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Abstract

In data assimilation, the estimation of the background error covariance operator is a classical and still open5

topic. However, this operator is often modeled using empirical information.
In order to exploit at best the potential of the knowledge of the physics, the present study proposes a method
to derive covariance operators from the underlying equations.
In addition, Green’s kernels can be used to model covariance operators and are naturally linked to them. There-
fore, Green’s kernels of equations representing physics can provide physically-derived estimates of the background10

error covariance operator, and also physically-consistent parameters.
In this context, the present covariance operators are used in a Variational Data Assimilation (VDA) process of
altimetric data to infer bathymetry in the Saint-Venant equations.
In order to investigate these new physically-derived covariance operators, the associated VDA results are com-
pared to the VDA results using classical operators with physically-consistent and arbitrary parameters.15

The physically-derived operators and physically-consistent exponential operator provide better accuracy and
faster convergence than empirical operators, especially during the first iterations of the VDA optimization pro-
cess.

Keywords. Variational data assimilation; background error; covariance modeling; physically-derived covari-20

ance estimates; Green’s kernel; diffusive wave equations; river hydraulics.

1 Introduction
Data Assimilation (DA) is a class of inverse problems that aims to improve the background value of a control
by combining a physical model with observations of the system state. For example, in meteorology, DA aims to
improve the initial state of the atmosphere using a weather prediction model and observations of the atmosphere25

on an assimilation time window, see e.g. Bouttier and Courtier [2002]. In hydrology, DA also aims to improve
bathymetry, roughness coefficient and boundary conditions from observations of the water surface elevation, see
e.g. Honnorat et al. [2009]. In the variational methods (VDA, see e.g. Bouttier and Courtier [2002], Le Dimet and
Talagrand [1986], Sasaki [1958]), the assimilation is based on the minimization of a cost function which aims at
fitting the model outputs to the observations.30

The quality of the VDA depends strongly on the estimation of the covariance of the background error (i.e. the error
between the true and the background value of the control). This topic is therefore crucial but also complex, e.g.
see a review on the topic in Bannister [a,b].
The covariance can be estimated statistically by means of sample covariance using methods such as observation-35

based methods (see e.g. Hollingsworth and Lönnberg [1986]), the NMC method (see e.g. Parrish and Derber [1992])
or ensemble methods (see e.g. Carrassi et al. [2018]).
Another possibility is to model the covariance operator. In the present study, the modeling is performed by spec-
ifying the covariance kernel. However, the choice of the covariance kernel and the parameters are so far based on
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empirical information and useful mathematical properties of the kernels. For example, Egbert et al. [1994] and40

Mirouze and Weaver [2010] use the Gaussian and Matérn kernels, respectively, for their connection with the diffu-
sion equation. The Gaussian kernel is also studied in Haben [2011], used in Pannekoucke et al. [2018, 2016] and
mentioned in Daley [1993] p. 117. The second order auto-regressive kernel (SOAR, a special case of the Matérn
kernel) is also widely used, e.g. in Ingleby [2001] for the Met Office 3DVar system, but see also in Daley [1993] p.
117 and Haben et al. [2011], Pannekoucke et al. [2016]. In Monnier and Zhu [2019], the decreasing exponential kernel45

(another specific case of the Matérn kernel) is used because of the known expression of the associated weighted L2
norm. In atmospheric science, the turbulent microscale is used to estimate the correlation length as mentioned in
Daley [1993] p. 110. However, alternative estimates are often discussed as mentioned in Mirouze and Weaver [2010]
and references therein. In Larnier and Monnier [2020], which treats an inverse problem including the present ones,
the correlation lengths are taken empirically.50

Several studies have provided methods to improve the covariance estimate based on prior knowledge of physics
or topography.
Inflation is one method used to improve the statistical estimate of the covariance, see e.g. Carrassi et al. [2018] Sec.
4.4. In Wang et al. [2008], the statistical estimate is improved by using a static covariance that includes more long55

term knowledge/physics, for example climatological information in a meteorological context. In Lopez-Restrepo
et al. [2021], prior topographic knowledge is used. This study also highlights that prior knowledge of the physics,
parameters, any environmental information or expertise on the covariance structure could be used to improve the
statistical estimate.
In order to reduce the number of stored parameters, the Lagrangian Kalman filter (see Lyster et al. [2004]) takes60

advantage of a transport model. In this method, the covariance is physically transported along the characteristics.
In Pannekoucke et al. [2016], the parametric Kalman filter aims not only to physically transport but also to diffuse
an initially known covariance matrix. In Pannekoucke et al. [2018], the previous method is extended to nonlinear
behaviors with the example of the Burgers equation.
These studies use topographical or physical information. However, this information is only used to improve an65

already known estimate of the covariance operator.

The present study investigates a method for modeling the covariance kernel based on knowledge of the physics
and the underlying equations. It allows (1) to provide covariance kernels consistent with the physical impact of the
error at a point on the rest of the domain and (2) to provide an estimate of the correlation length consistent with70

physics.
The presented method is based on Green’s kernels and an extension, called here, the Green-like kernels. These
kernels represent the response of the system to a Dirac distribution, i.e. the impact of a perturbation at a given
location on the rest of the domain. The Green’s kernel can naturally be related to the covariance kernel, see e.g.
the application to machine learning in Nagai [2020] and references therein.75

The proposed method is investigated through the inference of the bathymetry in the Saint-Venant equations. These
equations can be simplified and provide the double-scale diffusive wave equations, see Malou and Monnier [2021].
These last equations are adapted to river altimetry observations that we assimilate. Moreover, they allow to derive
Green-like kernels.

80

The outline of the article is as follow. In a first time, the VDA is adapted to infer bathymetry in the Saint-Venant
equations form altimetry data. The inference is first performed using so-called classical covariance operators, i.e.
based on empirical information. Then, the method to derive covariance kernels from the equations is presented.
Finally, the results of the inference using the physically derived covariance operators are compared to those using
the classical covariance operators.85
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2 Variational Data Assimilation based on classical covariance opera-
tors

In this 1st section, the formulation of the Variational Data Assimilation (VDA) for a river flow model, the 1D
Saint-Venant equations, is presented. Then, covariance operators, which constitute the central part of this study,
are recalled, as well as their link with VDA.90

Numerical experiments to compare these covariance operators are then defined. A real-like dataset will be used in
these experiments and will be presented.
The classical covariance operators are investigated in this section. This will also allow us to determine a reference
classical covariance.

2.1 Inference of the bathymetry in the Saint-Venant equations95

First, the direct model is presented. Then, the VDA formulation to infer the bathymetry in these equations is
presented.

2.1.1 Direct model: the Saint-Venant equations

The most classical dynamic river flow model is the one-dimension Saint-Venant equations, see e.g. Chow [1964].
In these equations, the natural variables are the wet area A(x, t) and the discharge Q(x, t). The equations are the100

following: {
∂A
∂t + ∂Q

∂x = 0
∂Q
∂t + ∂

∂x (Q
2

A ) + gA∂H
∂x = −gASf

(1)

with g the gravity magnitude and H(x, t) the free surface height. The friction term Sf (x, t) is defined by the classical
Manning-Strickler relation Sf = Q2

K2
sA

2h
4
3
(assuming Q is positive and that for large river, the hydraulics radius is

Rh ≈ h) with Ks the Strickler roughness coefficient. The bathymetry is denoted zb(x), the average cross-section
velocity u(x, t) = Q(x,t)

A(x,t) , the water depth h(x, t) = H(x, t) − zb(x) and the width w(x, t), see Fig. 1. The average105

width w̄ is the river width averaged over a cross-section at a given time. The abscissa x is the curvilinear abscissa of
the centerline of the river and x ∈ Ω = [0;L]. The modeling time window is t ∈ [0;T ]. The Saint-Venant equations

x

y

z

w̄(x, t)

w(x, t)

h(x, t) = H(x, t)− zb(x)

z = H(x, t)

z = zb(x)

(a) Cross-section geometry

Hu(t)

Hd(t)

z = zb(x)

z = H(x, t)
h(x, t)

u(x, t)

x = 0

x = L

x
y

z

(b) Longitudinal representation geometry

Figure 1: Assumed geometry of the river and summary of the notations.

are solved using the Preissmann scheme [Cunge, 1980] implemented in the DassFlow-1D software [Monnier and
Larnier, 2018].
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2.1.2 VDA for bathymetry zb(x) inference110

The goal of VDA is to determine the control (denoted k, in a first time k(x) = zb(x) and in a second time
k(x) = (zb(x),Ks(x))) that makes the physical model (called direct, here the Saint-Venant equations (1)) fits with
some observations. The identification of the optimal control is done by minimizing a cost function j, see e.g.
Bouttier and Courtier [2002]:  find k∗(x) such that:

k∗(x) = argmin
k(x)

j(k) (2)

The cost function is commonly defined as:115

j(k) = jobs(k) + αregjreg(k) (3)

with αreg the regularization weight coefficient. The observation term jobs aims to minimize the distance between
the observations Hobs and the output of the direct model (1) H(zb), see e.g. Bouttier and Courtier [2002], Le Dimet
and Talagrand [1986], Sasaki [1958]:

jobs(k) =
∫ T

0
‖H (k; t)−Hobs(t)‖2L2(Ωobs)dt (4)

where Ωobs is the domain of observations.
120

A regularization term jreg is added to deal with the non-uniqueness of the solution of the problem (2) (Thikhonov
regularization term, see e.g. Kaltenbacher et al. [2008]).

For a sake of simplicity, the following is detailed for a single control variable, namely k = zb.
125

The commonly used expression for jreg is jreg(zb) = ‖zb − zbb‖2C−1 = ‖rb‖2C−1 = 〈rb,C−1 (rb)〉L2(Ω). This term
tends to minimize the background residual rb = zb − zbb with zbb the background value of zb. This minimization is
done with respect to a norm defined by an positive-definite and symmetric operator C−1.
In the Bayesian framework and under the assumption of Gaussian errors, this expression of jreg follows naturally
from the maximum log-likehood of the conditional probability density function of the analysis error zb− ztb, with ztb130

the true value of the control. In the same framework, the operator C is the covariance operator of the background
error εb = zbb − ztb (sometimes denoted εzb

b , see Sec. 2.2 and e.g. Bouttier and Courtier [2002]).

Following Parrish and Derber [1992], one introduces the change of variable:

zb(x) = Lz̃b(x) + zbb(x) (5)

This change of variable implies that the operator L, that satisfies C = LLT , must be estimated instead of C−1.135

This change of variable acts as a preconditioning of the Hessian of j, see Haben et al. [2011]. The change of variable
can be understood as an implicit regularization, while the addition of a jreg is an explicit regularization.
From now, j denotes the cost function computed without distinction from zb or from z̃b defined by (5).

The regularization term jreg(zb) = ‖rb‖2C−1 does not prevent high frequency oscillations of zb. The following140

regularization term is here more adequate:

jreg(z̃b) = ‖∂xzb‖2L2(Ω) = ‖∂x
(
Lz̃b + zbb

)
‖2L2(Ω) (6)

This regularization term aims to minimize the variations of zb with respect to the background value zbb .
It is also common to infer the Strickler coefficient (as in the sequel experiences, see Sec. 2.3.1) and/or the inflow
discharge in addition to the bathymetry in order to provide an effective model (see e.g. Larnier and Monnier [2020]
for the inversion of the triplet and Honnorat et al. [2009]).145
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The optimization algorithm used to solve the problem (2) is the L-BFGS-B algorithm, see Gilbert and Lemaréchal
[1989], implemented in the minimize function of the python package scipy.optimize1. The gradient of j is estimated
by DassFlow-1D solver, see Monnier and Larnier [2018], using the automatic differentiation algorithm TAPENADE,
see Hascoet and Pascual [2013].150

2.2 Covariance operators in VDA
In the previous section, the change of variable (5) introduces the εb covariance operator. C is a linear integral
operator defined by a covariance kernel c:

C : z 7→
(
x 7→

∫
Ω
c(x;x′)z(x′) dx′

)
Assuming that the distribution of εb is known, c is defined by: c(x;x′) = E [(εb(x)− E[εb(x)])(εb(x′)− E[εb(x′)])].
As mentioned previously, this expression can be estimated using the sample covariance if there are enough realiza-
tions or estimations of εb(x) and εb(x′).
This expression directly implies that c (and the associated covariance matrix, also denoted C) is symmetric. More-155

over, one can show that c is also positive semi-definite. However, since it defines a norm and must be invertible, c
is assumed to be positive-definite.
The modeling of the covariance consists in assuming the expression of c. We first consider homogeneous covariance
kernels, i.e. which can be written : c(x;x′) = c(x− x′) ⇒ C : z 7→ c ∗ z.
Only very few covariance operators are used in the literature on inverse problem and VDA. Let us mention them.160

• CId is defined by the identity kernel cId = Id for uncorrelated variables.

• CG
Lc

is defined by the Gaussian kernel (e.g. in meteorology Egbert et al. [1994]):

cGLc
(x, x′) = 1√

2πL2
c

exp
(
−1

2
(x− x′)2

L2
c

)
(7)

• Ce
Lc

is defined by the decreasing exponential kernel (also called First Order Auto-Regressive, FOAR, e.g. used
in glaciology Monnier and Zhu [2019]):

ceLc
(x, x′) = exp

(
−|x− x

′|
Lc

)
(8)

with Lc the correlation length.165

Note that the Gaussian and decreasing exponential kernels are specific cases of the Matérn covariance kernel, e.g.
used in Mirouze and Weaver [2010]. The Second Order Auto-Regressive kernel (SOAR) is another specific case of
the Matérn kernel often used, e.g. in Haben et al. [2011].
In Tarantola [2005], the expression of the ‖ · ‖C−1 norm associated to Ce

Lc
, see (8), is calculated. One has:

‖rb‖2C−1 = 1
Lc
‖rb‖22 + Lc‖∂xrb‖22 (9)

In this first part of the study, the operator Ce
Lc

is mainly used to model C.170

In the context of inferring zb in the Saint-Venant equations, no prior information provides a value of Lc. Recall
that this correlation length is often estimated from empirical information. For example, in atmospheric data
assimilation, the turbulent microscale is used to estimate Lc, see Daley [1993] p.110, Mirouze and Weaver [2010]
and references therein for related discussions.175

1see the documentation of the minimize function of the scipy.optimize package and its implementation of the L-BFGS-B algorithm
in https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
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In the sequel, the classical covariance operator is Ce
Lc

defined by (8) with the arbitrary correlation length values
Lc equal to 3∆x, 30∆x and 300∆x, ∆x the average space step of the numerical grid.
By abuse of notation, the matrix associated to a covariance operator discretized on the numerical grid, called
covariance matrix, is noted by the same symbol.
Since the kernels presented above satisfy c(x, x) = 1, they are more specifically correlation kernels. The covariance180

kernel should be σ(x)σ(x′)c(x, x′) with σ the variances.
If σ is considered to be non-constant, the choice of Lc may be influenced by issues related to the positive-definite
property, see e.g. Monnier and Zhu [2019]. Here σ is assumed to be constant.
In the case zb is the only control variable, the constant σ acts as a rescaling factor. Therefore, σ has no impact
on the results. In order to have equivalent termination criteria for the optimization algorithm equivalent for each185

operator, the kernels will be rescaled so that the maximum is 1. In this case, by abuse of language, the correlation
kernels are still called covariance kernels.
If two (or more) controls are inferred, the rescaled kernels is then weighted by specified constant variances.

2.3 Numerical experiments description
The numerical experiments, which are analysed in next sections, are here presented. They aim at comparing the190

classical covariance operator, see Sec. 2.2 and later Sec. 2.4, and the original ones derived from physics, see later
Sec. 3.3.3 and Sec. 4. These VDA experiments are performed over a real-like case presented in the last part of this
section.

2.3.1 Fully- and partially-observed experiments

The fully-observed experiment195

The purpose of the experiments is to investigate the inference of zb using different covariance operators. To do
this, the experiments are based on a target bathymetry ztb.
From this target, the observations are Hobs = H(ztb) ∀x ∈ Ω, see upper Fig. 2a. Moreover, the observations are
made over almost the entire time window (every 6 hours on a 10-days time window). This experiment is called
fully-observed.200

To fit to a real-like inference problem, the background zbb is assumed to be the linear interpolation of two points
(the upstream and downstream points of the target, see upper Fig. 2a). For the same reason, zbb is the first guess
value of the iterative VDA algorithm.

The partially-observed experiment
In order to consider an experiment closer to real world problems, Hobs is in this experiment computed at the km205

scale by averaging H(ztb) + εobs between the observations points, with εobs ∼ N (0, 0.12). Moreover, Hobs is taken at
only two times (t = 6hour and t = 234hour) over the (10-days) time window. This is the so-called partially-observed.
Moreover, the partially-observed experiment is a multivariate inverse problem that aims at inferring the pair (zb,Ks).
The two control variables are assumed to be uncorrelated: the cross-covariance is Cov(εKb (x), εzb

b (x′)) = 0 ∀x, x′.
Hence, the multivariate covariance matrix (containing both the univariate covariance matrices CKs

and Czb
, and210

cross-covariance matrix) is block diagonal. This assumption may not be accurate. However, this assumption is
necessary without further knowledge of the cross-covariance and hence, is classically made.
The univariate covariance of Ks is assumed to be modeled by CKs = Ce

∆x. As mentioned in Sec. 2.3.2, the assumed
value of the Strickler is Kt

s = 30. We assume that the background and initial value is Kb
s = 45.

In the present study, two pairs of constant are used.215

• The 1st pair (σzb
, σKs

) = (0.5h, 10) is consistent with the estimate suggested by Larnier and Monnier [2020].
It denotes a realistic estimate of the accuracy of kb = (zbb ,Kb

s).

• The 2nd pair is (σzb
, σKs

) = (0.1h, 50). This means that the accuracy of zbb and Kb
s are respectively overesti-

mated and underestimated. The purpose of this pair is to investigate the inference of zb in a case in which
Ks is mainly inferred .220

In the present case, the mean water depth value h ≈ 4m.
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Performance criteria
The performance of the optimization with a given c is evaluated by the evolution through the optimization

iterations of the Root Mean Square Errors (RMSE X =
√

(X −X ′)2, in m). The RMSE between zb and ztb is
denoted RMSE zb; RMSE H denotes the RMSE between H(zb) and Hobs.225

According to Morozov’s discrepancy principle, one should optimize until the distance between the observations
and the system state reaches the accuracy of the observations, see e.g. Kaltenbacher et al. [2008]. In real-like
experiments, the error of altimetric Hobs is of the order of 10cm. Therefore, the evolution of RMSE and zb until
the accuracy RMSE H ≈ 10cm is reached, is also studied as a criterion of the inference performance.

2.3.2 The real-like Rio Negro dataset230

The VDA experiments are performed over a dataset derived from a Rio Negro dataset (Amazon basin). On Fig.
2a, the width w is measured using the Peckel water mask, as in Pujol et al. [2020], at the intersection of the river
with Sentinel-3A/B and Jason3 satellite tracks called virtual stations. Since only the value of w at the free surface
is provided, the cross-sections are assumed to be rectangular.
The target ztb is estimated from satellite measurements of H and Q estimated by the large-scale hydraulic model235

MGB (see Collischonn et al. [2007]) at the same virtual stations, see Fig. 2a. The inflow Q, see Fig. 2b, is also
estimated by the daily large-scale hydraulic model MGB over a 10-days time interval. More details on the test
case construction can be found in Malou et al. [2021]. For simplicity, the Strickler coefficient is considered as
constant: Ks = 30. The numerical mesh has a mean space step ∆x ∼ 250m. The time step of the solver is fixed to
∆t = 10min.240
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Figure 2: Given geometry and inflow discharge, and target outputs at t = 10days of the Rio Negro-like channel test
case.

2.4 Numerical results of the fully-observed experiment using classical covariance
operators

In this section, the inference of zb is performed using the different classical covariance operators: the decreasing
exponential Ce

Lc
defined by (8) with different arbitrary values of Lc, and the identity CId, see Sec. 2.2.245
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2.4.1 With the identity covariance operator

By expertise, the change of variable (5) with CId may not regularize the optimization problem (2) enough: the
regularization term of the cost function jreg, defined here by (6), may be needed to converge. In the present
experiment, the regularization weight coefficient αreg, see the cost defined by (3), is taken such that jobs(zbb) =250

10%j(zbb). Moreover, an adaptive regularization strategy is adopted, see e.g. Kaltenbacher et al. [2008]: αreg is
divided by 2 every 10 iterations, see on Fig. 3b.
The resulting z∗b is then very close to ztb (nearly indiscernible on Fig. 3a). The main difference comes from
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Figure 3: Inference of zb(x) (fully-observed experiment) with CId and the regularization term (6) (αreg initially
such that αregjreg(zbb) ∼ 10−1j(zbb) and divided by 2 every 10 iterations).

the corners of the ztb curve which are smoothed on the z∗b curve, see the zoom on x ∈ [470; 510]km. This is the
consequence of jreg (6) that aims to provide smoother solutions (but that is needed to converge).255
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2.4.2 Exponential covariance operator

Following (9), high values of Lc tend to provide smooth solutions z∗b . On the other hand, low values of Lc tend
to provide z∗b closer to zbb (in this case Ce

Lc
tends to behave like CId). By expertise, Ce

Lc
regularizes (implicitly)

well the optimization problem (2). Therefore, no additional/explicit regularization terms (αreg = 0) are needed to
converge to a convincing z∗b .260

On Fig. 4a, z∗b obtained using Lc = 3∆x has oscillations of larger amplitudes (e.g. over x ∈ [600; 670]km) than
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Figure 4: Inference of zb(x) (fully-observed experiment) with Ce
Lc

and arbitrary values of Lc (Lc = 3∆x, Lc = 30∆x
and Lc = 300∆x) and no regularization term (αreg = 0). The total number of iteration is denoted nite.

when Lc = 30∆x or Lc = 300∆x are used. Also, the use of Lc = 300∆x seems to provide smoother z∗b than smaller
Lc values, especially at the location of the corners of the ztb curve, e.g. on x ∈ [870; 900]km.
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2.4.3 Comparisons and choice of the reference method265

Covariance operators CId Ce
3∆x Ce

30∆x Ce
300∆x

till RMSE H ≈ 10cm nite 69 11 10 9
RMSE zb (m) 0.44 0.6 0.78 0.31

till complete convergence
nite 278 69 139 99

RMSE zb (m) 0.02 0.23 0.14 0.22
RMSE H (m) 0.21× 10−3 6.61× 10−3 3.55× 10−3 1.29× 10−2

Table 1: Performance (number of iteration nite and RMSE zb and H) of the inference of zb using classical co-
variance operator and CId at different stage of the optimization process (till RMSE H ≈ 10cm and till complete
convergence). The reference classical covariance operator is indicated in blue.

The optimization algorithm with CId converges very slowly (278 iterations to reach z∗b and 69 iterations to reach
the RMSE H ≈ 10cm stage, see Tab. 1). On the other hand, optimizations with Ce

Lc
reach the RMSE H ≈ 10cm

stage and z∗b faster (less than 11 and 139 iterations respectively) than with CId.
Therefore, Ce

Lc
greatly improves the convergence speed of the optimization algorithm, especially in the first itera-

tions.270

Moreover, ‖∇j‖22 with CId increases a lot during the 15 first iterations (by a factor 102). With Ce
Lc
, ‖∇j‖22 de-

creases very quickly during the first iterations. This can be explained by the fact that Ce
Lc

provides "more convex"
cost functions around the reached (local) minimum. This difference in the behavior of ∇j is in agreement with the
difference in convergence speed.
One can underline that CId provides a higher accuracy. This accuracy comes from the regularization term (6)275

with a well chosen αreg. Recall that αreg 6= 0 is necessary with CId, unlike with Ce
Lc
. However, this accuracy is

unnecessary in practice and all estimates of C provide sufficiently accurate z∗b , see Sec. 2.3.1.

With the operator Ce
Lc
, using a large value of Lc (e.g. Lc = 300∆x) implies that the corners of the ztb curve

are smoothed on the z∗b curve. On the other hand, using a low value of Lc (e.g. Lc = 3∆x) implies some oscillations280

on z∗b . This explains why a low value of Lc implies at complete convergence a similar RMSE zb but a lower
RMSE H than a large value of Lc.
Using an intermediate value of Lc (e.g. Lc = 30∆x) implies that z∗b has less oscillations than when a low value of
Lc is used, and the corners of the ztb curve are better approximated than when a high value of Lc is used. This
implies that the RMSE H and the RMSE zb are (slightly) better, see Fig. 9.285

The operator Ce
Lc

has the advantage of providing a self-sufficient implicit regularization through the change of
variable (5). Recall that no explicit regularization term is needed, i.e. αreg = 0. This implicit regularization
improves the convergence speed of the optimization algorithm. The algorithm also convergences to a solution with
more than sufficient accuracy. Moreover, Ce

Lc
with Lc = 30∆x is a good compromise since it benefits from the290

advantage of a high value of Lc (less oscillations than a low value of Lc) but mitigate its disadvantage (the corners
of the ztb curve are better approximated).
In the sequel, Ce

30∆x is then selected as the so-called "classical covariance operator of reference".

3 Covariance operators from Green-like kernels of the double scale
diffusive wave equations295

The purpose of this section is to derive physically-consistent estimates of C, see Sec. 2.1.2. These physically-
consistent covariance operators are derived using Green-like kernels.
In a first part, the definitions of Green’s kernel and Green-like kernel are given. Then, a link between a Green’s kernel
and a covariance operator is established. The inference is made using the Saint-Venant equations (1). However,
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these equations do not allow to derive Green’s kernels (or Green-like). Therefore, these kernels will be derived from300

the double-scale diffusive wave equations (see Malou and Monnier [2021]), which are first recalled.
These Green-like kernels also provide a tool to quantify the sensitivity of the equations with respect to the control,
here zb. This tool is called the "sensitivity map".
In this context, Green-like kernels do not directly provide covariance kernels. The last part of this section is about
obtaining a covariance operator from a Green-like kernel.305

3.1 Green-like kernels and their link to covariance operators
3.1.1 Green-like kernels: definition

Suppose a time-dependent 1D linear PDE in the unknown H: ∂tH(x, t) + AH(x, t) = Bk(x, t). The linear differ-
ential operator A is assumed to be with constant coefficients, the right hand side operator B is linear in k with
constant coefficient too.

The Green’s kernel associated to this PDE is the function GB which satisfies the equation: ∂tGB + AGB(x, t) =
δ(x, t), where δ is the Dirac distribution, see Green [1828] and e.g. Evans [1998] for modern use with the similar
concept of fundamental solutions.
Since the operator A is assumed to be linear with constant coefficients, the solution of the PDE can be written as
H(x, t) =

[
GB ∗ Bk

]
(x, t). The Malgrange-Ehrenpreis theorem states that a Green kernel exists, see e.g. Brezis

[2010].

One can be interested in the response of the system to an impulse in k. Hence, the kernel G, called here Green-like
kernel, satisfies the equation:

∂tG+AG(x, t) = Bδ(x, t) (10)

Since the operator B is a linear operator with constant coefficients, the solution of the PDE can be written as:

H(x, t) = [G ∗ k] (x, t) (11)

with G solution of (10).
If the Green kernel exists and is unique, and if the operator B is linear continuous, then the Riesz representation310

theorem (see e.g. Brezis [2010]) ensures the existence and uniqueness of the Green-like kernel.
Solving the equation (10) with non-linear operators A and B, or operators with non-constant coefficients, is gener-
ally not possible. Moreover, in such cases, the existence and uniqueness of such kernels are not ensured.

3.1.2 When the Green kernel is naturally a covariance kernel315

Let us consider the 1D heat equation with source term:

∂tH(x, t)− D

2 ∂
2
xxH(x, t) = k(x, t) (12)

with the initial condition H(x, t = 0) = 0, D the diffusion coefficient. The associated Green’s kernel reads :

GB(x, t) = 1√
2πDt

exp
(
−1

2
x2

Dt

)
(13)

This Green’s kernel is the Gaussian covariance kernel (7) with the correlation length Lc =
√
Dt: GB(x − x′, t) =

cG√
Dt

(x, x′). Therefore, if this diffusion equation (12) is used to model a given physical phenomenon, then the
value of the diffusion coefficient is naturally obtained. Thus, the correlation length can be estimated from D and a320

characteristic time. Recall from Sec. 2.2 that the correlation lengths for more complex phenomena are classically
taken empirically.
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Note that here the Green’s kernel is naturally symmetric and positive-definite.
The solution of Eqn (12) can then be written as (11): H = GB ∗ k = cG√

Dt
∗ k.

325

Observe that the same analysis can be done for the 1D homogeneous heat equation ∂tH(x, t)− D
2 ∂

2
xxH(x, t) = 0

with the initial condition H(x, t = 0) = k(x). As suggested by Egbert et al. [1994], the solution of this equation
can then be used to estimate CG√

Dt
(k) = cG√

Dt
∗ k without storing the matrix of CG√

Dt
. Mirouze and Weaver [2010]

links the implicit time discretization of this equation and the Matérn kernel.
330

If the PDE contains more terms than a simple diffusion term, it is likely that the associated Green’s kernel (or
Green-like kernel, as in the sequel) provides a covariance kernel containing more dynamics information. The resulting
kernel may provide physically-consistent parameters. However, this is valid as long as the resulting Green’s kernel
is symmetric positive-definite. If this is not the case, one may build up a symmetric positive-definite approximation
of the Green’s kernel.335

3.2 Green-like kernels derived from the double scale diffusive wave
3.2.1 The double scale diffusive wave model

We recall here the double scale-diffusive wave equations which are dedicated to altimetric observations, see Malou
and Monnier [2021]. These equations are derived from the Saint-Venant equations (1) under the low Froude
assumption (Fr2 � 1) and a double scale assumption. The double-scale distinguishes the physical scale and the340

observations scale. The physical scale variables are denoted by (x, t), the observations scale variables by (y, τ).
These two sets of space-time variables are linked by (y, τ) = εs (x, t) with εs the scaling factor [Malou and Monnier,
2021]. The double scale assumption aims at taking into account width variations that are neglected in the classical
diffusive wave equation (the "physical scale" equation) but which are not negligible at the observations scale. These
are the following two scalar equations:345 (

∂tH − µ(H)∂2
xxH + v(H)∂xH

)
(x, t) = ( v(H)∂xzb ) (x, t)(

∂τH − µ(H)∂2
yyH + v(H)∂yH + ρ(H)H

)
(y, τ) = ( v(H)∂yzb + ρ(H)zb ) (y, τ)

(14)

with the initial condition H(X , T = 0) = H0(X ). The effective diffusion coefficient µ, wave velocity v, width
variation coefficients ρ and the fluid velocity u are defined by:

µ(H;X , T ) = 1
2u(H;X , T ) (H(X , T )− zb(X ))

|∂XH(X , T )| v(H;X , T ) = γu(H;X , T ) (15)

ρ(H; y, τ) = 1
w̄(y, τ) (∂τ w̄(y, τ) + γu(H; y, τ)∂yw̄(y, τ)) u(H;X , T ) = Ks (H(X , T )− zb(X ))γ−1 |∂XH(X , T )| 12

The expression of u comes from the Manning-Strickler parametrization (with γ = 5
3 ), see Sec. 2.1.1.

The generic variables (X , T ) denote either (x, t) for the physical scale or (y, τ) for the observations scale.

The non-linear equations (14) do not provide a framework for deriving Green’s kernels and their existence is
not even ensured, see Sec. 3.1.1. Therefore, the double-scale diffusive wave equations (14) are linearized around a
reference state that gives constant coefficients.
The linearized diffusive wave equations (14) are non-homogeneous linear reaction-advection-diffusion equations:
∀(x, t) ∈ [0, L]× [0;T ],(

∂tH − µxr∂2
xxH + vr∂xH

)
(x, t) = ( vr∂xzb − ηxr zb ) (x, t)(

∂τH − µyr∂2
yyH + vr∂yH + ρrH

)
(y, τ) = (vr∂yzb + ( ρr − ηyr ) zb ) (y, τ)

(16a)
(16b)

12



with the reference coefficients2 :

µXr = 1
2ur

Hr

|∂XHr|
, vr = γur , η

X
r = 1

2ur
∂2
XXHr

|∂XHr|
(17)

ρr = 1
w̄r

(∂τ w̄r + γur∂yw̄r) (18)

The reference state is given by the reference water surface height Hr, the reference velocity ur and the reference
mean width w̄r. We must make sure that µr, defined in (17), is positive; if not, a change of reference height solves350

the issue.
Note that vr does not depend on the scale but that µXr and ηXr do (see Tab. 2).

scale µXr vr ηXr ρr
physical scale 105 1 10−6

observation scale 102 1 10−5 10−4

Table 2: Magnitudes of the reference coefficients, defined by (17) and (18), at both physical and observations scale
with a scaling factor εs = 1/250

From now, the calculations are performed at the observations scale. Indeed and if not specified, the calculations
also hold for the physical scale3 assuming that ρr = 0.355

We set: A = −µXr ∂2
XX + vr∂X + ρr and B = vr∂X +

(
ρr − ηXr

)
respectively the right and left hand side operators

of (16b).
The operator B is linear and continuous and the existence of a unique Green’s kernel is ensured for the linearized
diffusive wave equations (16). Therefore, the existence of a unique Green-like kernel is ensured (by vertue of the
Riesz representation theorem, see Sec. 3.1.1).360

3.2.2 Derivation of Green-like kernels

First, the classical Green’s kernel of the linear diffusive wave equations (16b), denoted by GB, is derived3. The
Green’s kernel is calculated using the Fourier transform in space and the Laplace transform in time (following e.g.
Evans [1998]). Moreover, it is assumed that GB(X , T = 0) = 0. To perform the Fourier transform, the equations365

(16) are defined ∀X ∈ R.
We are interested in the response of the system to a perturbation, and not in finding the solution of the initial
and boundary values problem. Therefore, the Green’s kernel (and later Green-like kernels) does not seek to satisfy
either the boundary conditions or the initial condition.

370

The obtained Green’s kernel expression is the following4 :

GB(X , T ) = 1√
2π (2µXr T )

exp
(
−1

2
(X − vrT )2

2µXr T

)
exp (−ρrT ) 1]0;+∞[(T ) (19)

The advection and diffusion terms of the equations (16) involve the Gaussian term (the classical Green’s kernel) in
GB, see Sec. 3.1.2 or e.g. Evans [1998]. This Gaussian is centered in vrT with the correlation length Lc =

√
2µXr T

(µXr > 0, vr is defined by (17)). Therefore, the Green’s kernel (19) provides a physically meaningful estimate of
the characteristic length Lc, see later (29). Moreover, because of the Gaussian term in the expression of GB, the375

Gaussian operator, defined by (7), seems to be a natural physically-consistent estimate of C in this context.
Since the equation (16b) is linear with constant coefficients, the solution ∀(X , T ) ∈ R × R+∗ can be written as:
H(X , T ) =

[
GB ∗ Bzb

]
(X , T ). On the other hand, the Green-like kernel, denoted Gts, implies that the solution can

2the subscript r relates to the reference state and the resulting coefficients
3If needed, the observations and physical scales are distinguished by the subscripts ps and os.
4the superscript B relates to the result of a Dirac distribution as right hand side Bzb
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also be written as the relation (11). Therefore, the following equality holds:
[
GB ∗ Bzb

]
(X , T ) = [Gts ∗ zb] (X , T ).

Using the convolution product differentiation property, the Green-like kernel reads as follows5:380

Gts(X , T ) =
(
−vr

(X − vrT )
2µXr T

+ ρr − ηXr
)
GB(X , T )1]0;+∞[(T ) (20)

with GB defined by (19).

However, zb is constant in time. Therefore, the appropriate perturbation to consider is one that is local in space
and constant in time (not local in time). To do this, we must first consider a Dirac comb of n+ 1 equidistant Dirac
distributions on the time interval [0;T ]: Ш(T ) =

n∑
i=0

δ(T − T
n i).385

We denote by Gdc6 the kernel that formally satisfies: (∂TGdc +AGdc)(X , T ) = BШ(T )δ(X ). This kernel is easily
calculated from the kernels (20) using the linearity and time shifting property of the Laplace transform:

Gdc(X , T ) =
nt∑
i=0

Gts(X , T − T

n
i) (21)

with Gts defined by (20) and the index of the current time nt = b nT T c.

The next step is to sum an infinite number of Dirac distributions, i.e. n → +∞. Hence, formally, Ш(T ) −−−−−→
n→+∞

390

1[0;T ](T ). Then, Gdc tends to solve the equation: ∀T ∈ [0;T ] (∂TG+AG)(X , T ) = Bδ(X ).
Since, formally, Dirac combs are related to the rectangle rule:

Gdc(X , T ) −−−−−→
n→+∞

T∫
0

Gts(X , T ′)dT ′ (22)

This limit (22) provides the following new Green-like kernels :

Gps(x, t) =
t∫

0

(
−vr

(x− vrt′)
2µxr t′

− ηxr
)

1√
2π (2µxr t′)

exp
(
−1

2
(x− vrt′)2

2µxr t′

)
dt′

Gos(y, τ) =
τ∫

0

(
−vr

(y − vrτ ′)
2µyrτ ′

+ ρr − ηyr
)

1√
2π(2µyrτ ′)

exp
(
−1

2
(y − vrτ ′)2

2µyrτ ′

)
exp (−ρrτ ′) dτ ′

(23)

with the coefficients µXr , vr, ρr and ηXr defined by (17).

Note that since GB(X , 0) = 0 ∀X ∈ R and formally GB(X , T ) −−−→
T→0

δ(X ) ∀X ∈ R, see e.g. Evans [1998],395

the kernel GB is discontinuous in (0, 0) .
The kernel Gts (20) also satisfies Gts(X , T ) −−−→

T→0
0 ∀X ∈ R∗. Since Gts(X , 0) = 0 ∀X ∈ R, the kernel defined by

(20) is continuous for ∀(X , T ) ∈ R× R+ \ (0, 0).
This continuity property of the kernel Gts implies that the sum Gdc, defined by (21), and the integrals (22) are
well-defined ∀X ∈ R∗. Hence, the kernels Gps and Gos obtained above are well-defined ∀(X , T ) ∈ R∗ × R+.400

There is, nevertheless, no proof that the integral (22) is defined and finite ∀(X , T ) ∈ {0} × R+. However, we are
interested in the response the impulsion, not the impulsion itself. Hence, the impulsion (i.e. when T ′ = 0) is not
taken into account by the numerical integration.

5the superscript ts refers to the result of a Dirac distribution local in time and space as zb
6the superscript dc refers to the result of a Dirac comb as zb
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Note that X 7→ GB(X , T ) ∀T ∈ R+, defined by (19), is not an even function because of the advection term405

in the equations (16) (vr 6= 0). Similarly, the kernels (20) and (23) are not even with respect to X . Therefore,
(X ,X ′) 7→ G(X − X ′, T ) is not symmetric. Moreover, there is no proof that this kernel are positive-definite.
Therefore, the kernels Gps and Gos do not directly provide a covariance kernel.

3.2.3 A by-product: sensitivity map

The purpose of the following section is to highlight the sensitivity of the double-scale diffusive wave equations (14)410

with respect to k (here zb) resulting from the Green-like kernels previously derived. This investigation also stands
for the Saint-Venant equations (1) as long as the low Froude and double-scale assumptions stand.
Since vr is constant, vrT is the distance traveled by the wave till the time T . Since v, defined in (15), is a function
of (X , T ), it can be integrated along the characteristic curve to provide the traveled length l.
The same way, α and ω are respectively the diffusion and the width variation coefficients integrated along the415

characteristic curve.
From the sum Gdc defined by (21), we know that the integrands of the kernels (23) at a given T ′ are actually the
propagation of this integrand from the time T − T ′ till the time T .
The characteristic curve X(X , T1, T2) is the position at time T2 of the particle that was located at the position X
at time T1: X(X , T − T ′, T ) = X + l(X , T , T ′).420

Hence, the traveled length, diffusion coefficient and width variation coefficient integrated along the characteristic
curve read:

l(X , T , T ′) =
T∫

T −T ′

v(X(X , T − T ′, s), s)ds

α(X , T , T ′) =
T∫

T −T ′

2µ(X(X , T − T ′, s), s)ds

ω(X , T , T ′) =
T∫

T −T ′

ρ(X(X , T − T ′, s), s)ds

(24)

with the coefficients v, ρ and u defined in (15). The coefficients µ and η are similarly defined as in (17):

µ(X , T ) = 1
2u(X , T ) H(X , T )

|∂XH(X , T )| , η(X , T ) = 1
2u(X , T )∂

2
XXH(X , T )
|∂XH(X , T )| (25)

Then an expression of the sensitivities derives from the Green kernels (23). For a perturbation at X ′, i.e. for a
Dirac distribution δ(X − X ′), the expressions of the sensitivities S are the following :425

S(X ,X ′, T ) =
T∫

0

(
−v(X , T − T ′) (X − X ′ − l(X , T , T ′))

α(X , T , T ′) + ρ(X , T − T ′)− η(X , T − T ′)
)

× 1√
2πα(X , T , T ′)

exp
(
−1

2
(X − X ′ − l(X , T , T ′))2

α(X , T , T ′)

)
exp (−ω(X , T , T ′)) dT ′

(26)

The so-called sensitivity map represents the sensitivity, at a given scale, of the control at one point (located at a
given X ′) on the rest of the domain through time: SX ′ : (X , T ) 7→ S(X ,X ′, T ).
Here the sensitivity maps are computed on the whole domain for a perturbation in the middle of the domain
X ′ = 0.5L. The integrals are computed using a rectangle method on the right with a time step of 1h.

430

We notice that the sensitivity at observations scale Sos is discontinuous with respect to X , see Fig. 5. Moreover,
on Fig. 5b, the discontinuities are located at the same positions as the discontinuities in the space derivative of the
width, see Sec. 2.3.2 for the construction of the width.
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(a) Sensitivity map at observations scale

(b) Sensitivity maps (SX
′

ps at the physical scale and SX
′

os at the observations scale) at t = 10days and the river width derivative.

Figure 5: Sensitivity maps (26) for perturbations in the middle of the domain (X ′ = 0.5L) with the coefficients
(15), (24) and (25) computed with the output of the Saint-Venant equations for Rio Negro-like case, see Fig. 2.

The sensitivities are mostly positive upstream and negative downstream of X ′.
In absolute value, Sos seems to increase in time, see Fig. 5a. Also, the sensitivity map highlights that more infor-435

mation are located far from X ′ when the time increases. These phenomena come from the increasing integration
domain in time of the integral and from the advection and diffusion phenomena in the integrand of the sensitivities
(26).

Finally, one can deduce that the sensitivity of the double scale diffusive wave equations with respect to the zb440
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is related to the w variations. Moreover, introducing an error in zb at a point has a positive impact upstream and
negative impact downstream on H, Fig. 5a.
This sensitivity map represents the spatio-temporal propagation of the local sensitivity. This sensitivity analysis
also stands for the Saint-Venant equations under the low Froude and double gradually varied assumptions.

3.3 Building physically-derived covariance operators from Green-like kernels445

Covariance operators and their associated matrices are by definition symmetric and positive-definite. The kernels
(X ,X ′) 7→ G(X − X ′, T ) defined by (23) are not symmetric. Moreover, there is no proof that they are positive-
definite.
Note that the same issues arise when C is estimated statistically from the sample covariance, see e.g. Bannister [a].
In this case, the number of realizations or estimates of εb may not be sufficient to correctly estimate the covariance.450

Consequently, spurious correlations may appear and the resulting matrix may not be symmetric positive-definite.
If the inverse operator of the Green-like kernel (the operator G−1 such that zb = G−1H) and if a covariance oper-
ator of H is known, an estimate of C can be computed using the bilinear property of the covariance operator, see
e.g. Rasmussen and Williams [2006] chap. 4. However, it is based on a prior knowledge of the covariance of H.
Therefore, this approach is not used here.455

Thus, the purpose of this section is to construct covariance operators from the Green-like kernels G previously
defined.

3.3.1 On the symmetry of the covariance kernel

The kernels (X ,X ′) 7→ G(X − X ′, T ), see (23), are not symmetric because of the advection of h, h = H − zb, in460

(14). This advection implies :

• the Gaussian term of (X ,X ′) 7→ GB(X − X ′, T ′), defined by (19), is not centered in X ′ but in (X ′ + vrT ′)
(the wave travels from upstream to downstream),

• the term vr∂X zb in the right hand side of (16) implies that the term (−vr X−X
′−vrT ′

2µXr T ′
) in Gts(X −X ′, T ′), see

(20) (X 7→ Gts(X − X ′, T ′) is positive upstream of X ′ + vrT ′ and negative downstream).465

It is classical to force the symmetry by considering the kernel (X ,X ′) 7→ 1
2 (G (X − X ′, T ) +G (X ′ −X , T )), see

e.g. Cheng et al. [2020].
Another possibility to force the symmetry is to neglect the advection i.e. to assume that vr ≈ 0. However, this two
approximations are inefficient in our case.
Here in order to derive a locally physically-consistent symmetric kernel from G, one consider the kernel (X ,X ′) 7→470

G(|X − X ′|, T ).

3.3.2 On the positive-definite property of the covariance kernel

Given the symmetric kernels (X ,X ′) 7→ G(|X − X ′|, T ) with the Green-like kernels (23), we now ensure that the
resulting operators are positive-definite.475

As mentioned earlier, when C is estimated by the sample covariance, the estimate may not be positive-definite. Sev-
eral methods have been developed in the Data Assimilation community to solve this issue, see a review in Carrassi
et al. [2018] Sec. 4.4. A first method, called localization, consists in cutting off spurious correlations when |X −X ′|
is empirically too large. However, the cut-off distance which is arbitrary chosen implies a loss of information.
Another method, called inflation, consists in applying a convex combination of the covariance matrix estimate with480

a target matrix. Usually, this target matrix is either a diagonal or contains some prior/empirical information from
static/long-term knowledge (see e.g. Wang et al. [2008]), topography knowledge (see e.g. Lopez-Restrepo et al.
[2021]) or expertise on the covariance structure.
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In the present study, we try to respect the physics as much as possible. Thus, the previous empirical approaches485

are not adopted. First, several symmetric kernels with more or less physical terms are presented. Next, given
the symmetric matrices associated with these kernels, we enforce the positive-definite property. This results to
covariance matrices, defined on the numerical grid.
In (23), the constant coefficients µXr , vr, ρr and ηXr are obtained by averaging their expressions over the space, see
(15) and (25), using the output of the direct model (1) at initial time.490

Building up symmetric kernels
Using the rectangle method and setting T = ∆T with ∆T the integration time step, the kernel (X ,X ′) 7→

G(|X − X ′|, T ) becomes:
495

Kts(X ,X ′) = ∆T
(
−vr

(|X − X ′| − vr∆T )
2µXr ∆T + ρr − ηXr

)
1√

2π(2µXr ∆T )
exp

(
−1

2
(|X − X ′| − vr∆T )2

2µXr ∆T

)
exp (−ρr∆T )

(27)
This approximated kernel, denoted by Kts, can be linked to the symmetrization of the Green-like kernel (23), which
is the response to a Dirac distribution local in time and space.
This kernel is the product of the Gaussian symmetrized with an exponential and the term derived from the right
hand side of the diffusive wave equations (16). The Gaussian results from the physical diffusion and the advection
phenomena. The exponential results from the reaction term of the observations-scale diffusive wave equation (16b)500

and is constant.

Next if we assume that the term derived from the right hand side of the diffusive wave equations (−vr
(
|X−X ′|−vr∆T

2µXr ∆T

)
+

ρr − ηXr ) is constant and if omitting the constant multiplicative coefficient for scaling reasons, see Sec. 2.2, the
expression (27) becomes:505

KB(X ,X ′) = 1√
2π(2µXr ∆T )

exp
(
−1

2
(|X − X ′| − vr∆T )2

2µXr ∆T

)
(28)

This symmetrized Gaussian kernel can be seen as the symmetrization of the Green kernel (19).

The derivation of the Green’s kernel (19) provide a physically meaningful estimate of Lc depending on a char-
acteristic time. By taking the integration time step as characteristic time, the physically-derived correlation length
reads :

Lpc =
√

2µxr∆t (29)

In the forthcoming test cases, one has ∆t = 1h and Lpc ∼ 140∆x ∼ 35km.

Also, one can couple the classical covariance kernels cGLc
defined by (7), which is equivalent to (28) under the

assumption that the advection is negligible, and ceLc
defined by (8) with the physically-derived correlation length

Lpc.510

Symmetric positive-definite approximation of a symmetric matrix
As already mentioned, the operators Kts and KB, defined by (27) and (28) respectively, are not guaranteed to

be positive definite. We here apply an approximation that imposes this property, and evaluate the consequence of
the approximation.
The presented approximation is based on the work of Higham [2002] in a mathematical finance context. The method515

presented in Higham [2002] aims at computing the closest correlation matrix to a symmetric matrix for a distance
based on a weighted Frobenius norm. Since the set of symmetric positive-semi definite matrices is a closed set, the
projection of a symmetric matrix onto this set is defined for this Frobenius norm [Higham, 2002].
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The spectral decomposition of a symmetric matrix M ∈ Mn×n(R) reads: M = V ΛV T . The matrix V is the520

orthogonal matrix containing the eigenvectors of M as columns and Λ is the diagonal matrix containing the eigen-
values Λi,i = λi ∀i ∈ J1, nK. The Frobenius norm is: ‖M‖Fr =

√
tr(MMT ) =

√∑n
i,j=1M

2
i,j =

√∑n
i=1 λ

2
i .

Higham [2002] demonstrates that the projection p of a symmetric matrix on the set of the symmetric positive-
semidefinite matrices for ‖·‖Fr is: p(M) = V Λ+V T with Λ+ is the diagonal matrix such that Λ+

i,i = max(λi, 0) ∀i ∈525

J1, nK.

As recalled before, we are looking for strictly positive-definite not positive-semidefinite matrices. Therefore,
the same projection p is not suitable. Also, the set of positive-definite matrices is not a closed set. Hence, the
projection of symmetric matrices on this set is not defined. To overcome this issue, the following natural positive-530

definite approximation is used:
pε(M) = V ΛεV T (30)

with Λε the approximation of Λ+ such that Λεi,i = max(λi, ε) ∀i ∈ J0, nK. Ideally, the threshold should satisfy
ε < min({λi;λi > 0}).

Symmetric positive-definite approximation of the kernels’ matrix
The positive-definite approximation (30) is now applied on the matrix of kernels (27) at observations scale and535

(28), respectively denoted Kts and KB. The approximation is performed with the threshold ε = 10−14.
We denote: λ = {λi}, n = #λ, λ+ = {λi;λi > 0} and n+ = #λ+. We have: n = 3548.
In order to quantify the accuracy of the approximations, for a matrix K and two approximations K1 and K2, we
compute the following criteria:

• the averaged relative difference εFr(K1,K2) = 1
|K|n2 ‖K1 −K2‖Fr540

• the maximal relative difference ε∞(K1,K2) = 1
|K|

maxi,j
(
| (K1 −K2)i,j |

)
.

K n+/n minλ minλ+ λ max λ
Kts 3538/3548 −2.325× 10−4 2.892× 10−9 1.255× 10−7 8.733× 10−5

KB 26/3548 −2.211× 10−5 2.235× 10−6 1.140× 10−5 4.258× 10−3

CG
Lpc

1725/3548 −2.294× 10−18 7.365× 10−24 1.144× 10−5 4.006× 10−3

Table 3: Spectral properties (the number of positive eigenvalues, the minimum, mean and maximum of the eigen-
values, the minimum of the positive eigenvalues estimated numerically) of the different kernels.

K εFr(K, pε(K)) ε∞(K, pε(K)) εFr(pε(K), p(K)) ε∞(pε(K), p(K))
Kts 6.089× 10−4 6.306 4.029× 10−15 1.708× 10−10

KB 5.442× 10−6 1.893× 10−1 4.102× 10−15 8.645× 10−10

CG
Lpc

4.333× 10−15 9.098× 10−10 4.333× 10−15 9.098× 10−10

Table 4: Performance criteria (average and maximal relative error) of the approximation of the matrices (between
the matrix and its positive-definite approximation and between the semidefinite-positive projection and its definite
positive approximation).

The approximation pε(Kts) is accurate on averaged: εFr(Kts, pε(Kts)) ∼ 10−4, see Tab. 4. It is less good in
terms of maximum relative difference: ε∞(Kts, pε(Kts)) ≈ 6.306. This can be explained on Fig. 6 by the fact that545

the values close to zero are fairly well approximated but the higher values are less so.

The kernel KB is closer to its positive-definite approximation than Kts: εFr(KB, pε(KB)) ∼ 10−6 and ε∞(KB, pε(KB)) ∼
10−1. Note that, since CG

Lc
(7) is positive-definite, KB is not positive-definite because of the advection phenomena.

550
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The Gaussian operator CG
Lpc

defined by (7), with (29), is a well-known covariance operator. Hence, the associ-
ated matrix is positive-definite. However, the numerical estimation of the eigenvalues shows the opposite for the
matrix CG

Lpc
, see the negative eigenvalues in Tab. 3. This issue may be the result of many very small positive

eigenvalues (probably close to the machine accuracy) which are estimated by negative values. The approximation
pε will be applied even if CG

Lpc
is positive-definite in theory.555

The very small eigenvalues imply that the matrix is ill-conditioned. The ill-conditioned issue of CG
Lc

has already
been studied in Koivunen and Kostinski [1999] and in Haben [2011] with respect to Lc.
The approximation pε(CG

Lpc
) in Tab. 4 is still very close to CG

Lpc
: εFr(CG

Lpc
, pε(CG

Lpc
)) ∼ 10−15 and ε∞(CG

Lpc
, pε(CG

Lpc
)) ∼

10−10.
560

The differences εFr(pε(K), p(K)) and ε∞(pε(K), p(K)) for all three kernels imply that pε is almost as accurate
as the projection p (resp. ∼ 10−15 and ∼ 10−10 in Tab. 4).

Figure 6: Kernel Kts
os (27), its semidefinite-positive projection p and its positive-definite approximation pε (30) for

x′ = 0.5L.

3.3.3 The resulting covariance kernels

The approximation pε, see (30), of Kts, see (27), provides pseudo-physical covariance operator7:

Cpp = pε(Kts) (31)

The covariance operators CG
Lpc

and Ce
Lpc

, resp. defined by (7) and (8) with Lpc the physically-derived correlation
length (29), are called physically-derived Gaussian and physically-derived exponential covariance operators. Note565

that so far there is here no physical argument for which of these classical operators should be considered. However,
they are the most employed covariance operators in the literature for complex highly non linear problems.
The operators (31) are here used as physically-consistent estimates of the background error covariance operator

C.
From Fig. 7, the curves of cppps and cppos (the kernel cpp, associated to the operator (31), resp. physical and obser-570

vations scale) are rather close to the curve of ce30∆x. The curves of the kernels cppps and cppos (and especially their
decrease near X = X ′) are even closer to the curve of ce30∆x than to the curve of cGLc

with any Lc. This is contrary
to the idea that CG

Lc
is a natural covariance operator as suggested by the kernels GB (19) and KB (28).

The sensitivity map, see Fig. 5, highlights that the variations of w can have a major impact on the sensitivity of
the double-scale diffusive wave equations (14) with respect to zb, see Sec. 3.2.3. However, the curves of cppps and cppos575

are quite similar on Fig. 7. Therefore, the coefficient ρr in the kernel (27), specific to the observations scale and
defined by (18), does not have a great impact on the covariance operator. This could be the result of averaging

7the superscript pp refers to the pseudo-physical covariance
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Figure 7: Pseudo-physical covariance kernels cppps and cppos (31), Gaussian kernel cGLpc
and exponential kernels ceLpc

and ce30∆x for x′ = 0.5L.

over the space to obtain constant coefficients.
In all the sequel and if not specified, Cpp is considered at observations scale.

580

Note that one can try to take spatially-distributed coefficients in the expression of Kts (27), as done in Sec.
3.2.3. However, the experience has shown that these spatially-distributed coefficients imply the kernels to vary in
space by several order of magnitude. As a result, the optimization algorithm does not converge correctly.

4 Inference of the bathymetry zb(x) using the physically-derived co-
variance operators585

In this section, we infer the river bathymetry zb following the fully-observed experiment by using the different
covariance operators previously defined. The performance of the physically-derived covariance operators, Gaussian
CG
Lpc

, exponential Ce
Lpc

and pseudo-physical Cpp
os , derived in Sec. 3.3, are compared with the performance of the

reference covariance operator Ce
30∆x, see Sec. 2.4.

590

Covariance operators Reference a priori Physically-derived
Ce

30∆x Ce
Lpc

Cpp
os

till RMSE H ≈ 10cm nite 10 5 15
RMSE zb (m) 0.78 0.33 0.49

till complete convergence nite 139 123 170
RMSE zb (m) 0.15 0.18 0.33

kernels’ expressions a priori Lc Lc = Lpc, see (29) cpp, see (31)
ceLc

, see (8)

Table 5: Performance (number of iteration nite and RMSE zb) of the inference of zb using different covariance
operators (classical/reference and physically-derived) at different stage of the optimization process (till RMSE H ≈
10cm and till complete convergence as described in Sec. 2.3.1).

Overall in Tab. 5 and on Fig. 9, with the exception of CG
Lpc

, the fully-observed experiment with the physically-
derived covariance operators and the reference covariance operator provide similar z∗b .
In terms of convergence speed, Ce

Lpc
is better especially in the first iterations. Still, Ce

30∆x and Cpp
os have similar

convergence speed.
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595

The operator CG
Lpc

does not enable the VDA algorithm to converge properly: the minimization stops after 12
iterations without reaching the RMSE H ≈ 10cm stage, see Figs. 8 and 9. As mentioned in Sec. 3.3.2, the matrix
CG
Lpc

has many very low eigenvalues. This fact may explain the bad convergence.
Recall from Sec. 3.3.3 that there is no physical argument for using a CG

Lc
as estimate of C.

600

On Fig. 9, RMSE H decreases rather rapidly during the first iterations for Cpp
os , Ce

Lpc
and Ce

30∆x.
Moreover, during the first iterations, RMSE zb decreases faster with Cpp

os and Ce
Lpc

(respectively 0.32m and 0.49m
at RMSE H ≈ 10cm) than with Ce

30∆x (0.78m).
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These physically-derived covariance operators seem to improve the convexity feature of the cost function. Indeed,
better descent directions are promoted during the first iterations.605

In Sec. 2.4.3, the classical operator Ce
30∆x is chosen as reference. The choice is motivated by a good perfor-

mance compromise among the decreasing exponential operator Ce
Lc

with arbitrary Lc values.
During the first few iterations, the optimization using Ce

Lpc
converges faster to a more accurate zb than the op-

timization using any of the classical Ce
Lc
, see the dots on Fig. 9. Also, z∗b computed with Ce

Lpc
has very similar610

accuracy to the one obtained with Ce
30∆x but is reached more quickly, see Tab. 5. In this regard, the physically-

derived Ce
Lpc

offers a better performance trade-off than the reference Ce
30∆x.

The performance (accuracy and speed) of Cpp
os is similar to all other Ce

Lc
used on Fig. 9. This highlights that

the derivation of a covariance operator from a Green-like kernel is promising and provides a credible covariance615

operator.

Finally, this investigation of the physically-derived covariance operators through the fully-observed experiment
can be summarized as follows.

• The proposed method for estimating the background error covariance operator C from physics provides good620

estimates, especially the pseudo-physical covariance operator Cpp
os , although some approximations have been

made in Sec. 3.3.2 to provide symmetric positive-definite matrix. These pseudo-physical operators rely on
approximate physics only. However, they rely on the most physics to date.

• The exponential operator Ce
Lc

is a good approximation of C. The curve of its kernel (on Fig. 7) is consistent
with the curve of cpp (unlike cGLc

).625

• In the present context, the widely used kernel CG
Lc

is not a good estimate of C.

• The derivation of the Green-like kernels, see Sec. 3.2.2, provides an estimate of the correlation length consistent
with the physics: Lc = Lpc defined by (29). The operator Ce

Lc
coupled with Lpc provides the best results.

Experiments have been performed with lower quality data as in the partially-observed experiment, see Sec.
2.3.1, but inferring only zb. The results are not shown here because the conclusion is the same than the present630

one.

5 Inference of the pair (zb, Ks)(x) from lower quality data
In this section, the VDA based on the same various estimates of C is analysed through the partially-observed
experiment, that is the inference of the composite control variable (zb,Ks) from perturbed data (and not perfect
ones), see Sec. 2.3.1.635

5.1 Results
Recall from Sec. 2.3.1 that, for this multivariate inverse problem, the covariance matrix is assumed to be block
diagonal with the block related to the frictionCKs

= Ce
∆x. We consider two pairs of constant variances: (σzb

, σKs
) =

(0.5h, 10) and (σzb
, σKs

) = (0.1h, 50), see Sec. 2.3.1.

5.1.1 Using the variances (σzb
, σKs

) = (0.5h, 10)640

On Fig. 10, except for the result computed with CG
Lpc

, z∗b is similar to the one obtained in the fully-observed
experiment, see Fig. 8. Moreover, K∗s varies very little from Kb

s .
One can note that z∗b is almost a translation upward of ztb. This comes from the fact that essentially zb is optimized
in this case. The optimization compensates the discrepancy between K∗s and Kt

s by this translation on z∗b .
Note that CG

Lpc
still does not allow the inference to reach the RMSE H ≈ 10cm stage.645
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5.1.2 Using the variances (σzb
, σKs) = (0.1h, 50)

On Fig. 11, for each covariance operator, the z∗b curve is a combination of the ztb curve (e.g. on x ∈ [400; 700]km)
and the constant slope zbb curve.
On the other hand, K∗s varies a lot. These variations compensate the discrepancy between z∗b and ztb.
In this case the operator CG

Lpc
provides good results.650

With Ce
30∆x and Cpp

os , K∗s is locally strictly negative, despite the fact that, physically, Ks(x) must be strictly
positive (for all x). However these negative values are very local and can be easily avoided by adding a regulariza-
tion term such as jreg(Ks) = ‖∂xKs‖22.
In order to study only the effect of the estimate of C, such additional regularization term is not used here.655

5.2 Comparisons
With the variances (σzb

, σKs) = (0.5h, 10)
Overall, in this case, the comparison of the covariance operators is similar to the comparison in the fully-observed

experiment, see Sec. 4.
At the RMSE H ≈ 10cm stage, RMSE zb is slightly better using Ce

Lpc
and Cpp

os (resp. 0.9 and 0.87m) than with660

Ce
30∆x (0.97m, see Tab. 6).

In terms of convergence speed, Ce
Lpc

is better especially during the first iterations but the result remains similar to
the results with Ce

30∆x and with Cpp
os .
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On Fig. 12, the inference of zb with Ce
30∆x follows three different steps. At the 2nd iteration, the resulting zb665

is close to ztb. However, ztb, and especially its variations, is not well-approximated everywhere by zb. For example, ztb
is well-approximated by zb on x ∈ [400; 550]km but not on x ∈ [600; 660]km. Then, zb is slowly shifted upward until
the 6th iteration. After this 6th iterations, the variations of zb evolves slowly toward the variations of ztb, especially
where the variations of ztb was not well-approximated by zb during the first iterations.
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Covariance operators Reference a priori Physically-derived
Ce

30∆x Ce
Lpc

Cpp
os

At RMSE H ≈ 10cm nite 11 7 18
σzb

= 0.5h RMSE zb (m) 0.97 0.9 0.88
σKs

= 10 till complete convergence nite 57 43 48
RMSE zb (m) 0.86 0.87 0.87

At RMSE H ≈ 10cm nite 61 25 67
σzb

= 0.1h RMSE zb (m) 1.67 0.82 1.32
σKs = 50 till complete convergence nite 173 102 151

RMSE zb (m) 1.67 0.75 1.32

Table 6: Performance (number of iteration nite and RMSE zb) of the inference of (zb,Ks) using different covariance
operator (classical/reference and physically-derived) at different stage of the optimization process (till RMSE H ≈
10cm and till complete convergence).

On the other hand, with Cpp
os and especially with Ce

Lpc
, zb approximates well ztb, and its variations, more quickly670

and everywhere at once. Moreover, with Cpp
os and Ce

Lpc
, RMSE zb hardly decreases between the RMSE H ≈ 10cm

stage and the complete convergence, unlike with Ce
30∆x.

Note that with Ce
30∆x and Ce

Lpc
, on Fig. 12, after resp. the 2nd and 3rd iteration, the RMSE zb increases a bit.

Recall from Sec. 2.3.1 that the optimization algorithm starts from zbb . Thus, at some point in the optimization
iterations, zb becomes quite close to ztb. Then, zb is translated upward to reach z∗b .675
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ponential Ce
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(8), Gaussian CG
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With the variances (σzb
, σKs

) = (0.1h, 50)
The results in this case are different from the previous cases. The inference of zb with Ce

Lpc
provides the most

accurate z∗b (RMSE zb ≈ 0.82m at complete convergence). Moreover, the inference provides more accurate results
with Cpp

os than with Ce
30∆x (resp. RMSE zb ≈ 1.31m and RMSE zb ≈ 1.67m).680

The inference with Ce
Lpc

converges much faster (resp. 25 et 102 iterations to reach the RMSE H ≈ 10cm stage and
the complete convergence) than with Cpp

os (resp. 67 and 151 iterations) or with Ce
30∆x (resp. 61 and 173 iterations).

In this case, CG
Lpc

provides results close to those computed with Ce
Lpc

(just a little faster to reach complete conver-
gence).
Between the 6th and 8th iterations with Ce

Lpc
, the RMSE zb decreases a lot, from RMSE zb ≈ 1.84m to685

RMSE zb ≈ 0.91m, see Fig. 13. Moreover, between these iterations, the norm of the gradient increases a lot
(by a factor 102) and then decreases very rapidly (by a factor 104 between the 8th and 15th iterations).
Similarly, during the first iterations with Cpp

os , the RMSE zb decreases rapidly (compared to with Ce
30∆x).
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Figure 13: RMSE zb and RMSE H (log scale) during the partially observed experiment with the variances
(σzb

, σKs) = (0.1h, 50) using the reference exponential covariance operator Ce
30∆x (8), the physically-derived ex-

ponential Ce
Lpc

(8), Gaussian CG
Lpc

(7) (with Lpc (29)) and the pseudo-physical Cpp
os covariance operators (31) as

estimates of the covariance operator Czb
vs iteration number of the (zb,K)(x) inference. Dots corresponds to

RMSE H ≈ 10cm.

This investigation of the physically-derived covariance operators through the partially-observed experiments can690

be summarized as follows.

• The operators Cpp
os and Ce

Lpc
promote better descent directions than the reference operator Ce

30∆x, especially
during the first iterations of the optimization algorithm. With (σzb

, σKs) = (0.1h, 50) and Ce
Lpc

, the cost
function is such that the descent directions and the line search allow for a change in local minima during the
optimization iterations. Thus, in this case, the optimization finds a local minima closer to ztb more quickly.695

• The conclusions of the fully-observed experiment are confirmed: the pseudo-physical operator Cpp
os is a good

estimate and the physically-derived Ce
Lpc

provides the best results. The Gaussian operator CG
Lpc

remains a
poor estimate of C even if it provides good results in one case.

• The physically-derived operators Cpp
os and Ce

Lpc
seem to improve the convexity feature of the cost function.

As a result, the optimization algorithm converges to a more accurate z∗b , especially when the second control,700

here Ks, is assumed highly uncertain.
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6 Conclusion
This paper investigates, for Data Assimilation purposes, a method for deriving estimates of the background error
covariance operator C, see Sec. 2.1.2, from governing physical equations. The physically-derived kernels are built
up from Green-like kernels representing the system response to a perturbation of the control, see (10).705

In the literature, C is classically modeled from empirical or arbitrary information. The present investigation com-
pares these classical empirical operators with the physically-derived ones.

The method is investigated for the inference of the bathymetry zb in the Saint-Venant equations (1) in a satel-
lite observation framework. In this context, the resulting Green-like kernels (23) are neither symmetric (due to the710

advection phenomena) nor positive-definite. The present method constructs, from the Green-like kernels, discrete
covariance operators partly consistent with the underlying physics. These operators are obtained by applying (i) a
locally symmetric approximation and (ii) the positive-definite approximation (30).
This provides an original covariance operator Cpp, see (31), called pseudo-physical covariance operator. Moreover, a
physically-consistent estimate of the correlation length Lpc, defined by (29), is also provided. Thus, the correlation715

length value Lc = Lpc is tested with covariance operators such as the Gaussian CG
Lc

and the decreasing exponential
Ce
Lc

operators.
The operator Ce

30∆x is a priori the empirical covariance operator that provide the best numerical results and fea-
tures. Thus, it is chosen as the reference operator.

720

During all the numerical experiments, the operator Ce
Lpc

provides better results than the Ce
30∆x.

The operator Cpp provides results at least comparable, especially during the fully-observed experiment, to Ce
30∆x:

the convergence speeds and the accuracies are similar.
Here, the classical operator CG

Lc
has no physical justification and the associated numerical experiments provide

poor results. Hence, it is a bad estimate of C.725

From these numerical experiments and especially from the partially-observed experiment, we can observe that the
physically-derived operators promote better descent directions and converge faster and with better accuracy, espe-
cially during the first iterations.
This highlights that the physically-derived covariance operators are better preconditioning of the Hessian of the
cost function therefore improving convexity features of the cost function.730

Therefore, the method for deriving physically-consistent covariance operators provides good estimates of C such as
Cpp. Furthermore, it provides a physically-consistent Lpc which is more efficient than empirical correlation lengths
when combined with Ce

Lc
.

The presented method is available in the open-source computational software Dassflow [Monnier and Larnier,735

2018]. This method has been successfully implemented to the 2D version of the Shallow-water river flow models
too, see e.g. Monnier et al. [2016].
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