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In river flow modeling, the Diffusive Wave equation is an interesting approximation of the Saint-Venant equations (Shallow-Water system) because it is simpler and still allows a rich numerical modeling. Moreover, the computed variable is the water surface elevation which can be directly measured using the altimetry satellites, unlike the discharge. A space-time Two-scales model that represents the physical scale (the small scale) and the observations scale (the large scale) is mathematically derived. At the (small) physical scale, the gradually varied assumption is retrieved. At the (large) observations scale, the spatio-temporal variations of the river width are not negligible anymore. The study results to a rigorously derived observations-scale diffusive wave equation which is consistent with spatial altimetry observations. The latter takes into account the spatio-temporal variations of the width through additional terms. This new observations-scale diffusive wave equation and the classical diffusive wave equation are numerically compared with each other and with the Saint-Venant system taken as reference, on numerically constructed channels with real river magnitudes. The observations-scale diffusive wave equation provides better estimates of the slope of the free surface and of the discharge than the classical ones. Finally, the importance of the additional terms specific to the observations-scale diffusive wave equation is quantified using a sparse identification method in a dictionary of differential model terms. This model learning based approach highlights that one of the newly introduced term is one of the dominant terms.

Introduction

The Diffusive Wave (DW) equation is a classical approximation of the Saint-Venant (SV) equations used to model gradually varied free surface of river flows, see e.g. [START_REF] Ponce | Shallow wave propagation in open channel flow[END_REF]. It is derived from the SV equations assuming the inertia term is negligible, and is therefore also called the non-inertial wave equation, see e.g. [START_REF] Yen | On noninertia wave versus diffusion wave in flood routing[END_REF]. The DW equation has been proven to be a reliable approximation of the SV system [Ponce et al., 1978, Santillana and[START_REF] Santillana | A numerical approach to study the properties of solutions of the diffusive wave approximation of the shallow water equations[END_REF]. It is a rather simple approximation but it still is capable of modeling backwater effects, unlike the kinematic wave that also neglects the pressure term, see e.g. [START_REF] Ponce | Shallow wave propagation in open channel flow[END_REF], [START_REF] Yen | On noninertia wave versus diffusion wave in flood routing[END_REF]. The choice of a mathematical model can also be influenced by the data available. For example, solving the 1D SV system, which state variables are the wet area A and the discharge Q, requires imposing Q as upstream boundary condition which can be complex to measure or estimate, see e.g. [START_REF] Brisset | On the assimilation of altimetric data in 1d saint-venant river flow models[END_REF]. On the other hand, the DW equation, which state variable is the water surface elevation H, can be solved with H as Dirichlet boundary conditions, which is much easier to measure. This is especially true in a altimetry satellite context where the water surface elevation H is observed. Moreover, in this context, the assumption that the inertia terms are negligible (low Froude assumption) is rather well respected, see e.g. [START_REF] Garambois | Inference of effective river properties from remotely sensed observations of water surface[END_REF], [START_REF] Larnier | Hybrid neural network -variational data assimilation algorithm to infer river discharges from swot-like data[END_REF]. In other respects, features such as the sensitivity with respect to the bathymetry may as well influence the choice of the mathematical model. For example, [START_REF] Guinot | Sensitivity analysis of 2d steady-state shallow water flow. application to free surface flow model calibration[END_REF] have analyzed the sensitivity of the SV system with respect to parameters such as the bathymetry. Based on this study, [START_REF] Aricò | Mast-2d diffusive model for flood prediction on domains with triangular delaunay unstructured meshes[END_REF] came to the conclusion that the DW equation might be less sensitive to variations in the bathymetry than the SV system.

The DW equation is a doubly nonlinear, potentially degenerated, equation. The nature of the equation makes the study of its mathematical properties rather difficult, see e.g. [START_REF] Alonso | On the diffusive wave approximation of the shallow water equations[END_REF] and [START_REF] Bögelein | Existence of solutions to a diffusive shallow medium equation[END_REF] for results on the existence and uniqueness of weak solutions. Still, it has been used in practical applications to model 1D flows (see e.g. [START_REF] Bates | A simple raster-based model for flood inundation simulation[END_REF]), 2D flows (see e.g. [START_REF] Hromadka | A two-dimensional dam-break flood plain model[END_REF], [START_REF] Santillana | A numerical approach to study the properties of solutions of the diffusive wave approximation of the shallow water equations[END_REF]) or even 1D-2D coupling [START_REF] Aricò | The flo diffusive 1d-2d model for simulation of river flooding[END_REF].

In the present study, we introduce two scales which distinguishes the so-called physical scale which is a relatively small scale represented by the usual space-time variables (x, t), and the observations scale represented by the variables (y, s). These two scales are linked by a single small scaling ratio ε s : (y, s) = ε s × (x, t). In the present altimetry context, one typically has ε s ≈ 1/250, see e.g. SWOT mission [START_REF] Rodriguez | The surface water and ocean topography mission (swot): the ka-band radar interferometer (karin) for water level measurements at all scales[END_REF]. In the derivation of the DW equation, the flow is classically assumed to be gradually varied i.e. the water depth h varies slowly enough, see e.g. [START_REF] Chow | Handbook of applied hydrology[END_REF], [START_REF] Yen | On noninertia wave versus diffusion wave in flood routing[END_REF]. For sake of simplicity, the assumption that the geometry of the channel is a uniform rectangular is also quite common, see e.g. [START_REF] Ponce | Shallow wave propagation in open channel flow[END_REF], [START_REF] Ferrick | Analysis of river wave types[END_REF]. Both assumptions lead to neglecting the terms related to the width and its spatio-temporal variations in the derivation of the DW equation. These assumptions can be justified at the physical scale. Moreover, this assumption is natural if infering the river bathymetry from surface water elevation measurements (from satellite or not), see e.g. [START_REF] Tuozzolo | Estimating river discharge with swath altimetry: A proof of concept using airswot observations[END_REF].

In the present study, we investigate the derivation of a DW like equation in a context of spatial altimetry observations e.g. with data acquired by the spatial missions SWOT (NASA-CNES), Sentinel-3, Sentinel-6 (ESA) or IceSat2 (NASA). In this context and unlike the physical scale, the scale of the observations, width included in the case of SWOT, does not justify neglecting the width variation terms (two-scales assumption). The corresponding enriched DW equation in agreement with the observations scale, called the observations-scale DW equation, is rigorously derived.

The outline of the article is as follows.

In the first section, we present the two-scales assumption and the derivation of the two-scales DW equations from the SV system. These two-scales DW equations include the new observations-scale and the classical physical-scale one. In the second section, the observations-scale DW equation is compared with the physical-scale DW equation and with the SV system that is taken as reference. In the third section, we present a method to assess the importance of the different terms of the DW equation, based on the method to identify the terms of a model proposed in [START_REF] Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF].

Derivation of the two-scales DW model

In this section, the derivation of the two-scales DW equations from the SV system is presented. First of all, the SV system is recalled. Then, the additional hypothesis, especially the two-scales assumption, are presented. Finally, the two-scales DW equations are derived.

The reference SV equations

The most classical dynamical river flow model is the SV system, see e.g. [START_REF] Chow | Handbook of applied hydrology[END_REF]. In these equations, the natural state variables are the wet area A(x, t) [m 2 ] and the discharge Q

(x, t) [m 3 • s -1 ]:        ∂A ∂t + ∂Q ∂x = 0 (1a) ∂Q ∂t + ∂ ∂x Q 2 A + gA ∂H ∂x = -gAS f (1b)
with g the gravity magnitude (g ≈ 9.81m.s -2 ), H(x, t) [m] the free surface height and the friction term S f (x, t).

The bathymetry is denoted z b (x) [m], the average cross-section velocity u(x, t) [m] and the top width w(x, t) [m], see Fig. 3. The average width w(x, t) [m] is the river width averaged over a cross-section located at x, at time t, Fig. 3. The abscissa x is the curvilinear abscissa of the centreline of the river and

= Q(x,t) A(x,t) [m • s -1 ], the water depth h(x, t) = H(x, t) -z b (x)
x ∈ Ω = [0, L]. The modeling time window is t ∈ [0, T ].
The friction term is defined by the classical Manning-Strickler formula. Assuming Q > 0 and the hydraulics radius R h [m] satisfies R h ≈ h, the expression reads:

S f = Q 2 K 2 s A 2 h 4 3 (2) with K s the Strickler roughness coefficient [m 1/3 • s -1 ].
The SV system (1) is a conservative hyperbolic system. It is here solved using the classical Preissmann scheme [START_REF] Cunge | Practical aspects of computational river hydraulics[END_REF] implemented into DassFlow software [Larnier et al.].

(a) Cross-section geometry. 

H u (t) H d (t) z = z b (x) z = H(x, t) h(x, t) u(x, t) x = 0 x = L

Derivation of the two-scales DW equations

To derive the DW equations from the SV system, some additional hypothesis must be made. In a first time, we present some additional but classical hypothesis such as a hypothesis on the geometry of the cross-sections and the so-called "low Froude assumption". Then, the hypothesis specific to our two-scales DW equations, namely the two-scales assumption, is presented. Finally, these hypothesis are injected in the SV system to derive the two-scales DW equations.

Basic assumptions

Geometry assumption While the state variables of the SV system (1) are naturally (A, Q), the natural state variable of the spatial observations is H. However, a bijective relation between A and H is naturally built up. Following the forthcoming SWOT type data, the effective geometry is chosen as trapezoid like in [START_REF] Brisset | On the assimilation of altimetric data in 1d saint-venant river flow models[END_REF], [START_REF] Larnier | Hybrid neural network -variational data assimilation algorithm to infer river discharges from swot-like data[END_REF], Fig. 1a:

A(H; x, t) = w(x, t) (H(x, t) -z b (x))
(3) with w(x, t) the average width of the wet area at a given time and location. Note that the width variable w depends on time and is an observable.

The low Froude assumption

We classically define the geometrical ratio ϵ of the flow as ϵ = h0 L0 , where h 0 is a characteristic depth and L 0 a characteristic wave length. For large rivers, the long-wave assumption ϵ ≪ 1 is easily verified with a reasonable minimal wave length L 0 . The SV model is an accurate flow model under this long wave assumption (shallow flows). Moreover, the Froude number F r = U 0 /c (with U 0 a characteristic velocity and c = gA/w the celerity) is in a great majority of large rivers strictly lower than 1 (fluvial regime). More precisely, the "low Froude assumption" introduced in [START_REF] Garambois | Inference of effective river properties from remotely sensed observations of water surface[END_REF], [START_REF] Durand | An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope[END_REF], [START_REF] Frasson | Exploring the factors controlling the error characteristics of the surface water and ocean topography mission discharge estimates[END_REF] holds for the great majority of world rivers (in standard regimes). That is we can assume that:

F r 2 = O(ϵ) (4)
The two-scales assumption The two-scales assumption is motivated by differences between the usual flow scale (continuum mechanics derivation scale) and the large scale of the altimetry observations, see e.g. [START_REF] Rodriguez | The surface water and ocean topography mission (swot): the ka-band radar interferometer (karin) for water level measurements at all scales[END_REF] in the case of SWOT.

The time and distance characteristics of the "physical scale" are quite small: of the orders of magnitude of an hour and a meter. On the contrary, the time and distance characteristics of the altimetry observations are quite large: time between two satellite flybys at a virtual station (intersection of the satellite track with the river) is a dozen days (10 days for the Jason-3 satellite, 27 for Sentinel-3 and 10 -21 for SWOT). Also, the characteristic lengths are between a few hundred meters (scale of a satellite swath, ∼ 250 m for SWOT [START_REF] Rodríguez | Swot science requirements document[END_REF]) and several tens of kilometres (distance between two virtual stations) e.g. between 0.7 km and 100 km on the Rio Negro, see e.g. [START_REF] Malou | Generation and analysis of stage-fall-discharge laws from coupled hydrological-hydraulic river network model integrating sparse multi-satellite data[END_REF] and Fig. 2. Thus, the "physical scale" and the "observation scale" are distinct. Henceforth, the variables of the physical scale are denoted by (x, t) and the variables of the observation scale by (y, s). They are satisfy the relation:

(y, s) = ε s × (x, t) (5) 
with ε s defining the ratio between the two scales. On the basis of the current satellite missions, it is remarkable that the same scaling factor ε s appears both in time and in space. This ratio currently satisfies: ε s ≈ 1/250.

River flows are classically considered to be "gradually varied" (in the sense that the cross-section geometry and the water depth does not vary significantly over a relatively short time and distance), see e.g. [START_REF] Chow | Handbook of applied hydrology[END_REF], [START_REF] Yen | On noninertia wave versus diffusion wave in flood routing[END_REF]. This "gradually varied" assumption implies that:

∂ x w ≪ 1 and ∂ t w ≪ 1 (6)
At physical scale, this assumption is justified since the relative width variations ∂xw w and ∂tw w are very small, in particular for large rivers. In the present examples Rio Negro and Garonne river, ∂xw w ≈ 10 -4 , see Fig. 2, Fig. 4 and Tab. 1. Moreover, in an altimetry context, the following statements hold, see e.g. [START_REF] Rodríguez | Swot science requirements document[END_REF], [START_REF] Malou | Generation and analysis of stage-fall-discharge laws from coupled hydrological-hydraulic river network model integrating sparse multi-satellite data[END_REF].

• At a given virtual station and flyby, the width data measured by the satellite are averaged over the swath to provide a single width value with better accuracy. The swath size is comparable to the characteristic length of the observation scale. Hence, spatial variations in the width at a scale smaller than the swath size are not observed (see Fig. 3a).

• The average width mentioned above is computed at a virtual station at each flyby. Thus, the time and space intervals between two width values are comparable to the observation scale (see Figs. 3b and2).

On the other hand, the width variations are not negligible at the observation scale, see Fig. 2. Indeed, we have:

∂ y w ∼ 1 and ∂ s w ∼ 1 (7)
These variations can be computed from satellite measurements of width, in particular the forthcoming SWOT data [START_REF] Rodríguez | Swot science requirements document[END_REF][START_REF] Rodríguez | Observing rivers with varying spatial scales[END_REF]. Width and its relative variation on the Rio Negro (Amazon basin). Fine scale values of w are computed from satellite images (static estimation derived from the optic landsat imagery with a 30-meter resolution, as in [START_REF] Pujol | Estimation of multiple inflows and effective channel by assimilation of multi-satellite hydraulic signatures: The ungauged anabranching negro river[END_REF]). Large scale values of w are the altimetric-like derived values from the fine scale width (one point per virtual station with linear interpolation between). In this test case, ε s = 1/250.

Finally, the two-scales assumption states that the flow can be considered gradually varied at physical scale but not at the observation scale.

From now, the generic variables (ξ, τ ) denote either (x, t) for the physical scale or (y, s) for the observation scale. 

The two-scales DW equations

First, the low Froude assumption (4) implies that the momentum equation (1b) reads :

gA∂ ξ H = -gS f A (8)
The Manning-Strickler formula (2) with the low Froude momentum equation ( 8) implies the following Manning-Strickler relation (assuming that ∂ ξ H < 0):

Q(ξ, τ ) = K ξ s |∂ ξ H(ξ, τ )| 1 2 h(ξ, τ ) γ-1 A(ξ, τ ) ⇐⇒ u(ξ, τ ) = K ξ s |∂ ξ H(ξ, τ )| 1 2 h(ξ, τ ) γ-1 (9)
The power law is set here to its classical value γ = 5 3 [START_REF] Chow | Handbook of applied hydrology[END_REF].

155

Note that the expression of u depends on the considered scale. However, the value of u does not depend on the scale since time and space are scaled with the same scaling factor ε s . In order to obtain the same value of u between the two scales, the Strickler coefficient for the observation scale K y s has to be scaled accordingly as:

K y s = ε 1 2 s K x s , with K x
s the Strickler coefficient for the physical scale (that is the classical Strickler coefficient). The Manning-Strickler law (9) or similar stage-fall-discharge laws have been used to provide an estimate of Q from 160 large scale measurements H and ∂ x H, see e.g. [START_REF] Durand | Estimating reach-averaged discharge for the river severn from measurements of river water surface elevation and slope[END_REF], [START_REF] Garambois | Inference of effective river properties from remotely sensed observations of water surface[END_REF], [START_REF] Malou | Generation and analysis of stage-fall-discharge laws from coupled hydrological-hydraulic river network model integrating sparse multi-satellite data[END_REF], [START_REF] Mansanarez | Bayesian analysis of stage-falldischarge rating curves and their uncertainties[END_REF].

A scalar "one-equation" model is obtained by injecting the Manning-Strickler relation (9) into the mass equation (1a) ("lubrication theory", see e.g. [START_REF] Chang | Complex wave dynamics on thin films[END_REF]): with u(H) defined by the parametrization (9). Using the geometry relation (3), the two-scales assumption ( 6) and ( 7), the derivatives of A read:

165 ∂ τ A(H) + u(H)∂ ξ A(H) + (γ -1)u(H) A(H) H -z b ∂ ξ (H -z b ) + 1 2 u(H) ∂ 2 ξξ H ∂ ξ H A(H) = 0 (10) 
∂ t A(H) = w∂ t H and ∂ x A(H) = w (∂ x H -∂ x z b ) (11) ∂ s A(H) = (H -z b ) ∂ s w + w∂ s H and ∂ y A(H) = (H -z b ) ∂ y w + w (∂ y H -∂ y z b ) (12)
Next the assumptions (3), ( 11) and ( 12) are taken into account and the two-scales DW equations follows:

∀(x, t) ∈ [0, L] × [0; T ], ( ∂ t H -µ(H)H + v(H)∂ x H ) (x, t) = ( v(H)∂ x z b ) (x, t) ( ∂ s H -µ(H)H + v(H)∂ y H + ρ(H)H ) (y, s) = ( v(H)∂ y z b + ρ(H)z b ) (y, s) (13a) (13b) with the effective diffusion coefficient [m 2 • s -1 ]: µ(H; ξ, τ ) = 1 2 u(H; ξ, τ ) (H(ξ, τ ) -z b (ξ)) |∂ ξ H(ξ, τ )| (14) the wave velocity [m • s -1 ]: v(H; ξ, τ ) = γu(H; ξ, τ ) (15) 
and the width variation coefficient [s -1 ]:

ρ(H; y, s) = 1 w(y, s) (∂ s w(y, s) + u(H; y, s)∂ y w(y, s)) (16)
Recall the DW equations are closed with the Manning-Strickler law (9).

Since Q is assumed positive, u is also positive. Since h = (H -z b ) is positive by construction, µ defined by ( 14) is strictly positive. Note that |∂ ξ H| appears as the denominator in µ. For large rivers under the low Froude assumption (4), |∂ ξ H| is likely to be low (see e.g. Fig. 5). Therefore, µ is likely to be large (even extremely large in some locations).

If (y, s) → w(y, s) is sufficiently smooth, the coefficient ρ, defined by ( 16), is bounded in finite time.

In the end, the rigorously derived observations-scale DW equation (13b) actually corresponds to the classical gradually varied physical-scale DW equation (13a) (see e.g. [START_REF] Yen | On noninertia wave versus diffusion wave in flood routing[END_REF], [START_REF] Weill | Accuracy and efficiency of time integration methods for 1d diffusive wave equation[END_REF]) plus the 0-th (reaction) term ρ(H)(H -z b ). This additional term is simply related to the width variations.

Numerical results

The objective of this section is to study numerically the solutions of the DW equations ( 13). The solutions of the two-scales DW equations are compared to each other in order to highlight the impact of the width variation coefficient ( 16) specific to the observations-scale DW equation (13b). The solutions of the DW equations are also compared to a reference solution: a fine grid solution of the (complete) SV system (1). The two-scales DW equations ( 13) are solved using a implicit finite difference scheme with a Newton-Raphson algorithm. This scheme relies on centered second order approximations of the space derivatives. This solver have been implemented into DassFlow software [Larnier et al.].

Test cases description

The numerical experiments rely on channels with real river magnitudes. The different solutions are compared in an altimetry-like context. Steady-state flows are computed. Assuming that ∂x w w ≈ 0 (the witdh variations are negligible at physical scale), the DW equations ( 13) simplifies as:

- 1 2 (H(ξ) -z b (ξ)) |∂ ξ H(ξ)| ∂ 2 ξξ H(ξ) + γ∂ ξ H(ξ) + ∂ ξ w(ξ) w(ξ) H(ξ) = γ∂ ξ z b (ξ) + ∂ ξ w(ξ) w(ξ) z b (ξ) (17) 
Note that the velocity u does not appear anymore in the steady-state equation ( 17).

The reference solution is the SV system one, see Eq. ( 1), in variables (A, Q). and the same discharge Q in on the DW and SV equations is not straightforward (especially in unsteady cases). In the steady case, the calibration of K s only rescales and shifts the resulting discharge so Q = Q in is satisfied upstream. This shift depends on the geometry of the channel. Hence, the estimation of Q and the resulting comparison of the two-scales DW equations are biased with respect to the geometry of the channel.

In order to study the behavior of the DW solutions only, such calibrations are not performed. In all the numerical results below, we have:

K s = K x s = 20 and K y s = ε 1 2 s K x s .
The steady-state DW solutions are compared through their differences with the reference solution (the SV system solution). For a state variable η computed by a DW equation, the following relative difference is computed:

210 ϵ η (x) = |η(x)-η SV (x)| |η SV (x)|
, with η SV the solution obtained by the SV system.

The presented results are obtained on two different numerically built channels with regular mesh. The geometry and boundary conditions Q A fine-scale width is constructed from the mean width (denoted w m ), the standard deviation of the width (denoted σ w ) and a characteristic wavelength (denoted λ w ) of the real river width, see Figs. 2 and4. The large-scale width is constructed from the values of the fine-scale width at virtual stations which are separated by a distance depending on the characteristic length of the observation scale denoted by L vs . Between the virtual stations, the large-scale width is linearly interpolated, see the lower part of Figs. 5 and6.

The first channel is based on a 900 km section of the Rio Negro data (Amazon basin); the width and its variations are plotted on Fig. 2. The lenght L vs corresponds to the average distance between two virtual stations on this river considering the Sentinel-3A, -3B and Jason-3 satellites, L vs ≈ 22 km.

The second channel is based on the Garonne River data. Its width is plotted on Fig. 4. On this channel, the distance L vs = 300 m corresponds to the magnitude of a swath size [START_REF] Rodríguez | Swot science requirements document[END_REF]. The Froude number of this channel is higher than the one of the Rio Negro-like channel, see Tab. 1. This river portion presents one of the highest Froude number among the 46 rivers portions analysed by the SWOT Science Team community [START_REF] Frasson | Exploring the factors controlling the error characteristics of the surface water and ocean topography mission discharge estimates[END_REF][START_REF] Durand | An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope[END_REF]. River 

w m (km) λ w (km) σ w (m) L vs (km) ∂xw w F r Q in (m 3 .s -1 ) z d b + h ref d (m)

Results and comparisons

In the first part of this section, the results obtained on the two academic but real-like channels (Rio Negro-like and Garonne-like) are presented. The two-scales DW solutions, see Eq. ( 13), are compared with each other and with the reference solution (solution of the SV system (1)).

Numerical results

In the steady-state case, the mass equation in the SV system, see Eq. (1a), simply reads: ∂ x Q = 0. This implies that Q is constant over the whole domain. After solving the SV system (1), the surface elevation H is then deduced from the geometry relation A = wh with h = (H -z b ).

On the contrary to the SV system, the DW equations ( 13) are non-conservative diffusive equations, which state variable is H. The DW equations are closed by the algebraic Manning-Strickler relation (9) (modeling locally uniform steady-state flows) between the three state variables H and (A, Q). In the present context of rectangular cross-sections this relation reads:

Q(ξ) = K ξ s |∂ ξ H(ξ)| 1 2 w(ξ)h(ξ) 5/3 (18)
Given a constant friction coefficient K ξ s (like in the present test case), the Manning-Strickler relation ( 9) does not enable to preserve simultaneously Q and A (and hence H) everywhere at every instant.

Moreover, due to the boundary conditions imposed on the DW equations and to the Strickler coefficient K s , A is conserved upstream but Q is not, see Fig. 5 and Fig. 6. On both the Rio Negro-like channel (see Fig. 5) and the Garonne-like channel (see Fig. 6), the solution of the observations-scale DW equation (green curve) provides an estimate of H which has similar variations and oscillations to those of w (but out of phase). The estimate of Q computed by the observations-scale DW equation also has very small variations similar to those of w.

Since z b is defined as a constant slope and there is no width variation term in the physical-scale DW equation, which is equivalent to considering a rectangular channel of constant width, the depth h = (H -z b ) estimated by the physical-scale DW equation (blue curve) is almost constant, except at the outflow boundary where the boundary condition must be satisfied. This implies that the slope ∂ x H is almost constant. Thus, the state variables A and Q estimated by flow law (18) present similar variations and oscillations to those of the width as well. 

Comparisons

= w(H -z b ) = wh, max(ϵ A ) = max(ϵ h ).

Comparison of the classical physical-scale DW equation with the reference SV system

The classical physical-scale DW equation provides an estimate of A that is rather close to the reference solution computed by the SV equations on the Rio Negro-like channel but not satisfactory on the Garonne-like channel, see Tab. 2 and Figs. 5 and 6. Note that, since the cross-sections are rectangular, w is constant and the estimates of h have the same accuracy than the estimates of A.

However, the estimate of Q computed by the physical-scale DW equation is not so close to the reference solution. The reason is the following. Recall that to obtain an estimate of Q from the DW equations, the Manning-Strickler closure law (18) must be evaluated. Therefore, the accuracy of Q depends on the accuracy of the slope ∂ x H. Even though H computed by the physical-scale DW equation approximates rather accurately the reference solution on the Rio Negro-like channel, the variations of the reference surface elevation H (induced by w) are not well approximated by the physical-scale DW equation (whose solution (H -z b ) is nearly constant). As a result, the physical-scale DW equation estimates the slope ∂ x H quite poorly; it consequently also estimates Q rather poorly.

On the Garonne-like channel, the poor approximations of both A and ∂ x H explain the poor approximation of Q.

Analysis and contribution of the new observations-scale DW equation

The observations-scale DW equation provides an estimate of A that is close to the reference solution on both the Rio Negro-like and the Garonne-like channels. The observations-scale DW equation provides an estimate of Q that is very close to the reference (especially on the Rio Negro-like case, where the low Froude assumption is clearly satisfied). Indeed, on Figs. 5 and6, the estimate of h computed by the observations-scale DW equation has very similar variations and oscillations (that are induced by w) than the one computed by the SV system. Therefore, the estimate of the slope ∂ x H computed by the observations-scale DW equation is close to the one computed by the reference solution. Hence, the observations-scale DW equation provides better accuracy for estimating A and significantly better ac-curacy for estimating of Q than the physical-scale DW equation.

Let us note that the solutions (especially A) of both the physical-scale and observations-scale DW equations are less accurate on the Garonne-like channel than on the Rio Negro-like channel, see Fig. 6. Indeed, on the channel Garonne-like, the difference between the DW equations and the SV system are mainly due to the low Froude assumption which is less respected here. Still and unlike the physical-scale DW equation, the observations-scale DW equation provides an estimate of A that is rather close to the reference estimate on this Garonne-like channel.

One can note that A estimated by the three models are a bit out-of-phase between each other, see e.g. the Garonne-like channel on Fig. 6. The oscillations of A computed by the physical-scale DW equation are in phase with w since h is (nearly) constant, see the blue curve on Fig. 6. The oscillations of A computed by the SV system (red curves) are out-of-phase with w because of the inertia term and the kinetic induced by the variations of w. The out-of-phase between the A estimated by observations-scale DW equation and by the physical-scale DW equation (and hence w) is the result of the kinetic induced by the variations of w.

The comparison of the physical-scale DW and observations-scale DW equations (13) can be summarized as follows:

• On channels with very low Froude number, the observations-scale DW equation provides more accurate estimates of A than the physical-scale DW equation, although both estimates are relatively accurate. Both equations preserve the mass rather well on such channels. On the channels with higher Froude number (F r ≈ 0.2) however, the estimates of A provided by the observations-scale DW equation remains accurate while the physical-scale DW equation estimates A poorly.

• On the one hand, the estimate of H computed by the physical-scale DW equation ( 13a) is controlled only by z b (and the boundary conditions). On the other hand, the estimate of H computed by the observations-scale DW equation is also controlled by w through the width variation terms ρ(H)H and ρ(H)z b in the equation (13b). Thus, the estimate of the slope ∂ x H computed by the observations-scale DW equation takes into account the variations of w. The same is true for the estimate of Q computed by (9). Hence, Q is better estimated by the observations-scale DW equation than by the physical-scale DW equation, in particular in reaches where w has a non-negligible influence.

• Both the physical-scale DW and the observations-scale DW provide less accurate solutions on rivers with higher Froude number (see case on the Garonne river with F r ≈ 0.22). Still, the observations-scale DW equation provides much better results than the physical-scale DW equation whose results are not satisfactory on such channel.

• Same experiments have been done on channels with more complex w and z b (e.g. the real Rio Negro channel).

The conclusions of the comparison of the observations-scale DW and physical-scale DW equations are similar to the one mentioned above.

Quantifying the importance of each term

The purpose of this section is to quantify the importance of each term of the flow model equations ( 13), and in particular the width-variation terms ρ(H)H and ρ(H)z b specific to the observations-scale DW equation (13b).

Method

Brunton et al. [2016] proposes a sparse regression method named SINDy (Sparse Identification of Nonlinear Dynamics). This method aims at determining the most important terms of an ODE (contained in a dictionary), thus discovering the governing equation from observations. The method was then applied to PDEs in [START_REF] Rudy | Data-driven discovery of partial differential equations[END_REF].

This approach is here adopted to order each term importancy of Eqn (17) at physical scale. Eqn ( 17) can be re-written as:

1 2 (H(x) -z b (x)) |∂ x H(x)| ∂ 2 xx H(x) = D(x; H, z b , w)Θ T (19)
with Θ the vector containing the coefficient associated to the (potential) terms of the equation. These terms are contained in the dictionary D, that is in the present case:

D(x; H, z b , w) = ∂ x H , ∂ x w w H , ∂ x z b , ∂ x w w z b , ∂ 2 xx H , H∂ x H , ∂ xx z b (20)
The method aforementioned aims to solve the following multi-objective optimization problem:

Θ * Θ * = ΘJ res (Θ; H, z b , w) + κ∥Θ∥ 0 (21)
with the norm of the residual:

J res (Θ; H, z b , w) = ∥ 1 2 (H -z b ) |∂ x H| ∂ 2 xx H -D(x; H, z b , w)Θ T ∥ 2 2
and the number of non-zero coefficients ∥Θ∥ 0 = #{Θ i ; Θ i ̸ = 0}. Since this optimization problem can not be resolved, the sparsity-objective term ∥•∥ 0 is approached by a L 1 term like in the classical LASSO method [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. Then, the following convex but non-differentiable optimization problem is solved:

Θ * Θ * = ΘJ res (Θ; H, z b , w) + λ∥Θ∥ 1 (22) 
The choice of λ or κ (weights between the different objectives of the optimization) is not straightforward but crucial to adjust the number of non-zeros coefficients.

In the present study, the optimal coefficients are computed for several values of λ (LASSO path) in order to investigate the order of importance of each mathematical terms. This order is defined as the order in which the coefficients of the terms activate (i.e. are non-zero) as λ decreases. Indeed, when λ is large enough, the optimization will not keep any non-zeros coefficients. Then, when λ decreases the terms will progressively activate. The purpose of this order is to determine whether or not the terms ρ(H)H and ρ(H)z b are important terms in the two-scales DW equations ( 13) compared to the other terms.

To do so, the considered observations of H are the steady state solution values of the SV system over the entire domain: H = H SV . The derivatives of H SV must also be observed or estimated. Here, they are computed using the standard centered finite differences.

Recall from the definition of the dictionary (20) that all the terms of the observations-scale DW equations (13b),

except 1 2 (H SV -z b ) |∂xH SV | ∂ 2 xx H SV ,
are in the dictionary D(H SV , z b , w). Several terms are also added, such as an additional diffusion term. Note that this numerical experiment aims at investigating what are the most important term in a DW equations to approximate H SV computed by the SV system under the low Froude assumption (4). This order of importance is the order of importance to counterbalance the term in the left hand side of (19). By expertise, the left hand side, which is the diffusion term, is a dominant term.

The optimization problem ( 22) with H = H SV is solved in two steps using a home-developed Python routine derived from the routine released by [START_REF] Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF] 1 . In a first step, the optimization problem is solved using the FISTA algorithm with the Nesterov step [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. This step helps at determining the non-zeros coefficients, denoted Θ + . In the second step, J res is minimized with respect of the non-zero coefficients in order to avoid the effect of the L 1 norm: Θ * = ΘJ res (Θ + ; H SV , z b , w).

Results

The following numerical investigation is performed over the real Rio Negro set-up, see Fig. 2 and a few information in Tab. 1. Note that the low Froude assumption is here well respected. In this experiment, the coefficient of D 4 = ∂x w w z b is activated in the last position in the order of importance. Hence, it is likely to be negligible.

In sum, the ρ(H)H term, specific to the new observations-scale DW equation (13b), is important to accurately approximate the solution of the SV system (1) by a DW equation. On the contrary, the ρ(H)z b term is negligible.

The term D 5 = ∂ 2 xx H activates very early when λ is rather high. The coefficient Θ 5 is rather large, Θ 5 ≈ 6 × 10 3 while the nonlinear diffusion coefficient satisfies 3×10 Recall that this analysis is done in the steady case of the Rio Negro channel constructed from satellite data, and thus on a channel at the scale of the satellite observations. The 5 th and 6 th terms in the order of importance, 

* 1 ≈ γ = 5/3, Θ * 2 ≈ 1, Θ * 3 ≈ -γ = -5/3, Θ * 4 ≈ -1.

Conclusion

This article presents a rigorous derivation of two-scales DW equations dedicated to spatial altimetry observations. The derivation of these equations are based on a small parameter ε s measuring the ratio between the usual ("physical") space-time scale and the observations one, see Eq. ( 5). The width variations are negligible at the physical scale (this corresponds to the classically made assumption) but not at the observations scale. The obtained physical-scale DW equation is then the classical DW equation, see e.g. [START_REF] Yen | On noninertia wave versus diffusion wave in flood routing[END_REF], [START_REF] Weill | Accuracy and efficiency of time integration methods for 1d diffusive wave equation[END_REF]. The obtained observations-scale DW equation is an enriched version in which the time and space derivatives of the width lead to an additional term ρ(H)H and an additional source term ρ(H)z b , see Eqs. (13b) and ( 16).

The observations-scale DW equation is numerically studied over channels build from real-river characteristic lengths in the altimetry observations context, in steady-state cases.

The results of the observations-scale DW and of the physical-scale DW equations, which the state variable is the water surface elevation H, are compared with each other and with a reference solution that is computed by the SV system, which state variables are the wet area A and of the discharge Q.

Overall, the new observations-scale DW equation provides much better estimations of Q than the classical physicalscale DW. Eventhough the physical-scale DW equation provides a good estimate on channels where the low Froude assumption is well satisfied, the new observations-scale DW equation also provides better estimates of A than the classical physical-scale DW, especially on channels where the low Froude assumption is less (but still) respected.

Overall, the mass is overall well preserved by the DW equations at both observations-scale and physical-scale on channels with very low Froude number but only by the DW equation at observations-scale on channels with higher

Froude number (F r ≈ 0.2).

Since the estimate of Q provided by the DW equations are computed using the Manning-Strickler closure law (9), the accuracy of the estimate of Q is related to the accuracy of the slope estimations ∂ x H too. Unlike the slope estimated by the physical-scale DW equation, the slope estimation computed by the observations-scale DW is influenced by the width and its variations. As a consequence, the observations-scale DW equation provides a much more accurate estimation of ∂ x H, and therefore of Q, than the physical-scale one. Of course, this is true especially on portions of rivers where the width affects in a significant way the flow.

Moreover, the contribution of the new width variations terms has been highlighted by a method to quantify the importance of the terms of a model. Following the sparse identification method presented in [START_REF] Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF], [START_REF] Rudy | Data-driven discovery of partial differential equations[END_REF], a method to order the importance of terms is developed. The algorithm orders the importance of the observations-scale DW equation terms plus additional terms present in a dictionary, to reproduce the water surface elevation H obtained by the SV system. This investigation of the importance of the terms shows that the newly introduced term ρ(H)H, specific to the observations-scale DW equation, is a rather important one. It also highlights the sensitivity of the DW equations to the (nonlinear) diffusion coefficient µ (14) and hence to the slope

∂ x H.
In the present study, the two-scales DW equations have been thoroughly analysed over numerically constructed real-like channels. They will be next tested on large datasets of real rivers such as the SWOT Science Team mission ones [START_REF] Frasson | Exploring the factors controlling the error characteristics of the surface water and ocean topography mission discharge estimates[END_REF]. Estimations of slopes ∂ x H are known to be a crucial point to estimate Q from Stage-Fall-Discharge (SFD) laws, see e.g. [START_REF] Mansanarez | Bayesian analysis of stage-falldischarge rating curves and their uncertainties[END_REF], [START_REF] Malou | Generation and analysis of stage-fall-discharge laws from coupled hydrological-hydraulic river network model integrating sparse multi-satellite data[END_REF]. As a consequence, the present enriched two-scales DW equation could be combined with such laws to provide complimentary estimations of discharge Q from altimetry measurements.

Figure 1 :

 1 Figure 1: Overall assumed geometry of the river.

  Figure2: Width and its relative variation on the Rio Negro (Amazon basin). Fine scale values of w are computed from satellite images (static estimation derived from the optic landsat imagery with a 30-meter resolution, as in[START_REF] Pujol | Estimation of multiple inflows and effective channel by assimilation of multi-satellite hydraulic signatures: The ungauged anabranching negro river[END_REF]). Large scale values of w are the altimetric-like derived values from the fine scale width (one point per virtual station with linear interpolation between). In this test case, ε s = 1/250.

  150

  ∆y r ∼ 10km (b) Illustration of the physical and observation scales.

Figure 3 :

 3 Figure3: Illustration of the two-scales assumption of the river width: real value and value averaged over a swath (providing an effective width). The index r is for the virtual station; the index p is for the pass of the satellite above the virtual station.

  in and H ref d are constructed with orders of magnitude of real rivers, see Tab. 1. The cross-sections are assumed to be rectangular: w = w. The channel bathymetry z b is the linear interpolation of the upstream and downstream bathymetry of the real river values: ∂ x z b is constant.

Figure 4 :

 4 Figure4: Width of the Garonne river (in red, from in situ data) and Garonne-like width (in blue, at fine-scale in solid line, at large-scale in dots, the mean width in dashed line).

Figure 5 :

 5 Figure 5: Rio Negro-like channel, steady state. Outputs of the two-scales DW equation (13) (Physical-Scale and Observations-Scale) and the reference SV system (1) on the four top figures: H (state variable of the DW equations), ∂ x H and (A, Q) (state variables of the SV system) versus x. On the lowest figure: the physical (fine) scale and observations (large) scale width versus x, large scale width deduced from the fine scale width at the virtual stations.

Figure 6 :

 6 Figure 6: Garonne-like channel, steady state. Outputs of the two-scales DW equation (13) (physical-scale and observations-scale) and the reference SV system (1) on the four top figures: H (state variable of the DW equations), ∂ x H and (A, Q) (state variables of the SV system) versus x. On the lowest figure: the physical (fine) scale and observations (large) scale width versus x, large scale width deduced from the fine scale width at the virtual stations.

Figure 7 :

 7 Figure7: From top to bottom: optimal coefficients Θ * i (i ∈ {1, • • • , 7}, top 7 figures, in red when = 0 and in blue otherwise), the norm of the residual J res (Θ * ) and the number of non-zero coefficients ∥Θ * ∥ 0 vs the weight coefficient λ. The vertical green lines are located at the largest value of λ such that Θ * i ̸ = 0 (on the i th figure: dashed line for the considered Θ * i and dotted lines otherwise). The order of importance is the order in which the Θ * i activate (see vertical green lines) as λ decreases.

  z b ) |∂xH| < 3×10 5 , when only the coefficients of D 3 = ∂ x z b and D 5 = ∂ 2 xx H activate. However, Θ 5 drops significantly, Θ 5 ≈ 90, when λ decreases and the coefficients of D 1 = ∂ x H and D 2 = ∂x w w H activate. The diffusion term D 5 = ∂ 2 xx H enables to compensate the non-modelled phenomena. The non-modelled phenomena include, at λ given, the phenomena from terms not yet activated or the phenomena specific to the SV system that are not classically present in the DW equation. Since more terms active when λ decreases and therefore less phenomena are non-modelled, the coefficient Θ 5 naturally becomes much less significant. The compensation of the non-modelled phenomena by a diffusion term highlights the sensitivity of the DW equations, and more specifically of the capability of the DW equations to reproduce the estimate of H computed by the SV system, with respect to the nonlinear diffusion coefficient 1 2 (H-z b )|∂xH| and more specifically to the slope ∂ x H.

  resp. D 7 = z b and D 6 = H∂ x H, are likely related to overfitting and non-physical compensations that are induced by the considered framework. Moreover, let us note that, for low values of λ, the optimal coefficients Θ * i related to the terms of the observationsscale DW equation (i.e. D 1 = ∂ x H, D 2 = ∂x w w H, D 3 = ∂ x z b and D 4 = ∂x w w z b ) are close to the coefficients given by the observations-scale DW equation (17): Θ

  The SV system is closed by imposing a discharge value Q in at inflow and a water surface elevation H out at outflow. The Strickler coefficient K s is assumed constant, K s = 20. The state variable of the DW equations is H only. H is the measured variable in an altimetry context. The upstream and downstream water surface elevations of the reference solution, resp. denoted by H ref

u and H ref d = H out , are imposed as boundary conditions of the DW equations. Calibrating K s to impose simultaneously at inflow the same elevation H ref u

Table 1 :

 1 Characteristics numbers of the two river-like channels.

	Rio Negro	4.5	22	1126	22	∼ 10 -4 < 0.15	8.2 × 10 3	0 + 4.86
	Garonne	0.149	4	43.46	0.3	∼ 10 -4 < 0.22	99	61.41 + 1.23

Table 2 :

 2 Maximum relative error of h, S = ∂ x H and Q for both Physical-Scale and Observations-Scale DW equations (resp. PS and OS DW), for the Rio Negro-like and Garonne-like channels. Since A

		Rio Negro-like	Garonne-like
		PS DW OS DW PS DW OS DW
	max(ϵ A )	2.84%	0.15%	21.69%	1.06%
	max(ϵ Q )	28.15%	0.42%	37.03%	1.96%
	max(ϵ S )	63.65%	1.5%	57.14%	2.93%

Routine available at: https://github.com/snagcliffs/PDE-FIND
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