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Abstract

When simulatingmultiphase compressible flows using the diffuse-interfacemethods,
the test cases presented in the literature to validate themodellings with regard to inter-
face problems are always textbook cases: interfaces are sharp and the simulations
therefore easily converge to the exact solutions. In real problems, it is rather differ-
ent because the waves encounter moving interfaces which consequently have already
undergone the effects of numerical diffusion. Numerical solutions resulting from the
interactions of waves with diffused interfaces have never been precisely investigated
and for good reasons, the results obtained are extremely dependent on the model
used. Precisely, well-posed models present similar and important issues when such
an interaction occurs, coming from the appearance of a wave-trapping phenomenon.
To circumvent those issues, we propose to use a thermodynamically-consistent
pressure-disequilibriummodel with finite, instead of infinite, pressure-relaxation rate
to overcome the difficulties inherent in the computation of these interactions. Because
the original method to solve this model only enables infinite relaxation, we propose
a new numerical method allowing infinite as well as finite relaxation rates. Solutions
of the new modelling are examined and compared to literature, in particular we pro-
pose the study of a shock on a water–air interface, but also for problems of helium–air
and water–air shock tubes, spherical and non-spherical bubble collapses.
KEYWORDS:
Diffuse-interface method, multiphase, compressible, interface, interaction, relaxation

1 INTRODUCTION

Understanding and controlling complex and physically rich flows, such as multiphase compressible flows, which are often
unsteady, are of great importance in various fields such as aeronautics, automotive, aerospace, nuclear energy, naval and also
medicine. Good examples are cavitating flows such as the ones encountered around naval propellers where cavitation pockets
form at the vicinity of the blades and lead to a turbulent bubbly flow in the wake1, or in biomedical applications such as in
lithotripsy (treatment for kidney stones)2 or, recently, histotripsy (non-invasive treatment for cancers)3 where cavitation bubbles
violently collapse and interact with biomaterials.
A possible way of investigation is to use benefits of numerical simulations to analyse in details these flows where experiments

often lack of insight and of spatial and temporal resolution. There are numerous techniques to model multiphase compressible
flows, all having their pros and cons4. Herein we are focusing on diffuse-interface methods, where interfaces are not explicitly
tracked but allowed to diffuse numerically5,6. These methods are particularly interesting because they are able to deal with
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dynamic appearance and disappearance of interfaces. Moreover, this is also the only class of models where the thermodynamics
of mixture cells is well defined, thanks to a specific equation of state for each phase (liquid or gas).
In this context, the test cases presented in the literature to validate the modellings with regard to interface problems are

always textbook cases: interfaces are sharp and the simulations therefore easily converge to the exact solutions. In real problems
(multi-dimensions, multiple interactions between waves), it is rather different because the waves encounter moving interfaces
which consequently have already undergone the effects of numerical diffusion. To our knowledge, numerical solutions resulting
from the interactions of waves with diffused interfaces have never been precisely investigated and for good reasons, the results
obtained are extremely dependent on the model used. Thus herein, a model is selected and a new numerical method is proposed
to overcome the difficulties inherent in the computation of these interactions.
We focus here on interface problemmodelling such that it is not necessary to consider velocity disequilibrium between phases.

Among single-velocity models, the model of Allaire et al.7 and Massoni et al.8 has been widely used, such as for shock-induced
collapses9,10 and droplet atomization11,12. However, this model, as mentioned by Allaire et al.7 themselves, cannot be mathe-
matical proven with an increasing entropy in mixture regions (i.e. where the interface is diffused) under isobaric closure with
a general equation of state. An isothermal closure solves this issue but it is not physically acceptable under pressure disequi-
librium. Further, this model cannot predict the collapse time and minimum radius of the Rayleigh collapse of a bubble13,14,15.
Another candidate is the thermodynamically-consistent mechanical-equilibrium model of Kapila et al.16,13,14,15. This model
includes additional non-conservative terms in the volume-fraction equations that reflect the differences in phase compressibil-
ities in mixture regions. These non-conservative terms unfortunately lead to numerical instabilities during strong compression
and expansion near the interface17. Pressure-disequilibriummodels17,18 can also be used together with an algorithmic relaxation
at infinite rate of the phase pressures at each time step to avert the stability issues of preceding single-pressure model. These
modellings theoretically and numerically converge to the mechanical-equilibrium model of Kapila et al.16.
Although these thermodynamically-consistent, mechanical-equilibrium modellings16,17,18 have been utilized for cavitating

flows17,19, detonating flows20, surface-tension driven flows21,22, droplet atomization23,24, fracture and fragmentation in ductile
materials25,26, bubble dynamics or particularly to collapsing bubbles15,27,28, they all present similar and important issues when
a wave interacts with a diffused interface. Indeed, a wave-trapping phenomenon appears that results from a lower mixture sound
speed, Wood’s29, than the pure phases. One can note that such issues also appear for models with additional thermal equilibrium
(not considered herein) since the behaviour of the mixture sound speed is similar to Wood’s.
To circumvent those issues, we propose to use the pressure-disequilibrium model using internal energies17 with finite, instead

of infinite, pressure-relaxation rate, which therefore does not inherit the lower mixture sound speed. However, the original
method17 to solve this model works with an energy-correction procedure that only enables infinite relaxation. Hence, we propose
a new numerical method acting directly on the energy fluxes and allowing infinite as well as finite relaxation rates. In addition
to its use to solve wave-trapping phenomena, such modelling could also be useful in compaction context for porous materials,
where the solid and fluid phases can behave in pressure disequilibrium30. This modelling is implemented in ECOGEN31, an
open-source tool for multiphase, compressible, multiphysics flows, and it can directly work or can be extended to numerics,
such as adaptive mesh refinement23, or to physics, such as viscosity and surface tension21,22, respectively. We also note that
finite relaxation rates have already been considered in previous work. In particular, Re and Abgrall32 proposed a pressure-
based method for weakly compressible two-phase flows under a Baer–Nunziato-type model33, which also considers velocity
disequilibrium. And Chiocchetti and Müller34 proposed an integration technique for the finite relaxation rates for the Baer–
Nunziato model and the pressure-disequilibriummodel based on total energies18, but they only considered mixture test cases (no
pure phases). Hence, to our knowledge, previous work did not considered the problem of waves travelling through an interface.
The problem of wave interactions in multiphase flow models is first presented in Section 2. We highlight the differences

between interactions with sharp and diffused interfaces. We select the pressure-disequilibriummodel using internal energies and
detail it in Section 3. The numerical method we employ to solve the resulting equations, including the new energy-correction
and pressure-relaxation procedures, are outlined in Section 4. Solutions of the new modelling are examined and compared to
literature in Section 5 for problems of helium–air and water–air shock tubes, shock on water–air interface, spherical and non-
spherical bubble collapses. Note that the expression modelling indicates herein a combination of the mathematical model and
the numerical scheme used to solve it. Finally, a discussion on the finite pressure relaxation rate and a detailed conclusion are
given in Sections 6 and 7, respectively.
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Interface

FIGURE 1 Problem configuration for the problem of a shock on a water–air interface.

2 PROBLEM: INTERACTIONS BETWEENWAVES AND DIFFUSED INTERFACES

In order to assess the interactions between waves and diffused interfaces from well-posed models, we present a simplified test
where a wave, here a weak shock propagating in water, interacts with a water–air interface (high density jumps). We compare
the results when the water-air interface is initially sharp with those obtained when it is artificially diffused. This last situation
is representative of a wave interacting with an interface in motion and occurs many times in multi-dimensional simulations. To
do so, a shock tube of 1 m long is presented with initially three states (Figure 1). A shock at xs = 0.3 m is separating water in
a shocked and non-shocked states. The water–air interface is positioned at xi = 0.7 m. Precise information on this test case can
be found in the result section 5.3.
In both cases (initially sharp or diffused interface), simulations are performed with the modellings of Saurel et al.17 and

of Pelanti & Shyue18 corresponding to two different formulations of a well-posed pressure-disequilibriummodel. These two for-
mulations are solved in the context of infinite pressure-relaxation rate. Results are compared with the exact solution in Figure 2.
We observe that both modellings present excellent results when the shock interacts with the sharp interface. However, when the
interface is diffused, the solutions obtained are seriously polluted by the interaction. Indeed, for these modellings, the speed of
sound in the artificial mixture (corresponding to the diffused interface location) follows the Wood speed of sound29,35

1
�c2

=
N
∑

k=1

�k
�kc2k

, (1)

which presents significantly lower speeds than the ones of the pure phases. Figure 3 shows its behaviour in function of the volume
fraction for a standard water–air mixture. These lower speeds affect significantly the wave propagation through the interface and
therefore induces a complete reshaping of the waves, here the transmitted and reflected shocks, and with particular transitions
between the different states.
One should note that such behaviour is not so pronounced if there is not a clear discontinuity of bulk modulus between the

phases, e.g. helium and air. As a matter of fact, the Wood sound speed does not manifest lower speeds than the ones of the pure
phases in this framework.
While this wave–interface interaction demonstrates the need of improvement regarding the modelling in order to circum-

vent problems shown in the mixture region, the literature flourish of interface sharpening techniques, such as36,13,37 to name
a few. Having an interface as sharp as possible only partially alleviates the problem because these methods only show more
disturbance of the flow variables near the interface for steeper interfaces and inevitably diffusion still occurs. It is also impor-
tant to note that these methods are often non-conservatives which poses other issues. In addition, high-order methods, such as
WENO38,39,40,9,13,15,41 or ADER42,22, require initial smearing of the interfaces to avoid stability issues. In conclusion, act on the
sharpness of the interface is not the solution. And because all the well-posed models show similar behaviour, we instead propose
to act on the pressure relaxation of the pressure-disequilibrium model. This leads us to propose a new method allowing finite
relaxation rates while guaranteeing conservation.
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Di↵used interface

FIGURE 2 Solution of the shock on an initially sharp (left) and diffused (right) water–air interface for the Saurel et al.17
and Pelanti & Shyue18 modellings (infinite relaxations). The exact solution is also plotted for comparison. (b) and (d) are
magnified views of (a) and (c), respectively.

3 MULTIPHASE FLOWMODEL

Compressible single-velocity multiphase flow models can be written in a general form as

)q
)t
+ ∇ ·F (q) + h (q) ∇ ·u + g (q) ∇ ·m (q) = r (q) , (2)

where q is the state vector, F is the flux tensor, u is the mixture velocity field, and h, g,m and r are non-conservative quantities
we describe subsequently. We recall that the models mentioned herein are in velocity equilibrium and formally ensured the
principles of conservation of mass, momentum, and total energy. They also respect the second law of thermodynamics and are
hyperbolic with eigenvalues either equal to u or u±c, where u is the velocity in the x-direction and c is themixture speed of sound.
We select the pressure-disequilibrium model based on internal energies and we present it below. Whereas, for completeness, the
mechanical-equilibrium model of Kapila et al.16 and the pressure-disequilibrium model based on total energies18,43, which we
call UEqTotE, are recalled in A and B, respectively.
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FIGURE 3Wood and frozen speeds of sound for standard water–air mixture.

The pressure-disequilibrium model based on internal energies is expressed forN phases as

q =

⎡

⎢

⎢

⎢

⎢

⎣

�k
�k�k
�u

�k�kek

⎤

⎥

⎥

⎥

⎥

⎦

, F =

⎡

⎢

⎢

⎢

⎢

⎣

�ku
�k�ku

�u⊗ u + pI
�k�keku

⎤

⎥

⎥

⎥

⎥

⎦

, h =

⎡

⎢

⎢

⎢

⎢

⎣

−�k
0
0

�kpk

⎤

⎥

⎥

⎥

⎥

⎦

, r =

⎡

⎢

⎢

⎢

⎢

⎣

�pk
0
0

−pI�pk

⎤

⎥

⎥

⎥

⎥

⎦

, (3)

g = m = [0, 0, 0, 0]T, where �k, �k, pk and ek are the volume fraction, density, pressure and internal energy of each phase,
respectively, and for which k indicates the phase index. The mixture density and pressure are

� =
N
∑

k=1
�k�k and p =

N
∑

k=1
�kpk, (4)

while the mixture total energy is
E = e + 1

2
‖u‖2, (5)

where e is the mixture specific internal energy

e =
N
∑

k=1
Ykek

(

�k, pk
)

. (6)

In (6), ek
(

�k, pk
) is defined via an equation of state (EOS) and Yk are the mass fractions

Yk =
�k�k
�
. (7)

Herein, we will consider two-phase mixtures of gas (g) and liquid (l), for which the gas is modeled by the ideal-gas EOS
pg = �g(
g − 1)(eg − eg,ref ), (8)

and the liquid is modeled by the stiffened-gas (SG) EOS
pl = �l(
l − 1)(el − el,ref ) − 
l�∞, (9)

where 
 , eref and �∞ are model parameters44. Other EOS, e.g. NASG45 or Mie–Grüneisen, could easily be substituted in our
framework. r represents the relaxation of pressures between the phases with

�pk =
N
∑

j≠k
�k,j

(

pk − pj
)

, (10)
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where j are phases different from k and �k,j are the pressure-relaxation coefficients related to the k–j interactions. Herein, the
pressure-relaxation coefficient � is considered the same for each phase combination. The interfacial pressure is defined as

pI =

∑N
k

(

pk
∑N
j≠k zj

)

(N − 1)
∑N
k zk

, (11)

where zk = �kck and ck are the acoustic impedance and speed of sound of the phase k, respectively.
Since pressures are in disequilibrium here, the total energy equation of the mixture is replaced by the internal-energy equation

for each phase. Nevertheless, conservation of the mixture total energy can be written in its usual form
)�E
)t

+ ∇ · [(�E + p)u] = 0. (12)

We note that (12) is redundant when the internal energy equations are also computed. However, in practice, we include it in
our computations (detailed in Section 4.3) to ensure that the total energy is numerically conserved, and thus preserve a correct
treatment of shock waves.
The mixture speed of sound, also called frozen speed of sound, is defined according to

c2 =
N
∑

k=1
Ykc

2
k. (13)

Its behaviour is also shown in Figure 3 in function of the volume fraction for a standard water–air mixture. Note that after
applying an infinite pressure relaxation, the model converge to the mechanical-equilibrium model of Kapila et al.16 (A1) and
the effective mixture speed of sound matches Wood’s (1).

4 NUMERICAL METHODS

In this section is presented the numerical method including the general scheme, the new total-energy correction scheme and the
pressure-relaxation procedures for infinite and finite rates. Note that the method, except the new correction scheme, can also be
applied to solve the UEqTotE model (B3) of Pelanti & Shyue18.

4.1 General scheme
We solve (2) numerically using a splitting procedure between the left-hand-side terms associated with the flow and the right-
hand-side terms associated with our relaxation procedure. First, the time evolution of q on a computational cell i with volume
Vi and surface A with normal unit vector n is given by the explicit finite-volume Godunov46 scheme

qn+1i = qni −
Δt
Vi

( Ns
∑

s=1
AsF⋆s ·ns + h

(

qni
)

Ns
∑

s=1
Asu⋆s ·ns + g

(

qni
)

Ns
∑

s=1
Asm⋆

s

(

u⋆s
) ·ns

)

, (14)

where n is the time-step index. The relaxation terms are then solved using one of the procedures detailed in 4.4 to complete
the time-step integration. We also utilize MUSCL spatial reconstructions of the primitive state variables presented in 4.2. We
note that reconstructing the conservative variables instead leads to spurious oscillations near material interfaces9, and using
a characteristic-based reconstruction in our implementation significantly increases computational costs but does not improve
results. At the volume–volume interfaces, the associated Riemann problem is computed using the HLLC approximate solver17,47,
giving the flux tensor F⋆s , the flow-velocity vector u⋆s and non-conservative vector m⋆

s . Note that in the case of the volume-
fraction equation, u⋆s is depreciated to the speed of the contact discontinuity s⋆s to ensure a correct treatment of this transport
equation (here without the relaxation terms). The solution of (14) is restricted by the usual CFL criterion.
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4.2 MUSCL scheme
We use the second-order-accurate MUSCL scheme of Schmidmayer et al.31 with two-step time integration

q
n+ 1

2
i = qni +

1
2
ΔtL

(

qni
)

, (15)

qn+1i = qni + ΔtL
(

q
n+ 1

2
i

)

, (16)
where the operator L is the numerically approximated fluxes and non-conservative terms, function of the state vector q at
different time stages. The first step is a prediction and the usual piece-wise linear MUSCL reconstruction47 is used on the
primitive variables. The Minmod47,48, van Leer49, monotonized central (MC)50 and THINC (only for interface)37 slope limiters
are employed to minimize diffusion and are specified for each test case. The corrections based on total energy and relaxations,
detailed below, are applied at each stage.

4.3 Total-energy correction schemes
To ensure the conservation of total energy, a procedure correcting the non-conservative terms of the pressure-disequilibrium
model based on internal energies (3) is required and it uses the mixture total-energy relation (12).
The method proposed in Saurel et al.17 corrects the total energy after the relaxation procedure and imposes an infinite

relaxation. In the following, we call this method PUEq.
Herein, we propose a new method correcting the total energy before the relaxation procedure and therefore allowing finite or

infinite relaxations. This procedure takes place during the flux computation of the hyperbolic step. In the following, we call this
new method UEq.
Let us first express the discretized equation on internal energy of each phase

(

�k�kek
)n+1
i =

(

�k�kek
)n
i + F

⋆
�k�kek

, (17)
where

F⋆
�k�kek

= −Δt
Vi

( Ns
∑

s=1
As

(

�k�keku
)⋆
s ·ns +

(

�kpk
)n

Ns
∑

s=1
Asu⋆s ·ns

)

. (18)

Hence, the sum of internal energies can be expressed as
N
∑

k=1

(

�k�kek
)n+1
i =

N
∑

k=1

(

�k�kek
)n
i + F

⋆
�e, (19)

where

F⋆
�e =

N
∑

k=1
F⋆
�k�kek

. (20)

To ensure conservation of total energy, we must satisfy that the sum of internal energies equals the mixture internal energy �e
obtained from the mixture total-energy equation (12) and momentum (3)

N
∑

k=1

(

�k�kek
)n
i = (�e)

n
i ,

N
∑

k=1

(

�k�kek
)n+1
i = (�e)n+1i (21)

with
�e = �

(

E − 1
2
‖u‖2

)

. (22)
Defining the variation (flux) of mixture internal energy as

Δ�e = (�e)n+1i − (�e)ni , (23)
one can write

N
∑

k=1

(

�k�kek
)n+1
i =

N
∑

k=1

(

�k�kek
)n
i + Δ�e, (24)
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and therefore one must satisfy
F⋆
�e = Δ�e. (25)

To do so, we propose the following correction scheme
(

�k�kek
)n+1
i =

(

�k�kek
)n
i + F

⋆
�k�kek

+ �nk�, (26)
where

� = Δ�e −
N
∑

k=1
F⋆
�k�kek

, (27)

and where the mixture internal-energy variation can be computed by

Δ�e = F⋆
�E −

1
2

(

‖ (�u)n+1i ‖

2

�n+1i

−
‖ (�u)ni ‖

2

�ni

)

, (28)

with

F⋆
�E = −

Δt
Vi

Ns
∑

s=1
As [(�E + p)u]⋆s ·ns. (29)

This assures the conservation of total energy
N
∑

k=1

(

�k�kek
)n+1
i =

N
∑

k=1

(

�k�kek
)n
i +

N
∑

k=1

(

F⋆
�k�kek

+ �nk�
)

, (30)

N
∑

k=1

(

�k�kek
)n+1
i =

N
∑

k=1

(

�k�kek
)n
i + Δ�e. (31)

Note that one can use the mass fractions Y nk instead of the volume fractions �nk in (26) and that we experienced very similar
results.

4.4 Pressure-relaxation procedures
The pressure-disequilibrium model (3) can be solved with either a finite or an infinite relaxation procedure for r. At each time
step we solve the non-relaxed, hyperbolic equations (� → 0) using (14), then we solve the system of ordinary differential
equations (ODE)

)q
)t
= r (q) , (32)

that relaxes the disequilibrium pressures for a given � or � → +∞. When multi-stage time integration is used, these procedures
are performed at each stage.

4.4.1 Infinite relaxation
In the case of the infinite relaxation (stiff pressure relaxation), � → +∞, the model converges to a single, equilibrium pressure.
We use the infinite-relaxation procedure of Saurel et al.17.
Specifically, after manipulations of the internal-energy equations and the mixture mass equation, the mixture energy equation

can be written for two phases as
e − e0 +

(

p̂I,1 − p̂I,2
) (

Y1v1 − Y1v01
)

= 0, (33)
where superscript 0 indicates the hyperbolic step index, vk are the specific volumes of each state and p̂I,k = 1

vk−v0k
∫ Δt
0 pI

)vk
)t
dt.

In order that the mixture energy conservation be fulfilled it is necessary that p̂I,1 = p̂I,2 = p̂I . A possible estimate compatible
with the entropy inequality is p̂I = p, the relaxed pressure. This leads to solve the following system of equations forN phases

ek
(

p, vk
)

− e0k
(

p0k, v
0
k

)

+ p
(

vk − v0k
)

= 0, (34)
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which involves N + 1 unknowns, vk and p. Its closure is achieved using the saturation constraint (∑k �k = 1) and this system
can be replaced by a single equation to solve with a single unknown (p)

∑

k
(��)k vk (p) = 1, (35)

where (��)k are constant during the relaxation process and vk (p) are determined with the help of the EOS. For the general case
of SG EOS, the energy equations become

vk (p) =
p0k + 
k�∞,k + p(
k − 1)


k(p + �∞,k)
v0k. (36)

We ultimately solve (35) using the Newton–Raphson method to find the relaxed pressure. Then the phase densities and volume
fractions are determined.
We recall that after applying the infinite pressure-relaxation procedure, the model converges to the mechanical-equilibrium

model of Kapila et al.16 (A1) and the effective mixture speed of sound matches (1).

4.4.2 Finite relaxation
For a given and finite �, system (32) of ODE can be generalized and simplified by using the pressure equations instead of the
energy equations

)pk
)t

= −
�kc2I,k
�k

�Δpk, (37)
where

c2I,k =

pI
�2k
−
)ek
)�k

)

pk

)ek
)pk

)

�k

and Δpk =
N
∑

j≠k
pk − pj . (38)

c2I,k is expressed for ideal and SG EOS in C. In addition, the following thermodynamical constraints have to be verified at each
time step:

• Volume fractions conserved between [0, 1].

• Pressures can only converge to the same value and cannot cross each other, i.e. the relaxed pressure of the initially (before
relaxation) higher-pressure fluid cannot be inferior to the relaxed pressure of the lower-pressure fluid, and inversely.

This system of ODE can be solved using your favourite ODE solver, such as LSODA51,52. However, even though these types of
solvers are very good from a mathematical point of view, they do not take into account thermodynamical constraints. Therefore,
for a more controlled and faster procedure, we propose a classic, first-order, explicit, Euler scheme with time-step subdivisions.
The number of subdivisions is adapted at each time step to verify the constraints.

Scheme
The scheme to integrate the relaxation terms is as follow

�n+1k = �nk + Δtl�Δp
n
k,

�n+1k =
�nk�

n
k

�n+1k

,

pn+1k = pnk − Δtl
�nk

(

cnI,k
)2

�nk
�Δpnk,

(39)

where Δtl is the local, Euler, subdivided time step respecting the constraints detailed hereafter and initialized by the remaining
time necessary to complete the global time step Δt.
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Constraint on volume fractions
The volume fractions have to be conserved between [0, 1]. Therefore, the following algorithm can be applied for each phase to
determined Δtl

if
(

�Δpnk > "
)

Δtmax = min

(

Δtmax,
1 − �nk
�Δpnk

)

,

else if
(

�Δpnk < −"
)

Δtmax = min

(

Δtmax,
− �nk
�Δpnk

)

,

Δtmax = 0.5Δtmax,
if

(

Δtmax < Δtl
)

Δtl = Δtmax,

(40)

where " is a small value (typically 10−10) and Δtmax is initialized with a significant value.
Constraint on pressures
The condition is such that the pressures can only relax at a maximum where they are all equals pn+1k = pn+1. For two phases in
interaction (subscripted as 0 and 1), one can therefore determine the maximal time step:

)p1
)t

= −
�1c2I,1
�1

�
(

p1 − p2
)

and
)p2
)t

=
�2c2I,2
�2

�
(

p1 − p2
)

, (41)
hence

)p1 − p2
)t

= −�
(

p1 − p2
)

�c2, (42)
where

�c2 =
�1c2I,1
�1

+
�2c2I,2
�2

(43)
is the mixture bulk modulus. Once discretized, we obtain

(

p1 − p2
)n+1 −

(

p1 − p2
)n = −Δtmax�

(

p1 − p2
)n
(

�c2
)n
. (44)

Finally, with (p1 − p2
)n+1 = 0, the following algorithm can be applied for each combination of two phases to determined Δtl

Δtmax =
1

�
(

�c2
)n,

Δtmax = 0.5Δtmax,
if

(

Δtmax < Δtl
)

Δtl = Δtmax.

(45)

Case of a unique pressure
During this procedure, if the pressures are completely relaxed, i.e. a unique pressure for all phases, we terminate the Euler scheme
and we perform from the initial state an infinite relaxation to guarantee a unique pressure and better estimate the solution. This
also assures a faster computation.

4.5 Modelling summary
Finally, the steps involved in the first-order method can be summarized as

1. Hyperbolic step using (14) combined with the total-energy correction scheme (26) for the internal-energy equations.
2. Infinite- or finite-relaxation procedure (detailed in 4.4).

We recall that the total-energy correction scheme and relaxation procedures are applied at each stage for a higher-order method.

5 RESULTS

In the following, the new numerical method, UEq, is highlighted in bold to distinguish it from existing methods we compare
against: Saurel et al.17 and Pelanti & Shyue18,43. We remind that we call the latter PUEq and UEqTotE, respectively. The
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FIGURE 4 Problem configuration for the helium–air and water–air shock-tube problem.

modellings are tested in the limit of infinite and null pressure relaxations, even if the latter has no physical significance. Indeed,
an infinite relaxation rate is physically accurate when the relaxation time to obtain equilibrium is smaller than the time-step.
While a null relaxation rate means there is not any equilibrium reached after an infinite time.
Before getting into the detailed test cases, we note that in the context of finite relaxation, we experienced through our tests

different results when computing theUEqmodel (3) with or without the non-conservative terms �kpk∇ ·u of the internal-energy
equations. Details and comparisons for interface problems are given in the following and we chose the notation where “UEq"
stands for the UEq model without computing the non-conservative terms and “UEq NC" stands for the UEq model computing
those terms. Note that we observed extremely minor differences when infinite relaxation was computed and both configurations
are therefore not presented. Moreover, we recall that the scheme is still fully conservative with regard to the energy, whether
we compute or not those non-conservative terms. In addition, note for the UEqTotE modelling that we experienced valid results
only if all the non-conservative terms are computed, whatever the relaxation process.
The EOS used in the following test cases are summarized in Table 1. Note that two sets of parameters are given for water as

they are respectively more accurate, with regard to real fluid behaviour, in the flow range of the corresponding test cases.

Fluid EOS type 
 [-] �∞ [Pa] eref [J/kg]
Air IG 1.4 – 0

Helium IG 1.666667 – 0
Water1 (shock-tube tests) SG 4.4 6x108 0
Water2 (bubble tests) SG 2.35 1x109 0
TABLE 1 EOS of the different fluids used in the different test cases.

Tests cases on transport are not presented since we did not observe any fluctuations (excellent results) from the different
modellings.
The first test case presented is a helium–air shock tube and is typical for testing numerical methods. We are going to show

that no matter what numerics we use this test case always goes well. On the other hand, if a significantly different phase bulk
modulus is encountered (true two-phase interface), such as for water–air interfaces presented hereafter, numerics matter.

5.1 Helium–Air shock tube
This test case aims to present the behaviour of the modellings in shock-tube configurations with low density jumps. To do so, a
helium–air shock tube of 1 m long is presented with the initial discontinuity (diaphragm) between the two fluids positioned at
x = 0.7 m (Figure 4). Helium at pHe = 106 Pa and �He = 0.5 kg∕m3 is initially present in the left region, while air at pair = 105 Pa
and �air = 1 kg∕m3 is present in the right region. Initial velocities are nulls. Non-reflecting boundary conditions, the van Leer
and THINC limiters and 103 cells are used.
Figure 5 shows the ability of the different modellings to produce very reliable solutions for low density jumps when infinite

relaxation is used. Without any relaxation, as shown in Figure 6, the modellings also produce reliable solutions though with a
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FIGURE 5 Helium–Air shock-tube solution at t = 0.1 ms for the proposed UEq modelling as well as the PUEq and UEqTotE
modellings with infinite relaxation. The exact solution is also plotted as reference.

relatively small pressure peak at the interface location. We also note that UEq and UEqTotE give slightly better results than the
UEq NC modelling.
In addition, we recall that a null pressure relaxation rate, even if it has no physical significance, is a limit test case and since the

shock-tube problem is a problem between pure phases, relaxation between the phases should theoretically not even be considered.

5.2 Water–Air shock tube
This test case aims to present the behaviour of the modellings in shock-tube configurations with high density jumps. To do so,
a water–air shock tube of 1 m long is presented with the initial discontinuity (diaphragm) between the two fluids positioned
at x = 0.7 m (Figure 4). Water at pwater = 109 Pa and �water = 103 kg∕m3 is initially present in the left region, while air at
pair = 105 Pa and �air = 50 kg∕m3 is present in the right region. Initial velocities are nulls. Non-reflecting boundary conditions,
the van Leer and THINC limiters and 103 cells are used.
Figure 7 shows the ability of the different modellings to produce very reliable solutions for high density jumps when infinite

relaxation is used. Though one should note a relatively small fluctuation on pressure and velocity near the tail of the expansion
waves (typically observed in the literature).
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FIGURE6Helium–Air shock-tube solution at t = 0.1 ms for the proposedUEq andUEqNCmodellings as well as theUEqTotE
modelling without relaxation (� = 0). The exact solution is also plotted as reference. Since pressures are in disequilibrium when
the relaxation rate is not infinite, the mixture pressure p = ∑N

k=1 �kpk is presented.

Figure 8 shows the solutions given by the different modellings without relaxation.We observe that theUEqmodelling presents
good results with a small density undershot near the interface location. While the UEq NC and UEqTotE modellings, which
are mathematically identical (though not the same computed models and numerical methods), present very close but wrong
results. Indeed, only the expansion waves and interface location seem respected while the shocked states and shock position
are incorrect and present non-expected fluctuations. This behaviour is explained by the values taken from the non-conservative
terms �kpk∇ ·u of the internal-energy equations. Unlike the previous test case with helium and air, those terms can be about
three orders of magnitude higher in the current configuration (higher pressure). Even though the scheme ensures mixture energy
conservation, those values produce an inadequate distribution of the energy between the phases. One should note that the pressure
relaxation acts as a recalibration, and therefore as a correction, of the energy distribution. This explains why UEq and UEq NC
give almost identical results when infinite relaxation is performed.
We conclude from this type of problem that there is no need to relax with our modelling to obtain good results, whereas

it is necessary for the other modellings to correct the energy distribution produced by the schemes. Based on this conclusion,
the results presented in Figure 2 and the fact that we want to do finite relaxations, the UEq NC and UEqTotE modellings are
therefore no longer presented in what follows.

5.3 Shock on water–air interface
This test case is the one presented in Section 2 and it aims to present the behaviour of the modellings when a wave, here a
weak shock, interacts with a sharp or diffuse interface (high density jump). We recall that to do so, a shock tube of 1 m long is
presented with initially three states (Figure 1). A shock at xs = 0.3 m is separating water in a shocked and non-shocked states.
The water–air interface is positioned at xi = 0.7 m. The initial conditions are given in Table 2. Note that this shocked state can
be obtained from an initial shock tube with a high-pressure state of p = 107 Pa, � = 103 kg∕m3 and u = 0 m∕s. Non-reflecting
boundary conditions, the van Leer and THINC limiters and 103 cells are used.
Three relaxation rates are investigated. The first one is infinite, to match with the PUEq modelling. The second is null (� = 0),

that is to say no pressure relaxation. The third is finite with a value to be defined using the following approximations.
Similarly to what is done by Petitpas et al.20 in detonation context, we propose an approximation of Eq. (42) as

1
�
= ��c2, (46)
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FIGURE 7 Water–Air shock-tube solution at t = 241 µs for the proposed UEq modelling as well as the PUEq and UEqTotE
modellings with infinite relaxation. The exact solution is also plotted as reference. The Water1 SG EOS is used for water.

State position Fluid p [Pa] � [kg∕m3] u [m/s]
Left Shocked water 5.0421806x106 1001.8658 3.0337923

Middle Water 105 1000 0
Right Air 105 1 0

TABLE 2 Initial conditions of the three states of the problem of shock on water–air interface.

allowing to link the pressure relaxation coefficient � with the mixture bulk modulus (43) and a characteristic time �. Since we
are considering the case of a wave travelling through an interface, we propose to define the characteristic time as the time for a
wave to cross entirely the interface, leading to

� =
DI

c̃
, (47)

where DI is the interface thickness and c̃ is the average speed of sound we are expecting.
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FIGURE 8Water–Air shock-tube solution at t = 241 µs for the proposedUEq andUEqNCmodellings as well as the UEqTotE
modelling without relaxation. The exact solution is also plotted as reference. The Water1 SG EOS is used for water.

In the context of this test case with the diffused-interface configuration (detailed below), we estimate DI ≈ 0.02 m and
c̃ ≈ 103 m∕s, leading to � ≈ 2x10−5 s. Considering � = 0.5, the mixture bulk modulus can be estimated to �c2 ≈ 5x109 Pa,
finally leading to � ≈ 10−5 Pa−1s−1, which is taken as finite value for this test case.

5.3.1 Sharp-interface configuration
Figure 9 shows the behaviour of the interaction of the shock wave with an initially sharp interface (� = 0 or 1). The UEq
modelling is presented with infinite and finite relaxations. We observe that all the solutions are in very good agreement with the
exact solution. Even though there is a relatively small pressure peak at the interface location when a finite relaxation is used.

5.3.2 Diffused-interface configuration
To initially have a diffused interface, we employ an initial interface smearing procedure involving smearing the volume fraction
across the interface using an hyperbolic tangent function

�water =
1
2

[

1 − tanh
(x − xi

ℎ

)]

, (48)
where ℎ is the characteristic length of the smearing, here ℎ = 3 mm. The conservative variables then follow from simple mixture
relations, allowing thermodynamic consistency. The smeared interface is observable on Figure 10 (a).
Figure 10 shows the behaviour of the interaction of the shock wave with this initially diffused interface and this for different

relaxation rates.
First, as observed in Section 2, the solutions obtained with an infinite relaxation (PUEq andUEq) are seriously polluted by the

interaction of the shock with the diffused interface. Indeed, we recall that for these modellings the speed of sound in a mixture
(here interface) follows the Wood speed of sound which presents significantly lower speeds than the ones of the pure phases
(see Figure 3). This affects the wave propagation through the interface and therefore induces a complete reshaping of the waves,
here the transmitted and reflected shocks, and with particular transitions between the different states.
Second, we observe a relatively good agreement of the UEq modelling without any relaxation. Even though relatively small

perturbations are noticeable. Furthermore, one can note that the transmitted shock wave is in advance compared to its theoretical
location. Indeed, when � = 0, the speed of sound in a mixture (interface) now follows the frozen speed of sound which is almost
equal to the speed of sound of the higher-density fluid in almost all the range of the volume fraction (see Figure 3). Therefore,
the shock travels faster when crossing the interface: it travels almost like it is travelling only in water and not in air for most of
the interface thickness.
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FIGURE 9 Solution of the shock on an initially sharp water–air interface at t = 600 µs for the proposed UEq modelling with
infinite or finite relaxations. The exact and PUEq solutions are also plotted for comparison. The Water1 SG EOS is used for
water. (d) is a magnified view of (c).

Third, when picking a finite relaxation rate of � = 10−5 s−1, we remark fewer perturbations than the � = 0 case and the shock
location is also improved. Indeed, we tend to have an interface speed of sound varying between the Wood and frozen speeds of
sound (though closer to the frozen one), which slows down the shock.

5.4 Spherical bubble collapse
This test case aims to present the behaviour of different relaxation rates forUEq during the spherical collapse of a bubble in a free
field. To reduce the computational cost, a one-dimensional domain of 3 mm long is used with spherical axi-symmetry to mimic
a three-dimensional bubble (Figure 11). The two-phase, axi-symmetric system of equations solved is presented in Appendix D.
The domain contains high-pressure water at p∞ = 50.6625x105 Pa (50 atm) and �l = 103 kg∕m3. At its origin is positioned
an air bubble of initial radius R0 = 0.1 mm. Its state is equivalent to saturated vapor with pb = 3550 Pa (p∞∕pb = 1427) and
�b = 0.027 kg∕m3. Initial velocities are nulls. One could note that this configuration enforces an initial interface disequilibrium.
A non-reflecting boundary condition is used at the far field limit while a symmetry boundary condition is used at the origin of
the domain. The mesh contains 150 cells from 0 to 0.3 mm, which corresponds to 100 cells per bubble diameter, and then the
grid is stretched non-uniformly to accommodate the large computational domain. The MC and THINC limiters are used.
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FIGURE 10 Solution of the shock on an initially diffused water–air interface at t = 600 µs for the proposed UEq modelling
with infinite or finite relaxations. The exact and PUEq solutions are also plotted for comparison. The Water1 SG EOS is used
for water. (d) is a magnified view of (c).

In the following, we use the radial bubble-wall evolution to compare the performance of the different modellings. Because
we are in one dimension of space, we define an effective bubble radius, R, as

R =
N
∑

i=1
�g,iVc,i, (49)

where N is the total number of grid cells, and �g,i and Vc,i are the gas volume fraction and the volume of cell i, respectively.
The radial bubble-wall evolution is presented in a non-dimensionalized form where

tc = 0.915R0

√

�l
p∞

(50)

is the nominal total collapse time, also called Rayleigh collapse time, from its initial (maximum) radius R0 53.
We also compute a semi-analytical solution following the Keller–Miksis equation54; a compressible form of the Rayleigh–

Plesset equation. The Keller–Miksis equation is based on an asymptotic expansion in Mach number of the Bernoulli equation
which also assumes that the bubble remains spherical. Its use here is predicated on the idea that errors measured relative to it are
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FIGURE 12 Radial bubble-wall evolution for spherical bubble collapse with p∞∕pb = 1427 andNR0 = 50 cells. Solutions arecomputed using the PUEq and proposed UEq modellings as well as the Keller–Miksis equation. The Water2 SG EOS is used
for water. (b) is a magnified view of (a).

larger than any errors associated with the asymptotic expansion and presumption of sphericity inherent to it. This assumption is
borne out in the results presented below.
In Figure 12 is shown the solutions obtained from the PUEq andUEqmodellings as well as from the Keller–Miksis equation.

Note that the solutions are only shown until t = 1.05tc , just after the minimum bubble radius is reached, since the subsequent
rebounds for large pressure ratios for the Keller–Miksis equation are well-known to be physically inaccurate55. We remark that
UEq with infinite relaxation performs as well as PUEq. Whereas the smaller the finite relaxation rate, the higher the minimum
bubble radius and therefore the lower the accuracy. Furthermore, the maximum pressure being directly related to the minimum
radius, the maximum pressure for smaller finite relaxation rate is reduced.
We conclude that in the scenario, where we are not looking at waves crossing the interface, it is highly preferable to compute

an infinite relaxation rate.

5.5 Non-spherical bubble collapse
This test case aims to present again the behaviour of different relaxation rates for UEq but here for a more complex flow:
non-spherical bubble collapse. To reduce the computational cost, a two-dimensional domain (12 mm x 12 mm) is used with
cylindrical axi-symmetry to mimic a three-dimensional bubble. The two-phase, axi-symmetric system of equations solved is
presented in Appendix D. Figure 13 shows the flow configuration considered.
The initial bubble is spherical with radius R0 = 0.5 mm and stand-off distance, distance from the wall to bubble centre,

S = 3R0∕2. The bubble is filled with non-condensable gas of initial pressure pb = 3550 Pa and density �b = 0.027 kg∕m3.
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R0

FIGURE 13 Problem configuration for a non-spherical bubble collapse near a wall. Two dimensions are used with cylindrical
axi-symmetry.

Furthermore, the collapse dynamics are also only weakly sensitive to the internal bubble pressure when the driving pressure
differences are large27.
The bubble is surrounded by water with a density of �l = 103 kg∕m3 and varying pressure

p(r, t = 0) = p∞ +
R0
r

(

pb − p∞
) for r > R0, (51)

where r is the radial coordinate with origin at the bubble centre. Initial velocities are null. This initialization matches the pressure
distribution predicted by the Rayleigh equation for the Besant problem53,56. For the configuration considered, it provides a
valid approximation of the realistically evolving pressure field and suppresses the formation of spurious pressure waves due to
pressure jumps13,57. Further, it has been established that this approximation evolves towards an exact solution of the Besant
problem within a very short time58. We use p∞ = 50.6625x105 Pa (50 atm), which matches the previous test case and serves as
a representation of actual applications involving liquid cavitation.
Unlike the spherical-bubble-collapse test case presented above, one could note that this configuration involves an initial

interface equilibrium. Non-reflecting boundary conditions are used at the far field limits while symmetry and wall boundary
conditions are used on the bottom and left boundaries, respectively. The mesh contains 400 cells from 0 to 2 mm in the x-
direction and 250 cells from 0 to 1.25 mm in the y-direction, which corresponds to 200 cells per bubble diameter, and then the
grid is stretched non-uniformly to accommodate the large computational domain. The MC and THINC limiters are used.
The total simulation time is 1.15t∗ where

t∗ = R0

√

�l
Δp

(52)
is an estimate of the collapse time of a bubble collapse near a solid wall59, whereΔp ≡ p∞−pb is the driving pressure difference.
The wall has a retarding effect on the collapse and thus t∗ is longer than the Rayleigh collapse time for spherical collapses
(tc = 0.915t∗).
Figure 14 visualizes the flow of the collapsing bubble using a similar setup than what is done by Trummler et al.28, meaning

using the pressure field p and numerical schlieren Φ60 as
Φ = exp

(

−
k|∇�|
max |∇�|

)

, (53)

where k = 400 is used to ensure waves in the liquid are visible61,12. However herein, because we present results with finite
relaxation rates, the flow encounters negative mixture pressures (coming from the liquid). Hence, to avoid any visualization
failure when rendering the log-scale pressure field, we present the following non-dimensional pressure field

p + �∞,water
p∞

. (54)
Figure 14 shows results for six selected times and for infinite and finite relaxations. Note that the � = 0 simulation, which

rather represents a limit test of the modelling (no communication between the phases with regard to energy) than a physical
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behaviour, was unstable for this test case and is therefore not presented. In the three presented configurations, we observe the
non-spherical collapse of the bubble with several characteristic stages:

1. (i), the bubble slowly collapses with the part of the interface further from the wall moving faster and in direction to the
wall.

2. (ii), a jet is forming until the two ends of the interface interact.
3. (iii), the jet propagates in direction to the wall and a violent shock wave is emitted.
4. (iv) and (v), the waves emitted in direction to the wall slowly dissipate due to the three-dimensional propagation and then

they are reflected by the wall.
5. (vi), those reflected waves travel back to the bubble and interact with the now diffused interface.

As expected from the results of the spherical collapse, we remark that the higher the relaxation rate, the smaller the mini-
mum bubble volume. However, it appears that the released energy between the three cases is similar since they all produce an
equivalent pressure peak, about 2x108 Pa, on the wall at the location of the axis of symmetry (Figure 15).
Properly evaluate the results is a difficult task considering the complicated wave patterns in such an advanced test case.

However, considering the results obtained on the spherical collapse and the validation of the modelling with infinite relaxation
rate made in the literature28,27,62,15, we can assume the results with � = ∞ are the closest to a physical behaviour until the
interaction of the wall-reflected waves with the bubble. Indeed, based on the results shown in Section 5.3, this interaction is
certainly not properly handled because the interface is now diffused. It is important to note that this situation could also happen
in numerous situations, such as when there is a cloud of bubbles where numerous bubbles collapse and emit waves which are
therefore impinging on diffused interfaces58,57 or when two bubbles interact and collapse near a wall63.

6 DISCUSSION ON FINITE PRESSURE RELAXATION RATE

Compared to other models and as stated in the introduction, the Kapila et al.16 model and its corresponding numerical solu-
tions17,18 have many mathematical and thermodynamical advantages leading to very good results for numerous problems.
However, as shown herein, they lack reliability for the problem of the interaction of a wave with a diffused interface. Make use of
a finite relaxation rate instead of an infinite one is one solution. In this context, the question of the choice of the rate value arises
and the flow topology, i.e. wave travelling through an interface, bubble collapse, cavitation or any kind of mixture phenomenon,
governs what should be taken.
For the peculiar case of a wave interacting with a diffused interface, the target is an effective speed of sound within the mixture

region (interface) evolving linearly with the volume fraction between the two pure-phase speeds of sound. To obtain such results,
we proposed to use Eq. (43), (46) and (47) for which parameters are the thickness of the interface and the speed of sound of
each pure phase. One should note that the thickness of the interface may evolve with the flow.
For a resolved bubble collapse, we showed that an infinite relaxation rate produces the best results, at least until the interaction

of the wall-reflected waves with the bubble where inaccuracies are expected. We note that during the collapse, no waves travel
through the interface but rather a compression is formed at the interface vicinity, leading to the pressure peak, shock wave and
jet. These are phenomenologically different, which explains the difference in relaxation rate.
While in the context of mixtures, the choice of the rate value could be evaluated by using for example the collapse time of

gas pores within porous media subjected to sudden increase in pressure64, or by using experimental information on the negative
pressure signal from expansion waves travelling through a liquid before cavitation (appearance of a gas phase and therefore with
positive pressure) is reached65.
Finally, we propose herein a numerical context in which one can choose a pressure relaxation rate, even if this choice is in

itself a challenging task. In particular because the value of the relaxation rate must be adaptive to the local flow topology.

7 CONCLUSION

We propose herein a newmethod to compute the pressure-disequilibriummodel (3) where the correction of the internal energies
of the phases is done, unlike the previous method of Saurel et al.17, directly on the fluxes (before the relaxations). This allows
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FIGURE 14 Numerical schlieren (bottom) and log-scale pressure fields (top) of an air bubble collapsing onto a wall at selected
times (i)–(vi) for three relaxation coefficients. Gas volume fraction �g is shown as a shaded area of decreasing opacity with
decreasing �g (bottom), while the �g = 0.5 bubble interface is shown as a solid curve (top). The initial bubble interface (t = 0)
is also shown with a red dash line at time (i). The Water2 SG EOS is used for water.

to compute infinite and finite pressure relaxations. This new modelling, called UEq herein, has been validated on numerous test
cases: transport, classical shock tubes, shock on interface, spherical and non-spherical bubble collapses.When infinite relaxation
is used, the proposed modelling (UEq) presents almost exactly the same solutions than the PUEq modelling17 while being
more generalized (works for finite relaxations). We also propose a methodology to integrate the finite relaxation terms which
optimizes the sub-time steps. The latter being determined under specific conditions on volume fractions and pressures.
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FIGURE 15 Pressure on the wall at the axis of symmetry for the non-spherical collapse test case and for three relaxation
coefficients. The Water2 SG EOS is used for water.

The influence of computing or not the non-conservative terms �kpk∇ ·u of the internal-energy equations of (3) has been
investigated. We remind that whether we compute or not the terms, the scheme is conservative. If an infinite relaxation is
done, results are almost identical. Whereas if a finite relaxation is done, another situation arises. When interface problems are
simulated, the solutions are definitely better when the non-conservative terms are not computed, especially when the terms have
significant values. Indeed, the latter produce an inadequate distribution of the energy between the phases. Results were presented
to exhibit this behaviour and we conclude it is better not to compute those terms.
Comparisons against the model of Pelanti & Shyue18,43 (B3), using total energies instead of internal energies and herein

called UEqTotE, were also made. In all the investigated cases, UEqTotE presented similar results than the UEq NC modelling
(taking into account the non-conservative terms). Meaning it worked well but for the water–air shock-tube case where � = 0was
considered. Indeed, like for UEq NC, the non-conservative terms produced an inadequate distribution of the energy between
the phases. One may note that the original wave-propagation scheme proposed in18,43 has not been tested and this could maybe
improve the results when � = 0.
Through our different tests, we have shown that waves behave differently when they form at the interface (mixture) compared

to when they pass through it. Indeed, waves interacting with a diffused interface have shown issues when infinite relaxation is
used. Solutions are seriously polluted due to the mixture speed of sound following Wood’s relation (1) for which significantly
lower speeds than the ones of the pure phases are present. In this context, it has been shown that using a finite relaxation rate
is a good candidate to avoid such problems and to allow good wave transmission. For the particular case of waves crossing an
interface, we also proposed a methodology to determine the value of the finite rate �.
When considering bubble collapse, spherical or not, it appears that an infinite rate is preferred to match physical phenomena

during the collapse phase. However, interactions of the waves, potentially produced by the bubbles, with diffused interfaces
(here bubble wall) are to avoid if infinite relaxation rate is kept. Note that diffused interfaces obviously appear during the course
of a simulation but can also simply be present because an initial smearing is used to stabilize the high-order method39,13,9,15.
Finally, in this paper, we first raised the problem of interaction of waves with diffused interfaces and its consequences on

solutions. We then proposed a solution as an initial step toward better wave propagation in the context of diffused interfaces.
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APPENDIX

A MECHANICAL-EQUILIBRIUMMODEL OF KAPILA ET AL.

The mechanical-equilibrium model of Kapila et al.16 is expressed for a two-phase flow (N = 2) as
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and K∇ ·u represents expansion and compression of each phase in mixture regions. For this model, the mixture speed of sound
follows Wood’s29.

B PRESSURE-DISEQUILIBRIUMMODEL BASED ON TOTAL ENERGIES

The pressure-disequilibrium model based on total energies18,43, which we call UEqTotE, is expressed forN phases as
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�k�ku

�u⊗ u + pI
�k�kEku

⎤

⎥

⎥

⎥

⎥

⎦

, h =

⎡

⎢

⎢

⎢

⎢

⎣

−�k
0
0

−Ykp + �kpk

⎤

⎥

⎥

⎥

⎥

⎦

,

g =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
Yk

⎤

⎥

⎥

⎥

⎥

⎦

, m =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
pu

⎤

⎥

⎥

⎥

⎥

⎦

, r =

⎡

⎢

⎢

⎢

⎢

⎣

�pk
0
0

−pI�pk

⎤

⎥

⎥

⎥

⎥

⎦

,

(B3)

where
Ek = ek +

1
2
‖u‖2. (B4)

For this model, pressures are also in disequilibrium and the total energy equation of the mixture is replaced by the total-
energy equation for each phase. Nevertheless, conservation of the mixture total energy (12) can be recovered. However, unlike
model (3), there is no need to include (12) in our computations to numerically ensure conservation of the total energy. Indeed,
the sum of the non-conservative terms of each phase cancels. Further, the mixture speed of sound is the same than for model (3).
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We recall that for a finite pressure relaxation, the pressure equations are solved
)pk
)t

= −
�kc2I,k
�k

�Δpk, (C5)
where

c2I,k =

pI
�2k
−
)ek
)�k

)

pk

)ek
)pk

)

�k

and Δpk =
N
∑

j≠k
pk − pj , (C6)

and where c2I,k needs to be expressed for specific EOS.In the context of ideal and SG44 EOS, one can write the internal energies as

ek =
pk + 
k�∞,k
(


k − 1
)

�k
. (C7)

Hence
)ek
)�k

)

pk

= −
pk + 
k�∞,k
(


k − 1
)

�2k
and

)ek
)pk

)

�k

=
1

(


k − 1
)

�k
. (C8)

This leads to
c2I,k =

(


k − 1
)

pI + pk + 
k�∞,k
�k

. (C9)

D TWO-PHASE, PRESSURE-DISEQUILIBRIUMMODELWITH AXI-SYMMETRY

In the context of cylindrical or spherical axi-symmetry, the pressure-disequilibrium model based on internal energies17 for two
phases is written as follows. Note that the axi-symmetric terms herein are solved as source terms.

Cylindrical coordinates

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)�1
)t
+ u

)�1
)r

+ v
)�1
)z

= �
(

p1 − p2
)

,
)�1�1
)t

+
)�1�1u
)r

+
)�1�1v
)z

=
�1�1u
r

,
)�2�2
)t

+
)�2�2u
)r

+
)�2�2v
)z

=
�2�2u
r

,
)�u
)t
+
)�u2 + p
)r

+
)�uv
)z

=
�u2

r
,

)�v
)t

+
)�uv
)r

+
)�v2 + p
)z

=
�uv
r
,

)�1�1e1
)t

+
)�1�1e1u

)r
+
)�1�1e1v

)z
+ �1p1

(

)u
)r
+
)v
)z

)

= −
�1

(

�1e1 + p1
)

u
r

− �pI
(

p1 − p2
)

,

)�2�2e2
)t

+
)�2�2e2u

)r
+
)�2�2e2v

)z
+ �2p2

(

)u
)r
+
)v
)z

)

= −
�2

(

�2e2 + p2
)

u
r

− �pI
(

p1 − p2
)

,

(D10)

with u = (u, v)T in two dimensions and with the total-energy equation
)�E
)t

+
) (�E + p) u

)r
+
) (�E + p) v

)z
=
(�E + p) u

r
. (D11)
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Spherical coordinates

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)�1
)t
+ u

)�1
)r

= �
(

p1 − p2
)

,
)�1�1
)t

+
)�1�1u
)r

=
2�1�1u
r

,
)�2�2
)t

+
)�2�2u
)r

=
2�2�2u
r

,
)�u
)t
+
)�u2 + p
)r

=
2�u2

r
,

)�1�1e1
)t

+
)�1�1e1u

)r
+ �1p1

)u
)r
= −

2�1
(

�1e1 + p1
)

u
r

− �pI
(

p1 − p2
)

,
)�2�2e2
)t

+
)�2�2e2u

)r
+ �2p2

)u
)r
= −

2�2
(

�2e2 + p2
)

u
r

− �pI
(

p1 − p2
)

,

(D12)

with u = u in one dimension and with the total-energy equation
)�E
)t

+
) (�E + p) u

)r
=
2 (�E + p) u

r
. (D13)
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