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Abstract4

In data assimilation, the estimation of the background error covariance operator is a classical and still open5

topic. However, this operator is often modeled using empirical information. In order to exploit at best the6

potential of the knowledge of the physics, the present study proposes a method to derive covariance operators7

from the underlying equations. In addition, Green’s kernels can be used to model covariance operators and are8

naturally linked to them. Therefore, Green’s kernels of equations representing physics can provide physically-9

derived estimates of the background error covariance operator, and also physically-consistent parameters. In this10

context, the present covariance operators are used in a Variational Data Assimilation (VDA) process of altimetric11

data to infer bathymetry in the Saint-Venant equations. In order to investigate these new physically-derived12

covariance operators, the associated VDA results are compared to the VDA results using classical operators13

with physically-consistent and arbitrary parameters. The physically-derived operators and physically-consistent14

exponential operator provide better accuracy and faster convergence than empirical operators, especially during15

the first iterations of the VDA optimization process.16

17

Keywords. Variational data assimilation; background error; covariance modeling; Green’s kernel; diffusive18

wave equations; river hydraulics.19

1 Introduction20

Data Assimilation (DA) is a class of inverse problems that aims to improve the background value of a control21

by combining a physical model with observations of the system state. For example, in meteorology, DA aims to22

improve the initial state of the atmosphere using a weather prediction model and observations of the atmosphere23

on an assimilation time window, see e.g. Bouttier and Courtier [2002]. In hydrology, DA also aims to improve24

bathymetry, roughness coefficient and boundary conditions from observations of the water surface elevation, see e.g.25

Honnorat et al. [2009]. In the Variational DA methods (VDA), the assimilation is based on the minimization of a26

cost function which aims at fitting the model outputs to the observations, see e.g. Bouttier and Courtier [2002],27

Le Dimet and Talagrand [1986], Sasaki [1958].28

The quality of the VDA depends strongly on the estimation of the covariance of the background error (i.e. the error29

between the true and the background value of the control). This topic is therefore crucial but also complex, e.g.30

see a review on the topic in Bannister [a,b].31

The covariance can be estimated statistically by means of sample covariance using methods such as observation-32

based methods (see e.g. Hollingsworth and Lönnberg [1986]), the NMC method (see e.g. Parrish and Derber [1992])33
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or ensemble methods (see e.g. Carrassi et al. [2018]). Another possibility is to model the covariance operator. In the34

present study, the modeling is performed by specifying the covariance kernel. However, the choice of the covariance35

kernel and the parameters are so far based on empirical information and useful mathematical properties of the36

kernels. For example, Egbert et al. [1994], Weaver and Courtier [2001] and Mirouze and Weaver [2010] use the37

Gaussian and Matérn kernels, respectively, for their connection with the diffusion equation. The Gaussian kernel38

is also studied in Haben [2011], used in Pannekoucke et al. [2016, 2018] and mentioned in Daley [1993] p. 117. The39

second order auto-regressive kernel (SOAR, a special case of the Matérn kernel) is also widely used, e.g. in Ingleby40

[2001] for the Met Office 3DVar system, but see also in Daley [1993] p. 117 and Haben et al. [2011], Pannekoucke41

et al. [2016]. In Monnier and Zhu [2019], the decreasing exponential kernel (another specific case of the Matérn42

kernel) is used because of the known expression of the associated weighted L2 norm. In atmospheric science, the43

turbulent microscale is used to estimate the correlation length as mentioned in Daley [1993] p. 110. However,44

alternative estimates are often discussed as mentioned in Mirouze and Weaver [2010] and references therein. In45

Larnier and Monnier [2020], which treats an inverse problem including the present ones, the correlation lengths are46

taken empirically.47

48

Several studies have provided methods to improve the covariance estimate based on prior knowledge of physics49

or topography.50

Inflation is one method used to improve the statistical estimate of the covariance, see e.g. Carrassi et al. [2018] Sec.51

4.4. In Wang et al. [2008], the statistical estimate is improved by using a static covariance that includes more long52

term knowledge/physics, for example climatological information in a meteorological context. In Lopez-Restrepo53

et al. [2021], prior topographic knowledge is used. This study also highlights that prior knowledge of the physics,54

parameters, any environmental information or expertise on the covariance structure could be used to improve the55

statistical estimate.56

In order to reduce the number of stored parameters, the Lagrangian Kalman filter (see Lyster et al. [2004]) takes57

advantage of a transport model. In this method, the covariance is physically transported along the characteris-58

tics. In Pannekoucke et al. [2016], the parametric Kalman filter aims not only to physically transport but also59

to diffuse an initially known covariance matrix. In Pannekoucke et al. [2018], the previous method is extended60

to nonlinear behaviors with the example of the Burgers equation. These studies use topographical or physical in-61

formation. However, this information is only used to improve an already known estimate of the covariance operator.62

63

The present study investigates a method for modeling the covariance kernel based on knowledge of the physics64

and the underlying equations. It allows (1) to provide covariance kernels consistent with the physical impact of the65

error at a point on the rest of the domain and (2) to provide an estimate of the correlation length consistent with66

physics.67

The presented method is based on Green’s kernels and an extension, called here, the Green-like kernels. These68

kernels represent the response of the system to a Dirac distribution, i.e. the impact of a perturbation at a given69

location on the rest of the domain. The Green’s kernel can naturally be related to the covariance kernel, see e.g.70

the application to machine learning in Nagai [2020] and references therein.71

An alternative approach to the DA problem is to assimilate noisy data into a stochastic partial differentiable equa-72

tion in order to infer, using a Bayesian estimator such as the maximum a posteriori, the low-frequency part of a73

parameter and to estimate the uncertainty due to the high-frequency part. A strategy for this inference problem74

is proposed by Nolen and Papanicolaou [2009] and is applied to infer the diffusion coefficient in a steady diffusion75

equation with random potential. This approach also makes a link between Green’s kernels and covariance operators.76

The proposed method is investigated through the inference of the bathymetry in the Saint-Venant equations. These77

equations can be simplified and provide the double-scale diffusive wave equations, see Malou and Monnier [2021].78
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These last equations are adapted to river altimetry observations that we assimilate. Moreover, they allow to derive79

Green-like kernels.80

81

The outline of the article is as follow. In a first time, the VDA is adapted to infer bathymetry in the Saint-Venant82

equations form altimetry data. The inference is first performed using so-called classical covariance operators, i.e.83

based on empirical information. Then, the method to derive covariance kernels from the equations is presented.84

Finally, the results of the inference using the physically derived covariance operators are compared to those using85

the classical covariance operators.86

2 Variational Data Assimilation based on classical covariance opera-87

tors88

In this 1st section, the formulation of the Variational Data Assimilation (VDA) for a river flow model, the 1D89

Saint-Venant equations, is presented. Then, covariance operators, which constitute the central part of this study,90

are recalled, as well as their link with VDA.91

Numerical experiments to compare these covariance operators are then defined. A real-like dataset will be used in92

these experiments and will be presented.93

The classical covariance operators are investigated in this section. This will also allow us to determine a reference94

classical covariance.95

2.1 Inference of the bathymetry in the Saint-Venant equations96

First, the direct model is presented. Then, the VDA formulation to infer the bathymetry in these equations is97

presented.98

2.1.1 Direct model: the Saint-Venant equations99

The most classical dynamic river flow model is the one-dimension Saint-Venant equations, see e.g. Chow [1964].100

In these equations, the natural variables are the wet area A(x, t) and the discharge Q(x, t). The equations are the101

following:102 {
∂A
∂t + ∂Q

∂x = 0
∂Q
∂t + ∂

∂x (Q
2

A ) + gA∂H
∂x = −gASf

(1)

with g the gravity magnitude and H(x, t) the free surface height. The friction term Sf (x, t) is defined by the classical103

Manning-Strickler relation Sf = Q2

K2
sA

2h
4
3
(assuming Q is positive and that for large river, the hydraulics radius is104

Rh ≈ h) with Ks the Strickler roughness coefficient. The bathymetry is denoted zb(x), the average cross-section105

velocity u(x, t) = Q(x,t)
A(x,t) , the water depth h(x, t) = H(x, t) − zb(x) and the width w(x, t), see Fig. 1. The average106

width w̄ is the river width averaged over a cross-section at a given time. The abscissa x is the curvilinear abscissa of107

the centerline of the river and x ∈ Ω = [0;L]. The modeling time window is t ∈ [0;T ]. The Saint-Venant equations108

are solved using the Preissmann scheme [Cunge, 1980] implemented in the DassFlow-1D software [Monnier and109

Larnier, 2018].110

2.1.2 VDA for bathymetry zb(x) inference111

The goal of VDA is to determine the control (denoted k, in a first time k(x) = zb(x) and in a second time112

k(x) = (zb(x),Ks(x))) that makes the physical model (called direct, here the Saint-Venant equations (1)) fits with113
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Figure 1: Assumed geometry of the river and summary of the notations.

some observations. The identification of the optimal control is done by minimizing a cost function j, see e.g.114

Bouttier and Courtier [2002]:115  find k∗(x) such that:
k∗(x) = argmin

k(x)
j(k) (2)

The cost function is commonly defined as:116

j(k) = jobs(k) + αregjreg(k) (3)

with αreg the regularization weight coefficient. The observation term jobs aims to minimize the distance between117

the observations Hobs and the output of the direct model (1) H(zb), see e.g. Bouttier and Courtier [2002], Le Dimet118

and Talagrand [1986], Sasaki [1958]:119

jobs(k) =
∫ T

0
‖H (k; t)−Hobs(t)‖2L2(Ωobs)dt (4)

where Ωobs is the domain of observations.120

121

A regularization term jreg is added to deal with the non-uniqueness of the solution of the problem (2) (Thikhonov122

regularization term, see e.g. Kaltenbacher et al. [2008]).123

124

For a sake of simplicity, the following is detailed for a single control variable, namely k = zb.125

126

The commonly used expression for jreg is jreg(zb) = ‖zb − zbb‖2C−1 = ‖rb‖2C−1 = 〈rb,C−1 (rb)〉L2(Ω). This term127

tends to minimize the background residual rb = zb − zbb with zbb the background value of zb. This minimization is128

done with respect to a norm defined by an positive-definite and symmetric operator C−1.129

In the Bayesian framework and under the assumption of Gaussian errors, this expression of jreg follows naturally130

from the maximum log-likehood of the conditional probability density function of the analysis error zb− ztb, with ztb131

the true value of the control. In the same framework, the operator C is the covariance operator of the background132

error εb = zbb − ztb (sometimes denoted εzb

b , see Sec. 2.2 and e.g. Bouttier and Courtier [2002]).133

134
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Following Parrish and Derber [1992], one introduces the change of variable:135

zb(x) = Lz̃b(x) + zbb(x) (5)

This change of variable implies that the operator L, that satisfies C = LLT , must be estimated instead of C−1.136

This change of variable acts as a preconditioning of the Hessian of j, see Haben et al. [2011]. The change of variable137

can be understood as an implicit regularization, while the addition of a jreg is an explicit regularization.138

From now, j denotes the cost function computed without distinction from zb or from z̃b defined by (5).139

140

The regularization term jreg(zb) = ‖rb‖2C−1 does not prevent high frequency oscillations of zb. The following141

regularization term is here more adequate:142

jreg(z̃b) = ‖∂xzb‖2L2(Ω) = ‖∂x
(
Lz̃b + zbb

)
‖2L2(Ω) (6)

This regularization term aims to minimize the variations of zb with respect to the background value zbb .143

It is also common to infer the Strickler coefficient (as in the sequel experiences, see Sec. 2.3.1) and/or the inflow144

discharge in addition to the bathymetry in order to provide an effective model (see e.g. Larnier and Monnier [2020]145

for the inversion of the triplet and Honnorat et al. [2009]).146

147

The optimization algorithm used to solve the problem (2) is the L-BFGS-B algorithm, see Gilbert and Lemaréchal148

[1989], implemented in the minimize function of the python package scipy.optimize1. The gradient of j is estimated149

by DassFlow-1D solver, see Monnier and Larnier [2018], using the automatic differentiation algorithm TAPENADE,150

see Hascoet and Pascual [2013].151

2.2 Covariance operators in VDA152

In the previous section, the change of variable (5) introduces the εb covariance operator. C is a linear integral
operator defined by a covariance kernel c:

C : z 7→
(
x 7→

∫
Ω
c(x;x′)z(x′) dx′

)
Assuming that the distribution of εb is known, c is defined by: c(x;x′) = E [(εb(x)− E[εb(x)])(εb(x′)− E[εb(x′)])].153

As mentioned previously, this expression can be estimated using the sample covariance if there are enough realiza-154

tions or estimations of εb(x) and εb(x′).155

This expression directly implies that c (and the associated covariance matrix, also denoted C) is symmetric. More-156

over, one can show that c is also positive semi-definite. However, since it defines a norm and must be invertible, c157

is assumed to be positive-definite.158

The modeling of the covariance consists in assuming the expression of c. We first consider homogeneous covariance159

kernels, i.e. which can be written : c(x;x′) = c(x− x′) ⇒ C : z 7→ c ∗ z.160

Only very few covariance operators are used in the literature on inverse problem and VDA. Let us mention them.161

• CId is defined by the identity kernel cId = Id for uncorrelated variables.162

1see the documentation of the minimize function of the scipy.optimize package and its implementation of the L-BFGS-B algorithm
in https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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• CG
Lc

is defined by the Gaussian kernel (e.g. in meteorology Egbert et al. [1994]):163

cGLc
(x, x′) = 1√

2πL2
c

exp
(
−1

2
(x− x′)2

L2
c

)
(7)

• Ce
Lc

is defined by the decreasing exponential kernel (also called First Order Auto-Regressive, FOAR, e.g. used164

in glaciology Monnier and Zhu [2019]):165

ceLc
(x, x′) = exp

(
−|x− x

′|
Lc

)
(8)

with Lc the correlation length.166

Note that the Gaussian and decreasing exponential kernels are specific cases of the Matérn covariance kernel, e.g.167

used in Mirouze and Weaver [2010]. The Second Order Auto-Regressive kernel (SOAR) is another specific case of168

the Matérn kernel often used, e.g. in Haben et al. [2011].169

In Tarantola [2005], the expression of the ‖ · ‖C−1 norm associated to Ce
Lc
, see (8), is calculated. One has:170

‖rb‖2C−1 = 1
Lc
‖rb‖22 + Lc‖∂xrb‖22 (9)

In this first part of the study, the operator Ce
Lc

is mainly used to model C.171

172

In the context of inferring zb in the Saint-Venant equations, no prior information provides a value of Lc. Recall173

that this correlation length is often estimated from empirical information. For example, in atmospheric data174

assimilation, the turbulent microscale is used to estimate Lc, see Daley [1993] p.110, Pannekoucke et al. [2008],175

Mirouze and Weaver [2010] and references therein for related discussions.176

In the sequel, the classical covariance operator is Ce
Lc

defined by (8) with the arbitrary correlation length values177

Lc equal to 3∆x, 30∆x and 300∆x, ∆x the average space step of the numerical grid.178

By abuse of notation, the matrix associated to a covariance operator discretized on the numerical grid, called179

covariance matrix, is noted by the same symbol.180

Since the kernels presented above satisfy c(x, x) = 1, they are more specifically correlation kernels. The covariance181

kernel should be σ(x)σ(x′)c(x, x′) with σ the variances.182

If σ is considered to be non-constant, the choice of Lc may be influenced by issues related to the positive-definite183

property, see e.g. Monnier and Zhu [2019]. Here σ is assumed to be constant.184

In the case zb is the only control variable, the constant σ acts as a rescaling factor. Therefore, σ has no impact185

on the results. In order to have equivalent termination criteria for the optimization algorithm equivalent for each186

operator, the kernels will be rescaled so that the maximum is 1. In this case, by abuse of language, the correlation187

kernels are still called covariance kernels.188

If two (or more) controls are inferred, the rescaled kernels is then weighted by specified constant variances.189

2.3 Numerical experiments description190

The numerical experiments, which are analysed in next sections, are here presented. They aim at comparing the191

classical covariance operator, see Sec. 2.2 and later Sec. 2.4, and the original ones derived from physics, see later192

Sec. 3.3.3 and Sec. 4. These VDA experiments are performed over a real-like case presented in the last part of this193

section.194
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2.3.1 Fully- and partially-observed experiments195

The fully-observed experiment196

The purpose of the experiments is to investigate the inference of zb using different covariance operators. To do197

this, the experiments are based on a target bathymetry ztb.198

From this target, the observations are Hobs = H(ztb) ∀x ∈ Ω, see upper Fig. 2a. Moreover, the observations are199

made over almost the entire time window (every 6 hours on a 10-days time window). This experiment is called200

fully-observed.201

To fit to a real-like inference problem, the background zbb is assumed to be the linear interpolation of two points202

(the upstream and downstream points of the target, see upper Fig. 2a). For the same reason, zbb is the first guess203

value of the iterative VDA algorithm.204

The partially-observed experiment205

In order to consider an experiment closer to real world problems, Hobs is in this experiment computed at the km206

scale by averaging H(ztb) + εobs between the observations points, with εobs ∼ N (0, 0.12). Moreover, Hobs is taken at207

only two times (t = 6hour and t = 234hour) over the (10-days) time window. This is the so-called partially-observed.208

Moreover, the partially-observed experiment is a multivariate inverse problem that aims at inferring the pair (zb,Ks).209

The two control variables are assumed to be uncorrelated: the cross-covariance is Cov(εKb (x), εzb

b (x′)) = 0 ∀x, x′.210

Hence, the multivariate covariance matrix (containing both the univariate covariance matrices CKs and Czb
, and211

cross-covariance matrix) is block diagonal. This assumption may not be accurate. However, this assumption is212

necessary without further knowledge of the cross-covariance and hence, is classically made.213

The univariate covariance of Ks is assumed to be modeled by CKs = Ce
∆x. As mentioned in Sec. 2.3.2, the assumed214

value of the Strickler is Kt
s = 30. We assume that the background and initial value is Kb

s = 45.215

In the present study, two pairs of constant are used.216

• The 1st pair (σzb
, σKs

) = (0.5h, 10) is consistent with the estimate suggested by Larnier and Monnier [2020].217

It denotes a realistic estimate of the accuracy of kb = (zbb ,Kb
s).218

• The 2nd pair is (σzb
, σKs) = (0.1h, 50). This means that the accuracy of zbb and Kb

s are respectively overesti-219

mated and underestimated. The purpose of this pair is to investigate the inference of zb in a case in which220

Ks is mainly inferred .221

In the present case, the mean water depth value h ≈ 4m.222

Performance criteria223

The performance of the optimization with a given c is evaluated by the evolution through the optimization itera-224

tions of the Root Mean Square Errors (RMSE X =
√

(X −X ′)2, in m). The RMSE between zb and ztb is denoted225

RMSE zb; RMSE H denotes the RMSE between H(zb) and Hobs.226

According to Morozov’s discrepancy principle, one should optimize until the distance between the observations and227

the system state reaches the accuracy of the observations, see e.g. Kaltenbacher et al. [2008]. In real-like exper-228

iments, the error of altimetric Hobs is of the order of 10cm. Therefore, the evolution of RMSE and zb until the229

accuracy RMSE H ≈ 10cm is reached, is also studied as a criterion of the inference performance.230

The performance criteria and their evolution through the optimization iterations are also studied until the optimiza-231

tion algorithm terminates. The termination criteria of the L-BFGS-B algorithm used2 are based on the evolution232

of j between two iterations and on the maximum of the gradient of j. The values of the tolerances of these criteria233

2see more details in the documentation of the L-BFGS-B algorithm in https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-lbfgsb.html
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(resp. 10−4 and 3× 10−2) are taken so that the first fully-observed experiment (presented in Sec. 2.4.1 and on Fig.234

3 ) has, by expertise, converged sufficiently well. In the following, this stage of the optimization process is called235

"complete convergence".236

The number of iterations to reach these two stages of the optimization process, the stage RMSE H ≈ 10cm and237

the complete convergence, is also studied to highlight the number of iteration needed to reach a given accuracy on238

zb or on H(zb) and as a measure of the convexity of the cost j around a given zb.239

2.3.2 The real-like Rio Negro dataset240

The VDA experiments are performed over a dataset derived from a Rio Negro dataset (Amazon basin). On Fig.241

2a, the width w is measured using the Peckel water mask, as in Pujol et al. [2020], at the intersection of the river242

with Sentinel-3A/B and Jason3 satellite tracks called virtual stations. Since only the value of w at the free surface243

is provided, the cross-sections are assumed to be rectangular.244

The target ztb is estimated from satellite measurements of H and Q estimated by the large-scale hydraulic model245

MGB (see Collischonn et al. [2007]) at the same virtual stations, see Fig. 2a. The inflow Q, see Fig. 2b, is also246

estimated by the daily large-scale hydraulic model MGB over a 10-days time interval. More details on the test247

case construction can be found in Malou et al. [2021]. For simplicity, the Strickler coefficient is considered as248

constant: Ks = 30. The numerical mesh has a mean space step ∆x ∼ 250m. The time step of the solver is fixed to249

∆t = 10min.250
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Figure 2: Given geometry and inflow discharge, and target outputs at t = 10days of the Rio Negro-like channel test
case.

251

2.4 Numerical results of the fully-observed experiment using classical covariance252

operators253

In this section, the inference of zb is performed using the different classical covariance operators: the decreasing254

exponential Ce
Lc

defined by (8) with different arbitrary values of Lc, and the identity CId, see Sec. 2.2.255

256
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2.4.1 With the identity covariance operator257

By expertise, the change of variable (5) with CId may not regularize the optimization problem (2) enough: the258

regularization term of the cost function jreg, defined here by (6), may be needed to converge. In the present259

experiment, the regularization weight coefficient αreg, see the cost defined by (3), is taken such that jobs(zbb) =260

10%j(zbb). Moreover, an adaptive regularization strategy is adopted, see e.g. Kaltenbacher et al. [2008]: αreg is261

divided by 2 every 10 iterations, see on Fig. 3b.262

The resulting z∗b is then very close to ztb (nearly indiscernible on Fig. 3a). The main difference comes from
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Figure 3: Inference of zb(x) (fully-observed experiment) with CId and the regularization term (6) (αreg initially
such that αregjreg(zbb) ∼ 10−1j(zbb) and divided by 2 every 10 iterations).

263

the corners of the ztb curve which are smoothed on the z∗b curve, see the zoom on x ∈ [470; 510]km. This is the264
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consequence of jreg (6) that aims to provide smoother solutions (but that is needed to converge).265

2.4.2 Exponential covariance operator266

Following (9), high values of Lc tend to provide smooth solutions z∗b . On the other hand, low values of Lc tend267

to provide z∗b closer to zbb (in this case Ce
Lc

tends to behave like CId). By expertise, Ce
Lc

regularizes (implicitly)268

well the optimization problem (2). Therefore, no additional/explicit regularization terms (αreg = 0) are needed to269

converge to a convincing z∗b .270

On Fig. 4a, z∗b obtained using Lc = 3∆x has oscillations of larger amplitudes (e.g. over x ∈ [600; 670]km) than
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when Lc = 30∆x or Lc = 300∆x are used. Also, the use of Lc = 300∆x seems to provide smoother z∗b than smaller271

Lc values, especially at the location of the corners of the ztb curve, e.g. on x ∈ [870; 900]km.272

273

2.4.3 Comparisons and choice of the reference method274

Covariance operators CId Ce
3∆x Ce

30∆x Ce
300∆x

till RMSE H ≈ 10cm nite 69 11 10 9
RMSE zb (m) 0.44 0.6 0.78 0.31

till complete convergence
nite 278 69 139 99

RMSE zb (m) 0.02 0.23 0.14 0.22
RMSE H (m) 0.21× 10−3 6.61× 10−3 3.55× 10−3 1.29× 10−2

Table 1: Performance (number of iteration nite and RMSE zb and H) of the inference of zb using classical covariance
operator and CId at different stage of the optimization process (till RMSE H ≈ 10cm and till complete convergence
as described in Sec. 2.3.1). The reference classical covariance operator is indicated in blue.

The optimization algorithm with CId converges very slowly (278 iterations to reach z∗b and 69 iterations to reach275

the RMSE H ≈ 10cm stage, see Tab. 1). On the other hand, optimizations with Ce
Lc

reach the RMSE H ≈ 10cm276

stage and z∗b faster (less than 11 and 139 iterations respectively) than with CId.277

Therefore, Ce
Lc

greatly improves the convergence speed of the optimization algorithm, especially in the first itera-278

tions.279

Moreover, ‖∇j‖22 with CId increases a lot during the 15 first iterations (by a factor 102). With Ce
Lc
, ‖∇j‖22 de-280

creases very quickly during the first iterations. This can be explained by the fact that Ce
Lc

provides "more convex"281

cost functions around the reached (local) minimum. This difference in the behavior of ∇j is in agreement with the282

difference in convergence speed.283

One can underline that CId provides a higher accuracy. This accuracy comes from the regularization term (6)284

with a well chosen αreg. Recall that αreg 6= 0 is necessary with CId, unlike with Ce
Lc
. However, this accuracy is285

unnecessary in practice and all estimates of C provide sufficiently accurate z∗b , see Sec. 2.3.1.286

287

With the operator Ce
Lc
, using a large value of Lc (e.g. Lc = 300∆x) implies that the corners of the ztb curve288

are smoothed on the z∗b curve. On the other hand, using a low value of Lc (e.g. Lc = 3∆x) implies some oscillations289

on z∗b . This explains why a low value of Lc implies at complete convergence a similar RMSE zb but a lower290

RMSE H than a large value of Lc.291

Using an intermediate value of Lc (e.g. Lc = 30∆x) implies that z∗b has less oscillations than when a low value of292

Lc is used, and the corners of the ztb curve are better approximated than when a high value of Lc is used. This293

implies that the RMSE H and the RMSE zb are (slightly) better, see Fig. 9.294

295

The operator Ce
Lc

has the advantage of providing a self-sufficient implicit regularization through the change of296

variable (5). Recall that no explicit regularization term is needed, i.e. αreg = 0. This implicit regularization297

improves the convergence speed of the optimization algorithm. The algorithm also convergences to a solution with298

more than sufficient accuracy. Moreover, Ce
Lc

with Lc = 30∆x is a good compromise since it benefits from the299

advantage of a high value of Lc (less oscillations than a low value of Lc) but mitigate its disadvantage (the corners300

of the ztb curve are better approximated).301

In the sequel, Ce
30∆x is then selected as the so-called "classical covariance operator of reference".302
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3 Covariance operators from Green-like kernels of the double scale303

diffusive wave equations304

The purpose of this section is to derive physically-consistent estimates of C, see Sec. 2.1.2. These physically-305

consistent covariance operators are derived using Green-like kernels.306

In a first part, the definitions of Green’s kernel and Green-like kernel are given. Then, a link between a Green’s kernel307

and a covariance operator is established. The inference is made using the Saint-Venant equations (1). However,308

these equations do not allow to derive Green’s kernels (or Green-like). Therefore, these kernels will be derived from309

the double-scale diffusive wave equations (see Malou and Monnier [2021]), which are first recalled.310

These Green-like kernels also provide a tool to quantify the sensitivity of the equations with respect to the control,311

here zb. This tool is called the "sensitivity map".312

In this context, Green-like kernels do not directly provide covariance kernels. The last part of this section is about313

obtaining a covariance operator from a Green-like kernel.314

3.1 Green-like kernels and their link to covariance operators315

3.1.1 Green-like kernels: definition316

Suppose a time-dependent 1D linear PDE in the unknown H: ∂tH(x, t) + AH(x, t) = Bk(x, t). The linear differ-317

ential operator A is assumed to be with constant coefficients, the right hand side operator B is linear in k with318

constant coefficient too.319

320

The Green’s kernel associated to this PDE is the function GB which satisfies the equation: ∂tGB + AGB(x, t) =321

δ(x, t), where δ is the Dirac distribution, see Green [1828] and e.g. Evans [1998] for modern use with the similar322

concept of fundamental solutions.323

Since the operator A is assumed to be linear with constant coefficients, the solution of the PDE can be written as324

H(x, t) =
[
GB ∗ Bk

]
(x, t). The Malgrange-Ehrenpreis theorem states that a Green kernel exists, see e.g. Brezis325

[2010].326

327

One can be interested in the response of the system to an impulse in k. Hence, the kernel G, called here Green-like328

kernel, satisfies the equation:329

∂tG+AG(x, t) = Bδ(x, t) (10)

Since the operator B is a linear operator with constant coefficients, the solution of the PDE can be written as:330

H(x, t) = [G ∗ k] (x, t) (11)

with G solution of (10).331

If the Green kernel exists and is unique, and if the operator B is linear continuous, then the Riesz representation332

theorem (see e.g. Brezis [2010]) ensures the existence and uniqueness of the Green-like kernel.333

Solving the equation (10) with non-linear operators A and B, or operators with non-constant coefficients, is gener-334

ally not possible. Moreover, in such cases, the existence and uniqueness of such kernels are not ensured.335

336
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3.1.2 When the Green kernel is naturally a covariance kernel337

Let us consider the 1D heat equation with source term:338

∂tH(x, t)− D

2 ∂
2
xxH(x, t) = k(x, t) (12)

with the initial condition H(x, t = 0) = 0, D the diffusion coefficient. The associated Green’s kernel reads :339

GB(x, t) = 1√
2πDt

exp
(
−1

2
x2

Dt

)
(13)

This Green’s kernel is the Gaussian covariance kernel (7) with the correlation length Lc =
√
Dt: GB(x − x′, t) =340

cG√
Dt

(x, x′). Therefore, if this diffusion equation (12) is used to model a given physical phenomenon, then the341

value of the diffusion coefficient is naturally obtained. Thus, the correlation length can be estimated from D and a342

characteristic time. Recall from Sec. 2.2 that the correlation lengths for more complex phenomena are classically343

taken empirically.344

Note that here the Green’s kernel is naturally symmetric and positive-definite.345

The solution of Eqn (12) can then be written as (11): H = GB ∗ k = cG√
Dt
∗ k.346

347

Observe that the same analysis can be done for the 1D homogeneous heat equation ∂tH(x, t)− D
2 ∂

2
xxH(x, t) = 0348

with the initial condition H(x, t = 0) = k(x). As suggested by Egbert et al. [1994], the solution of this equation349

can then be used to estimate CG√
Dt

(k) = cG√
Dt
∗ k without storing the matrix of CG√

Dt
. Mirouze and Weaver [2010]350

links the implicit time discretization of this equation and the Matérn kernel.351

352

If the PDE contains more terms than a simple diffusion term, it is likely that the associated Green’s kernel (or353

Green-like kernel, as in the sequel) provides a covariance kernel containing more dynamics information. The resulting354

kernel may provide physically-consistent parameters. However, this is valid as long as the resulting Green’s kernel355

is symmetric positive-definite. If this is not the case, one may build up a symmetric positive-definite approximation356

of the Green’s kernel.357

3.2 Green-like kernels derived from the double scale diffusive wave358

3.2.1 The double scale diffusive wave model359

We recall here the double scale-diffusive wave equations which are dedicated to altimetric observations, see Malou360

and Monnier [2021]. These equations are derived from the Saint-Venant equations (1) under the low Froude361

assumption (Fr2 � 1) and a double scale assumption. The double-scale distinguishes the physical scale and the362

observations scale. The physical scale variables are denoted by (x, t), the observations scale variables by (y, τ).363

These two sets of space-time variables are linked by (y, τ) = εs (x, t) with εs the scaling factor [Malou and Monnier,364

2021]. The double scale assumption aims at taking into account width variations that are neglected in the classical365

diffusive wave equation (the "physical scale" equation) but which are not negligible at the observations scale. These366

are the following two scalar equations:367

368 (
∂tH − µ(H)∂2

xxH + v(H)∂xH
)

(x, t) = ( v(H)∂xzb ) (x, t)(
∂τH − µ(H)∂2

yyH + v(H)∂yH + ρ(H)H
)

(y, τ) = ( v(H)∂yzb + ρ(H)zb ) (y, τ)
(14)
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with the initial condition H(X , T = 0) = H0(X ). The effective diffusion coefficient µ, wave velocity v, width
variation coefficients ρ and the fluid velocity u are defined by:

µ(H;X , T ) = 1
2u(H;X , T ) (H(X , T )− zb(X ))

|∂XH(X , T )| v(H;X , T ) = γu(H;X , T ) (15)

ρ(H; y, τ) = 1
w̄(y, τ) (∂τ w̄(y, τ) + γu(H; y, τ)∂yw̄(y, τ)) u(H;X , T ) = Ks (H(X , T )− zb(X ))γ−1 |∂XH(X , T )| 12

The expression of u comes from the Manning-Strickler parametrization (with γ = 5
3 ), see Sec. 2.1.1.369

The generic variables (X , T ) denote either (x, t) for the physical scale or (y, τ) for the observations scale.370

371

The non-linear equations (14) do not provide a framework for deriving Green’s kernels and their existence is372

not even ensured, see Sec. 3.1.1. Therefore, the double-scale diffusive wave equations (14) are linearized around a373

reference state that gives constant coefficients.374

The linearized diffusive wave equations (14) are non-homogeneous linear reaction-advection-diffusion equations:375

∀(x, t) ∈ [0, L]× [0;T ],376

(
∂tH − µxr∂2

xxH + vr∂xH
)

(x, t) = ( vr∂xzb − ηxr zb ) (x, t)(
∂τH − µyr∂2

yyH + vr∂yH + ρrH
)

(y, τ) = (vr∂yzb + ( ρr − ηyr ) zb ) (y, τ)
(16a)
(16b)

with the reference coefficients3 :377

µXr = 1
2ur

Hr

|∂XHr|
, vr = γur , η

X
r = 1

2ur
∂2
XXHr

|∂XHr|
(17)

378

ρr = 1
w̄r

(∂τ w̄r + γur∂yw̄r) (18)

The reference state is given by the reference water surface height Hr, the reference velocity ur and the reference379

mean width w̄r. We must make sure that µr, defined in (17), is positive; if not, a change of reference height solves380

the issue.381

Note that vr does not depend on the scale but that µXr and ηXr do (see Tab. 2).382

scale µXr vr ηXr ρr

physical scale 105 1 10−6

observation scale 102 1 10−5 10−4
383

Table 2: Magnitudes of the reference coefficients, defined by (17) and (18), at both physical and observations scale
with a scaling factor εs = 1/250

From now, the calculations are performed at the observations scale. Indeed and if not specified, the calculations384

also hold for the physical scale4 assuming that ρr = 0.385

We set: A = −µXr ∂2
XX + vr∂X + ρr and B = vr∂X +

(
ρr − ηXr

)
respectively the right and left hand side operators386

of (16b).387

The operator B is linear and continuous and the existence of a unique Green’s kernel is ensured for the linearized388

diffusive wave equations (16). Therefore, the existence of a unique Green-like kernel is ensured (by vertue of the389

Riesz representation theorem, see Sec. 3.1.1).390

3the subscript r relates to the reference state and the resulting coefficients
4If needed, the observations and physical scales are distinguished by the subscripts ps and os.

14



391

3.2.2 Derivation of Green-like kernels392

First, the classical Green’s kernel of the linear diffusive wave equations (16b), denoted by GB, is derived4. The393

Green’s kernel is calculated using the Fourier transform in space and the Laplace transform in time (following e.g.394

Evans [1998]). Moreover, it is assumed that GB(X , T = 0) = 0. To perform the Fourier transform, the equations395

(16) are defined ∀X ∈ R.396

We are interested in the response of the system to a perturbation, and not in finding the solution of the initial397

and boundary values problem. Therefore, the Green’s kernel (and later Green-like kernels) does not seek to satisfy398

either the boundary conditions or the initial condition.399

400

The obtained Green’s kernel expression is the following5 :401

GB(X , T ) = 1√
2π (2µXr T )

exp
(
−1

2
(X − vrT )2

2µXr T

)
exp (−ρrT ) 1]0;+∞[(T ) (19)

The advection and diffusion terms of the equations (16) involve the Gaussian term (the classical Green’s kernel) in402

GB, see Sec. 3.1.2 or e.g. Evans [1998]. This Gaussian is centered in vrT with the correlation length Lc =
√

2µXr T403

(µXr > 0, vr is defined by (17)). Therefore, the Green’s kernel (19) provides a physically meaningful estimate of404

the characteristic length Lc, see later (29). Moreover, because of the Gaussian term in the expression of GB, the405

Gaussian operator, defined by (7), seems to be a natural physically-consistent estimate of C in this context.406

Since the equation (16b) is linear with constant coefficients, the solution ∀(X , T ) ∈ R × R+∗ can be written as:407

H(X , T ) =
[
GB ∗ Bzb

]
(X , T ). On the other hand, the Green-like kernel, denoted Gts, implies that the solution can408

also be written as the relation (11). Therefore, the following equality holds:
[
GB ∗ Bzb

]
(X , T ) = [Gts ∗ zb] (X , T ).409

Using the convolution product differentiation property, the Green-like kernel reads as follows6:410

Gts(X , T ) =
(
−vr

(X − vrT )
2µXr T

+ ρr − ηXr
)
GB(X , T )1]0;+∞[(T ) (20)

with GB defined by (19).411

412

However, zb is constant in time. Therefore, the appropriate perturbation to consider is one that is local in space413

and constant in time (not local in time). To do this, we must first consider a Dirac comb of n+ 1 equidistant Dirac414

distributions on the time interval [0;T ]: Ø(T ) =
n∑
i=0

δ(T − T
n i).415

We denote by Gdc7 the kernel that formally satisfies: (∂TGdc +AGdc)(X , T ) = BØ(T )δ(X ). This kernel is easily416

calculated from the kernels (20) using the linearity and time shifting property of the Laplace transform:417

Gdc(X , T ) =
nt∑
i=0

Gts(X , T − T

n
i) (21)

with Gts defined by (20) and the index of the current time nt = b nT T c.418

419

5the superscript B relates to the result of a Dirac distribution as right hand side Bzb
6the superscript ts refers to the result of a Dirac distribution local in time and space as zb
7the superscript dc refers to the result of a Dirac comb as zb
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The next step is to sum an infinite number of Dirac distributions, i.e. n → +∞. Hence, formally, Ø(T ) −−−−−→
n→+∞

420

1[0;T ](T ). Then, Gdc tends to solve the equation: ∀T ∈ [0;T ] (∂TG+AG)(X , T ) = Bδ(X ).421

Since, formally, Dirac combs are related to the rectangle rule:422

Gdc(X , T ) −−−−−→
n→+∞

T∫
0

Gts(X , T ′)dT ′ (22)

This limit (22) provides the following new Green-like kernels :423

Gps(x, t) =
t∫

0

(
−vr

(x− vrt′)
2µxr t′

− ηxr
)

1√
2π (2µxr t′)

exp
(
−1

2
(x− vrt′)2

2µxr t′

)
dt′

Gos(y, τ) =
τ∫

0

(
−vr

(y − vrτ ′)
2µyrτ ′

+ ρr − ηyr
)

1√
2π(2µyrτ ′)

exp
(
−1

2
(y − vrτ ′)2

2µyrτ ′

)
exp (−ρrτ ′) dτ ′

(23)

with the coefficients µXr , vr, ρr and ηXr defined by (17).424

425

Note that since GB(X , 0) = 0 ∀X ∈ R and formally GB(X , T ) −−−→
T→0

δ(X ) ∀X ∈ R, see e.g. Evans [1998],426

the kernel GB is discontinuous in (0, 0) .427

The kernel Gts (20) also satisfies Gts(X , T ) −−−→
T→0

0 ∀X ∈ R∗. Since Gts(X , 0) = 0 ∀X ∈ R, the kernel defined by428

(20) is continuous for ∀(X , T ) ∈ R× R+ \ (0, 0).429

This continuity property of the kernel Gts implies that the sum Gdc, defined by (21), and the integrals (22) are430

well-defined ∀X ∈ R∗. Hence, the kernels Gps and Gos obtained above are well-defined ∀(X , T ) ∈ R∗ × R+.431

There is, nevertheless, no proof that the integral (22) is defined and finite ∀(X , T ) ∈ {0} × R+. However, we are432

interested in the response the impulsion, not the impulsion itself. Hence, the impulsion (i.e. when T ′ = 0) is not433

taken into account by the numerical integration.434

435

Note that X 7→ GB(X , T ) ∀T ∈ R+, defined by (19), is not an even function because of the advection term436

in the equations (16) (vr 6= 0). Similarly, the kernels (20) and (23) are not even with respect to X . Therefore,437

(X ,X ′) 7→ G(X − X ′, T ) is not symmetric. Moreover, there is no proof that this kernel are positive-definite.438

Therefore, the kernels Gps and Gos do not directly provide a covariance kernel.439

3.2.3 A by-product: sensitivity map440

The purpose of the following section is to highlight the sensitivity of the double-scale diffusive wave equations (14)441

with respect to k (here zb) resulting from the Green-like kernels previously derived. This investigation also stands442

for the Saint-Venant equations (1) as long as the low Froude and double-scale assumptions stand.443

Since vr is constant, vrT is the distance traveled by the wave till the time T . Since v, defined in (15), is a function444

of (X , T ), it can be integrated along the characteristic curve to provide the traveled length l.445

The same way, α and ω are respectively the diffusion and the width variation coefficients integrated along the446

characteristic curve.447

From the sum Gdc defined by (21), we know that the integrands of the kernels (23) at a given T ′ are actually the448

propagation of this integrand from the time T − T ′ till the time T .449

The characteristic curve X(X , T1, T2) is the position at time T2 of the particle that was located at the position X450
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at time T1: X(X , T − T ′, T ) = X + l(X , T , T ′).451

Hence, the traveled length, diffusion coefficient and width variation coefficient integrated along the characteristic452

curve read:453

l(X , T , T ′) =
T∫

T −T ′

v(X(X , T − T ′, s), s)ds

α(X , T , T ′) =
T∫

T −T ′

2µ(X(X , T − T ′, s), s)ds

ω(X , T , T ′) =
T∫

T −T ′

ρ(X(X , T − T ′, s), s)ds

(24)

with the coefficients v, ρ and u defined in (15). The coefficients µ and η are similarly defined as in (17):454

µ(X , T ) = 1
2u(X , T ) H(X , T )

|∂XH(X , T )| , η(X , T ) = 1
2u(X , T )∂

2
XXH(X , T )
|∂XH(X , T )| (25)

Then an expression of the sensitivities derives from the Green kernels (23). For a perturbation at X ′, i.e. for a455

Dirac distribution δ(X − X ′), the expressions of the sensitivities S are the following :456

S(X ,X ′, T ) =
T∫

0

(
−v(X , T − T ′) (X − X ′ − l(X , T , T ′))

α(X , T , T ′) + ρ(X , T − T ′)− η(X , T − T ′)
)

× 1√
2πα(X , T , T ′)

exp
(
−1

2
(X − X ′ − l(X , T , T ′))2

α(X , T , T ′)

)
exp (−ω(X , T , T ′)) dT ′

(26)

The so-called sensitivity map represents the sensitivity, at a given scale, of the control at one point (located at a457

given X ′) on the rest of the domain through time: SX ′ : (X , T ) 7→ S(X ,X ′, T ).458

Here the sensitivity maps are computed on the whole domain for a perturbation in the middle of the domain459

X ′ = 0.5L. The integrals are computed using a rectangle method on the right with a time step of 1h.460

461

We notice that the sensitivity at observations scale Sos is discontinuous with respect to X , see Fig. 5. Moreover,462

on Fig. 5b, the discontinuities are located at the same positions as the discontinuities in the space derivative of the463

width, see Sec. 2.3.2 for the construction of the width.464

The sensitivities are mostly positive upstream and negative downstream of X ′.465

In absolute value, Sos seems to increase in time, see Fig. 5a. Also, the sensitivity map highlights that more infor-466

mation are located far from X ′ when the time increases. These phenomena come from the increasing integration467

domain in time of the integral and from the advection and diffusion phenomena in the integrand of the sensitivities468

(26).469

470

Finally, one can deduce that the sensitivity of the double scale diffusive wave equations with respect to the zb471

is related to the w variations. Moreover, introducing an error in zb at a point has a positive impact upstream and472

negative impact downstream on H, Fig. 5a.473

This sensitivity map represents the spatio-temporal propagation of the local sensitivity. This sensitivity analysis474

also stands for the Saint-Venant equations under the low Froude and double gradually varied assumptions.475
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Figure 5: Sensitivity maps (26) for perturbations in the middle of the domain (X ′ = 0.5L) with the coefficients
(15), (24) and (25) computed with the output of the Saint-Venant equations for Rio Negro-like case, see Fig. 2.

3.3 Building physically-derived covariance operators from Green-like kernels476

Covariance operators and their associated matrices are by definition symmetric and positive-definite. The kernels477

(X ,X ′) 7→ G(X − X ′, T ) defined by (23) are not symmetric. Moreover, there is no proof that they are positive-478

definite.479

Note that the same issues arise when C is estimated statistically from the sample covariance, see e.g. Bannister [a].480

In this case, the number of realizations or estimates of εb may not be sufficient to correctly estimate the covariance.481

Consequently, spurious correlations may appear and the resulting matrix may not be symmetric positive-definite.482

If the inverse operator of the Green-like kernel (the operator G−1 such that zb = G−1H) and if a covariance oper-483
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ator of H is known, an estimate of C can be computed using the bilinear property of the covariance operator, see484

e.g. Rasmussen and Williams [2006] chap. 4. However, it is based on a prior knowledge of the covariance of H.485

Therefore, this approach is not used here.486

Thus, the purpose of this section is to construct covariance operators from the Green-like kernels G previously487

defined.488

489

3.3.1 On the symmetry of the covariance kernel490

The kernels (X ,X ′) 7→ G(X − X ′, T ), see (23), are not symmetric because of the advection of h, h = H − zb, in491

(14). This advection implies :492

• the Gaussian term of (X ,X ′) 7→ GB(X − X ′, T ′), defined by (19), is not centered in X ′ but in (X ′ + vrT ′)493

(the wave travels from upstream to downstream),494

• the term vr∂X zb in the right hand side of (16) implies that the term (−vr X−X
′−vrT ′

2µXr T ′
) in Gts(X −X ′, T ′), see495

(20) (X 7→ Gts(X − X ′, T ′) is positive upstream of X ′ + vrT ′ and negative downstream).496

In Cheng et al. [2020], the symmetry is forced by considering the kernel (X ,X ′) 7→ 1
2 (G (X − X ′, T ) +G (X ′ −X , T )).497

Another possibility to force the symmetry is to neglect the advection i.e. to assume that vr ≈ 0.498

However, this two approximations are inefficient in our case.499

Assuming that vr ≈ 0 implies that the integrands of Green-like kernels (23) are centered Gaussian. Moreover, the500

numerical experiments performed below show that the Gaussian kernel is a poor estimate of C in this context, see501

Sec. 4 and Sec. 5.502

In the present context, forcing symmetry by considering the mean kernel (X ,X ′) 7→ 1
2 (G (X − X ′, T ) +G (X ′ −X , T ))503

provides a kernel that resembles a Gaussian kernel. The results of the optimization algorithm obtained using this504

mean symmetric kernel are similar to those obtained with the Gaussian kernel. Hence, forcing symmetry in this505

way provides a poor estimate of C.506

Here in order to derive a locally physically-consistent symmetric kernel from G, one consider the kernel507

(X ,X ′) 7→ G(|X − X ′|, T ).508

3.3.2 On the positive-definite property of the covariance kernel509

Given the symmetric kernels (X ,X ′) 7→ G(|X − X ′|, T ) with the Green-like kernels (23), we now ensure that the510

resulting operators are positive-definite.511

As mentioned earlier, when C is estimated by the sample covariance, the estimate may not be positive-definite. Sev-512

eral methods have been developed in the Data Assimilation community to solve this issue, see a review in Carrassi513

et al. [2018] Sec. 4.4. A first method, called localization, consists in cutting off spurious correlations when |X −X ′|514

is empirically too large. However, the cut-off distance which is arbitrary chosen implies a loss of information.515

Another method, called inflation, consists in applying a convex combination of the covariance matrix estimate with516

a target matrix. Usually, this target matrix is either a diagonal or contains some prior/empirical information from517

static/long-term knowledge (see e.g. Wang et al. [2008]), topography knowledge (see e.g. Lopez-Restrepo et al.518

[2021]) or expertise on the covariance structure.519

520

In the present study, we try to respect the physics as much as possible. Thus, the previous empirical approaches521

are not adopted. First, several symmetric kernels with more or less physical terms are presented. Next, given522

the symmetric matrices associated with these kernels, we enforce the positive-definite property. This results to523

covariance matrices, defined on the numerical grid.524
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In (23), the constant coefficients µXr , vr, ρr and ηXr are obtained by averaging their expressions over the space, see525

(15) and (25), using the output of the direct model (1) at initial time.526

527

Building up symmetric kernels528

Using the rectangle method and setting T = ∆T with ∆T the integration time step, the kernel (X ,X ′) 7→529

G(|X − X ′|, T ) becomes:530

531

Kts(X ,X ′) = ∆T
(
−vr

(|X − X ′| − vr∆T )
2µXr ∆T + ρr − ηXr

)
1√

2π(2µXr ∆T )
exp

(
−1

2
(|X − X ′| − vr∆T )2

2µXr ∆T

)
exp (−ρr∆T )

(27)
This approximated kernel, denoted by Kts, can be linked to the symmetrization of the Green-like kernel (23), which532

is the response to a Dirac distribution local in time and space.533

This kernel is the product of the Gaussian symmetrized with an exponential and the term derived from the right534

hand side of the diffusive wave equations (16). The Gaussian results from the physical diffusion and the advection535

phenomena. The exponential results from the reaction term of the observations-scale diffusive wave equation (16b)536

and is constant.537

538

Next if we assume that the term derived from the right hand side of the diffusive wave equations (−vr
(
|X−X ′|−vr∆T

2µXr ∆T

)
+539

ρr − ηXr ) is constant and if omitting the constant multiplicative coefficient for scaling reasons, see Sec. 2.2, the540

expression (27) becomes:541

KB(X ,X ′) = 1√
2π(2µXr ∆T )

exp
(
−1

2
(|X − X ′| − vr∆T )2

2µXr ∆T

)
(28)

This symmetrized Gaussian kernel can be seen as the symmetrization of the Green kernel (19).542

543

The derivation of the Green’s kernel (19) provide a physically meaningful estimate of Lc depending on a char-544

acteristic time. By taking the integration time step as characteristic time, the physically-derived correlation length545

reads :546

Lpc =
√

2µxr∆t (29)

In the forthcoming test cases, one has ∆t = 1h and Lpc ∼ 140∆x ∼ 35km.547

548

Also, one can couple the classical covariance kernels cGLc
defined by (7), which is equivalent to (28) under the549

assumption that the advection is negligible, and ceLc
defined by (8) with the physically-derived correlation length550

Lpc.551

Symmetric positive-definite approximation of a symmetric matrix552

As already mentioned, the operators Kts and KB, defined by (27) and (28) respectively, are not guaranteed to553

be positive definite. We here apply an approximation that imposes this property, and evaluate the consequence of554

the approximation.555

The presented approximation is based on the work of Higham [2002] in a mathematical finance context. The method556

presented in Higham [2002] aims at computing the closest correlation matrix to a symmetric matrix for a distance557
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based on a weighted Frobenius norm. Since the set of symmetric positive-semi definite matrices is a closed set, the558

projection of a symmetric matrix onto this set is defined for this Frobenius norm [Higham, 2002].559

560

The spectral decomposition of a symmetric matrix M ∈ Mn×n(R) reads: M = V ΛV T . The matrix V is the561

orthogonal matrix containing the eigenvectors of M as columns and Λ is the diagonal matrix containing the eigen-562

values Λi,i = λi ∀i ∈ J1, nK. The Frobenius norm is: ‖M‖Fr =
√
tr(MMT ) =

√∑n
i,j=1M

2
i,j =

√∑n
i=1 λ

2
i .563

564

Higham [2002] demonstrates that the projection p of a symmetric matrix on the set of the symmetric positive-565

semidefinite matrices for ‖·‖Fr is: p(M) = V Λ+V T with Λ+ is the diagonal matrix such that Λ+
i,i = max(λi, 0) ∀i ∈566

J1, nK.567

568

As recalled before, we are looking for strictly positive-definite not positive-semidefinite matrices. Therefore,569

the same projection p is not suitable. Also, the set of positive-definite matrices is not a closed set. Hence, the570

projection of symmetric matrices on this set is not defined. To overcome this issue, the following natural positive-571

definite approximation is used:572

pε(M) = V ΛεV T (30)

with Λε the approximation of Λ+ such that Λεi,i = max(λi, ε) ∀i ∈ J0, nK. Ideally, the threshold should satisfy573

ε < min
λ∈{λi|i∈J1,nK and λi>0}

λ.574

Symmetric positive-definite approximation of the kernels’ matrix575

The positive-definite approximation (30) is now applied on the matrix of kernels (27) at observations scale and576

(28), respectively denoted Kts and KB.577

The approximation is performed with the threshold ε = 10−14. The choice of the value of ε is discussed in the last578

paragraph of this section.579

The eigenvalues are computed using the eigh routine of the numpy.linalg python package8.580

We denote: n the number of nodes in the discretization of the domain Ω, λ = {λi|i ∈ J1, nK}, λ+ = {λi ∈ λ|λi > 0}581

and n+ = #λ+. We have: n = 3548.582

In order to quantify the accuracy of the approximations, for a matrix K and two approximations K1 and K2, we583

compute the following criteria:584

• the averaged relative difference εFr(K1,K2) = 1
|K|n2 ‖K1 −K2‖Fr585

• the maximal relative difference ε∞(K1,K2) = 1
|K|

maxi,j
(
| (K1 −K2)i,j |

)
.586

K n+/n minλ minλ+ λ max λ
Kts 3538/3548 −2.325× 10−4 2.892× 10−9 1.255× 10−7 8.733× 10−5

KB 26/3548 −2.211× 10−5 2.235× 10−6 1.140× 10−5 4.258× 10−3

CG
Lpc

1725/3548 −2.294× 10−18 7.365× 10−24 1.144× 10−5 4.006× 10−3

587

Table 3: Spectral properties (the number of positive eigenvalues, the minimum, mean and maximum of the eigen-
values, the minimum of the positive eigenvalues estimated numerically) of the different kernels.

8See the documentation of the eigh function in https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html.
This function compute the eigenvalues and eigenvectors for a real symmetric matrix. The eigenvalues are computed using a QR
algorithm
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K εFr(K, pε(K)) ε∞(K, pε(K)) εFr(pε(K), p(K)) ε∞(pε(K), p(K))
Kts 6.089× 10−4 6.306 4.029× 10−15 1.708× 10−10

KB 5.442× 10−6 1.893× 10−1 4.102× 10−15 8.645× 10−10

CG
Lpc

4.333× 10−15 9.098× 10−10 4.333× 10−15 9.098× 10−10

588

Table 4: Performance criteria (average and maximal relative error) of the approximation of the matrices (between
the matrix and its positive-definite approximation and between the semidefinite-positive projection and its definite
positive approximation).

The approximation pε(Kts) is accurate on averaged: εFr(Kts, pε(Kts)) ∼ 10−4, see Tab. 4. It is less good in589

terms of maximum relative difference: ε∞(Kts, pε(Kts)) ≈ 6.306. This can be explained on Fig. 6 by the fact that590

the values close to zero are fairly well approximated but the higher values are less so.591

592

The kernel KB is closer to its positive-definite approximation than Kts: εFr(KB, pε(KB)) ∼ 10−6 and ε∞(KB, pε(KB)) ∼593

10−1. Note that, since CG
Lc

(7) is positive-definite, KB is not positive-definite because of the advection phenomena.594

595

The Gaussian operator CG
Lpc

defined by (7), with (29), is a well-known covariance operator. Hence, the associ-596

ated matrix is positive-definite. However, the numerical estimation of the eigenvalues shows the opposite for the597

matrix CG
Lpc

, see the negative eigenvalues in Tab. 3. This issue may be the result of positive eigenvalues that are598

smaller than the accuracy of the algorithm used to estimate them and that are estimated by negative values. The599

approximation pε will be applied even if CG
Lpc

is positive-definite in theory.600

The very small eigenvalues imply that the matrix is ill-conditioned. The ill-conditioned issue of CG
Lc

has already601

been studied in Koivunen and Kostinski [1999] and in Haben [2011] with respect to Lc.602

The approximation pε(CG
Lpc

) in Tab. 4 is still very close to CG
Lpc

: εFr(CG
Lpc

, pε(CG
Lpc

)) ∼ 10−15 and ε∞(CG
Lpc

, pε(CG
Lpc

)) ∼603

10−10.604

605

The differences εFr(pε(K), p(K)) and ε∞(pε(K), p(K)) for all three kernels imply that pε is almost as accurate606

as the projection p (resp. ∼ 10−15 and ∼ 10−10 in Tab. 4).607

Figure 6: Kernel Kts
os (27) (in red), its semidefinite-positive projection p (in cyan) and its positive-definite approxi-

mation pε (30) (in blue) for x′ = 0.5L.

On the choice of the threshold ε608

As mentioned previously, the threshold ε should ideally satisfy ε < min
λ∈λ+

λ. The threshold is here set to ε = 10−14.609

610
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The approximation pε has also been tested on the matrix Kts with ε = 10−9, which is still less than the low-611

est positive eigenvalue, see Tab. 3.612

The results of the VDA associated to ε = 10−9 are much less accurate than those obtained with ε = 10−14 presented613

below. For example, at complete convergence (see Sec. 2.3.1), the accuracy reached on zb implies RMSE zb = 87cm614

when ε = 10−9 and RMSE zb = 33cm when ε = 10−14, the latter being used in the following and see the perfor-615

mance in Tab. 5.616

Therefore, these small eigenvalues may have an impact on the results of the VDA. Let us note that, with ε = 10−9, the617

positive definite approximation pε is still close to the semidefinite-positive projection p, εFr(pε(Kts), p(Kts)) ≈ 10−9
618

and ε∞(pε(Kts), p(Kts)) ≈ 10−4.619

620

On the other hand, a too low value of ε implies that the matrix obtained using the positive-definite approxi-621

mation is ill-conditioned. This may lead to numerical issues: the Cholesky decomposition algorithm, that is used622

to compute the change of variable (5), may fail computing the Cholesky decomposition.623

This may imply that, as in the case of the Gaussian operator CG
Lpc

mentioned above, some very small but positive624

eigenvalues are lower than the threshold ε.625

626

Hence, the value of ε is chosen as small as possible in order not to lose information and to have an approxi-627

mation pε as close as possible to the projection p (since pε tends towards p when ε goes towards 0).628

However, it should not be too small to avoid numerical issues with the Cholesky decomposition algorithm.629

3.3.3 Summary of the investigated physically-derived covariance operators630

The pseudo-physical covariance operator631

In order to get a physically-derived covariance matrix, the approximation pε is applied to the symmetric matrix632

Kts. The symmetric matrix Kts is obtained by forcing the symmetry of the Green-like kernels G given by (23).633

In the present study, the way considered to force symmetry is (X ,X ′) 7→ G(|X − X ′|, T ). Other ways to force634

symmetry have been mentioned in Sec. 3.3.1, but they provide poor estimates of C. There are therefore several635

ways to force symmetry and, so far, the choice of which one to use is based on the experiments.636

As in the previous section, the approximation pε (30) is applied with a threshold ε = 10−14. The numerical study of637

this approximation highlights that one may seek to obtain the smallest ε possible to avoid losing some information,638

but not too small to avoid the matrix being too ill-conditioned and numerical issues.639

In the following, the approximation pε of Kts is referred as the pseudo-physical covariance operator9:640

Cpp = pε(Kts) (31)

The operator (31) is here used as physically-consistent estimates of the background error covariance operator C.641

The physically-derived Gaussian and physically-derived exponential covariance operators642

The covariance operators CG
Lpc

and Ce
Lpc

, resp. defined by (7) and (8) with Lpc the physically-derived correlation643

length (29), are called physically-derived Gaussian and physically-derived exponential covariance operators.644

The physically-derived correlation length Lps is directly obtained from the Green’s kernel (19). Let us note that no645

approximation is needed to derive this correlation length.646

So far there is here no physical argument for which of these classical operators should be considered. However,647

they are the most employed covariance operators in the literature for complex highly non linear problems.648

9the superscript pp refers to the pseudo-physical covariance

23



Comparison of the physically-derived covariance operators649

From Fig. 7, the curves of cppps and cppos (the kernel cpp, associated to the operator (31), resp. physical and650

observations scale) are rather close to the curve of ce30∆x. The curves of the kernels cppps and cppos (and especially their651

decrease near X = X ′) are even closer to the curve of ce30∆x than to the curve of cGLc
with any Lc. This is contrary652

to the idea that CG
Lc

is a natural covariance operator as suggested by the kernels GB (19) and KB (28).653

The sensitivity map, see Fig. 5, highlights that the variations of w can have a major impact on the sensitivity of654

the double-scale diffusive wave equations (14) with respect to zb, see Sec. 3.2.3. However, the curves of cppps and cppos655

are quite similar on Fig. 7. Therefore, the coefficient ρr in the kernel (27), specific to the observations scale and656

defined by (18), does not have a great impact on the covariance operator. This could be the result of averaging657

over the space to obtain constant coefficients.658

In all the sequel and if not specified, Cpp is considered at observations scale.659

Note that one can try to take spatially-distributed coefficients in the expression of Kts (27), as done in Sec. 3.2.3.
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Figure 7: Pseudo-physical covariance kernels cppps and cppos (31) (resp. in brown and in lime green), Gaussian kernel
cGLpc

(in purple) and exponential kernels ceLpc
(in orange) and ce30∆x (in red) for x′ = 0.5L.

660

However, the associated fully-observed experiment has shown that these spatially-distributed coefficients imply the661

kernels to vary in space by several order of magnitude. As a result, the optimization algorithm does not converge662

correctly.663

4 Inference of the bathymetry zb(x) using the physically-derived co-664

variance operators665

In this section, we infer the river bathymetry zb following the fully-observed experiment by using the different666

covariance operators previously defined. The performance of the physically-derived covariance operators, Gaussian667

CG
Lpc

, exponential Ce
Lpc

and pseudo-physical Cpp
os , derived in Sec. 3.3, are compared with the performance of the668

reference covariance operator Ce
30∆x, see Sec. 2.4.669

Results and comparison670

Overall in Tab. 5 and on Fig. 9, with the exception of CG
Lpc

, the fully-observed experiment with the physically-671

derived covariance operators and the reference covariance operator provide similar z∗b .672

In terms of convergence speed, Ce
Lpc

is better especially in the first iterations. Still, Ce
30∆x and Cpp

os have similar673

convergence speed.674

675
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The operator CG
Lpc

does not enable the VDA algorithm to converge properly: the minimization stops after 12676

iterations without reaching the RMSE H ≈ 10cm stage, see Figs. 8 and 9. As mentioned in Sec. 3.3.2, the matrix677

CG
Lpc

has many very low eigenvalues. This fact may explain the bad convergence.678

Recall from Sec. 3.3.3 that there is no physical argument for using a CG
Lc

as estimate of C.679

680

On Fig. 9, RMSE H decreases rather rapidly during the first iterations for Cpp
os , Ce

Lpc
and Ce

30∆x.681

Moreover, during the first iterations, RMSE zb decreases faster with Cpp
os and Ce

Lpc
(respectively 0.32m and 0.49m682

at RMSE H ≈ 10cm) than with Ce
30∆x (0.78m).683
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Covariance operators Reference a priori Physically-derived
Ce

30∆x Ce
Lpc

Cpp
os

till RMSE H ≈ 10cm nite 10 5 15
RMSE zb (m) 0.78 0.33 0.49

till complete convergence nite 139 123 170
RMSE zb (m) 0.15 0.18 0.33

kernels’ expressions a priori Lc Lc = Lpc, see (29) cpp, see (31)
ceLc

, see (8)

Table 5: Performance (number of iteration nite and RMSE zb) of the inference of zb using different covariance
operators (classical/reference and physically-derived) at different stage of the optimization process (till RMSE H ≈
10cm and till complete convergence as described in Sec. 2.3.1).

These physically-derived covariance operators seem to improve the convexity feature of the cost function. Indeed,684

better descent directions are promoted during the first iterations.685

686

In Sec. 2.4.3, the classical operator Ce
30∆x is chosen as reference. The choice is motivated by a good perfor-687

mance compromise among the decreasing exponential operator Ce
Lc

with arbitrary Lc values.688

During the first few iterations, the optimization using Ce
Lpc

converges faster to a more accurate zb than the op-689

timization using any of the classical Ce
Lc
, see the dots on Fig. 9. Also, z∗b computed with Ce

Lpc
has very similar690

accuracy to the one obtained with Ce
30∆x but is reached more quickly, see Tab. 5. In this regard, the physically-691

derived Ce
Lpc

offers a better performance trade-off than the reference Ce
30∆x.692

693

The performance (accuracy and speed) of Cpp
os is similar to all other Ce

Lc
used on Fig. 9. This highlights that694

the derivation of a covariance operator from a Green-like kernel is promising and provides a credible covariance695

operator.696

Summary697

Finally, this investigation of the physically-derived covariance operators through the fully-observed experiment698

can be summarized as follows.699

• The proposed method for estimating the background error covariance operator C from physics provides good700

estimates, especially the pseudo-physical covariance operator Cpp
os , although some approximations have been701

made in Sec. 3.3.2 to provide symmetric positive-definite matrix. These pseudo-physical operators rely on702

approximate physics only. However, they rely on the most physics to date.703

• The exponential operator Ce
Lc

is a good approximation of C. The curve of its kernel (on Fig. 7) is consistent704

with the curve of cpp (unlike cGLc
).705

• In the present context, the widely used kernel CG
Lc

is not a good estimate of C.706

• The derivation of the Green-like kernels, see Sec. 3.2.2, provides an estimate of the correlation length consistent707

with the physics: Lc = Lpc defined by (29). The operator Ce
Lc

coupled with Lpc provides the best results.708

Experiments have been performed with lower quality data as in the partially-observed experiment, see Sec.709

2.3.1, but inferring only zb. The results are not shown here because the conclusion is the same than the present710

one.711
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os (31) (in lime green), see Fig. 8, Lpc is the physical correlation length (29).
The zooms and the dots correspond to the first iterations until RMSE H ≈ 10cm.

5 Inference of the pair (zb, Ks)(x) from lower quality data712

In this section, the VDA based on the same various estimates of C is analysed through the partially-observed713

experiment, that is the inference of the composite control variable (zb,Ks) from perturbed data (and not perfect714

ones), see Sec. 2.3.1.715

5.1 Results716

Recall from Sec. 2.3.1 that, for this multivariate inverse problem, the covariance matrix is assumed to be block717

diagonal with the block related to the frictionCKs
= Ce

∆x. We consider two pairs of constant variances: (σzb
, σKs

) =718

(0.5h, 10) and (σzb
, σKs

) = (0.1h, 50), see Sec. 2.3.1.719

5.1.1 Using the variances (σzb
, σKs

) = (0.5h, 10)720

On Fig. 10, except for the result computed with CG
Lpc

, z∗b is similar to the one obtained in the fully-observed721

experiment, see Fig. 8. Moreover, K∗s varies very little from Kb
s .722

One can note that z∗b is almost a translation upward of ztb. This comes from the fact that essentially zb is optimized723
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Figure 10: Control k(x) = (zb,Ks)(x) (target t, background b and optimal ∗) of the partially-observed experiment
computed with the variances (σzb

, σKs) = (0.5h, 10), using the reference Ce
30∆x ((8) with Lc = 30∆x, in red), the

physically-derived Ce
Lpc

, CG
Lpc

(resp. (8) in orange and (7) in purple with Lc = Lpc (29)) and the pseudo-physical
Cpp
os (31) (in lime green) as estimates of Czb

, with no regularization term (αreg = 0).

in this case. The optimization compensates the discrepancy between K∗s and Kt
s by this translation on z∗b .724

Note that CG
Lpc

still does not allow the inference to reach the RMSE H ≈ 10cm stage.725

5.1.2 Using the variances (σzb
, σKs

) = (0.1h, 50)726
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Figure 11: Control k(x) = (zb,Ks)(x) (target t, background b and optimal ∗) of the partially-observed experiment
computed with the variances (σzb

, σKs
) = (0.1h, 50), using the reference Ce

30∆x ((8) with Lc = 30∆x, in red), the
physically-derived Ce

Lpc
, CG

Lpc
(resp. (8) in orange and (7) in purple with Lc = Lpc (29)) and the pseudo-physical

Cpp
os (31) (in lime green) as estimates of Czb

, with no regularization term (αreg = 0).
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On Fig. 11, for each covariance operator, the z∗b curve is a combination of the ztb curve (e.g. on x ∈ [400; 700]km)727

and the constant slope zbb curve.728

On the other hand, K∗s varies a lot. These variations compensate the discrepancy between z∗b and ztb.729

In this case the operator CG
Lpc

provides good results.730

731

With Ce
30∆x and Cpp

os , K∗s is locally strictly negative, despite the fact that, physically, Ks(x) must be strictly732

positive (for all x). However these negative values are very local and can be easily avoided by adding a regulariza-733

tion term such as jreg(Ks) = ‖∂xKs‖22.734

In order to study only the effect of the estimate of C, such additional regularization term is not used here.735

5.2 Comparisons736

Covariance operators Reference a priori Physically-derived
Ce

30∆x Ce
Lpc

Cpp
os

At RMSE H ≈ 10cm nite 11 7 18
σzb

= 0.5h RMSE zb (m) 0.97 0.9 0.88
σKs

= 10 till complete convergence nite 57 43 48
RMSE zb (m) 0.86 0.87 0.87

At RMSE H ≈ 10cm nite 61 25 67
σzb

= 0.1h RMSE zb (m) 1.67 0.82 1.32
σKs

= 50 till complete convergence nite 173 102 151
RMSE zb (m) 1.67 0.75 1.32

Table 6: Performance (number of iteration nite and RMSE zb) of the inference of (zb,Ks) using different covariance
operator (classical/reference and physically-derived) at different stage of the optimization process (till RMSE H ≈
10cm and till complete convergence as described in Sec. 2.3.1).

With the variances (σzb
, σKs

) = (0.5h, 10)737

Overall, in this case, the comparison of the covariance operators is similar to the comparison in the fully-observed738

experiment, see Sec. 4.739

At the RMSE H ≈ 10cm stage, RMSE zb is slightly better using Ce
Lpc

and Cpp
os (resp. 0.9 and 0.87m) than with740

Ce
30∆x (0.97m, see Tab. 6).741

In terms of convergence speed, Ce
Lpc

is better especially during the first iterations but the result remains similar to742

the results with Ce
30∆x and with Cpp

os .743

744

On Fig. 12, the inference of zb with Ce
30∆x follows three different steps. At the 2nd iteration, the resulting zb745

is close to ztb. However, ztb, and especially its variations, is not well-approximated everywhere by zb. For example, ztb746

is well-approximated by zb on x ∈ [400; 550]km but not on x ∈ [600; 660]km. Then, zb is slowly shifted upward until747

the 6th iteration. After this 6th iterations, the variations of zb evolves slowly toward the variations of ztb, especially748

where the variations of ztb was not well-approximated by zb during the first iterations.749

On the other hand, with Cpp
os and especially with Ce

Lpc
, zb approximates well ztb, and its variations, more quickly750

and everywhere at once. Moreover, with Cpp
os and Ce

Lpc
, RMSE zb hardly decreases between the RMSE H ≈ 10cm751

stage and the complete convergence, unlike with Ce
30∆x.752
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Note that with Ce
30∆x and Ce

Lpc
, on Fig. 12, after resp. the 2nd and 3rd iteration, the RMSE zb increases a bit.753

Recall from Sec. 2.3.1 that the optimization algorithm starts from zbb . Thus, at some point in the optimization754

iterations, zb becomes quite close to ztb. Then, zb is translated upward to reach z∗b .
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Figure 12: RMSE zb and RMSE H (log scale) during the partially observed experiment with the variances
(σzb

, σKs
) = (0.5h, 10) using the reference exponential covariance operator Ce

30∆x (8) (in red), the physically-
derived exponential Ce

Lpc
(8) (in orange), Gaussian CG

Lpc
(7) (in purple, with Lpc (29)) and the pseudo-physical Cpp

os

covariance operators (31) (in lime green) as estimates of the covariance operator Czb
vs iteration number of the

(zb,K)(x) inference. Dots corresponds to RMSE H ≈ 10cm.
755

With the variances (σzb
, σKs) = (0.1h, 50)756

The results in this case are different from the previous cases. The inference of zb with Ce
Lpc

provides the most757

accurate z∗b (RMSE zb ≈ 0.82m at complete convergence). Moreover, the inference provides more accurate results758

with Cpp
os than with Ce

30∆x (resp. RMSE zb ≈ 1.31m and RMSE zb ≈ 1.67m).759

The inference with Ce
Lpc

converges much faster (resp. 25 et 102 iterations to reach the RMSE H ≈ 10cm stage and760

the complete convergence) than with Cpp
os (resp. 67 and 151 iterations) or with Ce

30∆x (resp. 61 and 173 iterations).761

In this case, CG
Lpc

provides results close to those computed with Ce
Lpc

(just a little faster to reach complete conver-762

gence).763

Between the 6th and 8th iterations with Ce
Lpc

, the RMSE zb decreases a lot, from RMSE zb ≈ 1.84m to764

RMSE zb ≈ 0.91m, see Fig. 13. Moreover, between these iterations, the norm of the gradient increases a lot765

(by a factor 102) and then decreases very rapidly (by a factor 104 between the 8th and 15th iterations).766

Similarly, during the first iterations with Cpp
os , the RMSE zb decreases rapidly (compared to with Ce

30∆x).767

768

This investigation of the physically-derived covariance operators through the partially-observed experiments can769

be summarized as follows.770

• The operators Cpp
os and Ce

Lpc
promote better descent directions than the reference operator Ce

30∆x, especially771

during the first iterations of the optimization algorithm. With (σzb
, σKs

) = (0.1h, 50) and Ce
Lpc

, the cost772

function is such that the descent directions and the line search allow for a change in local minima during the773

optimization iterations. Thus, in this case, the optimization finds a local minima closer to ztb more quickly.774
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Figure 13: RMSE zb and RMSE H (log scale) during the partially observed experiment with the variances
(σzb

, σKs
) = (0.1h, 50) using the reference exponential covariance operator Ce

30∆x (8) (in red), the physically-
derived exponential Ce

Lpc
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Lpc
(7) (in purple, with Lpc (29)) and the pseudo-physical

Cpp
os covariance operators (31) (in lime green) as estimates of the covariance operator Czb

vs iteration number of
the (zb,K)(x) inference. Dots corresponds to RMSE H ≈ 10cm.

• The conclusions of the fully-observed experiment are confirmed: the pseudo-physical operator Cpp
os is a good775

estimate and the physically-derived Ce
Lpc

provides the best results. The Gaussian operator CG
Lpc

remains a776

poor estimate of C even if it provides good results in one case.777

• The physically-derived operators Cpp
os and Ce

Lpc
seem to improve the convexity feature of the cost function.778

As a result, the optimization algorithm converges to a more accurate z∗b , especially when the second control,779

here Ks, is assumed highly uncertain.780

6 Conclusion781

This paper investigates, for Data Assimilation purposes, a method for deriving estimates of the background error782

covariance operator C, see Sec. 2.1.2, from governing physical equations. The physically-derived kernels are built783

up from Green-like kernels representing the system response to a perturbation of the control, see (10).784

In the literature, C is classically modeled from empirical or arbitrary information. The present investigation com-785

pares these classical empirical operators with the physically-derived ones.786

787

The method is investigated for the inference of the bathymetry zb in the Saint-Venant equations (1) in a satel-788

lite observation framework. In this context, the resulting Green-like kernels (23) are neither symmetric (due to the789

advection phenomena) nor positive-definite. The present method constructs, from the Green-like kernels, discrete790

covariance operators partly consistent with the underlying physics. These operators are obtained by applying (i) a791

locally symmetric approximation and (ii) the positive-definite approximation (30).792

This provides an original covariance operator Cpp, see (31), called pseudo-physical covariance operator. Moreover, a793

physically-consistent estimate of the correlation length Lpc, defined by (29), is also provided. Thus, the correlation794

length value Lc = Lpc is tested with covariance operators such as the Gaussian CG
Lc

and the decreasing exponential795
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Ce
Lc

operators.796

The operator Ce
30∆x is a priori the empirical covariance operator that provide the best numerical results and fea-797

tures. Thus, it is chosen as the reference operator.798

799

During all the numerical experiments, the operator Ce
Lpc

provides better results than the Ce
30∆x.800

The operator Cpp provides results at least comparable, especially during the fully-observed experiment, to Ce
30∆x:801

the convergence speeds and the accuracies are similar.802

Here, the classical operator CG
Lc

has no physical justification and the associated numerical experiments provide803

poor results. Hence, it is a bad estimate of C.804

From these numerical experiments and especially from the partially-observed experiment, we can observe that the805

physically-derived operators promote better descent directions and converge faster and with better accuracy, espe-806

cially during the first iterations.807

This highlights that the physically-derived covariance operators are better preconditioning of the Hessian of the808

cost function therefore improving convexity features of the cost function.809

Therefore, the method for deriving physically-consistent covariance operators provides good estimates of C such as810

Cpp. Furthermore, it provides a physically-consistent Lpc which is more efficient than empirical correlation lengths811

when combined with Ce
Lc
.812

813

The presented method is available in the open-source computational software Dassflow [Monnier and Larnier,814

2018]. This method has been successfully implemented to the 2D version of the Shallow-water river flow models815

too, see e.g. Monnier et al. [2016].816
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