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aUMR CNRS 7253 Heudiasyc, Sorbonne universités, Université de technologie de Compiègne CS 60319 - 60203 Compiègne
cedex, France

Abstract

Gaussian discriminant analysis is a popular classification model, that in the precise case can produce unre-
liable predictions in case of high uncertainty (scarce or noisy data set). While imprecise probability theory
offer a nice theoretical framework to solve such issues, it has not been yet applied to Gaussian discriminant
analysis. This work remedies this, by proposing a new Gaussian discriminant analysis based on robust
Bayesian analysis and near-ignorance priors. The model delivers cautious predictions, in form of set-valued
class, in case of limited or imperfect available information. Experiments show that including an impre-
cise component in the Gaussian discriminant analysis produce reasonably cautious predictions, and that
set-valued predictions correspond to instances for which the precise model performs poorly.
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1. Introduction

In machine learning, the classification task consists in seeking to identify to which label (among a finite
set K of such labels) a new unlabelled instance x ∈ X p belongs. The reliability of this precise prediction
(or single decision) may depend heavily on prior beliefs (e.g. assumptions made by data analysts, such as
asymptotically unbiased estimators) and the nature of training data sets (e.g. in small amounts [1, 2] and/or5

with high degree of uncertainty1), both will be referred as imperfect information2. A well-known precise
generative classifier model used to perform the classification task is the Gaussian discriminant analysis
(GDA) [6, §4.3]

A classifier model is called precise when it performs pointwise predictions (or precise estimations) in the
form of single class labels, even in extreme cases, regardless of the available information we have a about10

an instance. In these cases, it may be useful to provide set-valued, but more reliable predictions, especially
for sensitive applications (e.g. medical diagnosis, control systems, etc.) where we cannot afford to make
mistakes (see illustration in Figures 3(a) and 3(b)).

Imprecise probabilities (IP)[7] can mitigate the impact of imperfect information, taking into account the
lack of evidence by replacing precise estimates (or a single probability distribution) with imprecise estimates15

(or a set of probability distributions, most often in the form of convex set) in order to make cautious set-
valued decisions. In this paper, we adopt such an approach to propose a novel method of (cautious3)
imprecise classification.

Cautious classification is a relatively new trend in machine learning which do not aim to do “better”
than their precise counterparts, nor to implement a rejection option (i.e., not classifying at all) in case20

?This paper is part of the published paper in Logic Fussy and its Applications (LFA-2018).
Email addresses: yonatan-carlos.carranza-alarcon@hds.utc.fr (Yonatan-Carlos Carranza-Alarcon),

sebastien.destercke@hds.utc.fr (Sébastien Destercke)
1Uncertainty can be due to lack of knowledge or to the natural variability in the observed data [3, ch.2] (or a.k.a. epistemic

and aleatoric uncertainty [4]), and it can lead us to biased estimations and high variance models [5].
2Imperfect information is here used as a synonym for limited information or/and lack of knowledge or prior beliefs.
3Cautious and imprecise are here used interchangeably.
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of ambiguity [8], but to highlight those hard cases for which information is insufficient to isolate a single
reliable precise prediction, and to propose a subset of possible predictions. We can find in the literature
three “main” ways to access cautious classifier models: (1) using a classical precise classifier but deriving
a set-valued predictions from them [9] (e.g. partial reject [10], conformal prediction [11]) (2) making data
imperfect (coarse or impartial observations) and then building a corresponding imperfect robust model, and25

finally (3) a cautious classifier under IP from which set-valued predictions follow naturally (such as robust
frequentist inference [12, 13] or Bayesian inference [14, 15, 16]). We retain here the latter as it considers
imprecision as parts of its basic axioms, rather than the other approaches where imprecision is added ex-post.

Bayesian methods incorporate some prior beliefs in the form of probability distribution defined on un-
known parameters of the model. Such beliefs typically comes from expert opinions of persons that are30

knowledgeable in the context of the problem. However, it is also well-known that the elicitation of prior
beliefs can be absent or hard to obtain during the study of a problem, especially in when learning classifier.
A classical way out of this problem is to use so-called non-informative prior, that allow one to obtain a
posterior not including any prior knowledge [2]. Yet, the use of such prior is not without problem within
the Bayesian theory, as they are not coherent in the sense of De Finetti. In addition, it has been argued and35

shown that using truly vacuous prior information while remaining coherent usually lead to vacuous posterior
predictions [14, 17, §7.4, §5.6.2] (i.e. our model would not be able to learning from data). Moreover, it may
seem strange that an absence of prior should lead to a fully precise, completely informed posterior. Walley
have therefore proposed to use a set of non-informative prior distributions, called near-ignorance prior [14,
§4.6.9], to solve this issue. These near-ignorance prior must respect certain properties [18, §2] so as not40

to obtain vacuous predictions. Hence, one of our motivations in this paper is to not to use a single prior
distribution, but a set of prior distributions (or credal set [19]) to reflect our lack of knowledge and obtain
cautious predictions.

Let X ×K be the space of observations and possible labels, withX ∈ X = Rp a random vector and
Y ∈ K ={m1, ...,mK} the set of categories. The main goal of GDA is to estimate the theoretical conditional
probability distribution (c.p.d) PY=mk|X of the class Y = mk given the observation X via Bayes’ theorem as
follows

PY=mk|X =
PX|Y=mkPY=mk∑

ml∈K PX|Y=mlPY=ml
. (1)

Thus, quantifying PY=mk|X is equivalent to quantify PX|Y=mk and the marginal distribution PY . In precise
probabilistic approaches, this is typically done by using maximum likelihood estimation (MLE) and by45

making some parametric assumptions about the probability density PY=mk|X (i.e. Gaussian probability
distribution (g.p.d)) in order to find a plausible estimate (see Section 3.1). However, such precise estimates
usually have trouble differentiating different kinds of uncertainties [4], such as uncertainty due to ambiguity
(mixed classes in some areas of the input space) and uncertainty due to lack of knowledge or information
(limited training data set inducing biases in estimates [5]). In both cases, it may be useful to provide set-50

valued, but more reliable predictions, especially for sensitive applications where we cannot afford to make
mistakes (see illustrations in Figures 3(a) and 3(b) ).

Section 2 recalls the basics of the precise classification setting, adopting the viewpoints of statistical
decision theory [6, §2] and expected utility [20, §2.2]. It also introduces the corresponding extensions of
these tools to the IP setting, in particular the maximality criterion [21] that extend the precise utility-based55

decision-making to the IP context.
In Section 3, we describe the estimation of the conditional distribution in the case of the precise GDA,

using a frequentist inference approach. We then extend this precise parametric estimation to imprecise
estimation in a robust Bayesian inference context, using the IP near-ignorance model proposed by Benavoli
et al. [18] to do so and obtaining estimates in the form of a convex set . Coupling this imprecise estimation60

with the maximality criterion, we present our Imprecise GDA (IGDA) model and its different variants in
Section 4.

In Section 5, we perform a set of experiments on different datasets using our imprecise model and compare
it to its precise counterparts. We show that the cautious predictions are useful, in the sense that they
concern instances for which the precise classifier often makes mistakes, often include the true class within65
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the predicted set or these same instances, and are not overly imprecise. Furthermore, we briefly discuss
(focusing on computational issues) in Section 6 the extension of our method to other settings, namely to the
case where the class proportions PY=mk are also imprecisely estimated, and where the criteria to minimise
is not the raw number of errors (corresponding to a 0/1 loss function) but a generic loss function. In this
paper, we will use mathematical notations of table 1.

Symbols Description

Data related notations
X p ⊆ Rp Input space of dimension p.
K = { m1, ...,mK} Output space of size K.
(·)T Transpose Operator
‖·‖ Euclidian norm
X Matrix n× p of all instances of dataset.
y = (y1, . . . , yn)T Vector n× 1 of all label of dataset.
x = (x1, . . . , xp)T New unlabeled instance to predict.
ŷ Precise output prediction.

Ŷ Set-valued output predictions.
N Number of training instances.

Decision theory
Θ Parameter space
P = {Pθ, θ ∈ Θ} Set of probability distributions
PY |X ,PX|Y ,PY (Conditional) Probability distributions
P (Y = mk|X = x) ∼ PY |x Conditional probability of mk given x
Φ = {ϕ |ϕ : X ×Θ→ K} Learning space models
L0/1(y, ϕ(x)) = 1y 6=ϕ(x) zero–one loss function

Discriminant Analysis
nk Number of observations of category mk
(xi,k, yi,k)nki=1 = {(x1,k, y1,k), . . . , (xnk,k, ynk,k)} Observations of category mk.
xk = 1

nk

∑nk
i=1 xi,k Empirical mean of category mk

σ̂jmk = 1
nk−1

∑nk
i=1(xji,k − x

j
k)2,∀j ∈ {1, . . . , p} Empirical variance of category mk

Ŝmk = 1
N−nk

∑nk
i=1(xi,k − xk)(xi,k − xk)T Empirical covariance matrice of category mk

Ŝ = 1
(N−K)

∑K
k=1

∑nk
i=1(xi,k − xk)(xi,k − xk)T Empirical total covariance matrix

π̂y = {π̂y=mk | π̂y=mk = nk/N,
∑

mk∈K π̂y=mk = 1} Empirical marginal distribution PY .

Table 1: Mathematical notations used in this paper

70

2. Preliminaries and basic reminders

In this section, we remind some notions of classical statistical learning and decision-making used to build
a precise classification model, as well as basic notions needed to also deal with sets of probabilities.

2.1. Classification setting

Let D = {(xi, yi)|i = 1, . . . , N} be a training data set issued from X p × K, such that xi ∈ X p are75

regressors or features (input space) and y ∈ K is the response variable or class (output space). We denote

nk the number of observations that belong to the label mk, and so N =
∑K
k=1 nk.

The goal of classification is to build a predictive model ϕ : X → K that predicts a label mk ∈ K given
a new unlabelled instance (x, ·) /∈ D . A well-known approach for that is called inductive learning which
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involves two steps; (1) the learning phase that estimates or induce4 a model from observed data, and (2)80

the decision inferred from the learned model.
Learning consists in determining the optimal model ϕ̂ ∈ Φ among the chosen set Φ of models, using to

do so a set of training data (xi, yi)
N
i=1 generated from an unknown joint probability distribution PX,Y (see

figure 1 for an illustration). After getting an “optimal” model ϕ̂, we must decide what is the label of a new
unlabelled instance (x, ·). This latter decision step can be handled by tools issued from decision theory.

(a) Getting Training Data (b) Learning model φ (c) Prediction unlabeled instance x

Figure 1: Learning model steps. Figure (a) show the initial training data, from which are induced the boundaries defining the
decision function (b), then used to perform the predictions (c).

85

In machine learning, induction is often seen as the task of determining a decision function that will
minimise the risk of getting misclassifications. The cost or risk of a misclassification is generally quantified
through a function L : K×K → R penalising every bad decision, known as loss function, with L (y, ŷ) the
loss incurred when predicting ŷ if y is the observed, true value. The optimal model is most often defined as
the one minimizing the expected loss.90

Definition 1 (Risk minimizing [6, §2.4]). Given a general loss function L (·, ·), the optimal model is defined
as the one minimizing the average loss of getting missclassification.

ϕ̂ := argminϕ(X)∈Φ EX×K [L (Y, ϕ(X))] (2)

If loss function is defined instance-wise, then, Equation (2) can also be expressed as the minimization of
conditional expectation [6, eq. 2.21]:

ϕ̂ := arg min
y∈K

EY |X [L(y, ϕ(X))] (3)

Classical accuracy corresponds to a zero-one loss function, where all missclassification are penalised
identically, i.e. L0/1(y, ŷ) is equal to 1 if y and ŷ are different and 0 otherwise. Therefore, given L0/1, we
can reformulate the risk minimization as the well-known Bayes classifier, which would choose the learning
model maximizing the conditional probability (a.k.a. maximum a posterior (MAP) probability) given a new
unlabeled instance x:

ϕ̂(x) = argmaxmk∈K P (Y = mk|X = x) (4)

Hence, in a precise probabilistic approach, the main task is to estimate the conditional distribution PY |X ,
from which can be obtained the optimal decision. An alternative way of looking at this decision-making
problem is to pose it as a problem of inferring preferences between the labels, as follows:

Definition 2 (Precise ordering [20, pp. 47]). Given a general loss function L(·, ·) and a conditional proba-
bility distribution PY |x, ma is preferred to mb, denoted by ma � mb, if and only if:

EPY |x [L(·,ma)|x] < EPY |x [L(·,mb)|x] (5)

4In the sense that it goes from singular observations to a generic model.
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Definition 2 tells us that exchanging mb for ma would incur a positive expected loss, due to the fact that
expectation loss of mb is greater than ma, therefore ma should be preferred to mb for a given new unlabelled
instance x. In the particular case where we use the loss function L0/1, it is easy to prove that:

ma � mb ⇐⇒ P (Y = ma|X = x) > P (Y = mb|X = x) (6)

where P (Y = ma|X = x) is the unknown conditional probability of label ma and a new unlabeled instance x.
Therefore, given a set of labels K, we can then establish a complete preorder making pairwise comparisons
(see figure 2) as follows:

miK � miK−1
� · · · � mi1 ⇐⇒ P (Y = miK |X = x) > · · · > P (Y = mi1 |X = x). (7)

We can then pick out one of the undominated labels, i.e., one with maximal probability .

Example 1. Given a set of labels K = {ma,mb,mc}, a new unlabeled instance x, and the probability estimates95

of the conditional distribution P̂Y |X :

P̂ (Y = ma|X = x) = 0.3

P̂ (Y = mb|X = x) = 0.1

P̂ (Y = mc|X = x) = 0.6

the complete preorder between labels w.r.t estimated
probabilities is mc � ma � mb.

{mc} being the maximal label dominating other ones
(Figure 2), it is the predicted one.

mc ma mb

Figure 2: Graph of complete preorder on labels

In the case where we find 1 < r ≤ K equal maximal conditional probabilities, which is unlikely in practice
but not impossible, they can be considered as indifferent and chosen randomly. It should be noted that,
whatever the quantity of data used to induce the model or the specific new instance x we face (that may100

come from a poorly populated region), we will always get (up to indifference) a unique undominated model.
In contrast, the IP approach where we consider sets PY |X may result in partial orders having multiple
undominated and incomparable labels.

2.2. Classification with imprecise probabilities

Often, the decision maker can be faced with unreliable or hard situations where making a single decision105

may give rise to serious mistakes (e.g. cancer screening). The hardness of such situations can for instance
be due to the lack of sufficient evidence or information (i.e. uncertainty in data). Such cases could be dealt
more reliably via a cautious decision (i.e. a set of plausible choices, see e.g., Figure 3).

H
H

H H
H

H

?

?

?

?
?

?

?

H Group B

? Group A

•?P (ŷ∗|X = x∗) ≈ 0.5

(a) Precise decision-making

H
H

H H
H

H

?

?

?

?
?

?

?

H Group B

? Group A

•? ŷ∗ ⊆ {A,B}

(b) Cautious decisions-making

Figure 3: Cautious vs precise decision-making. Figure (a) shows a precise model, where there are no regions where the model
will output set-valued predictions, in contrast with (b) where such a region exists (in red).

As shown by Equation 7 and Example 1, usual statistics and probabilities usually model uncertainty in
data with single distribution P, canonically ending up in a unique undominated label. While it is possible to110

implement decision rules providing set-valued predictions in such settings [10], several authors [14, 22] have
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argued that a single distribution cannot always faithfully represent lack of information. Following them, we
consider the framework of imprecise probabilities to account for such lack of information.

In what follows, we will introduce some essential concepts about imprecise probabilities, as well as an
extension of the precise decision approach given in Definition 2 relying on the convex set of distributions115

Py|X . As in this work we want to obtain more reliable decision by allowing partial predictions, i.e. cautious

decisions, we will focus on extensions where we get a set-value label Ŷ instead of a precise label ŷ.

2.2.1. Basic notions about imprecise probabilities

Imprecise probability theory often (and will in our case) consists in representing our uncertainty by a
convex set PX of probability distributions [14, 7] (i.e. a credal set [19]), defined over a space X rather120

than by a precise probability measure PX [23]. As they include precise distributions as special cases, such
convex sets of distributions provides richer, more expressive models of uncertainty that allow us to better
describe uncertainty originating from imperfect or scarce data.

Given such a set of distribution PX and any measurable event A ⊆ X , we can define the notions of
lower and upper probabilities PX(A) and PX(A), respectively as:

PX(A) = inf
P∈PX

P (A) and PX(A) = sup
P∈PX

P (A) (8)

where PX(A) = PX(A) only when we have sufficient information about A.
Estimations of parameters in the context of imprecise probabilities is usually more complicated as we125

consider a set PX of distributions instead of a single distribution PX . In our case, such complications
will be limited, as we will rely on previous works providing efficient generalized Bayesian inference methods
for exponential families (which include Gaussian distributions), that we will present in Section 3.2 For
theoretical developments of the next subsection about decision, we will assume that we know the set PY |X
of conditional distributions over the classes.130

2.2.2. Decision making under imprecise probabilities

Within IP theories, we can find different methods extending the decision criterion given in Definition 2
(more details in [21]). For classifying a new instance x, we will make use of the maximality criterion [7, §8.6]
that has strong theoretical justifications [14, §3.9.5] and often remains applicable in practice [24, 25, 26].
This one extends Equation (5) in a robust way, requiring that a preference holds only if it holds for every135

model. More precisely, the criterion of maximality is defined as follows:

Definition 3 (Partial Ordering by Maximality Criterion [21, §3.2]). Let L(·, ·) be a general loss function
and PY |X a set of probability distributions, then under the maximality criterion, ma is preferred to mb iff
the cost of exchanging ma with mb have a positive lower expectation:

ma �M mb ⇐⇒ inf
PY |x∈PY |x

EPY |x [L(·,mb)− L(·,ma)|x] > 0 (9)

if L(·, ·) is 0/1 loss function, this gives:

ma �M mb ⇐⇒ inf
PY |x∈PY |x

[
P (Y = ma|X = x)− P (Y = mb|X = x)

]
> 0 (10)

Equation (10) amounts to asking that Equation (5) is true for all possible probability distributions in
PY |x. In practice, �M can be a partial order with several maximal elements, in which case the prediction
becomes imprecise due to high uncertainty in the model. Note that when N → ∞, imprecise and precise
models will usually coincide. The prediction ŶM resulting from �M is defined as:

ŶM =
{

ma ∈ Y
∣∣∣ 6 ∃mb ∈ Y : mb �M ma

}
(11)
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Example 2. Given the label set K = {ma,mb,mc}, we could have the following plausible partial ordering:

B = {ma �M mb,mc �M mb}
where ŶM = {ma,mc} is the predicted set obtained from
set B of comparisons by the criterion of maximality
(figure 4).

ma

mb

mc

Figure 4: Graph of partial order of set B .

In the next section, we expose how the Gaussian discriminant model can be made imprecise to characterise
the conditional distributions PY |X by a set PY |X . We will first recall the precise model, before making it140

imprecise.

3. Gaussian discriminant analysis model

As mentioned in the introduction, a classical way to estimate the distribution PY |X is by using Bayes’
theorem. Making use of Equation (1), we will discuss the precise and imprecise approach, respectively in
Sections 3.1 and 3.2.145

3.1. Statistical inference with precise probabilities

There are many ways to model PX|Y=mk , but in this work, we focus on parametric discriminant analysis
which assume that PX|Y=mk follows a multivariate Gaussian distribution N (µmk ,Σmk) with unknown mean
µmk and covariance matrix Σmk , i.e.:

Gmk := PX|Y=mk ∼ N (µmk ,Σmk) (12)

whose probability density function is written

P (X = x|Y = mk) =
1

(2π)p/2|Σmk |1/2
e−

1
2 (x−µmk )TΣ−1

mk
(x−µmk ). (13)

The marginal distribution is defined as a multinomial πy := PY , where P (Y = mk) = πmk . So, under a 0/1
loss function, the optimal prediction becomes:

ϕ̂(x|θmk) := arg max
mk∈K

log πmk −
1

2
log |Σmk | −

1

2
(xT − µmk)TΣ−1

mk (xT − µmk) (14)

where Θ = {θmk |θmk = (πmk ,Σmk , µmk),∀mk ∈ K} is the parametric space from which comes our estimate. In
Table 2, we remind different discriminant models arising from of the last equation, and corresponding to150

various constraints imposed to the covariance matrices of the conditional distributions.

Discriminant analysis model Assumptions (∀mk ∈ K) Parametric space (∀mk ∈ K)

Parametric Gaussian conditional distribution Py|X
Linear Discriminant [6, §4.3] Homoscedasticity: Σmk = Σ Θ = {θmk |θmk = (πmk ,Σ, µmk)}
Quadratic Discriminant [6, §4.3] Heteroscedasticity: Σmk = Σk Θ = {θmk |θmk = (πmk ,Σk, µmk)}
Naive Discriminant [6, §6.63] Feature independence: Σmk = σTk I Θ = {θmk |θmk = (πmk , σk, µmk)}
Euclidean Discriminant [27] Unit-variance feature indep.: Σmk = I Θ = {θmk |θmk = (πmk , µmk)}

Table 2: Gaussian discriminant analysis models

In frequentist inference, usual estimation of parameters of (14) is obtained by MLE using a subset
Dmk = {(xi,k, yi,k=mk)|i = 1, . . . , nk} ⊆ D of observations of training data. We have π̂mk = nk/N (frequency
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of mk) and µ̂mk = xk (sample mean of Dmk). Depending on whether we assume the model to have (1)

dependent features, we will have an hetero- or homo-scedastic assumption, with respectively Σ̂mk = Ŝmk155

(sample covariance matrix of Dmk) or Σ̂mk = Ŝ (within-class covariance matrix D), or to have (2) independent

features, we will have features weighted proportionally to their inverse variance Σ̂mk = σ̂Tk I or unweighed

with all weights equal to 1, i.e. Σ̂mk = I.
Those estimates do not account for the quantity of data they are based on, which may be low to start

with, and may also vary significantly across classes, especially in case of imbalanced data sets. To solve160

this issue, we propose in the next section an imprecise discriminant model, based on the use of imprecise
probabilities and using results from Benavoli et al. [18].

3.2. Statistical inference with imprecise probabilities

To estimate PX|y and PY in the form of convex sets of distributions, we will use robust Bayesian inference
under prior near-ignorance models. Before describing our imprecise estimation, we make three general165

assumptions for our imprecise Gaussian discriminant model:

1. Normality of conditional probability distribution PX|Y=mk := Gmk , as in the classical case.

2. A precise estimation of marginal distribution PY := π̂y.

3. A precise estimation of covariance matrix Σk := Σ̂k = Ŝk or Ŝ.

In Section 6, we will discuss the relaxation of assumption 2, considering a set of distributions PY .170

3.2.1. Robust Bayesian inference

The estimation of parameters in Bayesian inference relies mainly on two components; the likelihood func-
tion and the prior distribution, from which posterior inferences can then be made on unknown parameters
of the model, in our case θmk .

In the particular case of PX|Y=mk , the likelihood function is the product of conditional probabilities∏nk
i Pxi,k|yi,k,θmk

and the prior distribution Pθmk
models our knowledge about θmk = (Σmk , µmk). In this paper,

we focus on estimating imprecise mean parameters (i.e. θmk = µmk), assuming a (precise) estimation of

Σ̂mk , for reasons of computational complexity that will be discussed in Section 7. Thus, the posterior on the
mean is such that

P (µmk | Dmk) ∝
nk∏

i

P (X = xi,k | µmk , yi,k = mk)P (µmk). (15)

To simplify, we will from now on remove the subscript mk, always bearing in mind that these estimations175

are related to a group of observations labelled mk.

3.2.2. Near-ignorance on Gaussian discriminant analysis

Near-ignorance models allow us to provide an “objective inference” approach, representing ignorance
about unknown parameter and letting the data speak for themselves. In their work, Benavoli et al in [18] pro-
pose a new near-ignorance model based on a set of distribution M , which aims to reconcile two approaches,180

namely, the re-parametrization invariance and the Walley’s near-ignorance prior. For that, Benavoli A. et
al define four minimal properties, which must be satisfied whenever there is no prior information about the
unknown parameter, on the set of distributions M (more details in [18, §2]).

(P1) Prior-invariance, that states that M should be invariant under some re-parametrization of the
parameter space (e.g. translation, scale, permutation, symmetry, etc).185

(P2) Prior-ignorance, that states that M should be sufficiently large for reflecting a complete absence of
prior information w.r.t unknown parameter, but no too large to be incompatible with property (P3).

(P3) Learning from data, that states that M should always provide non-vacuous posterior inferences, in
other words, it should learn from the observations.

(P4) Convergence, that states that the influence of M on the posterior inference vanishes when increasing190

number of observations, i.e. n→∞, requiring consistency with the precise approach at limit.
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Benavoli et al [18] provide a set of conjugate priors M for regular multivariate exponential families [28,
§3.3.4] (FExp) that satisfies the last four properties under quite weak assumptions. Borrowing from [18], we
can define this set of prior distribution M as follows:

Definition 4 (Prior near-ignorance for k-parameter exponential families [18, §4, eq. 16]). Let L be a bounded
closed convex subset of Rk strictly including the origin ([18, lem. 4.5]).

L =
{
` ∈ Rk : `i ∈ [−ci, ci], ci > 0, i = {1, . . . , d}

}
(16)

Let w ∈ W = Rk be a real-valued parameter with a density having the following functional form that belongs
to FExp:

p(w) =
`

exp(`T r)
exp(`Tw)1Wr

(w) (17)

where ` belongs to L and r ∈ Rk is a real value. The set of prior distributions (c.f. [18, th. 4.6]) can be
written as follows:

Mw =
{
w ∈ W | p(w) ∝ exp(`Tw), ` = [`1, . . . , `k] ∈ L

}
(18)

Since our Gaussian probability distribution PX|y=mk given by Equation (12) belongs to FExp, we can use195

the set of prior distributions M µ of Equation (18) in order to get a set of posterior distributions M µ
n having

the same functional form (FExp) [17, §5.2]:

M µ
n =

{
µ
∣∣xn, ` ∝ N

(
`T Σ̂ + nxn

n
,

1

n
Σ̂

)∣∣∣∣∣
µ ∈ Rn,
` ∈ L

}
(19)

where xn = 1
n

∑n
i=1 xi and ` ∈ L. We can then estimate the lower and upper values of the unknown µ

parameters, so for every dimension i ∈ {1, . . . , d} [18]:

inf
Mµ
n

E[µi |xn, `] = E[µi |xn, `] =
−ci + nxn

n
(20)

sup
Mµ
n

E[µi |xn, `] = E[µi |xn, `] =
ci + nxn

n
(21)

As a result, we will have for each label mk a convex space of plausible values for the mean µmk which can be
represented by the hyper-cube

Gmk =

{
µ̂mk ∈ Rd

∣∣∣∣∣ µ̂i,mk ∈
[−ci + nkxi,nk

nk
,
ci + nkxi,nk

nk

]
,∀i = {1, ..., d}

}
. (22)

Remark 1. The convergence property (P4) ensures us that no matter the initial value of our convex space
L, when the number of observations tends to infinity, n → ∞, their influence on the posterior inference200

of µ̂ will disappear, i.e Gmk −−−−→n→∞
xn, and will become the asymptotic estimator of the precise Gaussian

distribution.

On the basis of the set Gmk previously calculated, we can simply consider the following set of conditional
probability distributions PX|y=mk (or set of predictive distributions) for every label mk on K :

PX|y=mk =
{
PX|Y=mk

∣∣∣ PX|Y=mk ∼ N (µmk , Σ̂mk), µmk ∈ Gmk

}
(23)

In what follows, we study how we can incorporate the sets of distributions PX|Y=mk in Gaussian discriminant
analysis, using maximality (Definition 3) to get our (possibly) imprecise classification.
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4. Imprecise Classification with L0/1 loss function205

Let us now present our approach to make cautious classification by using sets of conditional distribution
given by Equation (23) and obtained from a near-ignorance model. Using the maximality criterion, to know
whether ma �M mb, we need to solve Equation (10) by applying Bayes’ theorem:

inf
PY ∈PY

inf
PX|ma∈PX|ma
PX|mb∈PX|mb

P (X = x|Y = ma)P (Y = ma)− P (X = x|Y = mb)P (Y = mb) > 0 (24)

since the marginal P (X = x) =
∑

ml∈Y P (X = x|Y = ml)P (Y = ml), which is the same positive constant
of normalisation for each probability, can be omitted.

As conditional distributions sets PX|Y=mk are independent of each others, we can rewrite Equation (24)
as follows (cf. [24, eq. 4.3]):

inf
PY ∈PY

P (X = x|Y = ma)P (Y = ma)− P (X = x|Y = mb)P (Y = mb) > 0 (25)

where P (P ) is the infimum (supremum) conditional probability. Also, applying Assumption 2 and the fact
that every π̂y > 0, solving Equation (25) is reduced to finding the two values

P (X = x|Y = ma) = inf
PX|ma∈PX|ma

P (X = x|Y = ma), (26)

P (X = x|Y = mb) = sup
PX|mb∈PX|mb

P (X = x|Y = mb) (27)

As PX|y=mk is a set of Gaussian distributions, the solutions of Equations (26) and (27) are respectively
obtained for the following values of the means

µ
ma

= arg inf
µma∈Gma

− 1

2
(x− µma)T Σ̂−1

mb (x− µma), (28)

µmb = arg sup
µmb∈Gmb

− 1

2
(x− µmb)

T Σ̂−1
mb (x− µmb), (29)

where Σ̂−1
mb is the inverse of the covariance matrix (Assumption 3). Depending on the internal structure of210

the precise covariance matrix Σ̂k, solving for (28) and (29) may be more or less computationally challenging.
We will consider two main different imprecise discriminant models: (1) with non-diagonal covariance matrix
and (2) with diagonal covariance matrix.

4.1. Gaussian discriminant model with dependent features

Similarly to the distinction made in the precise case, we will consider two different variants of the non-215

diagonal case.

Case 1. Imprecise Quadratic discriminant analysis (IQDA): if we suppose that the covariance structures of

all groups of observations are different, that is Σ̂mk = Ŝmk ,∀mk ∈ K .

Case 2. Imprecise linear discriminant analysis (ILDA): if we assume that all groups of observations have
the same covariance structure, that is Σ̂mk = Ŝ,∀mk ∈ K .220

In those cases where the covariance matrix contains collinear columns, Σ̂mk will not be invertible, in
which case we use the singular value decomposition (SVD) method for computing the pseudo-inverse of
covariance matrix. Before studying the computational issues of IQDA and ILDA, i.e. Equations (28) and
(29), we will illustrate the last case (ILDA) in Example 3.
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Example 3. The interest of modelling an imprecise mean is to be able to detect areas where we should
be cautious and predict sets of labels rather than a single one. For example, in Figure 5, we simulated two
groups of observations xma∗ and xmb∗ (i.e. binary case), each with two non-correlated regressors and different
means: ( xma1

xma2

)
∼ N (( 0.25

0.5 ) , ( 1 0
0 1 ))

( xmb1
xmb2

)
∼ N (

(
0.5
−1.0

)
, ( 1 0

0 1 ))

L =
{
` ∈ R2 : `i ∈ [−ci, ci], ci = 2

}

Figure 5(a) illustrates this example and pictures the following things: groups of observations xma∗ and xmb∗225

with the symbols ? and H, respectively, and the posterior convex estimates G (solid) of the means after
injecting the information contained in the training data.

We also drew the (precise) mean of each group, i.e. µma and µmb , as solid points, and a black dot (•)
representing a new unlabelled instance x as well as positions of solutions of Equations (28) and (29). In
Figure 5, we observe (in purple) an area of uncertainty generated by the imprecise mean and the maximality230

criterion.

H
H

H

H

H H

H

?

?

?

?

?

?

?

H Group B

? Group A

Set-box posterior
estimators µ̂∗

?

New observation•

•
µ̂mb•

µ̂ma

•

Lower/Upper estimations

{?} then: ma �M mb

(a) Upper/lower estimation of µk (b) Imprecise decision area

Figure 5: Imprecise boundary area and estimation. Figure 5(a) shows an example of imprecise estimation of means µ∗, and

Figure 5(b) shows an imprecise decision area of purple colour where the subset Ŷ={ma,mb} of labels is the imprecise decision,
that is in this region ma and mb are incomparable.

Let us now discuss the problem of solving Equations (28) and (29). Expressing Gmb as constraints, the
solution µmb of (29) can be written as

µmb = arg sup − 1

2
µ̂TmbΣ̂

−1
mb µ̂mb + qT µ̂mb

s.t.
−cj + nmbxj,n

nmb
≤ µ̂j,mb ≤

ci + nmbxj,nmb

nmb
,

qT = −xT Σ̂−1
mb , ∀j = {1, ..., d}

(BQP)

This optimisation problem is well-known as a box-constraint quadratic program (BQP) [29], as (1) the

constraint space Gmk is a convex space, and (2) Σ̂−1
mk is a positive (semi)-definite matrix, pending the fact

that the covariance matrix Σ̂mk does not have multicollinearity problems [30]. Computing an optimal global
solution of (BQP) in polynomial time is easy using modern optimisation libraries (e.g. using the CvxOpt235

python library [31]), as we have to maximize a concave function (or, equivalently, minimise a convex one).
Finding µ

ma
in equation (28) is much more difficult, as one seeks to solve the optimization problem

µ
ma

= arg inf
µ̂ma∈Gma

− 1

2
µTmaΣ̂−1

ma µ̂ma + qT µ̂ma (NBQP)
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That comes down this time to maximizing a convex function over box-constraints (Gma), which is known to
be NP-Hard [32]. To solve it, we use a brand-and-bound (B&B) algorithm [33, 34], that employs a finite
branching based on the first-order Karush-Kuhn-Tucker5 conditions and polyhedral semidefinite relaxation
in each node of the B&B tree (more details in [33]).240

4.2. Gaussian discriminant model with independence features

When the number of features becomes high, and the associated optimisation problem quite time-
consuming to solve, it may be interesting to consider some additional assumptions which will significantly
reduce the inference complexity. In what follows, we will assume that features xji are independent condi-
tional on the label mk.This translates in the fact that covariance matrices become diagonal matrices, i.e.
Σmk = σTmkI with σTmk = (σ1

mk , . . . , σ
p
mk) a p-dimensional vector containing the variance of each feature, which

can be interepreted as weights of the features. Therefore, we can rewrite Equations (28) and (29) as follows:

µ
ma

= arg inf
µma∈Gma

− 1

2
wma ‖x− µma‖2 (30)

µmb = arg sup
µmb∈Gmb

− 1

2
wmb ‖x− µmb‖2 (31)

where wmk = (w1
mk , . . . , w

p
mk)T such that wjmk = 1/σjmk ,∀j ∈ {1, . . . , p}, in this scenario, we will consider two

new models.

Case 3. Imprecise naive discriminant analysis (INDA): this case is similar to the Naive Bayes classifier,
as we simply consider the assumption Σmk = σ̂Tk I where σ̂k are the empirical variance estimator obtained245

from a group of observation belonging to the label mk.

Case 4. Imprecise Euclidian discriminant analysis (IEDA): this is a case more specific than INDA, where
we assume that for every j ∈ {1, . . . , p} we have σ̂jk = 1, meaning that the measure used to evaluate the
probability of a label given a new instance is proportional to the Euclidian distance between the instance
and the corresponding mean. The Euclidean classifier is one of the simplest existing classifier, and is the250

supervised counterpart of the standard k-means method.

We show below that when the covariance matrix is diagonal, optimisation problems (30) and (31) become
very easy (i.e. linear in p, O(p)) to solve.

Proposition 1. For two vectors x,w ∈ Rp, and a box-convex space on Rp:

G =
{
µ ∈ Rp

∣∣ µj ∈ [µj , µj ],∀j ∈ {1, . . . , p}
}

- the infimum weighted distance subject to constraints G is:

inf
µ∈G
− 1

2
wT ‖x− µ‖2 = −1

2

p∑

j

wj max
j
{(xj − µj)2, (xj − µj)2} (32)

- and the supremum weighted distance subject to same constraints is:

sup
µ∈G
− 1

2
wT ‖x− µ‖2 = −1

2

p∑

j

wj

{
0 if xj ∈ [µj , µj ]

minj{(xj − µj)2, (xj − µj)2} otherwise
(33)

5Also known as KKT, which allows to solve problems of optimisation subject to non-linear constraints in the form of
inequalities.
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Proof. Since each element of the sum is positive, we can interchange the infimum operator with summation,
and calculate the supremum of each component as follows:

inf
µ∈G
−1

2

p∑

j

wj(xj − µj)2 ⇐⇒ −1

2

p∑

j

wj sup
µj∈[µj ,µj ]

(xj − µj)2 (34)

where the supremum can be calculated as follows:

sup
µj∈[µj ,µj ]

(xj − µj)2 = max
j
{(xj − µj)2, (xj − µj)2} (35)

In the second case and for similar reasons, we can also put the supremum operator inside of summation and
calculate of infimum value of each component:

sup
µ∈G
−1

2

p∑

j

wj(xj − µj)2 ⇐⇒ −1

2

p∑

j

wj inf
µj∈[µj ,µj ]

(xj − µj)2 (36)

where the infimum of squared subtraction of each element is:

inf
µj∈[µj ,µj ]

(xj − µj)2 =

{
0 if xj ∈ [µj , µj ]

minj{(xj − µj)2, (xj − µj)2} otherwise
(37)

The next section presents some experiences with different data sets and different precise and imprecise255

models.

5. Experiments setting

In this section, we provide experimental results evaluating the performance of our different imprecise
Gaussian discriminant models (cf. Section 4).

5.1. How can we choose parameter ci?260

The choice of parameters ci determines the amount of imprecision in our posterior inference. It should
be large enough to guarantee more reliable predictions when missing information, but small enough so as
to provide informative predictions when possible. Therefore, in the absence of prior information and for
symmetry reasons, we will consider a symmetric box around 0, as follows:

L
′

=
{
` ∈ Rk : `i ∈ [−c, c], c > 0, i = {1, . . . , d}

}
. (38)

In order to fix a value of c, there exists different approaches already mentioned in Section 4.3 of [18]. One
can for example rely on the rate of convergence of the lower and upper posterior expectations [14]:

∀i
(
E[µi|xn, `]− E[µi|xn, `]

)
=

2c

n
−−−−→
n→∞

0 (39)

meaning that for small values of c, we would reach a faster convergence of Equation (39) to a precise posterior
inference (as precise models). A value of c ≤ 0.75 is recommended by [18, §4.3, §8], however since we are in a
classification problem, we will select an optimal value of c through cross-validation on the training samples.
More precisely, we restrict c to the interval [0.01, 5], discretised into [0.01, 0.02, ..., 5], with the optimal value
decided by cross validation on the training samples. A typical empirical evolution of the accuracy measures265

used in the next sections is shown in Figure 8 for the four IGDA methods. It clearly shows that performances
first increase in average with imprecision, but then degrades as imprecision becomes too large.
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# name # instances # features # labels
a iris 150 4 3
b wine 178 13 3
c forest 198 27 4
d seeds 210 7 3
e glass 214 9 6
f ecoli 336 7 8
g libras 360 91 15
h dermatology 385 34 6
i vehicle 846 18 4
j vowel 990 10 11
k yeast 1484 8 12
l wine quality 1599 11 6
m optdigits 1797 64 10
n segment 2300 19 7
o wall-following 5456 24 4

Table 3: Data sets used in the experiments

5.2. Data sets and experimental setting

We perform experiments on 15 data sets issued from UCI machine repository [35](cf. Table 3), following
a 10×10-fold cross-validation procedure. We aim to compare the performance of our imprecise Gaussian270

classifier model approach with the existing precise models (c.f. Table 2).
Owing to small amounts of samples in some groups of observations (belonging to a specific label mk)

of some data sets, the QDA model can suffer from a phenomenon known as ill-posed covariance matrix
(i.e. nmk < p), and in such cases even calculating the pseudo-inverse of Σ̂mm estimated covariance matrice
using SVD method cannot solve the problem. This affects the performance of our classifiers, getting highly
significant drop (e.g. in Table 4, glass and yeast data sets). Therefore, in this case specific, we used a basic
regularized method for estimated covariance matrice named Regularization QDA (or RQDA)[36, 6]:

Σmk(α) = αΣ̂mk + (1− α)I, (40)

where Σ̂mm is the estimated covariance for a group of observations, I a identity matrix and α the regularization
factor.

Comparing indeterminate predictions given in the form of a subset Ŷ of plausible labels against just one
determinate prediction ŷ is a hard problem that mostly depends on the circumstances or the context in which
a decision-marker may or may not accept partial predictions (or cautious decision) instead of a unique, risky

decision. A good evaluation should reward cautiousness provided by Ŷ when it allows to include the true
observed label, but not so much as to systematically privilege imprecision over precision. In other words,
we need an evaluation metric that seeks a compromise between cautiousness and informativeness. To do
this, we adopt the evaluation metric proposed and theoretically justified in [37], called utility-discounted
accuracy, which makes it possible to reward the imprecision in a more or less strong way. It is written as
follows:

u(y, Y ) =

{
0 si y /∈ Y,
α
|Y | − 1−α

|Y |2 autrement.
(41)

[37] shows that a value α = 1 amounts to not reward cautiousness and to confuse it with randomness, while

α → ∞ does not penalize non-informativeness, as the vacuous prediction (i.e. Ŷ = K ) would always get275

a full, guaranteed reward. We will use the usual values u65 with α = 1.6 and u80 with α = 2.2 (as in
[25]). To have an intuition about these measures, let us simply recall that the u65 (u80) measure rewards
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a binary correct prediction with 0.65 (0.80), while a purely random, non-cautious guesser picking one of
the two possible label would reward it with 0.50. It therefore gives a “reward” of 0.15 (0.30) for rightful
cautiousness.280

5.3. Experimental results

The average results obtained according to u65 and u80 utilities, and the average execution time to predict
the label of a new unlabeled instance are shown in Table 4.

(a) LDA versus ILDA

LDA ILDA Avg.
Time# acc. u80 u65

a 97.96± 0.05 98.38± 97.16± 0.56
b 98.85± 0.36 98.99± 1.17 98.95± 1.26 1.49
c 94.61± 0.60 94.56± 1.08 94.05± 1.02 12.14
d 96.35± 0.25 96.59± 0.23 96.51± 0.23 1.50
e 62.15± 0.76 66.78± 0.73 58.87± 0.77
f 87.14± 0.37 88.27± 1.43 87.72± 1.42 12.40
g 64.45± 0.57
h 96.58± 0.35 97.06± 0.62 96.94± 0.61 19.24
i 77.96± 0.48 81.98± 0.91 79.59± 0.82 3.10
j 60.10± 0.68 67.45± 0.48 62.41± 0.40 4.95
k 58.92± 0.17
l 59.25± 0.27 65.83± 60.31± 34.85
m 95.40± 0.09
n 91.60± 0.09 90.76± 0.35 89.70± 0.32
o 67.96± 0.07 71.34± 66.65± 10.77

avg.

(b) QDA versus IQDA

QDA RQDA IQDA Avg.
Time# acc. acc. u80 u65

a 97.29± 0.44 96.66± 4.47 98.08± 0.41 97.13± 0.42
b 99.03± 0.45 98.89± 2.22 99.39± 0.14 99.09± 0.13
c 89.43± 1.34 97.47± 3.37 91.77± 1.38 88.90± 1.32
d 94.64± 0.47 94.29± 2.86 95.20± 0.26 94.72± 0.24
e 7.15± 2.39 51.40± 9.79 64.38± 1.36 58.36± 1.30
f 46.19± 2.97 88.25± 5.97 87.34± 0.90 84.79± 0.87
g 34.04± 2.14 72.22± 6.21
h 82.47± 0.42 96.92± 0.88 84.24± 0.87 84.05± 0.88
i 85.07± 0.86 85.11± 2.63 87.96± 0.34 86.13± 0.27
j 87.83± 0.49 87.07± 3.49 89.96± 0.67 88.40± 0.70
k 13.18± 2.37 56.27± 2.29
l 55.62± 0.47 55.79± 5.35 65.85± 60.36±
m 87.18± 1.31 98.94± 0.85
n 64.69± 1.82 91.17± 1.61
o 65.87± 0.17 70.56± 2.63 71.79± 0.12 69.75± 0.12

avg.

(c) NDA versus INDA

NDA INDA Avg.
Time# acc. u80 u65

a 95.07± 0.44 95.73± 5.78 95.53± 5.94 0.46× 10−3

b 97.70± 0.58 98.39± 3.24 93.60± 13.93 1.72× 10−3

c 95.26± 0.33 89.95± 15.28 99.95± 18.59 4.09× 10−3

d 90.38± 0.19 91.14± 5.88 88.21± 11.32 1.12× 10−3

e 43.92± 1.36 51.25± 10.84 50.21± 10.41 4.98× 10−3

f 82.39± 1.22 56.54± 18.69 56.54± 18.69 3.41× 10−3

g 63.17± 1.43 65.50± 4.76 65.22± 5.30 10.35× 10−3

h 85.52± 0.98 90.71± 4.57 90.45± 4.64 3.10 × 10−3

i 45.63± 0.89 46.33± 7.44 45.70± 7.14 1.19× 10−3

j 67.26± 0.39 70.35± 7.44 71.70± 10.23 3.14× 10−3

k 43.36± 0.51 49.51± 6.78 50.71± 5.81 2.50× 10−3

l 54.83± 0.34 57.24± 8.27 57.33± 3.31 1.51× 10−3

m 89.69± 0.19 85.17± 7.75 89.39± 7.01 4.44× 10−3

n 79.83± 0.11 77.11± 9.23 78.75± 10.31 2.69× 10−3

o 52.55± 0.12 51.00± 6.64 54.32± 5.09 1.29× 10−3

avg.

(d) EDA versus IEDA

EDA IEDA Avg.
Time# acc. u80 u65

a 91.60± 0.61 94.80± 4.24 93.13± 4.75 0.29× 10−3

b 46.65± 0.85 61.78± 3.93 52.04± 4.08 0.41× 10−3

c 81.09± 0.39 82.38± 7.42 81.84± 9.30 1.31× 10−3

d 90.38± 0.36 92.86± 8.05 87.29± 8.94 0.46× 10−3

e 46.26± 1.68 56.16± 12.06 49.08± 8.85 0.67× 10−3

f 42.59± 0.04 43.34± 9.40 40.91± 7.08 0.87× 10−3

g 49.36± 1.53 54.62± 7.21 49.27± 10.53 12.25× 10−3

h 51.22± 0.92 54.78± 10.44 52.87± 10.99 1.39× 10−3

i 28.03± 0.19 45.13± 6.03 38.33± 4.06 0.67× 10−3

j 58.08± 0.90 63.94± 5.28 58.94± 4.60 2.48× 10−3

k 31.27± 0.13 31.56± 3.10 31.39± 2.88 2.18× 10−3

l 19.72± 0.19 22.11± 5.64 23.40± 8.44 1.03× 10−3

m 88.17± 0.15 89.11± 1.95 88.83± 1.82 5.09× 10−3

n 22.10± 0.11 39.30± 5.87 30.65± 1.10 2.15× 10−3

o 57.90± 0.11 56.66± 7.01 58.47± 9.07 1.06× 10−3

avg.

Table 4: Average utility-discounted accuracies (%) and time to predict in seconds.

First, we can see that including some cautiousness can increase our accuracies on most data sets, by
picking the right values of c. This increase is sometimes noticeable, for example in the vehicle (i), wine-quality285

(l), wall-following (o) and vowel data sets (j). All of this, keeping a time execution reasonable in view of the
problems to be solved (e.g. a non-convex, NP-hard problem), and without an optimized implementation.
As expected, assuming independence between the features (i.e., diagonal covariance matrices) significantly
reduces the computational time, making it negligible, but overall reduces performances, as the assumptions
are often violated in a stronger way.290

In order to highlight the major role of cautiousness of an imprecise classifier model, we show in Figure
6(c) and 6(b) how, in the IRIS data set, our IQDA and ILDA models create different areas of decision
boundaries (not to be confused with rejection area), where each area has a different combinations of subset

of labels Ŷ ⊆ K , in contrast to precise classifier model (LDA), in Figure 6(a), where it creates one area per
label. We can clearly see that the two classifiers behave quite differently. In particular, ILDA will induces295
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(a) Precise boundary decision (b) ILDA zone decision (c) IQDA zone decision

Figure 6: Figure 6(a) shows how a precise model divides the instance space in three single different zones by label (i.e
{a}, {b}, {c}), the Figure 6(b) shows how an ILDA model divides the instance space in different zones as much as different
combinations of a subset of labels (i.e {a}, {b}, {c}, {a, b}, {b, c}, and so on), and the Figure 6(c) shows how IQDA model can
also divide in different zones with smooth curves instead.

regions delimited by piece-wise linear functions, while IQDA will induces regions delimited by piece-wise
quadratic functions.

Also, in Figure 8, we show the evolution of utility-discounted accuracy (i.e. u65 and u80 of vowel dataset),
with a standard deviation calculated by a 10-fold cross-validation on the training dataset, according to the
imprecision of estimators µ. As expected we notice that when c reaches a too high value, the overall300

model performances decrease, as it becomes too imprecise with respect to our attitude towards cautiousness
(modelled through utility (41)). The rest of experiments are in Appendix A.
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Figure 7: Correctness of the different methods in the case of abstention versus accuracy of their precise counterparts, only on
those instances for which an indeterminate prediction was given. Graphs are given for the u80 accuracies.

An imprecise classifier should abstain (i.e. by providing a set of plausible choices) on those hard instances,
that is the instances where the precise classifier makes a unusual high amount of mistakes. In Figure
7, we verify that our imprecise classifiers follow this desirable behaviour on most data sets, for the u80305

measures (conclusions for the u60 are similar, but not displayed to gain some space). Figure 7(a) displays
the percentage of time the true label is in the prediction of ILDA, given that the prediction was imprecise,
versus the accuracy of LDA on those same instances. The same graphs for the QLDA, IEDA and INDA
methods are given by Figure 7(b), Figure 7(c) and Figure 7(d), respectively. We notice that on those hard
instances where precise classifiers are wrong, our imprecise classifiers successfully overcome them, getting310

the ground-truth value into partial predictions (most often > 80%). A typical and quite remarkable example
of this is the dermatology data set (h) for the linear case, where the accuracy on the imprecisely classified
instances drop to 30% for the precise classifier (to be compared to an average of 96% on all instances), while
the imprecise classifier always include the true class. Moreover, the fact that u80 is higher indicates that the
overall amount of imprecision remains acceptable. Our approach therefore seems to be able to well robustify315
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the very simple, linear decision frontiers of the ILDA models.
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Figure 8: Figures shows performance evolution with a standard deviation region of three principales methods, (1)Figure 8(d)
for ILDA model, (2) Figure 8(c) for IQDA model, and (3) Figure 8(b) for INDA model, w.r.t. utility-discount accuracy u65,
u80 and c tuning parameter on vowel dataset

Before considering some generalisation of the presented methods, we would also like to mention that the
imprecise probabilistic approach will in general induces decision frontiers that are different from classical
rejection rule. Figure 5(b) illustrates this well: rejection regions in a binary setting are most often equivalent
to require to predict {a, b} whenever P̂ ({a}|x) ∈ [0.5− ε, 0.5 + ε] for some ε. This means that in the case of320

LDA, the rejection regions will be delimited by two parallel lines, corresponding to the iso-density points x
for which P̂ ({a}|x) = 0.5− ε and P̂ ({a}|x) = 0.5 + ε. In contrast, we can clearly see in Figure 5(b) that the
boundaries are not linear, but piece-wise linear.

6. Imprecise prior marginal and generic loss functions

In this section, we will discuss about two new variants of IGDA model: (1) relaxing the Assumption 2,325

i.e. PY := π̂, with the purpose of putting a set of probability distributions PY instead, and (2) dealing
with generic loss function instead classical L0/1 loss function. We will evaluate the impact of this two new
variants in our IGDA model in terms of added computational complexity.

6.1. Imprecise prior marginal

The first extension we will consider is to make imprecise the marginal distribution, considering a set
PY rather than a precise distribtuion, in the same vein as we have made the conditional distribution PX|Y
imprecise. For the time being, we will still work with the L0/1 loss function. Since the conditionals are still
independent of each other, solving the maximality criterion amounts to solve Equation (25), that we recall
here

inf
PY ∈PY

P (X = x|Y = ma)P (Y = ma)− P (X = x|Y = mb)P (Y = mb) (42)

with ma �M mb if this is positive. This equation can be solved easily, as it is a linear form in P (Y =330

ma), P (Y = mb), meaning that we can either use linear programming over the constraints induced by PY ,
or find the extreme point (e.g., by enumeration) of PY for which the solution is obtained. Recall t

The problem then amounts to estimate PY . A quite popular choice to do so is to use an Imprecise
Dirichlet Model (IDM) [38, 39]. However, as Benavoli et al. has already mentioned in [18, §4.2], the
set of prior distributions of IDM does not correctly satisfy (P1) Prior-invariance property and permutation335

invariance of near-ignorance model. So, to remain consistent with our previous estimates, we explore another
solution proposed by Benavoli et al..
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Let Y be a discrete random variable on a finite space of labels K with probability distribution PY and
let the parameters πmk ,∀mk ∈ K be the unknown non-negative chances, i.e. P (Y = mk). The Corollary 4.10
in [18] propose adding some contraints in the space L in order not to favour some chances πmk over others.
They then consider the following set of prior distributions:

Pπ =

{
π`1−1

m1
π`2−1

m2
. . . π

−∑d−1
i=1 `i−1

mK , ‖`‖1 ≤ 2c,

d−1∑

i=1

`i ∈ [−c, c]
}
. (43)

It is also shown [18, Eq. 24] that, after combining this set with the likelihood, the lower and upper expec-
tations of the chances of observing a given subset A of categories result in

E
[∑

mk∈A
πmk

∣∣∣n, ŷn

]
= min

(
1,

1

n

[∑
mk∈A

nk + c
])

:= PY (A), (44)

E
[∑

mk∈A
πmk

∣∣∣n, ŷn

]
= max

(
0,

1

n

[∑
mk∈A

nk − c
])

:= PY (A), (45)

where n is the total number of observations in the data set, i.e n = |D | = N . We will then consider the
probability set

PY =
{
P
∣∣PY (A) ≤ P (A) ≤ PY (A),∀A ⊆ K

}
(46)

Such a model, which corresponds to take a neighbourhood around the empirical distribution using the
total variation distance (i.e., L∞ norm) has been recently investigated by Miranda et al. [40], showing for
instance that it induced a 2-monotone lower probability, but was not a specific case of probability intervals,
in contrast with the IDM model. Using this fact, we know that the result of Equation (25) will be obtained
by the Choquet integral, which results in this particular case in

inf
PY ∈PY

P (X = x|Y = ma)P (Y = ma)− P (X = x|Y = mb)P (Y = mb) =

P (X = x|Y = ma)PY ({ma})− P (X = x|Y = mb)PY (Y = mb) =

P (X = x|Y = ma) max

(
0,
na − c
n

)
− P (X = x|Y = mb) min

(
1,
nb + c

n

)

In particular, this shows that there would be no differences if we considered only the projections of PY over
its singletons, which amounts to consider the bigger set

P ′
Y =

{
P (Y = mk) = πmk

∣∣∣∣πmk ∈
[

max

(
0,
nk − c
n

)
,min

(
1,
nk + c

n

)]
∀mk ∈ K

}
. (47)

6.2. Generic loss function

The zero-one loss function is the default loss function used in classification problems (where we consider
that penalty of being wrong is the same for every kind of error). However, in many practical problems340

different errors will have different impacts, and this is especially true for sensitive applications in which
imprecise probabilistic approaches could be useful.

Equation Equation (9) can be written

ma �M mb ⇐⇒ inf
PX|m∗∈PX|m∗

PY ∈PY

∑

mk∈K
(L(mk,mb)− L(mk,ma))P (Y = mk|X = x) > 0, (48)
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which, if we denote by cb−amk := L(mk,mb)− L(mk,ma), gives

⇐⇒ inf
PX|m∗∈PX|m∗

PY ∈PY

∑

mk∈K
cb−amk P (X = x|Y = mk)P (Y = mk) > 0 (49)

⇐⇒ inf
PY ∈PY

∑

{k|cb−amk >0}

cb−amk P (X = x|Y = mk)P (Y = mk)

+
∑

{k|cb−amk ≤0}

cb−amk P (X = x|Y = mk)P (Y = mk) > 0 (50)

that uses the fact that the conditional probabilities P (X = x|Y = mk) are all independent. As Equation (50)
remains a linear form of the probabilities P (Y = mk), it can be solved as previously, i.e., thourgh the use of
linear programming or the identification of the extreme point for which the bound is reached.345

If we now consider the credal set given by Equation (46) and induced by the constraints (44)-(45), we
still have that this induces a 2-monotone lower probability, meaning that we can estimate (50) by using the
Choquet integral.

All these remarks show that making the marginal probabilities imprecise or considering generic loss
functions does not make the model more complex to use, as the computational complexity is not increased350

by much, especially when PY has mathematical properties making computations easier (which is luckily
the case for most IP models over multinomial distributions).

7. Conclusion

In this paper, we have generalized classical Gaussian discriminant models to the imprecise setting, mainly
by allowing the estimated means of the conditional Gaussian distributions to become imprecise. This was355

achieved by a robust Bayesian procedure using sets of prior satisfying near-ignorance properties.
We have explored the computational issues associated to the predictions of such models, essentially

showing that considering general covariance matrices ended up in practically manageable but theoretically
difficult to solve problems, while considering diagonal covariance matrices essentially made the problem
much easier to solve.360

Experiments on various data sets shows that the method is providing quite satisfactory results, in the
sense that the induced imprecision in the predictions is reasonable and mostly concerns instances that
were wrongly classified by the precise methods. We have also discussed some possible extensions of our
approaches, showing that such extensions would not add a prohibitive computational cost.

A natural next step would be to also make the covariance matrix estimate imprecise, possibly leaving the365

mean estimate precise in a first step. Computationally, this would be attractive, as the objective functions
are a mainly linear of the covariances if the mean is left imprecise. The main problem would then be to
derive a principled approach (i.e., using near-ignorance prior) that would deliver an easy-to-deal convex set
of inverse covariance matrices.
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Appendix A. Experimental results

Complementary experimental results are shown in the Figure A.9 and Figure A.10

19



0.7

0.8

0.9

1.0

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(a) iris u65

0.80

0.85

0.90

0.95

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(b) iris u80

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(c) wine u65

0.6

0.7

0.8

0.9

1.0

0 2 4

imprecision of c
d

is
co

u
n
t-

u
ti

li
ty

(d) wine u80

0.4

0.6

0.8

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(e) forest u65

0.5

0.6

0.7

0.8

0.9

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(f) forest u80

0.6

0.8

1.0

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(g) seeds u65

0.6

0.7

0.8

0.9

1.0

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(h) seeds u80

0.3

0.4

0.5

0.6

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(i) glass u65

0.4

0.5

0.6

0 2 4

imprecision of c

d
is

co
u

n
t-

u
ti

li
ty

(j) glass u80

QLDA ILDA IEDA INDA

Figure A.9: Experiments for IGDA model (left:utility-discount u65, right:utility-discount u80)
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