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Multi-Objective Optimization Problems (MOP) a major area of
interest in Optimization and in Operation Research.
History : Edgeworth (XIX), Pareto (1906), Kuhn-Tucker (1951) . . .
In a (MOP) we deal with several conflicting objectives. The
solution set (called Pareto or efficient set) consists of the feasible
solutions such that none of the objectives values can be
improved further without deteriorating another.
The Pareto set is often very large (infinite, and even unbounded),
and technically speaking each Pareto solution is acceptable.
Problem : how to choose one solution?
One possible answer: optimize a scalar function f over the
Pareto set associated with a (MOP), i.e. post-Pareto analysis.
Practical applications : production planning and portfolio
management.
Solving this problem one may avoid generate all the Pareto set.
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Optimizing over the Pareto control set is a difficult
problem!

Even in the simpler case of a multi-objective mathematical
programming problem optimizing over the Pareto set is already very
difficult because:

the Pareto set is not described explicitly;

the Pareto set is not convex even for linear multi-objective
problem.
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History of the problem in the simpler case

Beginning with the work of Philip (1972) the problem of optimizing a
scalar objective over the Pareto set of a multiobjective mathematical
programming problem has been studied in the last decades by :

Benson (1984 99K)
Dauer (1991 99K)
Craven (1991)
HB (1993 99K)
Fülöp (1994)
An, Tao and Muu (1996)
Horst and Thoai (1999)
Yamamoto (2002) etc.
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History of the problem in the simpler case

The results which I present in my talk seem to be the first approaches
of the problem of optimizing over a Pareto set in stochastic setting as
well as in multiobjective control setting.
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Problems statement

Stochastic optimization over Pareto in DS
This part of my talk is based on a very recent paper written jointly with
my Ph.D. student Julien Collonge:

Stochastic Optimization over a Pareto Set Associated with a
Stochastic Multi-Objective Optimization Problem
www.optimization-online.org/DB HTML/2013/01/3733.html
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Problems statement

Stochastic optimization over Pareto in DS

(SOOPD) min
x∈Ew

E
[
F 0
(

x , ξ(·)
)]

where

ξ : Ω→ Rd is a random vector defined on (Ω,F,P),

x ∈ Rn is a deterministic vector,

E
[
F 0
(

x , ξ(·)
)]

is the expectation of the r.v. ω 7→ F 0
(

x , ξ(ω)
)

Ew is the weakly Pareto set associated with

(SMOP) MIN
Rr

+x∈S
E
[
F
(

x , ξ(·)
)]

where the feasible set S ⊂ Rn.

The multi-objectives are given by

Rn×Ω 3
(

x , ω
)
7→ F

(
x , ξ(ω)

)
=
(

F 1
(

x , ξ(ω)
)
, . . . ,F r

(
x , ξ(ω)

))
∈ Rr ,

where F i : Rn × Rd → R, i = 1, . . . , r .
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Problems statement

Stochastic optimization over Pareto in DS

For (SMOP) the element x∗ in S is said to be
Pareto iff there is no element x ∈ S satisfying

∀j ∈ {1, . . . , r} Eξ[F j (x , ·)] ≤ Eξ[F j (x∗, ·)]

and
∃j0 ∈ {1, . . . , r} Eξ[F j0 (x , ·)] < Eξ[F j0 (x∗, ·)]

weakly Pareto iff there is no element x ∈ S satisfying

∀j ∈ {1, . . . , r} Eξ[F j (x , ·)] < Eξ[F j (x∗, ·)]
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Problems statement

Stochastic optimization over Pareto in DS

(SOOPD) min
x∈Ew

E
[
F 0
(

x , ξ(·)
)]

Remark
For problem (SOOPD) we need to assume that (SMOP) is strictly
convex.
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Problems statement

Stochastic optimization over Pareto in OS

In this case the scalar function to be minimized over the properly
Pareto set associated with (SMOP) depends on the expectations of
the objectives, i.e.

(SOOPO) min
x∈E

f
(
E
[
F
(

x , ξ(·)
)])

where f : Rr → R is a scalar deterministic continuous function and E
is the Pareto set associated with the Stochastic Multi-Objective
Optimization Problem (SMOP) defined above.

Remark
In this case no convexity assumption is necessary. Thus, for problem
(SOOPO), we do not assume the convexity of (SMOP).
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Preliminaries

SAA approach

If the expected value functions can be computed directly, the
problem becomes a deterministic one.
In most cases, the closed form of the expected values is very
difficult to obtain. This is case considered here.
In order to give approximations, we apply the well-known Sample
Average Approximation (SAA-N, where N is the sample size)
method.
Under reasonable and suitable assumptions, we show that the
SAA-N weakly Pareto sets converge w.r.t. the
Hausdorff-Pompeiu distance to its true counterpart.
Moreover, we show that the sequence of SAA-N optimal values
converges to the true optimal value as the sample size increase,
and any cluster point of any sequence of SAA-N optimal
solutions is almost surely a true optimal solution.



Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Preliminaries

SAA approach

If the expected value functions can be computed directly, the
problem becomes a deterministic one.
In most cases, the closed form of the expected values is very
difficult to obtain. This is case considered here.
In order to give approximations, we apply the well-known Sample
Average Approximation (SAA-N, where N is the sample size)
method.
Under reasonable and suitable assumptions, we show that the
SAA-N weakly Pareto sets converge w.r.t. the
Hausdorff-Pompeiu distance to its true counterpart.
Moreover, we show that the sequence of SAA-N optimal values
converges to the true optimal value as the sample size increase,
and any cluster point of any sequence of SAA-N optimal
solutions is almost surely a true optimal solution.



Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Preliminaries

SAA approach

If the expected value functions can be computed directly, the
problem becomes a deterministic one.
In most cases, the closed form of the expected values is very
difficult to obtain. This is case considered here.
In order to give approximations, we apply the well-known Sample
Average Approximation (SAA-N, where N is the sample size)
method.
Under reasonable and suitable assumptions, we show that the
SAA-N weakly Pareto sets converge w.r.t. the
Hausdorff-Pompeiu distance to its true counterpart.
Moreover, we show that the sequence of SAA-N optimal values
converges to the true optimal value as the sample size increase,
and any cluster point of any sequence of SAA-N optimal
solutions is almost surely a true optimal solution.



Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Preliminaries

SAA approach

If the expected value functions can be computed directly, the
problem becomes a deterministic one.
In most cases, the closed form of the expected values is very
difficult to obtain. This is case considered here.
In order to give approximations, we apply the well-known Sample
Average Approximation (SAA-N, where N is the sample size)
method.
Under reasonable and suitable assumptions, we show that the
SAA-N weakly Pareto sets converge w.r.t. the
Hausdorff-Pompeiu distance to its true counterpart.
Moreover, we show that the sequence of SAA-N optimal values
converges to the true optimal value as the sample size increase,
and any cluster point of any sequence of SAA-N optimal
solutions is almost surely a true optimal solution.



Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Preliminaries

SAA approach

If the expected value functions can be computed directly, the
problem becomes a deterministic one.
In most cases, the closed form of the expected values is very
difficult to obtain. This is case considered here.
In order to give approximations, we apply the well-known Sample
Average Approximation (SAA-N, where N is the sample size)
method.
Under reasonable and suitable assumptions, we show that the
SAA-N weakly Pareto sets converge w.r.t. the
Hausdorff-Pompeiu distance to its true counterpart.
Moreover, we show that the sequence of SAA-N optimal values
converges to the true optimal value as the sample size increase,
and any cluster point of any sequence of SAA-N optimal
solutions is almost surely a true optimal solution.



Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Preliminaries

Some technical aspects and definitions

The random vector ξ : (Ω,F,P)→ Rd generates the probability
measure Pξ on (Rd ,Bd ) with Pξ(B) = P(ξ−1(B)), where Bd is the
Borel σ-field in Rd .

The support of ξ is the smallest closed set Ξ ⊂ Rd s.t. Pξ(Ξ) = 1.

For each x ∈ Rn, i = 0,1, . . . , r , we suppose that the function

Fi (x , ·) : (Ξ,BΞ,Pξ)→ (R,B1)

is measurable, and we say that Fi is a random function.

We have

E
[
Fi (x , ξ(·))

]
= Eξ

[
Fi (x , ·)

]
:=

∫
Ξ

Fi (x , η)dPξ(η).
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Preliminaries

Some technical aspects and definitions

Let Ξ̃ =
∞∏

N=1
Ξ and let B̃ = ⊗∞N=1BΞ be the smallest σ-algebra on Ξ̃

generated by all sets of the form B1×B2×· · ·×BN ×Ξ×Ξ× . . . , Bk ∈
BΞ, k = 1, . . . ,N, N = 1,2, . . . . The next Theorem is well-known from
General Measure Theory.

Theorem

There exists a unique probability P̃ξ on (Ξ̃, B̃) such that

P̃ξ(B1 × B2 × · · · × BN × Ξ× Ξ× . . . ) =
N∏

k=1
Pξ(Bk ) for all N = 1,2, . . .

and Bk ∈ BΞ for all k = 1, . . . ,N.
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Preliminaries

Some technical aspects and definitions

For each N ∈ N∗, x ∈ Rn, i = 0,1, . . . , r , consider the function

F̂ i
N(x , ·) : (Ξ̃, B̃, P̃ξ)→ R (1)

ξ̃ = (ξ1, ξ2, . . . ) 7→
1
N

N∑
k=1

Fi (x , ξk )

called N-sample average approximation (SAA-N function).

Put
F̂N(x , ·) = (F̂ 1

N(x , ·), . . . , F̂ r
N(x , ·)).
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Preliminaries

Some technical aspects and definitions

For each N ∈ N∗ and ξ̃ ∈ Ξ̃, denote by Ew
N (ξ̃) the weakly-Pareto set

associated with the N−Sample Average Approximation MOP

(MOPN(ξ̃)) MIN
Rr

+x∈S
F̂N(x , ξ̃)

Thus, for each N ≥ 1, the SAA-N problem associated with our “true”
problem (SOOPD) is

(OOPDN(ξ̃)) min
x∈Ew

N (ξ̃)
F̂ 0

N(x , ξ̃)
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Main results in the decision space

Hypotheses

We assume the following:

S is a non empty compact convex subset of Rn,

the i.i.d property holds for the random process ξ̃ ∈ Ξ̃,

∀j = 0, . . . , r , x 7→ F j (x , ξ) is finite valued, strictly convex and
continuous on S for a.e. ξ ∈ Ξ.

∀j = 0, . . . , r , F j is dominated by an integrable function K j , i.e.

Eξ
[
K j (·)

]
< ∞∣∣∣F j (x , ξ)

∣∣∣ ≤ K j (ξ) for all x ∈ S and a.e. ξ ∈ Ξ
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Main results in the decision space

Convergence results in the decision space

Theorem

For almost all ξ̃ in Ξ̃, the Hausdorff-Pompeiu distance a between the
SAA-N weakly Pareto sets Ew

N (ξ̃) and the true weakly Pareto set Ew

tends to zero as N tends to infinity, i.e.

P̃ξ
({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

H
(

Ew
N (ξ̃),Ew

)
= 0

})
= 1

aFor any bounded non empty sets A, B ⊂ Rn the Hausdorff-Pompeiu distance
H(A, B) := max(D(A, B), D(B, A)), where the deviation D(A, B) := sup

x∈A
d(x , B).
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Main results in the decision space

Convergence results in the decision space

Theorem

For almost all ξ̃ in Ξ̃, the sequence of SAA-N optimal values(
VN(ξ̃)) := min

x∈Ew
N (ξ̃)

F̂ 0
N(x , ξ̃)

)
N≥1

converges to the true optimal value

V := min
x∈Ew

Eξ[F 0(x , ·)].

In particular, for almost all ξ̃ in Ξ̃, all cluster points of any sequence
(x∗N)N≥1 in argmin

x∈Ew
N (ξ̃)

F̂ 0
N(x , ξ̃) are optimal solutions of the true problem

(SOOPD).
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Convergence in the outcome space

The problem in the outcome space

(SOOPO) min
x∈E

f
(
E
[
F
(

x , ξ(·)
)])

where f : Rr → R is a scalar deterministic continuous function and E
is the Pareto set associated with our Stochastic MOP

(SMOP) MIN
Rr

+x∈S
E
[
F
(

x , ξ(·)
)]
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Convergence in the outcome space

Hypotheses

S is a non empty compact subset of Rn,

the i.i.d property holds for the random process ξ̃ ∈ Ξ̃,

∀j = 0, . . . , r , x 7→ F j (x , ξ) is finite valued and continuous on S
for a.e. ξ ∈ Ξ.

∀j = 0, . . . , r , F j is dominated by an integrable function K j , i.e.

Eξ
[
K j (·)

]
< ∞∣∣∣F j (x , ξ)

∣∣∣ ≤ K j (ξ) for all x ∈ S and a.e. ξ ∈ Ξ
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Convergence in the outcome space

Main results

Theorem

For almost all ξ̃ in Ξ̃, the Hausdorff-Pompeiu distance between the
SAA-N Pareto sets image F̂N(Ep

N(ξ̃), ξ̃) and the true Pareto set image
Eξ[F (Ep, ·)] tends to zero as N tends to infinity, i.e

P̃ξ
({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

H
(

F̂N(Ep
N(ξ̃), ξ̃),Eξ[F (Ep, ·)]

)
= 0

})
= 1
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Convergence in the outcome space

Main results

Theorem

For almost all ξ̃ in Ξ̃, the sequence of SAA-N optimal values(
VN(ξ̃)) := infx∈Ep

N (ξ̃) F̂ 0
N(x , ξ̃)

)
N≥1

converges to the true optimal value

V := infx∈Ep f (Eξ[F 0(x , ·)]).
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This part of my talk is based on the paper

• Post-Pareto Analysis for Multiobjective Parabolic Control Systems,
Mathematics and its Applications - Annals of AORS (in press),
www.optimization-online.org/DB HTML/2012/07/3545.html

and generalizes the paper

• H. Bonnel & C.Y. Kaya, Optimization over the Efficient Set of
Multi-objective Control Problems, JOTA, 147(1), 93-112, 2010.

Some connected results, but in a different setting, are presented in

• H. Bonnel, J. Morgan, Semivectorial Bilevel Convex Optimal Control
Problems: An Existence Result, SIAM Journal on Control and
Optimization, Vol. 50, No. 6, 3224-3241, 2012.

• H. Bonnel, J. Morgan, Optimality Conditions for Semivectorial
Bilevel Convex Optimal Control Problem, Computational and
Analytical Mathematics, Springer Proceedings in Mathematics in
honor of Jonathan Borwein’s 60th birthday, H. Bauschke et M. Théra
eds., 30p. (in press),www.csef.it/WP/wp301.pdf
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Grand coalition p-player cooperative differential game

Grand coalition p-player cooperative differential
game ⇐⇒ p-objective control problem
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Grand coalition p-player cooperative differential game

Grand coalition p-player cooperative differential
game ⇐⇒ p-objective control problem

Player i , (i = 1, . . . ,p)

interacts with the dynamics of the game

ż(t) = g(t , z(t),u1(t), . . . ,up(t)), t ∈ [0,T ], z(0) = z0

using his own control ui (t) ∈ Ui at each moment t ∈ [0,T ];

z(t) denotes the state, and the initial state z0 is specified.

wants to minimise his own objective Ji

Ji (z,u1, . . . ,up) = li (z(T )) +

∫ T

0
Li (t , z(t),u1(t), . . . ,up(t))dt ;
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ż(t) = g(t , z(t),u1(t), . . . ,up(t)), t ∈ [0,T ], z(0) = z0

using his own control ui (t) ∈ Ui at each moment t ∈ [0,T ];

z(t) denotes the state, and the initial state z0 is specified.

wants to minimise his own objective Ji

Ji (z,u1, . . . ,up) = li (z(T )) +

∫ T

0
Li (t , z(t),u1(t), . . . ,up(t))dt ;



Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Grand coalition p-player cooperative differential game

Grand coalition p-player cooperative differential
game ⇐⇒ p-objective control problem

Denote
u(t) = (u1(t), . . . ,up(t)), U = U1 × · · · × Up.

The p-player cooperative differential game can be written as a
p-objective control problem

MINRp
+

(J1(x ,u), . . . , Jp(x ,u)) subject to
ż(t) = g(t , z(t),u(t)) t ∈ [0,T ],

u(t) ∈ U, t ∈ [0,T ],

z(0) = z0
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Grand coalition p-player cooperative differential game

Major drawback

The Pareto set is large (often it is infinite)

⇓
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Grand coalition p-player cooperative differential game

Major drawback

The Pareto set is large (often it is infinite)

⇓

Problem: how to select a Pareto process ?
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Grand coalition p-player cooperative differential game

Possible answer

Optimize a scalar objective over the Pareto set
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Post Pareto optimization for MO control of parabolic systems

The problem

(PPOCP) min J0(z,u) s.t.

(z,u) is a weakly (or properly) Pareto control process for the following
multi-objective convex control optimization problem in Hilbert spaces

(MOCCOP) MINRp
+

[J1(z,u), . . . , Jp(z,u)] s.t.

dz
dt

(t) + A(t)z(t) = B(t)u(t) a.e. on ]0,T [ (2)

u(t) ∈ U a.e. on ]0,T [ (3)
z(0) = z0 (4)
z(T ) ∈ ZT (5)
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Post Pareto optimization for MO control of parabolic systems

Hypotheses

A(t) ∈ L(V ,V ′), (0 < t < T ), V real Hilbert space, V ′ its
topological dual.
B(t) ∈ L(U,V ′), (0 < t < T ), U real Hilbert space.
There exists a real Hilbert space H s.t. V ⊂ H with linear
continuous and dense embedding. Then H ′ ⊂ V ′ with linear
continuous and dense embedding.
We identify H ≡ H ′ (Riesz’ theorem), hence

V ⊂ H ⊂ V ′,

with linear continuous dense embeddings.
For v ′ ∈ V ′ and v ∈ V , we denote by (v ′| v) the value of the
functional v ′ in v which coincide with the inner product of H
(denoted in the same way) if v ′ ∈ H.
The norm of H (respectively V and V ′) will be denoted by | · |
(respectively by ‖ · ‖ and ‖ · ‖∗).
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Post Pareto optimization for MO control of parabolic systems

Hypotheses

There exist α ∈ R and ω > 0 s.t., for all v ∈ V , t ∈]0,T [,

(A(t)v | v) + α|v |2 ≥ ω‖v‖2.

For all v ,w ∈ V , the function t 7→ (A(t)v |w) is measurable on
]0,T [, and there is a constant c > 0, such that

‖ A(t)‖L(V ,V ′) ≤ c a.e. on ]0,T [.

for any u ∈ L2(0,T ; U), the function t 7→ B(t)u(t) is measurable
on ]0,T [ and

‖B(t)‖L(U,V ′) ≤ c a.e. on ]0,T [.

z0 ∈ H, U is a nonempty closed convex subset of U. The “target
set” ZT is a nonempty closed convex subset of H.
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Post Pareto optimization for MO control of parabolic systems

Hypotheses

Ji : L2(0,T ; V )∩C(0,T ; H)× L2(0,T ; U)→ R∪{+∞} is given by

Ji (z,u) = li (z(T )) +

∫ T

0
Li (t , z(t),u(t))dt ,

where Li :]0,T [×V × U→ R ∪ {+∞} is a Borel function such
that for each t ∈]0,T [, the function Li (t , ·, ·) is lower
semicontinuous and proper, li : H → R ∪ {+∞} is supposed
proper, lower semicontinuous, and there are some real numbers
βi , γi and and a ∈ L1(0,T ) such that

∀(v ,u) ∈ V×U Li (t , v ,u) ≥ ai (t)+βi‖v‖2+γi‖u‖2
U, t ∈]0,T [

i = 0,1, . . . ,p.
the objectives of (MOCCOP) problem are supposed convex, i.e.
for all i = 1, . . . ,p, and t ∈]0,T [, the functions Li (t , ·, ·), li are
convex. J0 is not necessarily convex.
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Post Pareto optimization for MO control of parabolic systems

Example 1

MINRp
+

[J1(z,u), . . . , Jp(z,u)] s.t. (z,u) verifies

∂z
∂t
− divx (k(x)∇xz)− q(x)z = 0 a.e. in Q (6)

∂z
∂n

+ ρ(x)z = u a.e. in Σ (7)

z(x ,0) = z0(x) a.e. in Ω (8)
u(t) ∈ U a.e. in ]0,T [ (9)

where Ω ⊂ Rn is an open bounded set, its boundary Γ is of class C1,

Q = Ω×]0,T [, Σ = Γ×]0,T [ ,

k ∈ C1(Ω̄), k(x) > 0, ∀x ∈ Ω̄, q ∈ C(Ω̄), ρ ∈ C(Γ), ρ ≥ 0.
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Post Pareto optimization for MO control of parabolic systems

Example 1

The function z = z(x , t) : Ω × [0,T ] → R is the state, and the func-
tion u(t) ∈ L2(Γ) is the (boundary) control at the moment t ∈]0,T [,
supposed square integrable, i.e. u ∈ L2(0,T ; L2(Γ)). The initial value
z0 ∈ L2(Ω) is specified.
Put V = H1(Ω), H = L2(Ω), U = L2(Γ), and define A(t) ≡ A ∈
L(V ,V ′), B(t) ≡ B ∈ L(U,V ′) by

∀z,w ∈ V (Az |w) =

∫
Ω

(k∇z · ∇w − qzw)dx +

∫
Γ

kρzwdσ

∀u ∈ U,w ∈ V , (Bu |w) =

∫
Γ

kuwdσ.

Note that the last boundary integral is well defined since for each el-
ement w of H1(Ω) its trace on Γ, w|Γ is well defined and belongs to
L2(Γ)
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Post Pareto optimization for MO control of parabolic systems

Example 1

It is easy to see that using Green formula, the variational formulation
this problem can be written in the abstract form (MOCCOP), and A, B
satisfy all the hypotheses.
Suppose we have p captors, the i th captor being located on the bound-
ary in a measurable zone Γi ⊂ Γ, i = 1, . . . ,p, and the desirable state is
zd ∈ L2(0,T ; V ). Suppose that the sets (Γi )1≤i≤p are mutually disjoints
and the values of the desired state are known only on the boundary
zone Γi . Consider li = 0, and Li described by

∀(t , z,u) ∈]0,T [×V ×U Li (t , z,u) =

∫
Γi

(z− zd (t))2dσ+ 〈Riu,u〉U,

where Ri ∈ L(U) is a nonnegative symmetric operator.
Finally, let us consider L0 = 0, ∀x1 ∈ H, l0(x1) = ‖x1‖.
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Post Pareto optimization for MO control of parabolic systems

Example 1

Roughly speaking, our problem of optimizing J0(z,u) over the set of
weakly (or properly) Pareto processes of the multi-objective control
problem presented in this example means that amongst all the (weakly
or properly) Pareto controls, i.e., amongst all the controls which are
such that we cannot improve an objective Ji (i ≥ 1) without deteriorat-
ing further another objective Jk , (k ≥ 1), we are looking for the control
which realizes the minimal final state norm.
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Post Pareto optimization for MO control of parabolic systems

Example 2: grand coalition p-player cooperative
differential game

In this example (MOCCOP) problem is stated as a grand coalition of a
p-player cooperative differential game:

U is a product of p Hilbert spaces U = U1 × · · · × Up

U = U1 × · · · × Up, u(t) = (u1(t), . . . ,up(t)).
B(t)u(t) = B1(t)u1(t) + · · ·+ Bp(t)up(t), with Bi (t) ∈ L(U,V ′).
The player i has the objective Ji and interacts with the system
with the control ui ∈ L2(0,T ; Ui ).
Consider that a “supervisor” of the game has its own objective
J0.

Thus, amongst all the controls which are such that no player can im-
prove his objective without further deteriorating the performance of an-
other player, the supervisor choses the control which optimizes his
objective.
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Post Pareto optimization for MO control of parabolic systems

Example 2: grand coalition p-player cooperative
differential game

Suppose we have the same diffusion process as in previous example,
but the boundary control is different :

∂z
∂t
− divx (k(x)∇xz)− q(x)z = 0 a.e. in Q (10)

∂z
∂n

+ ρ(x)z =

p∑
i=1

ui a.e. in Σ (11)

z(x ,0) = z0(x) a.e. in Ω (12)
u(t) ∈ U a.e. in ]0,T [ (13)
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Post Pareto optimization for MO control of parabolic systems

Example 2: grand coalition p-player cooperative
differential game

The functional spaces are the same except that we take U =
∏p

i=1 Ui
where Ui = L2(Γ), i = 1, . . . ,p, and Ui = {ui ∈ L2(Γ)| supp ui ⊂ Γi}
where Γi ⊂ Γ is a closed subset of Γ representing the zone where
player (agent) i interacts with the system. Now the control is of the
form u(t) = (u1(t), . . . ,up(t)), U = U1×· · ·×Up. The operator A is the
same, but B is now given by

∀u = (u1, . . . ,up) ∈ U Bu =

p∑
i=1

Biui ,

where
∀w ∈ V Biui =

∫
Γi

kuiwdσ.

Suppose that Ω is sufficiently smooth such that the state at each mo-
ment belongs to H2(Ω), and n ≤ 3, hence z(t , ·) ∈ C(Ω̄)
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Post Pareto optimization for MO control of parabolic systems

Example 2: grand coalition p-player cooperative
differential game

The player i observes the systems in some points (point sensors)
x (i)

k ∈ Ω̄, k = 1, . . . ,mi .
Each player wants to minimize his energy and the square of the
deviation from the desired state zd in his points of observation i.e.

Ji (z,u) =

∫ 1

0

( mi∑
k=1

|z(t , x (i)
k )− zd (t , x (i)

k )|2 + ‖ui (t)‖2
Ui

)
dt ,

The supervisor wants to minimize the final state global deviation,
i.e.

J0(z,u) = ‖z(T )− zd (T )‖L2(Ω).
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Post Pareto optimization for MO control of parabolic systems

Preliminary results

Lemma

For each z0 ∈ H and u ∈ L2(0,T ; U), there exists a unique function
zu : [0,T ]→ H such that zu ∈ L2(0,T ; V ) ∩ C(0,T ; H),
dzu

dt
∈ L2(0,T ; V ′) verifying the abstract Cauchy problem

dz
dt

(t) + A(t)z(t) = B(t)u(t) a.e. on ]0,T [

z(0) = z0

Moreover, the correspondence u 7→ zu is an affine continuous
operator from L2(0,T ; U) to L2(0,T ; V ), and from L2(0,T ; U) to
C(0,T ; H).
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Post Pareto optimization for MO control of parabolic systems

Preliminary results

Proposition

Let us define for all u ∈ L2(0,T ; U) and i = 0,1, . . . ,p

Ĵi (u) := Ji (zu,u),

where the map u 7→ zu has been introduced in the previous Lemma.
Then the function Ĵi : L2(0,T ; U)→ R ∪ {+∞} is lower
semicontinuous.
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Post Pareto optimization for MO control of parabolic systems

An equivalent form of (PPOCP)
Consider the set

Uad := {u ∈ L2(0,T ; U) | u(t) ∈ U a.e. on ]0,T [, zu(T ) ∈ ZT}.

which is closed and convex in L2(0,T ; U).

We assume that

(A) Uad 6= ∅.

(B) the functionals Ĵi take finite values on Uad , (1 ≤ i ≤ p).

(PPOCP) can be written equivalently as

(PPO) min Ĵ0(u) s.t.

u is a (weakly or properly) Pareto solution to

MINRp
+

[Ĵ1(u), . . . , Ĵp(u)] s.t. u ∈ Uad .
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Post Pareto optimization for MO control of parabolic systems

Scalarization theorem

Denote Ĵ = (Ĵ1, . . . , Ĵp) : Uad → Rp. Let the symbol σ stands for
“weak” (σ = w) or “proper” (σ = p). Denote

Θσ =

 Rp
+ \ {0} if σ = w

Rp
++ if σ = p

Then the scalarization theorem can be written as

σ-ARGMIN
u∈Uad

Rp
+
Ĵ (u) =

⋃
θ∈Θσ

argmin
u∈Uad

〈θ, Ĵ (u)〉Rp
+
,
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Post Pareto optimization for MO control of parabolic systems

A useful set valued function
Let Pσ : Rp → 2L2(0,T ;U) be the set-valued map given by

Pσ(θ) :=

{
argmin

u∈Uad

〈θ, Ĵ (u)〉 if θ ∈ Θσ

∅ if θ ∈ Rp \Θσ.

It is obvious that Pσ has convex closed values which are subsets of
Uad . Moreover the scalarization theorem can be written as

σ-ARGMIN
u∈Uad

Rp
+
Ĵ(u) = Pσ(Θσ).

Consider the following scalar set-valued minimization problem

(SSVMσ) min
θ∈Θσ

Ĵ0 ◦ Pσ(θ).

A solution to this problem is an element (θ̃, ỹ) ∈ Gr (Ĵ0 ◦Pσ) such that

ỹ = min(Ĵ0 ◦ Pσ)(Θσ).
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Post Pareto optimization for MO control of parabolic systems

A useful set valued function
Proposition. Problem (PPO) is equivalent to problem (SSVMσ) in
the following sense

If ũ solves (PPO), then P−σ ({ũ}) 6= ∅, and for each θ̃ ∈ P−σ ({ũ})
we have that (θ̃, Ĵ0(ũ)) is a solution to problem (SSVMσ).

Conversely, if (θ̃, ỹ) is a solution to problem (SSVMσ), then there
exists ũ ∈ Pσ(θ̃) such that ũ solves problem (PPO) and
ỹ = Ĵ0(ũ).
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Post Pareto optimization for MO control of parabolic systems

Optimality conditions for (PPOCP)

Theorem. Suppose that Ĵ0 is Fréchet differentiable on an open set
containing Uad . Let ũ be such that (ũ, zũ) solves problem (PPOCP).
Then P−σ (ũ) 6= ∅, and for each θ̃ ∈ P−σ (ũ)

∀θ ∈ Rp, ∀u ∈ DPσ(θ̃, ũ)(θ) 〈∇Ĵ0(ũ),u〉L2(0,T ;U) ≥ 0.

where DPσ(θ̃, ũ) : Rp → 2L2(0,T ;U) is the the contingent derivative of
Pσ at (θ̃, ũ) ∈ Gr (Pσ), and ∇Ĵ0(ũ) ∈ L2(0,T ; U) stands for the
Fréchet derivative of Ĵ0 at ũ.
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Post Pareto optimization for MO control of parabolic systems

When Pσ is single-valued with dom (Pσ) = Θσ

Hypotheses:
1 (coercivity) ∀i ∈ {1, . . . ,p} li is bounded from bellow and Li

verifies for some γi ≥ 0 and ai ∈ L1(0,T )

∀(v ,u) ∈ V × U Li (t , v ,u) ≥ ai (t) + γi‖u‖2
U, t ∈]0,T [

Moreover  ∀i ∈ {1, . . . ,p} γi > 0 if σ = w

∃i ∈ {1, . . . ,p} γi > 0 if σ = p.

2 (strict convexity) ∀i ∈ {1, . . . ,p} Li is strictly convex if σ = w

∃i ∈ {1, . . . ,p} Li is strictly convex if σ = p.
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When Pσ is single-valued with dom (Pσ) = Θσ

Theorem. Suppose that at least one of the following holds :

(i) coercivity hypothesis;

(ii) U is bounded;

Then
dom (Pσ) = Θσ,

i.e. for each θ ∈ Θσ, the scalarized problem min
u∈Uad

〈θ, Ĵ(u)〉 admits at

least a solution.

Moreover, if in addition the strict convexity hypothesis holds, then for
each θ ∈ Θσ the set Pσ(θ) is a singleton.
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When Pσ is single-valued with dom (Pσ) = Θσ

Proposition

Suppose that for each θ ∈ Θσ, Pσ(θ) is a singleton denoted {ũ(θ)}.
Then Pσ : θ 7→ ũ(θ) is a surjection from Θσ to σ-ARGMIN

u∈Uad
Rp

+
Ĵ (u).

Corollary

Under the hypothesis of the previous Proposition, the problem
(PPOCP) is equivalent to the following finite dimensional scalar
minimization problem

(SMFD) min
θ∈Θσ

Ĵ0(ũ(θ))

in the sense that

(z,u) is a solution to (PPOCP) if, and only if, there exists a solution θ
to (SMFD) such that u = ũ(θ) and z = zu.
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Ĵ (u).

Corollary

Under the hypothesis of the previous Proposition, the problem
(PPOCP) is equivalent to the following finite dimensional scalar
minimization problem

(SMFD) min
θ∈Θσ
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Introduction Post-Pareto optimization in stochastic MOP Post-Pareto optimization in MO convex control problems in Hilbert spaces

Post Pareto optimization for MO control of parabolic systems

When Pσ is single-valued with dom (Pσ) = Θσ

Remarks. Therefore the main practical problem is to be able to find in
closed form (or at least to have the maximum of information about) the
map θ 7→ ũ(θ). In the case when the (MOCCOP) is a linear-quadratic
multiobjective control problem in Hilbert spaces some related results
are presented in my paper

Post-Pareto Analysis for Multiobjective Parabolic Control Systems
www.optimization-online.org/DB HTML/2012/07/3545.html

In the very particular case when the system is governed by ODE, i.e.
V = H = Rn, U = Rm, hence A(t), B(t) are matrices, some practical
issues are discussed in the papers

H. Bonnel & C.Y. Kaya, Optimization over the Efficient Set of
Multi-objective Control Problems, JOTA, 147(1), 93-112, 2010
H. Bonnel & N.S. Pham, Nonsmooth Optimization over the
(Weakly or Properly) Pareto Set of a Linear-Quadratic
Multi-objective Control Problem : Explicit Optimality Conditions
JIMO, 7(4), 789-809, 2011.
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Thank you!
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