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Abstract

3D reconstruction of insects from photographs is a chal-
lenging task as it requires to tackle several problems such
as strong out-of-focus areas in macro-photography, thin
structures (insect legs and hairs), flat-colored surfaces (in-
sects shells), non-Lambertian (shells specularities) and
even translucent surfaces (wings). In this work, we first
present a new lens-based image registration technique for
accurate multi-focus stacking suitable for 3D reconstruc-
tion purposes while other methods create in-focus images
for viewing purpose only. We then evaluate and compare the
classical Multi-View-Stereo (MVS) reconstruction pipeline
for small and complex objects with recent deep learning-
based reconstruction methods such as the Neural Radiance
Fields (NeRF) and the Neural Sparse Voxel Fields (NSVF).
We present an assessment of different sources of errors for
the considered methods. The results are compared both
quantitatively and qualitatively across the different meth-
ods. From this analysis we present a series of practical
guidelines for addressing the common issues of the recon-
struction of small objects under challenging conditions.

1. Introduction
Traditional multiview stereo (MVS) reconstruction [21]

has become a popular tool for image-based 3D reconstruc-
tion and readily available as in a number of open-source
and commercial software [20, 11, 2, 3, 19, 1]. MVS by
itself has shown to be sufficiently accurate for large scale
scenes and objects [10, 12]. However, 3D reconstruction
of insects and biological specimens is challenging due to

*These authors contributed equally to the work.

small sizes, fine features, complex surface properties, and
transparency. These problems have been tackled by mul-
tiple works [17, 22, 18] by extending MVS to work with
multifocus images. Multifocus multiview stereo (MMVS)
has been developed and applied with significant success to
create true-color 3D models of challenging specimens:

Figure 1: Top: lens image formation and circle of confu-
sion. Middle: multi-focus capture with fixed lens setup.
Bottom: example images from one stack of 61 images.

• Small size (a few mm to a few cm long) is overcome
by using a high magnification lens. As such lens has
narrow depth of focus, a set of multiple partially-focus
images are captured with a focal plane moving across
the whole depth of the object as shown in Fig. 1. These
images are then registered and ”stacked” to produce a



synthetically in-focus image for a single view. Repeat-
ing the same process for multiple views [17] to be used
for 3D reconstruction. Careful camera calibration for
multifocus image registration improved the accuracy
of 3D reconstruction [22]. The issue of perspective in-
consistency was discovered and solved by a fixed lens
setup [13, 6].

• Specular reflection interferes with stereo matching and
cause significant error. It could be reduced by dome
illumination [22] or polarisation filter.

• Fine and thin structure is another challenge for pose
and depth estimation of MVS. Backlight illumina-
tion and automatic masking and Visibility-Consistent
Meshing (Agisoft Photoscan [3]) were used to improve
depth estimation to some extent [22]. Hair-like struc-
tures and surfaces are still a challenge.

• Transparency is the most challenging problem, of-
ten leading to incomplete 3D reconstructed models.
Such 3D models need to be fixed manually with post-
processing using 3D editing software [18].

These issues remain partially and continue to be an ob-
stacle to more realistic 3D modeling of objects. “Out-of-
the-box” solutions could open to new possibilities includ-
ing a) ground-truth or prior information for camera poses
and image registration, b) deep-learning based 3D recon-
struction. Using accurate motorised control could pro-
vide known poses for captured images, therefore poten-
tially removing a major source of error. Recent progress
in deep-learning based 3D modeling including NeRF [15]
and NSVF [14] also leads to better modeling complex ge-
ometries and surfaces.

The paper proposes three main contributions. We present
(i) a new lens-based image registration technique (c.f . Sec-
tion 2) for accurate multifocus stacking (c.f . Section 3.2)
suitable for 3D reconstruction while other methods create
in-focus images for viewing purpose only. We then present
(ii) an extensive assessment of different sources of errors
(c.f . Section 3) for the 3 selected methods, MVS, NeRF
and NSVF. The results are compared and validated both
quantitatively and qualitatively across the different meth-
ods. From this analysis, we present (iii) a series of guide-
lines (c.f . Section 4) for tackling the major challenges that
arise when reconstructing small object under challenging
conditions. Code and data used in this paper are released in
open source1.

2. Methodology
2.1. Multi-focus capture and stacking

Image capturing with fixed lens. For conventional
multi-focus image capturing, the lens and camera moves

1https://github.com/chuong/3d_insect_recon_validation

together, so as the lens move, the distance and scale of
different parts of the object changes differently, leading to
perspective distortion. To overcome this issue, fixed-lens
[13, 6] is used where the camera lens is fixed, only the im-
age sensor moves step by step when capturing images as
shown by Fig. 1. The image formation follows the lens
equation d2 = d1f

d1−f , where d2 represents distance from
camera lens to image sensor, d1 represents distance from
camera lens to focal plane, and f represents focal length.

The camera needs to change the position of its focal
plane such that the overlap of multiple depth of fields
(DOF), i.e. the distance range at which parts of the object
are in focus, covers the full depth of the specimen. It is
determined by the circle of confusion with diameter φCOC
which describes the point spread of a light source directed
onto the focal plane by the lens. An image is considered in
focus as long as the size of the point formed on the image
plane is smaller than φCOC (usually chosen to be 0.1% of
the image width). The relation between DOF and φCOC
is illustrated by Fig. 1 and given by DOF = 2 d1fφCOC

(d1−f)φa
,

where φa is the diameter of lens aperture. By moving im-
age sensor, d2 changes and so does d1 without changing per-
spective projection. For a specimen with max depth length
D, the number of images to capture is N = D

DOF with the
moving step ∆d2 = d2 − (d1+DOF )f

(d1+DOF )−f .
Image alignment. Before focus stacking, the images are

aligned by homography transformation between one image
to a reference image. Homography transformation can be
computed using directly matching the images of the spec-
imen. To improve the estimation accuracy of homography
transformation, a calibration target could be used. A dual
calibration target forming an angle of 90° (c.f . Supplemen-
tary material) was used to allow larger depth range.

Focus stacking. To stack the multi-focus images, they
were firstly aligned to a reference image in the stack by us-
ing the computed homography matrices. Once the images
were aligned, their in-focus regions were fused by comput-
ing the weight using Laplacian of Gaussian Pyramid [24].

Background removal. The image capturing process
was done in frontlight and backlight environment. The
backlight images served as the masks to remove the back-
ground noise in frontlight images. The background removal
was done by firstly converting the backlight images to bi-
nary images that outlines the object’s silhouette, and per-
forming bit-wise operations with the frontlight images.

2.2. Image alignment method using lens equation

For fixed-lens image capturing, the image sensor only
translates back and forth, so captured images only experi-
ence scaling changes:

S(i) =
d2(ref)

d2(i)
(1)
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where d2(ref) and d2(i) are the distances from the lens
to the image sensor for a reference image and an arbitrary
image i.

To account for the optical centre in the middle of the
image, an offset from the top-left corner to the middle is also
included. The homography for fixed-lens setup becomes:

H(i) =

S(i) 0 1
2w(−S(i) + 1)

0 S(i) 1
2h(−S(i) + 1)

0 0 1

 (2)

where w and h are the image width and height.
The affine homography transformation given by Eq. (2)

for focus stacking for fixed lens camera setup is a special
case of the one described in [6]. Equation (2) is a simpler
and more practical solution with the assumption that camera
sensor is aligned well enough with the macro rail.

2.3. Image-based reconstruction methods

Multiview stereo reconstruction (MVS). MVS was
performed using the open-source 3D reconstruction soft-
ware Meshroom [11]. It provides a graphic interface that
enables the user to customise a reconstruction pipeline, ex-
ecute the reconstruction, and visualize estimated camera
poses, dense point cloud and resulting 3D models. The 3D
reconstruction pipeline for Meshroom can be summarized
as follows: structure from motion to estimate camera poses
and sparse point cloud, depth map estimation to generate
dense point cloud, and meshing the dense point cloud and
texturing the mesh.

Neural Radiance Fields (NeRF). NeRF is a multilayer
perceptron (MLP) deep network [15] that trains on a set of
multiview input images to synthesise new realistic view or
extract 3D shape model. For each view, NeRF takes as input
a 5D vector including the spatial location coordinate x, y, z,
and viewing azimuthal angle θ and polar angle φ relative to
the reconstructed volume. NeRF requires images, camera
poses and camera intrinsics as inputs. Camera poses can be
estimated using traditional structure from motion.

Neural Sparse Voxel Fields (NSVF). NSVF is an MLP-
based reconstruction approach similar to NeRF, but it incor-
porates sparse voxel octree for efficient rendering training
and rendering [14]. While NeRF allocates a fixed compu-
tational budget for every ray, NSVF only calculates the ray
through only the sparse voxels. Therefore, NSVF can com-
pute faster and more efficient than NeRF, theoretically over
ten times faster. NSVF takes images, camera poses, camera
intrinsics, and bounding box as inputs.

2.4. Validation strategies

In this paper, we examine the impact of all important
sources of errors to the final 3D reconstruction quality of
challenging objects. We also validate MVS, NeRF and
NVSF approaches against each other.

Effect of different image registrations for multi focus
stacking. This is important when dealing with small objects
and multifocus stacking before performing 3D reconstruc-
tion. The alignment could rely on the information contained
in the object images, calibration images, or image formation
via lens equation.

Effect of distribution of camera poses when taking
multiview images. As a pan-tilt motorised stage is often
used to rotate the object or move the camera on a spheri-
cal surface, the distribution of the camera poses around the
object is often non-uniform. Three strategies of pose distri-
bution are examined in this paper.

Effect of image resolutions. Low-cost lenses often
yield low optical resolution and this could put a constraint
the effective image resolution and therefore the quality of
the final 3D reconstructed models. This paper aims at in-
vestigating how critical image resolution is to different 3D
reconstruction approaches.

Effect of prior pose estimation. All 3D reconstruc-
tion approaches require camera poses of the input images
to perform. The camera poses could be estimated by struc-
ture from motion, or prior-calibrated pose by a pan-tilt mo-
torised stage. This paper aims to find out how much ground
truth poses improve the 3D reconstruction as compared to
using estimated poses.

Effect of different object geometries and materials,
including transparency and reflection. These are known
to be challenging for MVS, studies of NeRF and NSVF sug-
gest that they could handle these challenging problems.

To validate the accuracy of different alignment methods
for focus stacking, Structure Similarity Index (SSIM) [25]
was used. This metrics quantifies the difference between an
image and a reference ground-truth image. The closer the
score is to 1, the more similar the two images are.

Validations of 3D reconstruction accuracy are also per-
formed by computing the Hausdorff distance (using Mesh-
Lab [7]) of 3D reconstructed meshes relative to the ground-
truth 3D meshes. Hausdorff distance is defined as the
largest distance between two meshes. So when comparing
two meshes, large Hausdorff distances indicate missing fea-
tures in the reconstruction results. Once Hausdorff distance
was computed and normalised by the diagonal distance of
the 3D mesh bounding box, it is visualised as heatmap on
the ground truth meshes.

3. Results

3.1. Data generation and preprocessing

3D rendering and ground truth poses. The experi-
ment used synthetic images of realistic 3D scanned mod-
els from [22, 8] rendered in Blender so that the 3D models
could serve as the ground truth meshes to validate the ef-
fect of using different parameters in the 3D reconstruction



pipeline.
The image capturing environment was modelled using an

open-source Blender add-on for photogrammetry partially
based on [4]. The Blender add-on generates a vertical ar-
ray of cameras using the settings user provided. Each cam-
era rotates around the object and render a stack of multi-
focus images using fixed-lens setup at multiple views. Un-
less mentioned elsewhere, the azimuth angle is modified
such that the camera poses are approximately uniformly dis-
tributed around a sphere, with the centre being the object.
The add-on was also modified to save the camera poses and
convert to Meshroom format.

The image capturing process was applied to object in
frontlight and backlight environment, where the backlight
images could serve as masks to remove background noise
from the frontlight images as in [22].

Image stacking and background removal. Focus
stacking involve aligning the multi-focus images using their
homography matrices, then fusing their in-focused regions.
In the experiment, the multi-focus images of calibration tar-
get were stacked first to provide the calibrated homogra-
phy matrices. The homography matrices were computed
using different methods such as Enhanced Correlation Co-
efficient (ECC [9]) homography, ECC affine, etc., to study
the effect of homography transformation on the reconstruc-
tion result. Once the images for the calibration target were
stacked, the front-light and back-light images for the object
were stacked using the same calibrated homography matri-
ces.

The stacked back-light images were then used as masks
to remove the background noises from the stacked front-
light images. The background removal was achieved by
firstly converting the stacked back-light images to binary
images using a threshold, then bit-wise operation between
the binary images and the stacked front-light images was
performed to remove the background.

Pose estimation. In this paper, Meshroom [11] is chosen
to perform structure from motion for pose estimation and
multiview stereo reconstruction (MVS). As a result, from
now on the term MVS will be used to refer to the recon-
struction results produced by Meshroom.

3.2. Effect of homography transformations for im-
age stacking

We tested 2 alignment methods for focus stacking, ECC
affine homography (OpenCV [5]’s findTransformECC func-
tion based on [9]) and the theoretical transformation from
lens equation. For methods using ECC affine homography,
we also tested them under different conditions such as with
and without calibration, and with and without linear fitting.

ECC affine homography was able to compute the trans-
formation matrices. However, they produce distortions in
stacking results, as shown by Fig. 3.

Figure 2: Distributions of the scale and shift in homography
matrices estimated using different alignment methods.

Figure 3: Focus stacked images and error maps. (a) ECC
affine w/o calibration target. (b) & (c) ECC affine with cal-
ibration target and its linear fitting. (d) Lens equation.

The distribution of the scaling and shifting factor in
ECC affine homography with and without calibration tar-
get shows that this method is unreliable near the two ex-
trema of the image stack due to the large areas out of focus.
To improve the result of standard ECC affine homography
methods, linear fitting is applied to the middle portion of the
data point. To quantify the accuracy of all alignment meth-
ods, the SSIM algorithm was applied to the output images
and the ground truth image rendered without the out of fo-
cus effect. The results are shown in Fig. 3 and Table 1. It
could be noted that while linear fitting was able to eliminate
the distortions in standard calibrated ECC affine homogra-
phy methods, it was not applicable to non-calibrated ECC
affine homography methods since its scaling and shifting
components were highly different to the theoretical trend.
This difference is found to vary from one view to another.

Focus Stacking Methods SSIM Score
ECC Affine w/o calibration target 0.938
ECC Affine with calibration target 0.971
Linearly Fitted ECC Affine w.c.t. 0.976
Our lens equation (Eq. (2)) 0.983

Table 1: SSIM score for focus stacking methods.

Without using a calibration target for focus stacking,
subsequent MVS reconstruction failed to produce reason-
able results and therefore this case is ignored from now.



To validate the significance of different image alignments,
reconstruction was performed using stacked images from
ECC affine, linearly fitted ECC affine, and theoretical cal-
culation. The results and their comparison to the ground
truth model are shown by Fig. 4 and Table 2. As the re-
sults shown, the reconstruction result using stacked images
from linearly fitted ECC affine was not significantly differ-
ent to the reconstruction result using stacked images from
theoretical calculation. On the other hand, the reconstruc-
tion result using stacked images from standard ECC affine
was much worse, which suggests that distortions in focus
stacking contribute significantly to the reconstruction result.
Therefore, in practice, if theoretical calculation could not be
achieved, it is recommended to linearly fit the standard ECC
affine homography matrices.

Figure 4: Reconstruction result using stacked images (top
row) from different alignment methods and their Hausdorff
distance to ground truth model (bottom row). (a) ECC
affine with calibration target. (b) Linearly fitted ECC affine
with calibration target. (c) Lens equation. Using estimated
poses.

Alignment methods Normalised HD
ECC Affine with calibration target 0.00922
Linearly fitted ECC Affine w.c.t. 0.00241
Our lens equation (Eq. (2)) 0.00154

Table 2: Hausdorff distance (HD) normalised by bounding
box diagonal for reconstruction results using different focus
stacking methods.

3.3. Effect of image pose distribution to MVS

The conventional way to capture images is to keep the
camera pointing to the object, and apply constant step for
pan (azimuth) and tilt rotation (polar angle) leading to
denser camera pose distribution at the poles than at the
equator region. To reduce the non-uniform distribution, two
new simple strategies are proposed: one with linear varia-

Figure 5: Effect of different pose distributions for image
capture: a) constant pan-tilt rotation steps (217 poses), b)
linear variation along z axis (189 poses), and c) linear vari-
ation with tilt angle (217 poses). From top row to bottom
row: camera control diagram, estimated camera poses, cor-
responding MVS reconstructed meshes using 4320×2880
pixel and 1920×1080 pixel images.

tion of number of poses from 36 to 1 along z rotation axis,
another with linear variation of the number of poses with
tilt angle. Figure 5 shows the 3 different pose distributions
and the resulting reconstructed meshes using high resolu-
tion and low resolution images. While all pose distribution
methods were able to reconstruct the complete mesh using
high resolution images, their impact on reconstruction re-
sults using low resolution images was much more signifi-
cant, with the pose distribution method using linear varia-
tion with title angle provides the most complete mesh. Ta-
ble 3 shows the quantification comparison, and the results
for low resolution images proves that the linear variation
of the title angle give the lowest Hausdorff distance values,
while the slight differences in high resolution images were
likely caused by slight misalignment when comparing to the
ground truth.

Pose distributions HD-12MP HD-2MP
Constant pan-tilt rot. steps 0.001025 0.02628
Linear variation along z axis 0.000702 0.01734
Linear variation w. tilt angle 0.000821 0.01652

Table 3: Normalised Hausdorff distance (HD) by bounding
box diagonal for reconstruction results using different pose
distributions for two image resolutions 4320×2880 pixels
and 1920×1080 pixels.



3.4. Effect of image resolutions

We performed the reconstruction with MVS, NeRF and
NSVF using 4 different image resolutions: 4320 × 2880,
3024 × 2016, 1920 × 1080 and 960 × 540 pixels. How-
ever, in order to speed up the training convergence of NeRF
and NSVF, the input images were cropped to a square size,
from 1920 × 1080 pixels to 1080 × 1080 pixels, and from
960×540 pixels to 540×540 pixels. As shown by Fig. 6 and
Table 4, MVS was able to achieve high quality reconstruc-
tion results using high resolution images, but its accuracy
significantly decreases when using low resolution images,
since the camera pose estimation significantly depends on
the number of interest points that are extracted and matched.

Unlike MVS, NeRF and NSVF both were able to recon-
struct high quality mesh even with low resolution images.
In particular NSVF was able to achieve better accuracy us-
ing low resolution images than the high resolution result for
MVS. Furthermore, it was shown that NSVF is not sensitive
to image resolution variation as its results using 2 Mpx and
0.5 Mpx images are approximately the same.

(a) MVS 12MP (b) MVS 6MP (c) MVS 2MP

(d) NeRF 2MP (e) NSVF 2MP (f) NSVF 0.5MP

Figure 6: 3D reconstructed meshes of Cicindela Campestris
(green tiger beetle) [22, 8] for different image resolutions
using ground-truth poses.

For the same set of 334 input images of 1920×1080 pix-
els, MSV took from 1 to 2 hours to run, NeRF from 8 to 12
hours, NSVF from 20 to 24 hours on the same on Nvidia

Reconst.
method Image resolution Normalised HD

MVS [11]

4320×2880 (12MP) 0.00197
3024×2016 (6MP) 0.00293
1920×1080 (2MP) 0.01220
960×540 (0.5MP) NA

NeRF [15] 1920×1080 (2MP) 0.00264
960×540 (0.5MP) NA

NSVF [14] 1920×1080 (2MP) 0.00159
960×540 (0.5MP) 0.00139

Table 4: Normalised Hausdorff distance (HD) by bounding
box diagonal for different image resolutions using ground-
truth poses. Higher resolution for NeRF and NSVF is not
possible due to constraints on GPU memory.

P100 GPU. NSVF needs at least 16 GB of GPU RAM to
perform the training while NeRF and MVS need much less
RAM.

3.5. Effect of estimated poses vs ground truth poses

MVS. For this validation, we use a number of objects
of different shapes and material from [22, 8] including:
Agrilus Anxius (AA), Anoplophora Chinensis (AC), Fagus
Sylvatica (FS), and Melitaea britomartis (MB)2.

Reconstruction using MVS technique relies on the ac-
curacy of the estimated poses to generate an accurate point
cloud for meshing. However, in cases where image resolu-
tion is low, or where the object itself has a complex struc-
ture, pose estimation could be less accurate. Therefore, we
compared the reconstruction results obtained using the es-
timated poses and the ground truth poses with 4 different
specimens.

As shown by Fig. 7 and Table 5, for most specimens,
pose estimation was accurate enough to reconstruct a suffi-
ciently accurate meshes, and using ground truth poses leads
to a small improvement. However, in the case of the but-
terfly, as shown by the last column of Fig. 8, where pose
estimation was inaccurate as Meshroom to match correct
image features the thin symmetric wings. Providing ground
truth poses fixes the problem and produce highly accurate
reconstructed mesh.

NeRF and NSVF. NeRF with estimated posed failed to
generate a 3D model. NSVF however works to some ex-
tent and produced a 3D mesh shown in Fig. 9. Compared to
NSVF reconstructed mesh using ground-truth poses shown
in Fig. 6(e), NSVF reconstructed mesh using estimated
posed is quite distorted leading to more than 4 times larger
Hausdorff distance.

2The 3D models are available at https://skfb.ly/o7rRX
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Specimen Normalised HD
Estimated poses Ground truth pose

AA 0.00154 0.00173
AC 0.00256 0.00201
BF 0.00338 0.00315
MB NA 0.00144

Table 5: Normalised Hausdorff distance (HD) for MVS re-
construction results using estimated poses versus ground
truth poses.

Figure 7: MVS reconstruction results using 4320×2880
pixel images with ground truth poses (top 2 rows), and es-
timated poses (mid 2 rows) as compared to ground truth
meshes (bottom row).

3.6. Effect of different types of object geometries

Reconstruction results using ground truth poses by
MVS, NeRF and NSVF are shown in Fig. 10. Accuracy
comparison in terms of Hausdorff distance is given by Ta-
ble 6. Despite using image resolution of 1920 × 1080 pix-
els, NeRF and NSVF produce 3D reconstructed meshes
equivalent or better than MVS using image resolution of
4320×2880 pixels. MVS reconstructed meshes tend to have
broken thin parts including legs, wings and spikes. NeRF

(a) Estimated poses (b) G.truth poses

Figure 8: Estimated poses versus ground truth poses for 3D
reconstruction of butterfly.

Figure 9: NSVF reconstruction using estimated poses with
image resolution of 1920 × 1080 pixels. Normalise Haus-
dorff is 0.006963.

reconstructed meshes are complete, but they are thicker than
ground truth meshes (bottom row of Fig. 7) and lose de-
tails. NSVF reconstructed meshes are closest to ground
truth meshes, although the butterfly has incomplete anten-
nae.

Specimen Normalised HD
MVS NeRF NSVF

AA 0.00173 0.00363 0.00175
AC 0.00201 0.00295 0.00099
FS 0.00315 0.00767 0.00225
MB 0.00144 0.00309 0.00186
Dragonfly 0.01790 NA 0.007963

Table 6: Normalised Hausdorff distance (HD) for different
reconstruction methods using ground truth poses.

3.7. Transparent structure and reflective surface

A set of 334 images of 1080×1080 pixels were rendered
at uniform poses around the dragonfly model from [16].
Again, Table 6 shows that NSVF produces a more accurate
reconstructed mesh than MVS, although NSVF has some
errors near the edges of the wings.

For more validation, the Supplementary material also in-
cludes the NeRF and NSVF reconstructed results of a space-
ship 3D model with transparent cockpit dome and reflective
metal surface [23]. Particularly, the surface of glass cock-
pit and its visible internal structure are successfully recon-
structed.



Figure 10: Ground-truth-poses reconstruction results of fine
structure dataset by MVS (top rows), NeRF (middle rows)
and NSVF (bottom rows). Image resolution for MVS is
4320×2880 pixels, for NeRF and NSVF 1080×1080 pixels.

Figure 11: Reconstructed results of dragonfly. Left:
ground-truth mesh. Middle: MVS. Right: NSVF.

4. Conclusion

Our study has led to several important practical guide-
lines for image-based 3D reconstruction of small objects
such as insects. To deal with out-of-focus effect, homog-

raphy transformation for image registration based on lens
equation leads to accurate focus-stacked images that al-
lows precise 3D reconstructions. If the lens focal length
and magnification are unknown and therefore cannot use
the lens equation, the next choice is using a 3D calibration
target. Focus stacking without using either of the meth-
ods [13, 6] is not recommended, as this likely leads to in-
complete and/or inaccurate 3D reconstructed meshes.

Capturing images with a uniform pose distribution
around the object results in more complete and accurate 3D
reconstructed meshes than the conventional constant rota-
tion step around pan and tilt axis. Relatively uniform pose
distribution could be achieved by adjusting the number of
rotation steps linearly with tilt angle.

Pose estimated by structure from motion is significantly
affected by low image resolutions and objects with flat ge-
ometry, reflective surfaces and transparent structures. Us-
ing pre-calibrated poses consistently improves the results
and the impact can be dramatic for challenging objects, as
shown with the butterfly dataset. As a result, using a good
motorised stage to obtain ground truth poses is highly rec-
ommended.

While high image resolution (above 5 Mpx) is crucial
for MVS to produce good pose and depth estimations for
an accurate 3D model, image resolution could be as low as
0.5 Mpx for NSVF to still produce an accurate 3D model
as long as camera poses are accurate enough. This sug-
gests that a low-cost 3D reconstruction solution is achiev-
able using NSVF using a good pan-tilt-rail stage (for prior
calibrated poses) with a low resolution camera and low-cost
macro lens.

The higher resolution meshes are reconstructed by
NSVF, however this approach loses very thin structures.
On the other hand, NeRF does not achieve the same ac-
curacy but will maintain the thin structures while making
them thicker than the ground truth. Even if MVS cannot
achieve the quality reached by deep learning algorithms on
low-resolution images, it is the only one capable of doing
a reconstruction from images at very high resolution. Gen-
erally, NSVF and NERF require, respectively, ten and five
times more computation and memory resources than MVS.

As the study focuses on using ray-tracing rendered im-
ages, it lacks some realistic conditions like image noise,
non-uniform background, non-uniform illumination, lens
distortion, and misalignment of camera sensor. However,
these conditions variations should not change the findings
of this study.
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