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ABSTRACT

We consider the sixteen vertex model, and we describe, phenomenologically, the main features of the square ice magnetic structure factor.
Using Monte Carlo simulations, we show that in the high-temperature regime, the magnetic structure factor of the square ice can be seen as
the superposition of two distinct magnetic structure factors associated with two other models. In particular, we provide empirical arguments
to explain why intensity is present in some regions of reciprocal space and absent in other locations. We also tentatively explain why the so-
called pinch points, evidencing the algebraic nature of the spin-spin correlations once the system is brought into its ground state manifold,
appear for certain wavevectors only.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043520

Lithographically patterned arrays of interacting magnetic nano-
islands have received considerable attention over the last decade.1–3 To
a large extent, this attention is due to the capability of these arrays to
mimic the exotic many body physics of highly frustrated magnets and
to visualize this physics directly, in real space4–6 and in real time.7,8 If
the initial motivation was to realize an artificial kagome9–13 and
square12–16 ice magnet, a wide range of artificial systems have been
now investigated, including structures that have no counterparts in
bulk materials.17–28

Although artificial systems can be imaged in real space, the spin
ice physics is often better approached in reciprocal space. In particular,
the magnetic structure factor (MSF) is a powerful tool to probe pair-
wise spin correlations in k space. Since the magnetic states of artificial
frustrated magnets are directly accessible, the associated MSF can be
reconstructed a posteriori, i.e., without being measured. The MSF was
used, for example, to evidence a fragmentation process in artificial
dipolar kagome ices,29–33 to reveal a Coulomb phase physics in artifi-
cial kagome34 and square ice magnets,35–37 and to propose a complex
magnetic order in the dipolar kagome Ising antiferromagnet.38–40

When the ground state is ordered, the MSF is relatively simple to
grasp: magnetic Bragg peaks appear for specific wavevectors. However,
when the ground state is disordered, in the manner of a spin liquid,
the MSF is diffuse, yet structured. In that case, explaining why a mag-
netic signal is present in some regions of reciprocal space and not in
others is not an easy task. The purpose of this work is to describe,

phenomenologically, the shape of the square ice MSF in the high-
temperature limit and to provide an empirical understanding of the
spin-spin correlations that develop in the ice manifold. Using Monte
Carlo simulations, we compute the MSF of several variants of the six-
teen vertex model and numerically demonstrate that, at high tempera-
ture, the square ice MSF results from the superposition of two other
magnetic structure factors.

In statistical mechanics, a vertex model is a model in which a sta-
tistical weight is attributed to the nodes of a graph, the state of a node
being defined by the state of each of its bonds. In this work, we con-
sider a two-dimensional square lattice with bonds that can be only in
two possible states, say a state “in” or a state “out” with respect to the
vertex center. Each vertex being the merging point of four bonds can
be in one of the 24 possible states. Such a model is called the sixteen
vertex model. The sixteen possible vertex states are represented in
Fig. 1(a). As we consider a spin system, the state of a given bond is
nothing else than a spin direction. Assuming time reversal symmetry,
the sixteen vertices can be sorted in four different groups [see the four
colors in Figs. 1(a) and 1(b)].

The spin Hamiltonian used in this work to investigate the prop-
erties of the sixteen vertex model can be written as

H ¼ �J1
X

hiji
rirj � J2

X

hhijii
rirj; (1)

where ri and rj are the Ising variables on the sites i and j, whereas J1
and J2 are the coupling strengths between perpendicular and collinear
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nearest neighbors, respectively [no further neighbor interactions are
considered [see Fig. 1(c)]. Both coupling strengths have positive values,
thus favoring ferromagnetic interactions.

In the following, we consider three cases depending on the value
of the a ¼ J1=J2 ratio:

• a > 1, when the blue ðTIÞ vertices have a higher statistical weight
than the red ones (TII vertices). The ground state is then antifer-
romagnetically ordered and two times degenerate [see Fig. 2(a)
for one possible configuration].

• a < 1, when the condition is the opposite. The ground state is
(sub)extensively degenerate and made of decoupled ferromag-
netic lines crossing the entire lattice [see Fig. 2(b) for one possible
configuration].

• The square ice is the peculiar case when all six TI and TII vertices
have the same statistical weight,41 i.e., when a ¼ 1. The ground
state is macroscopically degenerate. Although disordered [see
Fig. 2(c) for one possible configuration], the phase is correlated
and pairwise spin correlations decay algebraically with the sepa-
ration distance.35

The ground state magnetic structure factors of these three models
are reported in Figs. 2(d)–2(f). With the ground state of the a > 1
model being antiferromagnetically ordered [see Fig. 2(a)], the MSF is
characterized by magnetic Bragg peaks at the corners of the Brillouin
zone. The ground state manifold of the a < 1 model consists of

FIG. 1. (a) Schematics of all possible vertices in the sixteen vertex model. The
vertices can be sorted in four groups according to their symmetry: type I (blue, TI ),
type II (red, TII), type III (green, TIII ), and type IV (yellow, TIV ) vertices. (b)
Example of a spin configuration involving all four vertex types. (c) Schematics of
the coupling strengths in the associated spin model, in which two coupling con-
stants can be defined: J1, between nearest neighbors belonging to the two sublatti-
ces of the square lattice (perpendicular spins, in red), and J2, between nearest
neighbors belonging to the same sublattice (collinear spins, in blue).

FIG. 2. Real space (a)–(c) and reciprocal space (d)–(f) representation of the ground state manifold of the a > 1 (a) and (d), a < 1 (b) and (e) and square ice (a¼ 1) models
(c) and (f). The ground state of the a > 1 model is antiferromagnetic and two times degenerate: it consists of a tiling of TI (blue) vertices (a) and Bragg peaks in the corners of
the Brillouin zone (d). The ground state of the a < 1 model is made of a random arrangement of fully polarized lines (TII vertices) spanning across the lattice (b) and, thus,
lines in reciprocal space (e). The a < 1 manifold is extensively degenerate, although the degeneracy is subextensive. The square ice a ¼ 1 is a paramagnet of TI and TII ver-
tices (c), characterized by a diffuse, yet structured, magnetic structure factor (f). The square ice manifold is macroscopically degenerate. The green circle in (f) indicates the
locations of singularities, the so-called pinch points.
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random arrangements of fully polarized lines [see Fig. 2(b)], and the
associated MSF exhibits well-defined lines. Note that magnetic Bragg
peaks are absent in this MSF as there is no long range order: the mani-
fold is made of a (sub)extensive number of configurations, i.e., the
residual entropy tends to zero as the system approaches the thermody-
namic limit. The MSF of the square ice consists of a diffuse, yet struc-
tured, background signal. This MSF is typical of a cooperative
paramagnet, i.e., a highly disordered, correlated spin manifold. The
algebraic nature of the spin-spin correlations in real space translates
into singularities in reciprocal space, the so-called pinch points42–45

[see green circles in Fig. 2(f)].
We now investigate the high-temperature regime of the three

models. To do so, we performed Monte Carlo simulations based on
the spin Hamiltonian shown in Eq. (1). The simulations were per-
formed for 12� 12� 2 lattice sites, with periodic boundary condi-
tions. A single spin flip algorithm was used as we are only interested in
the high-temperature regime in which the acceptation rate of the spin
dynamics remains large. Following previous works,46 the cooling pro-
cedure starts from T=J ¼ 100 and 104 Monte Carlo steps are used for
thermalization. Measurements follow the thermalization and are also
computed with 104 Monte Carlo steps.

The temperature dependence of the magnetic structure factors
are represented in Fig. 3 for different temperatures expressed in J units
[J ¼ maxðJ1; J2Þ]. As expected, the a > 1 model leads to emergent
magnetic Bragg peaks as the temperature is reduced [see Fig. 3(a)],
and at T=J ¼ 6:9, they are all clearly visible. One of these Bragg peaks
is highlighted by a red circle in Fig. 3(a). Because the temperature is
high, the Bragg peaks are very broad and weakly intense as compared

to those observed in the ground state [see Fig. 2(d)]. As also expected,
the magnetic structure factor of the a < 1 model is characterized by
emerging lines in specific directions, for example, along the qx¼ 0 and
qy¼ 0 directions [see black lines in Fig. 3(b)]. Similar to the a > 1
case, the features observed in reciprocal space remain very broad com-
pared to those of the ground state [see Fig. 2(e)] since the temperature
is high. In the case of the square ice model, the MSF is extremely dif-
fuse as the system remains strongly disordered [see Fig. 3(c)] in the
temperature range we probe here. However, although the temperature
is high, the main features of the MSF expected in the low-energy mani-
fold [see Fig. 2(f)] are already visible, indicating that the spin-spin cor-
relations start to develop. Overall, despite the fact that the thermal
energy (kB T, with the Boltzmann constant set to 1) is substantially
larger than the coupling strengths, the MSFs of these three variants of
the sixteen vertex model are clearly distinct and are already reminis-
cent of the ground state MSFs reported in Fig. 2.

It is interesting to note that the intensity of the MSF in the a > 1
and a < 1 models increases in distinct regions of reciprocal space.
This can be seen, for example, by looking at the MSF for the lowest
temperatures: the emergent Bragg peaks in Fig. 3(a) pop up precisely
where the signal vanishes in Fig. 3(b). Similarly, the intensity of the
lines appearing in the MSF of the a < 1 model increases where it goes
away in the MSF of the a > 1 model. This shows that the associated
spin-spin correlations have distinct signatures in reciprocal space, as
one would expect from the MSF ground state [see Figs. 2(d) and 2(e)].
Nevertheless, some regions of the (qx, qy) plane are quickly depleted in
both MSFs [see the black circles in Figs. 3(a) and 3(b) at the highest
temperatures], suggesting that specific spin-spin correlations are
removed in the two models [and, in fact, in the square ice model as
well [see Fig. 3(c)].

Taken as a whole, these observations can be explained phenome-
nologically by recalling that the sixteen vertex model is described by
four vertex energies [see Fig. 1(a)]. At infinite temperature, all vertex
types are populated according to their degeneracy. Whatever the con-
sidered model, the system is then an ideal paramagnet; all pairwise
spin correlations are zero on average, and the MSF is flat. As the tem-
perature is reduced, the energy hierarchy between the vertex types
starts to be probed. The population of TIV vertices [the yellow vertices
in Fig. 1(a)] is reduced first.47 We then argue that the regions where
the intensity drops at the highest temperatures [within the black circles
in Figs. 3(a)–3(c)] correspond to the spin correlations associated with
the presence of TIV vertices (this point will be confirmed below).

Since the a > 1 model favors the formation of TI vertices,
whereas the a < 1 model favors the formation of TII vertices, we
might wonder whether the square ice, which is a random arrangement
of both vertex types, develops spin correlations that can be deduced
from these two models. To test this idea, we averaged the MSF of the
two models and compared it with the one of the square ice for differ-
ent temperatures. Surprisingly, there is no visible difference at high
temperature, and the averaged MSF [see Fig. 3(d)] is hardly distin-
guishable from the one of the square ice [see Fig. 3(c)]. The striking
observation here is that the signal constituting the emergent Bragg
peaks in Fig. 3(a) complements very nicely the vanishing signal in
Fig. 3(b), at least in a certain temperature range. As the temperature is
further reduced, the intensity within the Bragg peaks quickly increases,
and the peaks become narrower as the system further correlates. At a
normalized temperature of about 18, the two MSFs do not

FIG. 3. Temperature dependence of the magnetic structure factors of the a > 1
(a), a < 1 (b), and a ¼ 1 (c) models. The temperature, normalized to the nearest-
neighbor coupling strength J ¼ maxðJ1; J2Þ, is indicated. (d) The comparison
between the a ¼ 1 model and the average of the a > 1 and a < 1 models is strik-
ing. The red and black circles highlight specific locations in reciprocal space that
are discussed in the text.
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complement themselves perfectly and deviations with the square ice
MSF are observed.

In a certain temperature range, the pairwise spin correlations of
the square ice must be similar to those of the a > 1 and a < 1 models
combined. This result is not intuitive. In the high-temperature regime
we study, all three manifolds essentially consist of a mixture of TI, TII,
and TIII vertices (we can neglect the contribution of TIV vertices (see
Ref. 47). From this argument alone, one would expect a similar MSF
for the three models. But this is clearly not what we observe, indicating
that distinct spin-spin correlations develop in all three cases. However,
the spin correlations that vanish in one of the two models are

strengthened in the other one in such a way that adding them together
provides those of the high-temperature ice manifold.

As mentioned above, all three models have a high-temperature
MSF exhibiting negligible spin correlations in specific regions of recip-
rocal space [see black circles in Figs. 3(a)–3(c)]. To demonstrate that
these regions correspond to spin correlations associated with the pres-
ence of TIV vertices, we computed the thermodynamic properties of
the same spin Hamiltonian [see Eq. (1)] with J1 < 0 (antiferromag-
netic coupling) and J2 ¼ 0. An “all-in/all-out” ground state (i.e., a til-
ing of TIV vertices only) is then favored [see Fig. 4]. The
corresponding Bragg peaks are precisely located in the regions where

FIG. 4. Temperature dependence of the MSF of the “all-in/all-out” model: J1 ¼ �1; J2 ¼ 0. Three (normalized) temperatures are shown: the lowest accessible one corre-
sponding to the ground state (GS), 6.9 and 46.7.

FIG. 5. [(a) and (b)] Magnetic structure factor of the ice and a < 1 models for (qx, qy) values ranging from 0 to 6 reciprocal lattice units (r.l.u.). The regions where pinch points
are observed in (a) are highlighted by green circles. The corresponding regions in (b) are also marked by green circles. Pinch points in (a) correspond to locations where lines
intersect in (b). (c) Schematics of the loop dynamics involved at low temperature. Two loop moves are represented in red, allowing us to explore the ice manifold while preserv-
ing the divergence-free constraint. (d) Schematics of the square ice MSF. The red bars correspond to the intensity originating from the a < 1 model, whereas the yellow and
orange squares correspond to the signal induced in the a > 1 model. The orange/yellow colors are used to indicate a higher/lower intensity.
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the intensity vanishes in the three models [see black circles in
Figs. 3(a), 3(b), and 3(c)]. This confirms that TIV vertices play a minor
role in the high-temperature limit.

At this point, we note that the results presented in Fig. 3 depend on
the values of the J1 and J2 coupling strengths used in the Monte Carlo
simulations. In particular, the a > 1 and a < 1 models require different
values for these two coupling strengths. One could choose them in such
a way that one equals 1 and the other 0 (as we did here), but one could
also choose much closer values (1 and 0.5, for example). For nearly iden-
tical values, we expect to find an ice-like regime down to low tempera-
tures, regardless of the model (a > 1 or a < 1). As these values are
detuned, we expect the transition to the ground state to occur at a higher
critical temperature. In fact, the a ¼ J1=J2 ratio is an external parameter
that we can play with to adjust the temperature at which the transition
occurs.46 Consequently, the temperature range for which a good match
is observed between the high-temperature ice manifold and the one
resulting from the average of the a > 1 and a < 1 models depends on
the a value. However, whatever the J1 and J2 values, there always exists a
temperature range for which the MSFs are hardly distinguishable.

It is also worth mentioning that the pinch points observed in the
ground state manifold of the square ice [see green circles in Fig. 5(a)]
appear for wavevectors where lines intersect in the magnetic structure
factor of the a < 1 model [see Fig. 5(b)]. For these peculiar wavevec-
tors, there is no signal in the ground state MSF of the a > 1 model
[see Fig. 2(d)]. Although the points where lines intersect in Fig. 5(b)
are not singularities, an intensity scan through such a point may vary
abruptly depending on how the intersect is approached. In that sense,
they share some properties of the pinch points. We then speculate that
the spin correlations associated with the pinch points in the square ice
correspond to correlations within magnetic lines. But contrary to the
a < 1 model, these lines do not (necessarily) cross the entire lattice
along one direction, but rather form closed loops (because the ice
manifold is a mixture of TI and TII vertices). Within the ice manifold,
we indeed know that spin loops, such as those highlighted in red in
Fig. 5(c), are the only possible spin updates to jump from one ice con-
figuration to another. It is then tempting to argue that the presence of
pinch points, and thus, the presence of algebraic pairwise spin correla-
tions in Ising frustrated systems, is intimately linked to a loop/string
physics.48

Finally, a phenomenological description of the square ice MSF
can be drawn from our observations. This MSF can be schematically
cut in different sectors that can be attributed to either the a > 1 or
a < 1 models [see Fig. 5(d)]. The spin correlations induced by the
a < 1 model correspond to the red rectangles in Fig. 5(d), whereas
those originating from the a > 1 model are represented by yellow/
orange squares. It is interesting to note that the intensity slightly varies
between sectors. In particular, the intensity is higher (orange) in the
(11) direction of the (qx, qy) plane than in the other regions (yellow).
This asymmetry in the intensity distribution is also found in the a > 1
model [see, for example, Fig. 3(a)] at T=J ¼ 18:0. In a first approxima-
tion, the MSF of the square ice can then be divided into (qx, qy) pockets
having distinct origins. Our phenomenological description also pro-
vides a visual illustration of the origin of the pinch points that charac-
terize ice magnets.
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