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Abstract

When simulating multiphase compressible flows using the diffuse-interface methods, the test
cases presented in the literature to validate the modellings with regard to interface prob-
lems are always textbook cases: interfaces are sharp and the simulations therefore easily
converge to the exact solutions. In real problems, it is rather different because the waves
encounter moving interfaces which consequently have already undergone the effects of nu-
merical diffusion. Numerical solutions resulting from the interactions of waves with diffused
interfaces have never been precisely investigated and for good reasons, the results obtained
are extremely dependent on the model used. Precisely, well-posed models present similar and
important issues when such an interaction occurs, coming from the appearance of a wave-
trapping phenomenon. To circumvent those issues, we propose to use a thermodynamically-
consistent pressure-disequilibrium model with finite, instead of infinite, pressure-relaxation
rate to overcome the difficulties inherent in the computation of these interactions. Because
the original method to solve this model only enables infinite relaxation, we propose a new
numerical method allowing infinite as well as finite relaxation rates. Solutions of the new
modelling are examined and compared to literature, in particular we propose the study of
a shock on a water–air interface, but also for problems of helium–air and water–air shock
tubes, spherical and non-spherical bubble collapses.

Keywords: Diffuse-interface method, multiphase, compressible, interface, interaction,
relaxation

1. Introduction

Understanding and controlling complex and physically rich flows, such as multiphase
compressible flows, which are often unsteady, are of great importance in various fields such
as aeronautics, automotive, aerospace, nuclear energy, naval and also medicine. Good ex-
amples are cavitating flows such as the ones encountered around naval propellers where
cavitation pockets form at the vicinity of the blades and lead to a turbulent bubbly flow
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in the wake [1], or in biomedical applications such as in lithotripsy (treatment for kidney
stones) [2] or, recently, histotripsy (non-invasive treatment for cancers) [3] where cavitation
bubbles violently collapse and interact with biomaterials.

A possible way of investigation is to use benefits of numerical simulations to analyse in
details these flows where experiments often lack of insight and of spatial and temporal res-
olution. There are numerous techniques to model multiphase compressible flows, all having
their pros and cons [4]. Herein we are focusing on diffuse-interface methods, where interfaces
are not explicitly tracked but allowed to diffuse numerically [5, 6]. These methods are partic-
ularly interesting because they are able to deal with dynamic appearance and disappearance
of interfaces. Moreover, this is also the only class of models where the thermodynamics of
mixture cells is well defined, thanks to a specific equation of state for each phase (liquid or
gas).

In this context, the test cases presented in the literature to validate the modellings with
regard to interface problems are always textbook cases: interfaces are sharp and the simu-
lations therefore easily converge to the exact solutions. In real problems (multi-dimensions,
multiple interactions between waves), it is rather different because the waves encounter mov-
ing interfaces which consequently have already undergone the effects of numerical diffusion.
To our knowledge, numerical solutions resulting from the interactions of waves with diffused
interfaces have never been precisely investigated and for good reasons, the results obtained
are extremely dependent on the model used. Thus herein, a model is selected and a new
numerical method is proposed to overcome the difficulties inherent in the computation of
these interactions.

We focus here on interface problem modelling such that it is not necessary to consider
velocity disequilibrium between phases. Among single-velocity models, the model of Al-
laire et al. [7] and Massoni et al. [8] has been widely used, such as for shock-induced col-
lapses [9, 10] and droplet atomization [11, 12]. However, this model, as mentioned by Allaire
et al. [7] themselves, cannot be mathematical proven with an increasing entropy in mixture
regions (i.e. where the interface is diffused) under isobaric closure with a general equa-
tion of state. An isothermal closure solves this issue but it is not physically acceptable
under pressure disequilibrium. Further, this model cannot predict the collapse time and
minimum radius of the Rayleigh collapse of a bubble [13–15]. Another candidate is the
thermodynamically-consistent mechanical-equilibrium model of Kapila et al. [16] [13–15].
This model includes additional non-conservative terms in the volume-fraction equations that
reflect the differences in phase compressibilities in mixture regions. These non-conservative
terms unfortunately lead to numerical instabilities during strong compression and expansion
near the interface [17]. Pressure-disequilibrium models [17, 18] can also be used together
with an algorithmic relaxation at infinite rate of the phase pressures at each time step to
avert the stability issues of preceding single-pressure model. These modellings theoretically
and numerically converge to the mechanical-equilibrium model of Kapila et al. [16].

Although these thermodynamically-consistent, mechanical-equilibrium modellings [16–
18] have been utilized for cavitating flows [17, 19], detonating flows [20], surface-tension
driven flows [21, 22], droplet atomization [23, 24], fracture and fragmentation in ductile
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Interface

Figure 1: Problem configuration for the problem of a shock on a water–air interface.

materials [25, 26], bubble dynamics or particularly to collapsing bubbles [15, 27, 28], they
all present similar and important issues when a wave interacts with a diffused interface.
Indeed, a wave-trapping phenomenon appears that results from a lower mixture sound speed,
Wood’s [29], than the pure phases. One can note that such issues also appear for models with
additional thermal equilibrium (not considered herein) since the behaviour of the mixture
sound speed is similar to Wood’s.

To circumvent those issues, we propose to use the pressure-disequilibrium model using
internal energies [17] with finite, instead of infinite, pressure-relaxation rate, which therefore
does not inherit the lower mixture sound speed. However, the original method [17] to solve
this model works with an energy-correction procedure that only enables infinite relaxation.
Hence, we propose a new numerical method acting directly on the energy fluxes and allow-
ing infinite as well as finite relaxation rates. In addition to its use to solve wave-trapping
phenomena, such modelling could also be useful in compaction context for porous materials,
where the solid and fluid phases can behave in pressure disequilibrium [30]. This modelling
is implemented in ECOGEN [31], an open-source tool for multiphase, compressible, multi-
physics flows, and it can directly work or can be extended to numerics, such as adaptive mesh
refinement [23], or to physics, such as viscosity and surface tension [21, 22], respectively.

The problem of wave interactions in multiphase flow models is first presented in Section 2.
We highlight the differences between interactions with sharp and diffused interfaces. We
select the pressure-disequilibrium model using internal energies and detail it in Section 3.
The numerical method we employ to solve the resulting equations, including the new energy-
correction and pressure-relaxation procedures, are outlined in Section 4. Solutions of the new
modelling are examined and compared to literature in Section 5 for problems of helium–
air and water–air shock tubes, shock on water–air interface, spherical and non-spherical
bubble collapses. Note that the expression modelling indicates herein a combination of the
mathematical model and the numerical scheme used to solve it. Finally, a detailed conclusion
is given in Section 6.

2. Problem: interactions between waves and diffused interfaces

In order to assess the interactions between waves and diffused interfaces from well-posed
models, we present a simplified test where a wave, here a weak shock propagating in water,
interacts with a water–air interface (high density jumps). We compare the results when
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Di↵used interface

Figure 2: Solution of the shock on an initially sharp (left) and diffused (right) water–air interface for
the Saurel et al. [17] and Pelanti and Shyue [18] modellings (infinite relaxations). The exact solution is also
plotted for comparison. (b) and (d) are magnified views of (a) and (c), respectively.

the water-air interface is initially sharp with those obtained when it is artificially diffused.
This last situation is representative of a wave interacting with an interface in motion and
occurs many times in multi-dimensional simulations. To do so, a shock tube of 1 m long is
presented with initially three states (Figure 1). A shock at xs = 0.3 m is separating water
in a shocked and non-shocked states. The water–air interface is positioned at xi = 0.7 m.
Precise information on this test case can be found in the result section 5.3.

In both cases (initially sharp or diffused interface), simulations are performed with the
modellings of Saurel et al. [17] and of Pelanti and Shyue [18] corresponding to two different
formulations of a well-posed pressure-disequilibrium model. These two formulations are
solved in the context of infinite pressure-relaxation rate. Results are compared with the
exact solution in Figure 2. We observe that both modellings present excellent results when
the shock interacts with the sharp interface. However, when the interface is diffused, the
solutions obtained are seriously polluted by the interaction. Indeed, for these modellings,
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Figure 3: Wood and frozen speeds of sound for standard water–air mixture.

the speed of sound in the artificial mixture (corresponding to the diffused interface location)
follows the Wood speed of sound [29, 32]

1

ρc2
=

N∑
k=1

αk
ρkc2

k

, (1)

which presents significantly lower speeds than the ones of the pure phases. Figure 3 shows
its behaviour in function of the volume fraction for a standard water–air mixture. These
lower speeds affect significantly the wave propagation through the interface and therefore
induces a complete reshaping of the waves, here the transmitted and reflected shocks, and
with particular transitions between the different states.

One should note that such behaviour is not so pronounced if there is not a clear discon-
tinuity of bulk modulus between the phases, e.g. helium and air. As a matter of fact, the
Wood sound speed does not manifest lower speeds than the ones of the pure phases in this
framework.

While this wave–interface interaction demonstrates the need of improvement regarding
the modelling in order to circumvent problems shown in the mixture region, the literature
flourish of interface sharpening techniques, such as [13, 33, 34] to name a few. Having an
interface as sharp as possible only partially alleviates the problem because these methods
only show more disturbance of the flow variables near the interface for steeper interfaces
and inevitably diffusion still occurs. It is also important to note that these methods are
often non-conservatives which poses other issues. In addition, high-order methods, such as
WENO [9, 13, 15, 35–38] or ADER [22, 39], require initial smearing of the interfaces to avoid
stability issues. In conclusion, act on the sharpness of the interface is not the solution. And
because all the well-posed models show similar behaviour, we instead propose to act on the
pressure relaxation of the pressure-disequilibrium model. This leads us to propose a new
method allowing finite relaxation rates while guaranteeing conservation.
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3. Multiphase flow model

Compressible single-velocity multiphase flow models can be written in a general form as

∂q

∂t
+∇ · F (q) + h (q)∇ · u + g (q)∇ · m (q) = r (q) , (2)

where q is the state vector, F is the flux tensor, u is the mixture velocity field, and h,
g, m and r are non-conservative quantities we describe subsequently. We recall that the
models mentioned herein are in velocity equilibrium and formally ensured the principles
of conservation of mass, momentum, and total energy. They also respect the second law
of thermodynamics and are hyperbolic with eigenvalues either equal to u or u ± c, where
u is the velocity in the x-direction and c is the mixture speed of sound. We select the
pressure-disequilibrium model based on internal energies and we present it below. Whereas,
for completeness, the mechanical-equilibrium model of Kapila et al. [16] and the pressure-
disequilibrium model based on total energies [18, 40], which we call UEqTotE, are recalled
in Appendix A and Appendix B, respectively.

The pressure-disequilibrium model based on internal energies is expressed for N phases
as

q =


αk
αkρk
ρu

αkρkek

 , F =


αku
αkρku

ρu⊗ u + pI
αkρkeku

 , h =


−αk

0
0

αkpk

 , r =


δpk
0
0

−pIδpk

 , (3)

g = m = [0, 0,0, 0]T, where αk, ρk, pk and ek are the volume fraction, density, pressure and
internal energy of each phase, respectively, and for which k indicates the phase index. The
mixture density and pressure are

ρ =
N∑
k=1

αkρk and p =
N∑
k=1

αkpk, (4)

while the mixture total energy is

E = e+
1

2
‖u‖2, (5)

where e is the mixture specific internal energy

e =
N∑
k=1

Ykek (ρk, pk) . (6)

In (6), ek (ρk, pk) is defined via an equation of state (EOS) and Yk are the mass fractions

Yk =
αkρk
ρ

. (7)
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Herein, we will consider two-phase mixtures of gas (g) and liquid (l), for which the gas is
modeled by the ideal-gas EOS

pg = ρg(γg − 1)(eg − eg,ref), (8)

and the liquid is modeled by the stiffened-gas (SG) EOS

pl = ρl(γl − 1)(el − el,ref)− γlπ∞, (9)

where γ, eref and π∞ are model parameters [41]. Other EOS, e.g. NASG [42] or Mie–
Grüneisen, could easily be substituted in our framework. r represents the relaxation of
pressures between the phases with

δpk =
N∑
j 6=k

µk,j (pk − pj) , (10)

where j are phases different from k and µk,j are the pressure-relaxation coefficients related
to the k–j interactions. Herein, the pressure-relaxation coefficient µ is considered the same
for each phase combination. The interfacial pressure is defined as

pI =

∑N
k

(
pk
∑N

j 6=k zj
)

∑N
k zk

, (11)

where zk = ρkck and ck are the acoustic impedance and speed of sound of the phase k,
respectively.

Since pressures are in disequilibrium here, the total energy equation of the mixture is
replaced by the internal-energy equation for each phase. Nevertheless, conservation of the
mixture total energy can be written in its usual form

∂ρE

∂t
+∇ · [(ρE + p) u] = 0. (12)

We note that (12) is redundant when the internal energy equations are also computed.
However, in practice, we include it in our computations (detailed in Section 4.3) to ensure
that the total energy is numerically conserved, and thus preserve a correct treatment of shock
waves.

The mixture speed of sound, also called frozen speed of sound, is defined according to

c2 =
N∑
k=1

Ykc
2
k. (13)

Its behaviour is also shown in Figure 3 in function of the volume fraction for a standard water–
air mixture. Note that after applying an infinite pressure relaxation, the model converge to
the mechanical-equilibrium model of Kapila et al. [16] (A.1) and the effective mixture speed
of sound matches Wood’s (1).
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4. Numerical methods

In this section is presented the numerical method including the general scheme, the new
total-energy correction scheme and the pressure-relaxation procedures for infinite and finite
rates. Note that the method, except the new correction scheme, can also be applied to solve
the UEqTotE model (B.1) of Pelanti and Shyue [18].

4.1. General scheme

We solve (2) numerically using a splitting procedure between the left-hand-side terms
associated with the flow and the right-hand-side terms associated with our relaxation pro-
cedure. First, the time evolution of q on a computational cell i with volume Vi and surface
A with normal unit vector n is given by the explicit finite-volume Godunov [43] scheme

qn+1
i = qni −

∆t

Vi

(
Ns∑
s=1

AsF
?
s · ns + h (qni )

Ns∑
s=1

Asu
?
s · ns + g (qni )

Ns∑
s=1

Asm
?
s (u?s) · ns

)
, (14)

where n is the time-step index. The relaxation terms are then solved using one of the proce-
dures detailed in 4.4 to complete the time-step integration. We also utilize MUSCL spatial
reconstructions of the primitive state variables presented in 4.2. We note that reconstructing
the conservative variables instead leads to spurious oscillations near material interfaces [9],
and using a characteristic-based reconstruction in our implementation significantly increases
computational costs but does not improve results. At the volume–volume interfaces, the as-
sociated Riemann problem is computed using the HLLC approximate solver [17, 44], giving
the flux tensor F?

s, the flow-velocity vector u?s and non-conservative vector m?
s. Note that

in the case of the volume-fraction equation, u?s is depreciated to the speed of the contact
discontinuity s?s to ensure a correct treatment of this transport equation (here without the
relaxation terms). The solution of (14) is restricted by the usual CFL criterion.

4.2. MUSCL scheme

We use the second-order-accurate MUSCL scheme of Schmidmayer et al. [31] with two-
step time integration

q
n+ 1

2
i = qni +

1

2
∆tL (qni ) , (15)

qn+1
i = qni + ∆tL

(
q
n+ 1

2
i

)
, (16)

where the operator L is the numerically approximated fluxes and non-conservative terms,
function of the state vector q at different time stages. The first step is a prediction and
the usual piece-wise linear MUSCL reconstruction [44] is used on the primitive variables.
The Minmod [44, 45], van Leer [46], monotonized central (MC) [47] and THINC (only for
interface) [34] slope limiters are employed to minimize diffusion and are specified for each
test case. The corrections based on total energy and relaxations, detailed below, are applied
at each stage.
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4.3. Total-energy correction schemes

To ensure the conservation of total energy, a procedure correcting the non-conservative
terms of the pressure-disequilibrium model based on internal energies (3) is required and it
uses the mixture total-energy relation (12).

The method proposed in Saurel et al. [17] corrects the total energy after the relaxation
procedure and imposes an infinite relaxation. In the following, we call this method PUEq.

Herein, we propose a new method correcting the total energy before the relaxation proce-
dure and therefore allowing finite or infinite relaxations. This procedure takes place during
the flux computation of the hyperbolic step. In the following, we call this new method UEq.

Let us first express the discretized equation on internal energy of each phase

(αkρkek)
n+1
i = (αkρkek)

n
i + F ?

αkρkek
, (17)

where

F ?
αkρkek

= −∆t

Vi

(
Ns∑
s=1

As (αkρkeku)?s · ns + (αkpk)
n
Ns∑
s=1

Asu
?
s · ns

)
. (18)

Hence, the sum of internal energies can be expressed as

N∑
k=1

(αkρkek)
n+1
i =

N∑
k=1

(αkρkek)
n
i + F ?

ρe, (19)

where

F ?
ρe =

N∑
k=1

F ?
αkρkek

. (20)

To ensure conservation of total energy, we must satisfy that the sum of internal energies
equals the mixture internal energy ρe obtained from the mixture total-energy equation (12)
and momentum (3)

N∑
k=1

(αkρkek)
n
i = (ρe)ni ,

N∑
k=1

(αkρkek)
n+1
i = (ρe)n+1

i (21)

with

ρe = ρ

(
E − 1

2
‖u‖2

)
. (22)

Defining the variation (flux) of mixture internal energy as

∆ρe = (ρe)n+1
i − (ρe)ni , (23)
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one can write

N∑
k=1

(αkρkek)
n+1
i =

N∑
k=1

(αkρkek)
n
i + ∆ρe, (24)

and therefore one must satisfy

F ?
ρe = ∆ρe. (25)

To do so, we propose the following correction scheme

(αkρkek)
n+1
i = (αkρkek)

n
i + F ?

αkρkek
+ αnkε, (26)

where

ε = ∆ρe−
N∑
k=1

F ?
αkρkek

, (27)

and where the mixture internal-energy variation can be computed by

∆ρe = F ?
ρE −

1

2

(
‖ (ρu)n+1

i ‖2

ρn+1
i

− ‖ (ρu)ni ‖2

ρni

)
, (28)

with

F ?
ρE = −∆t

Vi

Ns∑
s=1

As [(ρE + p) u]?s · ns. (29)

This assures the conservation of total energy

N∑
k=1

(αkρkek)
n+1
i =

N∑
k=1

(αkρkek)
n
i +

N∑
k=1

(
F ?
αkρkek

+ αnkε
)
, (30)

N∑
k=1

(αkρkek)
n+1
i =

N∑
k=1

(αkρkek)
n
i + ∆ρe. (31)

Note that one can use the mass fractions Y n
k instead of the volume fractions αnk in (26) and

that we experienced very similar results.

4.4. Pressure-relaxation procedures

The pressure-disequilibrium model (3) can be solved with either a finite or an infinite
relaxation procedure for r. At each time step we solve the non-relaxed, hyperbolic equations
(µ→ 0) using (14), then we solve the system of ordinary differential equations (ODE)

∂q

∂t
= r (q) , (32)

that relaxes the disequilibrium pressures for a given µ or µ→ +∞. When multi-stage time
integration is used, these procedures are performed at each stage.
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4.4.1. Infinite relaxation

In the case of the infinite relaxation (stiff pressure relaxation), µ → +∞, the model
converges to a single, equilibrium pressure. We use the infinite-relaxation procedure of Saurel
et al. [17].

Specifically, after manipulations of the internal-energy equations and the mixture mass
equation, the mixture energy equation can be written for two phases as

e− e0 + (p̂I,1 − p̂I,2)
(
Y1v1 − Y1v

0
1

)
= 0, (33)

where superscript 0 indicates the hyperbolic step index, vk are the specific volumes of each
state and p̂I,k = 1

vk−v0k

∫ ∆t

0
pI

∂vk
∂t

dt. In order that the mixture energy conservation be fulfilled

it is necessary that p̂I,1 = p̂I,2 = p̂I . A possible estimate compatible with the entropy
inequality is p̂I = p, the relaxed pressure. This leads to solve the following system of
equations for N phases

ek (p, vk)− e0
k

(
p0
k, v

0
k

)
+ p

(
vk − v0

k

)
= 0, (34)

which involves N + 1 unknowns, vk and p. Its closure is achieved using the saturation
constraint (

∑
k αk = 1) and this system can be replaced by a single equation to solve with a

single unknown (p) ∑
k

(αρ)k vk (p) = 1, (35)

where (αρ)k are constant during the relaxation process and vk (p) are determined with the
help of the EOS. For the general case of SG EOS, the energy equations become

vk (p) =
p0
k + γkπ∞,k + p(γk − 1)

γk(p+ π∞,k)
v0
k. (36)

We ultimately solve (35) using the Newton–Raphson method to find the relaxed pressure.
Then the phase densities and volume fractions are determined.

We recall that after applying the infinite pressure-relaxation procedure, the model con-
verges to the mechanical-equilibrium model of Kapila et al. [16] (A.1) and the effective
mixture speed of sound matches (1).

4.4.2. Finite relaxation

For a given and finite µ, system (32) of ODE can be generalized and simplified by using
the pressure equations instead of the energy equations

∂pk

∂t
= −

ρkc
2
I,k

αk
µ∆pk, (37)

where

c2
I,k =

pI

ρ2
k

− ∂ek

∂ρk

)
pk

∂ek

∂pk

)
ρk

and ∆pk =
N∑
j 6=k

pk − pj. (38)
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c2
I,k is expressed for ideal and SG EOS in Appendix C. In addition, the following thermo-

dynamical constraints have to be verified at each time step:

• Volume fractions conserved between [0, 1].

• Pressures can only converge to the same value and cannot cross each other, i.e. the
relaxed pressure of the initially (before relaxation) higher-pressure fluid cannot be
inferior to the relaxed pressure of the lower-pressure fluid, and inversely.

This system of ODE can be solved using your favourite ODE solver, such as LSODA [48,
49]. However, even though these types of solvers are very good from a mathematical point
of view, they do not take into account thermodynamical constraints. Therefore, for a more
controlled and faster procedure, we propose a classic, first-order, explicit, Euler scheme with
time-step subdivisions. The number of subdivisions is adapted at each time step to verify
the constraints.

Scheme. The scheme to integrate the relaxation terms is as follow

αn+1
k = αnk + ∆tlµ∆pnk ,

ρn+1
k =

αnkρ
n
k

αn+1
k

,

pn+1
k = pnk −∆tl

ρnk
(
cnI,k
)2

αnk
µ∆pnk ,

(39)

where ∆tl is the local, Euler, subdivided time step respecting the constraints detailed here-
after and initialized by the remaining time necessary to complete the global time step ∆t.

Constraint on volume fractions. The volume fractions have to be conserved between [0, 1].
Therefore, the following algorithm can be applied for each phase to determined ∆tl

if (µ∆pnk > ε) ∆tmax = min

(
∆tmax,

1− αnk
µ∆pnk

)
,

else if (µ∆pnk < −ε) ∆tmax = min

(
∆tmax,

− αnk
µ∆pnk

)
,

∆tmax = 0.5∆tmax,
if (∆tmax < ∆tl) ∆tl = ∆tmax,

(40)

where ε is a small value (typically 10−10) and ∆tmax is initialized with a significant value.

Constraint on pressures. The condition is such that the pressures can only relax at a maxi-
mum where they are all equals pn+1

k = pn+1. For two phases in interaction (subscripted as 0
and 1), one can therefore determine the maximal time step:

∂p1

∂t
= −ρ1c

2
I,1

α1

µ (p1 − p2) and
∂p2

∂t
=
ρ2c

2
I,2

α2

µ (p1 − p2) , (41)
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hence
∂p1 − p2

∂t
= −µ (p1 − p2) ρc2, (42)

where

ρc2 =
ρ1c

2
I,1

α1

+
ρ2c

2
I,2

α2

(43)

is the mixture bulk modulus. Once discretized, we obtain

(p1 − p2)n+1 − (p1 − p2)n = −∆tmaxµ (p1 − p2)n
(
ρc2
)n
. (44)

Finally, with (p1 − p2)n+1 = 0, the following algorithm can be applied for each combination
of two phases to determined ∆tl

∆tmax =
1

µ (ρc2)
n,

∆tmax = 0.5∆tmax,
if (∆tmax < ∆tl) ∆tl = ∆tmax.

(45)

Case of a unique pressure. During this procedure, if the pressures are completely relaxed,
i.e. a unique pressure for all phases, we terminate the Euler scheme and we perform from
the initial state an infinite relaxation to guarantee a unique pressure and better estimate the
solution. This also assures a faster computation.

4.5. Modelling summary

Finally, the steps involved in the first-order method can be summarized as

1. Hyperbolic step using (14) combined with the total-energy correction scheme (26) for
the internal-energy equations.

2. Infinite- or finite-relaxation procedure (detailed in 4.4).

We recall that the total-energy correction scheme and relaxation procedures are applied at
each stage for a higher-order method.

5. Results

In the following, the new numerical method, UEq, is highlighted in bold to distinguish it
from existing methods we compare against: Saurel et al. [17] and Pelanti and Shyue [18, 40].
We remind that we call the latter PUEq and UEqTotE, respectively. The modellings are
tested in the limit of infinite and null pressure relaxations, even if the latter has no physical
significance. Indeed, an infinite relaxation rate is physically accurate when the relaxation
time to obtain equilibrium is smaller than the time-step. While a null relaxation rate means
there is not any equilibrium reached after an infinite time.

Before getting into the detailed test cases, we note that in the context of finite relaxation,
we experienced through our tests different results when computing the UEq model (3) with
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Figure 4: Problem configuration for the helium–air and water–air shock-tube problem.

or without the non-conservative terms αkpk∇ · u of the internal-energy equations. Details
and comparisons for interface problems are given in the following and we chose the notation
where “UEq” stands for the UEq model without computing the non-conservative terms
and “UEq NC” stands for the UEq model computing those terms. Note that we observed
extremely minor differences when infinite relaxation was computed and both configurations
are therefore not presented. Moreover, we recall that the scheme is still fully conservative
with regard to the energy, whether we compute or not those non-conservative terms. In
addition, note for the UEqTotE modelling that we experienced valid results only if all the
non-conservative terms are computed, whatever the relaxation process.

The EOS used in the following test cases are summarized in Table 1. Note that two sets
of parameters are given for water as they are respectively more accurate, with regard to real
fluid behaviour, in the flow range of the corresponding test cases.

Fluid EOS type γ [-] π∞ [Pa] eref [J/kg]
Air IG 1.4 – 0

Helium IG 1.666667 – 0
Water1 (shock-tube tests) SG 4.4 6x108 0

Water2 (bubble tests) SG 2.35 1x109 0

Table 1: EOS of the different fluids used in the different test cases.

Tests cases on transport are not presented since we didn’t observe any fluctuations (ex-
cellent results) from the different modellings.

The first test case presented is a helium–air shock tube and is typical for testing numerical
methods. We are going to show that no matter what numerics we use this test case always
goes well. On the other hand, if a significantly different phase bulk modulus is encountered
(true two-phase interface), such as for water–air interfaces presented hereafter, numerics
matter.

5.1. Helium–Air shock tube

This test case aims to present the behaviour of the modellings in shock-tube configura-
tions with low density jumps. To do so, a helium–air shock tube of 1 m long is presented
with the initial discontinuity (diaphragm) between the two fluids positioned at x = 0.7 m
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Figure 5: Helium–Air shock-tube solution at t = 0.1 ms for the proposed UEq modelling as well as the
PUEq and UEqTotE modellings with infinite relaxation. The exact solution is also plotted as reference.

(Figure 4). Helium at pHe = 106 Pa and ρHe = 0.5 kg/m3 is initially present in the left region,
while air at pair = 105 Pa and ρair = 1 kg/m3 is present in the right region. Initial velocities
are nulls. Non-reflecting boundary conditions, the van Leer and THINC limiters and 103

cells are used.
Figure 5 shows the ability of the different modellings to produce very reliable solutions

for low density jumps when infinite relaxation is used. Without any relaxation, as shown
in Figure 6, the modellings also produce reliable solutions though with a relatively small
pressure peak at the interface location. We also note that UEq and UEqTotE give slightly
better results than the UEq NC modelling.

5.2. Water–Air shock tube

This test case aims to present the behaviour of the modellings in shock-tube configura-
tions with high density jumps. To do so, a water–air shock tube of 1 m long is presented
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Figure 6: Helium–Air shock-tube solution at t = 0.1 ms for the proposed UEq and UEq NC modellings as
well as the UEqTotE modelling without relaxation (µ = 0). The exact solution is also plotted as reference.

with the initial discontinuity (diaphragm) between the two fluids positioned at x = 0.7 m
(Figure 4). Water at pwater = 109 Pa and ρwater = 103 kg/m3 is initially present in the left
region, while air at pair = 105 Pa and ρair = 50 kg/m3 is present in the right region. Initial
velocities are nulls. Non-reflecting boundary conditions, the van Leer and THINC limiters
and 103 cells are used.

Figure 7 shows the ability of the different modellings to produce very reliable solutions
for high density jumps when infinite relaxation is used. Though one should note a relatively
small fluctuation on pressure and velocity near the tail of the expansion waves (typically
observed in the literature).

Figure 8 shows the solutions given by the different modellings without relaxation. One
can observe that the UEq modelling presents good results with a small density undershot
near the interface location. While the UEq NC and UEqTotE modellings, which are mathe-
matically identical (though not the same computed models and numerical methods), present
very close but wrong results. Indeed, only the expansion waves and interface location seem
respected while the shocked states and shock position are incorrect and present non-expected
fluctuations. This behaviour is explained by the values taken from the non-conservative terms
αkpk∇ · u of the internal-energy equations. Unlike the previous test case with helium and air,
those terms can be about three orders of magnitude higher in the current configuration. Even
though the scheme ensures mixture energy conservation, those values produce an inadequate
distribution of the energy between the phases. One should note that the pressure relaxation
also acts as a recalibration, and therefore as a correction, of the energy distribution. This
explains why UEq and UEq NC give almost identical results when infinite relaxation is
performed.

We conclude from this type of problem that there is no need to relax with our modelling
to obtain good results, whereas it is necessary for the other modellings to correct the energy
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Figure 7: Water–Air shock-tube solution at t = 241 µs for the proposed UEq modelling as well as the
PUEq and UEqTotE modellings with infinite relaxation. The exact solution is also plotted as reference. The
Water1 SG EOS is used for water.
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Figure 8: Water–Air shock-tube solution at t = 241 µs for the proposed UEq and UEq NC modellings
as well as the UEqTotE modelling without relaxation. The exact solution is also plotted as reference. The
Water1 SG EOS is used for water.

distribution produced by the schemes. Based on this conclusion, the results presented in
Figure 2 and the fact that we want to do finite relaxations, the UEq NC and UEqTotE
modellings are therefore no longer presented in what follows.

5.3. Shock on water–air interface

This test case is the one presented in Section 2 and it aims to present the behaviour of the
modellings when a wave, here a weak shock, interacts with a sharp or diffuse interface (high
density jump). We recall that to do so, a shock tube of 1 m long is presented with initially
three states (Figure 1). A shock at xs = 0.3 m is separating water in a shocked and non-
shocked states. The water–air interface is positioned at xi = 0.7 m. The initial conditions
are given in Table 2. Note that this shocked state can be obtained from an initial shock
tube with a high-pressure state of p = 107 Pa, ρ = 103 kg/m3 and u = 0 m/s. Non-reflecting
boundary conditions, the van Leer and THINC limiters and 103 cells are used.

State position Fluid p [Pa] ρ [kg/m3] u [m/s]
Left Shocked water 5.0421806x106 1001.8658 3.0337923

Middle Water 105 1000 0
Right Air 105 1 0

Table 2: Initial conditions of the three states of the problem of shock on water–air interface.

Three relaxation rates are investigated. The first one is infinite, to match with the PUEq
modelling. The second is null (µ = 0), that is to say no pressure relaxation. The third is
finite with a value to be defined using the following approximations.
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Similarly to what is done by Petitpas et al. [20] in detonation context, we propose an
approximation of Eq. (42) as

1

τ
= µρc2, (46)

allowing to link the pressure relaxation coefficient µ with the mixture bulk modulus (43) and
a characteristic time τ . Since we are considering the case of a wave travelling through an
interface, we propose to define the characteristic time as the time for a wave to cross entirely
the interface, leading to

τ =
DI

c̃
, (47)

where DI is the interface thickness and c̃ is the average speed of sound we are expecting.
In the context of this test case with the diffused-interface configuration (detailed below),

we estimate DI ≈ 0.02 m and c̃ ≈ 103 m/s, leading to τ ≈ 2x10−5 s. Considering α = 0.5,
the mixture bulk modulus can be estimated to ρc2 ≈ 5x109 Pa, finally leading to µ ≈
10−5 Pa−1s−1, which is taken as finite value for this test case.

5.3.1. Sharp-interface configuration

Figure 9 shows the behaviour of the interaction of the shock wave with an initially
sharp interface (α = 0 or 1). The UEq modelling is presented with infinite and finite
relaxations. We observe that all the solutions are in very good agreement with the exact
solution. Even though there is a relatively small pressure peak at the interface location when
a finite relaxation is used.

5.3.2. Diffused-interface configuration

To initially have a diffused interface, we employ an initial interface smearing procedure
involving smearing the volume fraction across the interface using an hyperbolic tangent
function

αwater =
1

2

[
1− tanh

(
x− xi
h

)]
, (48)

where h is the characteristic length of the smearing, here h = 3 mm. The conservative
variables then follow from simple mixture relations, allowing thermodynamic consistency.
The smeared interface is observable on Figure 10 (a).

Figure 10 shows the behaviour of the interaction of the shock wave with this initially
diffused interface and this for different relaxation rates.

First, as observed in Section 2, the solutions obtained with an infinite relaxation (PUEq
and UEq) are seriously polluted by the interaction of the shock with the diffused interface.
Indeed, we recall that for these modellings the speed of sound in a mixture (here interface)
follows the Wood speed of sound which presents significantly lower speeds than the ones
of the pure phases (see Figure 3). This affects the wave propagation through the interface
and therefore induces a complete reshaping of the waves, here the transmitted and reflected
shocks, and with particular transitions between the different states.
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Figure 9: Solution of the shock on an initially sharp water–air interface at t = 600 µs for the proposed UEq
modelling with infinite or finite relaxations. The exact and PUEq solutions are also plotted for comparison.
The Water1 SG EOS is used for water. (d) is a magnified view of (c).
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Figure 10: Solution of the shock on an initially diffused water–air interface at t = 600 µs for the proposed
UEq modelling with infinite or finite relaxations. The exact and PUEq solutions are also plotted for
comparison. The Water1 SG EOS is used for water. (d) is a magnified view of (c).

Second, we observe a relatively good agreement of the UEq modelling without any
relaxation. Even though relatively small perturbations are noticeable. Furthermore, one
can note that the transmitted shock wave is in advance compared to its theoretical location.
Indeed, when µ = 0, the speed of sound in a mixture (interface) now follows the frozen speed
of sound which is almost equal to the speed of sound of the higher-density fluid in almost
all the range of the volume fraction (see Figure 3). Therefore, the shock travels faster when
crossing the interface: it travels almost like it is travelling only in water and not in air for
most of the interface thickness.

Third, when picking a finite relaxation rate of µ = 10−5 s−1, we remark fewer perturba-
tions than the µ = 0 case and the shock location is also improved. Indeed, we tend to have
an interface speed of sound varying between the Wood and frozen speeds of sound (though
closer to the frozen one), which slows down the shock.
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Figure 11: Problem configuration for a collapsing spherical bubble.

5.4. Spherical bubble collapse

This test case aims to present the behaviour of different relaxation rates for UEq dur-
ing the spherical collapse of a bubble in a free field. To reduce the computational cost,
a one-dimensional domain of 3 mm long is used with spherical axi-symmetry to mimic a
three-dimensional bubble (Figure 11). The domain contains high-pressure water at p∞ =
50.6625x105 Pa (50 atm) and ρl = 103 kg/m3. At its origin is positioned an air bubble of
initial radius R0 = 0.1 mm. Its state is equivalent to saturated vapor with pb = 3550 Pa
(p∞/pb = 1427) and ρb = 0.027 kg/m3. Initial velocities are nulls. One could note that this
configuration enforces an initial interface disequilibrium. A non-reflecting boundary condi-
tion is used at the far field limit while a symmetry boundary condition is used at the origin
of the domain. The mesh contains 150 cells from 0 to 0.3 mm, which corresponds to 100
cells per bubble diameter, and then the grid is stretched non-uniformly to accommodate the
large computational domain. The MC and THINC limiters are used.

In the following, we use the radial bubble-wall evolution to compare the performance of
the different modellings. Because we are in one dimension of space, we define an effective
bubble radius, R, as

R =
N∑
i=1

αg,iVc,i, (49)

where N is the total number of grid cells, and αg,i and Vc,i are the gas volume fraction
and the volume of cell i, respectively. The radial bubble-wall evolution is presented in a
non-dimensionalized form where

tc = 0.915R0

√
ρl
p∞

(50)

is the nominal total collapse time, also called Rayleigh collapse time, from its initial (maxi-
mum) radius R0 [50].

We also compute a semi-analytical solution following the Keller–Miksis equation [51]; a
compressible form of the Rayleigh–Plesset equation. The Keller–Miksis equation is based on
an asymptotic expansion in Mach number of the Bernoulli equation which also assumes that
the bubble remains spherical. Its use here is predicated on the idea that errors measured
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Figure 12: Radial bubble-wall evolution for spherical bubble collapse with p∞/pb = 1427 and NR0
= 50

cells. Solutions are computed using the PUEq and proposed UEq modellings as well as the Keller–Miksis
equation. The Water2 SG EOS is used for water. (b) is a magnified view of (a).

relative to it are larger than any errors associated with the asymptotic expansion and pre-
sumption of sphericity inherent to it. This assumption is borne out in the results presented
below.

In Figure 12 is shown the solutions obtained from the PUEq and UEq modellings as well
as from the Keller–Miksis equation. Note that the solutions are only shown until t = 1.05tc,
just after the minimum bubble radius is reached, since the subsequent rebounds for large
pressure ratios for the Keller–Miksis equation are well-known to be physically inaccurate [52].
We remark that UEq with infinite relaxation performs as well as PUEq. Whereas the smaller
the finite relaxation rate, the higher the minimum bubble radius and therefore the lower the
accuracy. Furthermore, the maximum pressure being directly related to the minimum radius,
the maximum pressure for smaller finite relaxation rate is reduced.

We conclude that in the scenario, where we are not looking at waves crossing the interface,
it is highly preferable to compute an infinite relaxation rate.

5.5. Non-spherical bubble collapse

This test case aims to present again the behaviour of different relaxation rates for UEq
but here for a more complex flow: non-spherical bubble collapse. To reduce the compu-
tational cost, a two-dimensional domain (12 mm x 12 mm) is used with cylindrical axi-
symmetry to mimic a three-dimensional bubble. Figure 13 shows the flow configuration
considered.

The initial bubble is spherical with radius R0 = 0.5 mm and stand-off distance, distance
from the wall to bubble centre, S = 3R0/2. The bubble is filled with non-condensable gas
of initial pressure pb = 3550 Pa and density ρb = 0.027 kg/m3. Furthermore, the collapse
dynamics are also only weakly sensitive to the internal bubble pressure when the driving
pressure differences are large [27].
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Figure 13: Problem configuration for a non-spherical bubble collapse near a wall. Two dimensions are used
with cylindrical axi-symmetry.

The bubble is surrounded by water with a density of ρl = 103 kg/m3 and varying pressure

p(r, t = 0) = p∞ +
R0

r
(pb − p∞) for r > R0, (51)

where r is the radial coordinate with origin at the bubble centre. Initial velocities are null.
This initialization matches the pressure distribution predicted by the Rayleigh equation for
the Besant problem [50, 53]. For the configuration considered, it provides a valid approxi-
mation of the realistically evolving pressure field and suppresses the formation of spurious
pressure waves due to pressure jumps [13, 54]. Further, it has been established that this
approximation evolves towards an exact solution of the Besant problem within a very short
time [55]. We use p∞ = 50.6625x105 Pa (50 atm), which matches the previous test case and
serves as a representation of actual applications involving liquid cavitation.

Unlike the spherical-bubble-collapse test case presented above, one could note that this
configuration involves an initial interface equilibrium. Non-reflecting boundary conditions
are used at the far field limits while symmetry and wall boundary conditions are used on
the bottom and left boundaries, respectively. The mesh contains 400 cells from 0 to 2 mm
in the x-direction and 250 cells from 0 to 1.25 mm in the y-direction, which corresponds to
200 cells per bubble diameter, and then the grid is stretched non-uniformly to accommodate
the large computational domain. The MC and THINC limiters are used.

The total simulation time is 1.15t∗ where

t∗ = R0

√
ρl
∆p

(52)

is an estimate of the collapse time of a bubble collapse near a solid wall [56], where ∆p ≡
p∞−pb is the driving pressure difference. The wall has a retarding effect on the collapse and
thus t∗ is longer than the Rayleigh collapse time for spherical collapses (tc = 0.915t∗).

Figure 14 visualizes the flow of the collapsing bubble using a similar setup than what
is done by Trummler et al. [28], meaning using the pressure field p and numerical schlieren
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Φ [57] as

Φ = exp

(
− k|∇ρ|

max |∇ρ|

)
, (53)

where k = 400 is used to ensure waves in the liquid are visible [12, 58]. However herein,
because we present results with finite relaxation rates, the flow encounters negative mixture
pressures (coming from the liquid). Hence, to avoid any visualization failure when rendering
the log-scale pressure field, we present the following non-dimensional pressure field

p+ π∞,water

p∞
. (54)

Figure 14 shows results for six selected times and for infinite and finite relaxations. Note
that the µ = 0 simulation, which rather represents a limit test of the modelling (no commu-
nication between the phases with regard to energy) than a physical behaviour, was unstable
for this test case and is therefore not presented. In the three presented configurations, we
observe the non-spherical collapse of the bubble with several characteristic stages:

1. (i), the bubble slowly collapses with the part of the interface further from the wall
moving faster and in direction to the wall.

2. (ii), a jet is forming until the two ends of the interface interact.

3. (iii), the jet propagates in direction to the wall and a violent shock wave is emitted.

4. (iv) and (v), the waves emitted in direction to the wall slowly dissipate due to the
three-dimensional propagation and then they are reflected by the wall.

5. (vi), those reflected waves travel back to the bubble and interact with the now diffused
interface.

As expected from the results of the spherical collapse, we remark that the higher the relax-
ation rate, the smaller the minimum bubble volume. However, it appears that the released
energy between the three cases is similar since they all produce an equivalent pressure peak,
about 2x108 Pa, on the wall at the location of the axis of symmetry (Figure 15).

Properly evaluate the results is a difficult task considering the complicated wave patterns
in such an advanced test case. However, considering the results obtained on the spherical
collapse and the validation of the modelling with infinite relaxation rate made in the liter-
ature [15, 27, 28, 59], we can assume the results with µ = ∞ are the closest to a physical
behaviour until the interaction of the wall-reflected waves with the bubble. Indeed, based on
the results shown in Section 5.3, this interaction is certainly not properly handled because
the interface is now diffused. It is important to note that this situation could also happen
in numerous situations, such as when there is a cloud of bubbles where numerous bubbles
collapse and emit waves which are therefore impinging on diffused interfaces [54, 55] or when
two bubbles interact and collapse near a wall [60].
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Figure 14: Numerical schlieren (bottom) and log-scale pressure fields (top) of an air bubble collapsing onto a
wall at selected times (i)–(vi) for three relaxation coefficients. Gas volume fraction αg is shown as a shaded
area of decreasing opacity with decreasing αg (bottom), while the αg = 0.5 bubble interface is shown as a
solid curve (top). The initial bubble interface (t = 0) is also shown with a red dash line at time (i). The
Water2 SG EOS is used for water.
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Figure 15: Pressure on the wall at the axis of symmetry for the non-spherical collapse test case and for three
relaxation coefficients. The Water2 SG EOS is used for water.

6. Conclusion

We propose herein a new method to compute the pressure-disequilibrium model (3) where
the correction of the internal energies of the phases is done, unlike the previous method
of Saurel et al. [17], directly on the fluxes (before the relaxations). This allows to com-
pute infinite and finite pressure relaxations. This new modelling, called UEq herein, has
been validated on numerous test cases: transport, classical shock tubes, shock on interface,
spherical and non-spherical bubble collapses. When infinite relaxation is used, the proposed
modelling (UEq) presents almost exactly the same solutions than the PUEq modelling [17]
while being more generalized (works for finite relaxations). We also propose a methodology
to integrate the finite relaxation terms which optimizes the sub-time steps. The latter being
determined under specific conditions on volume fractions and pressures.

The influence of computing or not the non-conservative terms αkpk∇ · u of the internal-
energy equations of (3) has been investigated. We remind that whether we compute or not
the terms, the scheme is conservative. If an infinite relaxation is done, results are almost
identical. Whereas if a finite relaxation is done, another situation arises. When interface
problems are simulated, the solutions are definitely better when the non-conservative terms
are not computed, especially when the terms have significant values. Indeed, the latter
produce an inadequate distribution of the energy between the phases. Results were presented
to exhibit this behaviour and we conclude it is better not to compute those terms.

Comparisons against the model of Pelanti and Shyue [18, 40] (B.1), using total energies
instead of internal energies and herein called UEqTotE, were also made. In all the investi-
gated cases, UEqTotE presented similar results than the UEq NC modelling (taking into
account the non-conservative terms). Meaning it worked well but for the water–air shock-
tube case where µ = 0 was considered. Indeed, like for UEq NC, the non-conservative
terms produced an inadequate distribution of the energy between the phases. One may note
that the original wave-propagation scheme proposed in [18, 40] has not been tested and this
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could maybe improve the results when µ = 0.
Through our different tests, we have shown that waves behave differently when they form

at the interface (mixture) compared to when they pass through it. Indeed, waves interacting
with a diffused interface have shown issues when infinite relaxation is used. Solutions are
seriously polluted due to the mixture speed of sound following Wood’s relation (1) for which
significantly lower speeds than the ones of the pure phases are present. In this context, it has
been shown that using a finite relaxation rate is a good candidate to avoid such problems
and to allow good wave transmission. For the particular case of waves crossing an interface,
we also proposed a methodology to determine the value of the finite rate µ.

When considering bubble collapse, spherical or not, it appears that an infinite rate is
preferred to match physical phenomena during the collapse phase. However, interactions of
the waves, potentially produced by the bubbles, with diffused interfaces (here bubble wall)
are to avoid if infinite relaxation rate is kept. Note that diffused interfaces obviously appear
during the course of a simulation but can also simply be present because an initial smearing
is used to stabilize the high-order method [9, 13, 15, 36]. This leads to a new branch of
work on the adaptive and local determination of the relaxation rate based on the physical
phenomena happening during the simulation.
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Appendix A. Mechanical-equilibrium model of Kapila et al. [16]

The mechanical-equilibrium model of Kapila et al. [16] is expressed for a two-phase flow
(N = 2) as

q =


α1

α1ρ1

α2ρ2

ρu
ρE

 , F =


α1u
α1ρ1u
α2ρ2u

ρu⊗ u + pI
(ρE + p) u

 , h =


−α1 −K

0
0
0
0

 , (A.1)
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r = g = m = [0, 0, 0,0, 0]T, K is

K =
ρ2c

2
2 − ρ1c

2
1

ρ2c22
α2

+
ρ1c21
α1

, (A.2)

and K∇ · u represents expansion and compression of each phase in mixture regions. For this
model, the mixture speed of sound follows Wood’s [29].

Appendix B. Pressure-disequilibrium model based on total energies

The pressure-disequilibrium model based on total energies [18, 40], which we call UEq-
TotE, is expressed for N phases as

q =


αk
αkρk
ρu

αkρkEk

 , F =


αku
αkρku

ρu⊗ u + pI
αkρkEku

 , h =


−αk

0
0

−Ykp+ αkpk

 ,

g =


0
0
0
Yk

 , m =


0
0
0
pu

 , r =


δpk
0
0

−pIδpk

 ,
(B.1)

where

Ek = ek +
1

2
‖u‖2. (B.2)

For this model, pressures are also in disequilibrium and the total energy equation of the
mixture is replaced by the total-energy equation for each phase. Nevertheless, conservation
of the mixture total energy (12) can be recovered. However, unlike model (3), there is no
need to include (12) in our computations to numerically ensure conservation of the total
energy. Indeed, the sum of the non-conservative terms of each phase cancels. Further, the
mixture speed of sound is the same than for model (3).

Appendix C. Phase interfacial sound speed

We recall that for a finite pressure relaxation, the pressure equations are solved

∂pk

∂t
= −

ρkc
2
I,k

αk
µ∆pk, (C.1)
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where

c2
I,k =

pI

ρ2
k

− ∂ek

∂ρk

)
pk

∂ek

∂pk

)
ρk

and ∆pk =
N∑
j 6=k

pk − pj, (C.2)

and where c2
I,k needs to be expressed for specific EOS.

In the context of ideal and SG [41] EOS, one can write the internal energies as

ek =
pk + γkπ∞,k
(γk − 1) ρk

. (C.3)

Hence
∂ek

∂ρk

)
pk

= −pk + γkπ∞,k
(γk − 1) ρ2

k

and
∂ek

∂pk

)
ρk

=
1

(γk − 1) ρk
. (C.4)

This leads to

c2
I,k =

(γk − 1) pI + pk + γkπ∞,k
ρk

. (C.5)
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