
density conditions. ( ): constant time-step; ( ): ats; ( ): ats with
correction.
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In order to gain quantitative insights about the accuracy of our ats algorithms, we
measured the L2-norm of the (normalized) velocity error defined as

εu(t) =

√√√√ ny∑
yj=1

(ux(Lx/2, yj , t)− ūx(yj , t))
2

Umax
(45)

where ūx is the analytical solution given by Eq. (41).
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Figure 11: Temporal evolution of the L2-norm of the velocity error for standard and
adaptive time-stepping at different Mach numbers. Top row: Mat = 0.1; Middle row:
Mat = 0.15; Bottom row: Mat = 0.2. Left column: body-force stirring; Right column:
inlet/outlet density conditions. ( ): constant time-step; ( ): ats; ( ):
ats with correction.
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Fig. 11 shows the error with respect to t/T for the different Mach numbers and 475

forcing strategies. In all cases, a transient error decays rapidly over the first two
cycles. When the flow is controlled via a (uniform) body force (see Figs. 11a, 11c
and 11e), the error of the adaptive time-stepping does not depend on the Mach num-
ber and the correction of the pressure has no influence. In that case, the pressure
gradient is mainly monitored by the body force and not by the density variations. 480

The error is roughly one order of magnitude higher than the one achieved with a
constant time-step, and peaks when the speed of sound is at a local minimum, i.e.
during the flow reversal. The situation is different when considering an inlet/outlet
density (or pressure) conditions. In that case, the error increases with the Mach
number, which is understandable since the flow equilibrates through pressure waves. 485

Importantly though, ats is significantly improved when a correction of the pressure
field is applied. As a result, the error remains of the same order as the error en-
countered in a simulation with a constant time-step, while being about 1.5 times
faster. During the flow reversal, the error spikes but does not necessarily exceed the
deviation from the analytical solution attained throughout the rest of the cycle. 490

5.3 Channel entrance flow

The previous observations led us to examine a final numerical experiment that specif-
ically addresses the issue of the pressure correction. By using the same channel
height (Ly) and Reynolds number as in the previous setup, the length of the chan-
nel was increased by a factor 20 to simulate a channel entrance flow [Dur+05]. This
flow scenario is achieved with a Dirichlet boundary condition for the velocity and
the pressure at the inlet and the outlet, respectively. Measurements are performed
at the position x = 0.8Lx where the flow reaches a Poiseuille parabolic velocity
profile. In order to improve the convergence and also to make the use of adaptive
time-stepping relevant, the following ramp (in time) was considered for the velocity
at the inlet

Uin(t) = sin

(
π

2

t

Tramp

)
Ubulk for t ≤ Tramp

Uin(t) = Ubulk for t > Tramp

(46)

with Ubulk = 0.75U0 and T̃ramp = 10000 being a fifth of the total number of itera-

tions T̃tot. Let us mention that Ubulk was fixed such that the maximum velocity at
x = 0.8Lx is Umax = U0 in the asymptotic steady regime, i.e. when t� Tramp. Ini-
tially, the velocity in the channel is zero and the pressure is uniform at an arbitrary 495

reference value. This reference pressure is kept as the outlet boundary condition
during the simulation. Finally, to avoid an impractically small speed of sound in the
ats algorithms, the time-step was locked until the Mach number at the inlet was
greater than 0.03. Fig. 12 summarizes the time evolution of the Mach number, the
normalized speed of sound and the L2-norm of the velocity error defined by Eq. (45) 500

with the Poiseuille profile ū(y) = 4U0(Ly − y)y/L2
y. At the beginning, the Mach

number (at x = 0.8Lx) follows the Mach number ramp imposed at the inlet in the
three simulations. When adaptive time-stepping is enabled, the Mach number jumps
by construction to the target value Mat = 0.15. Conjointly, the parabolic Poiseuille
profile begins to develop so that the Mach number in the standard algorithm starts 505

to deviate from the Mach number at the inlet (Ubulk/c0) to converge to the asymp-
totic value Mat = U0/c0. The speed of sound remains constant in the standard
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Figure 12: Time evolution of the Mach number (a), normalized speed of sound (b) and
L2-norm of the velocity error (c) for standard and adaptive time-stepping in a channel
entrance flow simulation. Signals are recorded at x = 0.8Lx. ( ): constant time-step;
( ): ats; ( ): ats with correction.
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approach, while it drops instantly once it is unlocked in the ats simulations. When
the pressure correction is used, the speed of sound consistently recovers its initial
value rapidly. On the contrary, without the correction of the pressure, the speed of 510

sound overshoots and enters an oscillatory pattern that slowly stabilizes but remains
present throughout the remainder of the simulation. Such important artefact does
not occur when the pressure correction is applied. Comparing the error, it becomes
apparent that the “ats with correction” simulation remains consistent with the con-
stant time-step simulation, while the ats simulation without the pressure correction 515

does not converge at all. The normalized velocity profiles at x = 0.8Lx at the end of
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0

10

20

30

40

y
analytic
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Figure 13: Normalized velocity profiles across the channel at x = 0.8Lx obtained with
constant and adaptive time-stepping. The grey area indicates the velocity interval, over
which the solution of the ats algorithm oscillates during the last period, i.e. between
t/Ttot = 1.013 and t/Ttot = 1.03.

the simulation are displayed in Fig. 13). We observe that the results obtained with
the standard and “ats with correction” algorithms match the analytical Poiseuille
profile. On the other hand, without the correction of the pressure, the discrepancy
is much higher. 520

6 Conclusion

This study presents a physically consistent framework for adaptive time-stepping
in the lb method, which constitutes an interesting technique to speed-up nearly-
incompressible unsteady simulations. Despite being employed in a handful of studies,
it is somewhat surprising that this technique has not been used to a wider extent 525

by the lb community.
A critical aspect of adaptive time-stepping is the inevitable introduction of an

error in either the mass or the momentum conservation due to an indirect entangle-
ment of density and pressure variations through the time-step. A natural reluctance
to violate the conservation of mass is probably one of the reasons why in previous 530

studies the continuity of the mass density was preferred, and the error always passed
into the momentum equation. Here, we investigate the opposite by preserving the
pressure force (per unit mass) −c20∇(log ρ) while sacrificing the continuity of the
density field. Interestingly, it was shown that even in the case of natural convection,
where the two driving forces are buoyancy and drag, the results are better when 535

the error is attributed to the mass density. In channel flows with classical velocity
inlet and pressure outlet conditions, the correction of the pressure is essential for

27



convergence. Otherwise, some oscillatory artefacts appear in the velocity field that
greatly deteriorate the accuracy of the solution.

A physical explanation for these observations is not straightforward. Neverthe-540

less, an indication may be given by comparing the errors made either on the density
or the pressure force when varying the time step. Let us first introduce the small
parameter

ε =
∆t∗ −∆t

∆t

quantifying the (relative) change of the time-step. The continuity of the density
field then yields a relative error on the pressure force that varies as545 (

c∗0
2 − c20
c20

)
∼ ε.

On the other hand, the continuity of the pressure force leads to a relative error on
the density field (

ρ∗ − ρ
ρ

)
∼ ε ρ− ρref

ρ
∼ ε Ma2.

For a small Mach number, this relative error is therefore much smaller than the one
obtained by keeping the density continuous. Also, if ε is smaller than Ma (which
is a valid assumption) the error introduced by “ats with correction” remains below550

the error in O(Ma3) of the lb method itself. This provides a plausible justification
for the advantage of considering the continuity of the pressure force in the adaptive
time-stepping.

To our best knowledge, this is the first study that proposes a correction of the
pressure by accepting small compressibility errors in the solution. In that case, we555

found that the impact on the fluid dynamics remains negligible. Such algorithm
should widen the range of possible applications such as biological flows, transient
thermal flows and oscillating flows in general, where the maximum velocity under-
goes large variations.
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A Continuity of the pressure force

The continuity of the pressure force per unit mass in the momentum equation ex-
presses as

−c
2
0

ρ
∇ρ′ = − (λc0)2

ρ∗
∇ρ′∗

with ρ = ρref + ρ′ and ρ∗ = ρref + ρ′
∗

by definition. This equation may be rewritten
as

1

ρ∗
∇ρ∗ =

1

λ2
1

ρ
∇ρ

which yields the general solution

log(ρ∗) =
1

λ2
log(ρ) + C.

If ρ′ = ρ′
∗

= 0 then ρ = ρ∗ = ρref . Therefore C = ln(ρref)− (1/λ2) log(ρref), which
eventually gives

ρ∗ = ρref

(
ρ

ρref

) 1
λ2

.

If one assumes that the Mach number is small, ρ′ and ρ′
∗ � ρref . Therefore, 650

ρ′
∗ ≈ (1/λ2)ρ′ as a first-order approximation.
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