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a b s t r a c t 

A prey-predator model with a sexual reproduction in prey population and nonlocal con- 

sumption of resources by prey in two spatial dimensions is considered. Patterns produced 

by the model without nonlocal terms and periodic boundary conditions are studied first. 

Then, Turing patterns induced by the nonlocal interaction (see Banerjee et al. (2018) [1]) in 

the two dimensional space are explored along with the effects of the nonlocal interaction 

range on the resulting patterns under proper parametric restrictions. The Turing bifurca- 

tion conditions for the nonlocal model are derived analytically and bifurcation scenario of 

stationary hotspot pattern generated from the homogeneous steady-state are studied in 

detail, both analytically and numerically. Also, conversion of periodic and aperiodic solu- 

tions exhibited by the local model into stationary Turing pattern as an effect of the nonlo- 

cal interaction term is also explored. The resulting patterns are stationary when the range 

of nonlocal interactions are significantly large. 

© 2020 Published by Elsevier B.V. 

 

 

 

1. Introduction 

Reaction-diffusion systems provide an appropriate tool to study spatio-temporal pattern formation in various ecological 

processes. Patterns induced by diffusion, also called dissipative or Turing patterns arise due to the instability of a homo- 

geneous in space solution [2,10] resulting in the appearance of spots, stripes, and other structures. Other mechanisms of 

pattern formation lead to the emergence of traveling waves, target and spiral patterns, periodic traveling waves [9,29] , in-

teracting spiral chaos, spatio-temporal chaos, etc. [6,7,16,19,21] . Let us recall that cold spot patterns refer to the regions

where the population density is lower than around them, whereas hot spot patterns correspond to the regions with a 

higher population density. Labyrinthine pattern is represented by the interlaced bands of high and low population den- 

sities forming stripes. These and other stationary patterns are formed by interacting populations due to the process of 

self-organization. Pattern formation in ecology is intensively studied in the case of plankton patchiness [14,22] , semiarid 

vegetation patterns [13] , invasion by exotic species [17,25] and so on. 

A conventional assumption in ecological model is that individuals in the population consume their resources locally, that 

is at the spatial point where they are located at a particular time. In a more realistic scenario of nonlocal consumption of
∗ Corresponding author. 
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resources, they can search food in some area around their average location. Global consumption of resources, on the other 

hand, corresponds to the situation where the population can consume resource in the whole area of its spreading. The 

models describing nonlocal and global consumption of resources include integro-differential terms in the reaction-diffusion 

equations [12,24] . They allow the description of the emergence and evolution of biological species and, in a more general

context, of the process of speciation [11,26] . These problems are studied for single species models and for the competition

models including two or more species [11,18,27,28] . 

The local spatio-temporal prey-predator model with Rosenzweig-McArthur type reaction kinetics [24] does not support 

the emergence of Turing patterns. However, due to the introduction of nonlocal terms, Turing patterns appear under proper 

assumptions on parameters [4] . Existence of non-Turing patterns like traveling wave, modulated traveling wave, oscillatory 

pattern and spatio-temporal chaos are also observed for the nonlocal model. Other non-Turing patterns are observed for the 

modified Lotka–Volterra reaction kinetics describing the effects of nonlocal consumption of resources [4,5] . 

In our previous work, we have considered a model of nonlocal consumption of resources by prey with the bistable re-

action kinetics in the absence of predator and in the presence of a specialist predator following Holling type-II functional 

response [1] . Formation of Turing patterns and evolution of other spatio-temporal patterns are studied in one spatial di- 

mension. In this work, we are interested in two-dimensional Turing patterns described by the same nonlocal model. The 

influence of the range of nonlocal interaction on stationary patterns are also explored in this work. The paper is organized

as follows. The description of the model and the derivation of conditions of the Turing instability are given in Section 2 . Sim-

ulation results are discussed in Section 3 . Main outcomes of this investigation are summarized in the concluding Section 4 . 

2. The model 

Derivation of the single species population model with additive Allee effect from the classical single species population 

models is discussed in Petrovskii et al. [20] . Allee effects are generally defined as a decline in individual fitness at low

population size or density, due to various reasons like mating procedure, predation, environmental modification, etc. that can 

result in critical population thresholds below which populations are driven to extinction. Hence, including Allee effect in the 

model makes the modelling approach much more realistic specially at low population density. The concept of multiplicative 

Allee effect is described in Amarasekare [3] , Courchamp et al. [8] . When the multiplicative Allee effect is included in the

growth equation of the single species population, it accounts for two significant feedback effects: positive feedback due 

to cooperation at low population density and negative feedback arising through the competition for limited resources at 

high population density [15] . As an alternative formulation of the same, Petrovskii et al. [20] proposed an additive form

of the per capita growth rate function which includes population growth due to the reproduction and density dependent 

enhanced mortality rate at low population density due to Allee effect. Details of the derivation of mathematical formulation 

for growth rate affected by Allee effect can be found in Banerjee et al. [1] . We now briefly describe the temporal model and

the spatio-temporal model in two spatial dimensions, followed by the spatio-temporal model with nonlocal interaction in 

the upcoming subsections. 

2.1. Temporal model 

Using the growth function including sexual reproduction for prey population and its density dependent mortality rate in 

form of additive Allee effect and Holling type II functional response of the specialist predator we get the temporal model 

du 

dt 
= au 

2 (b − u ) − σ1 u − αu v 
κ + u 

, (2.1) 

dv 
dt 

= 

βu v 
κ + u 

− σ2 v , (2.2) 

subjected to non-negative initial conditions. Here a is the intrinsic growth rate, b is the environmental carrying capacity and 

σ1 is the density independent natural death rate of the prey population. Also α is the rate of consumption of prey by an

individual predator, κ is the half-saturation constant, β is the rate of conversion of prey to predator biomass due to new 

born predator individuals and σ2 is the natural mortality rate of the predator. Furthermore, β/α is the conversion efficiency 

with the value between 0 and 1, consequently 0 < β < α. The reproduction of prey is proportional to the second power of

the population density specific for sexual reproduction [20] . It is to be noted that for the prey population, the reproduction

rate is proportional to the product of u 1 , u 2 , R, where u 1 is the density of females, u 2 of males, and R available resources. In

particular, if there are no resources, the reproduction is impossible. Next, available resources can be determined as carrying 

capacity minus consumed resources, while consumed resources are proportional to the sum of the densities of males and 

females: R = K − B (u 1 + u 2 ) . Assuming that the densities of males and females are approximately equal to each other i.e

u 1 = u 2 = u, we obtain the growth term to be u 2 (K − 2 Bu ) = au 2 (b − u ) where a = 2 B and b = K/ 2 B . Thus, the term −u 3

means that there are in fact two different competitions, one of them for resources and another one for sexual partners. 

In the absence of predator ( α = 0 ) the prey population shows bistable dynamics. The equilibrium points of the temporal

model (2.1) and (2.2) are total extinction state (0,0) which is asymptotically stable, predator free axial equilibrium points 

(u 1 , 0) ≡
(

b−(b 2 − 4 σ1 
a ) 

1 
2 

2 , 0 

)
and (u 2 , 0) ≡

(
b+(b 2 − 4 σ1 

a ) 
1 
2 

2 , 0 

)
, which are feasible for b 2 > 

4 σ1 
a . We will discuss the transcritical
2 
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Fig. 1. Bifurcation diagram of temporal model (2.1) and (2.2) with respect to β . The other parameter values are taken to be a = 1 , b = 1 , σ1 = 0 . 1 , α = 

0 . 4 , κ = 0 . 4 , σ2 = 0 . 2 ; (a) β ∈ (0 , 1) (b) zoomed version of (a) where β ∈ (0 . 25 , 0 . 37) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

bifurcation scenario with the help of a numerical example as shown in Fig. 1 . The interior equilibrium point is denoted by

(u ∗, v ∗) whose components are 

u ∗ = 

κσ2 

β − σ2 

, v ∗ = (au ∗(b − u ∗) − σ1 )(κ + u ∗) /α. 

The interior equilibrium point is feasible under the parametric restrictions β > σ2 as well as abu ∗ > au 2 ∗ + σ1 . The Jacobian

matrix of the model (2.1) and (2.2) evaluated at (u ∗, v ∗) is given by 

H = 

[ 

abu ∗ − 2 au 

2 
∗ + 

αu ∗v ∗
(κ+ u ∗) 2 − αu ∗

κ+ u ∗
βκv ∗

(κ+ u ∗) 2 0 

] 

≡
[

a 11 a 12 

a 21 0 

]
. 

Hence, the local asymptotic stability condition for (u ∗, v ∗) is given by the following condition: 

abu ∗ − 2 au 

2 
∗ + 

αu ∗v ∗
(κ + u ∗) 2 

< 0 . (2.3) 

The condition for Hopf bifurcation through which the interior equilibrium point (u ∗, v ∗) becomes unstable and gives periodic

solution is determined by the equality: 

abu ∗ − 2 au 

2 
∗ + 

αu ∗v ∗
(κ + u ∗) 2 

= 0 . (2.4) 

From the bifurcation diagram ( Fig. 1 ) it is clear that the dynamics of system (2.1) and (2.2) changes as β increases from 0 to

1. Till β < βT C 1 
= 0 . 29 , the first transcritical bifurcation threshold, the axial equilibrium point (u 2 , 0) ≡ (0 . 887 , 0) is stable

and at βT C 1 
= 0 . 29 , (u ∗, v ∗) bifurcates from (u 2 , 0) . For β > βT C 1 

, (u 2 , 0) is saddle point and (u ∗, v ∗) is asymptotically stable

whenever βT C 1 
< β < βH . Also, (u ∗, v ∗) loses its stability at the Hopf bifurcation threshold βH = 0 . 3394 and becomes unsta-

ble till the second transcritical bifurcation threshold β = βT C 2 
= 0 . 91 . At β = βT C 2 

, (u ∗, v ∗) merges with (u 1 , 0) ≡ (0 . 113 , 0) .

The limit cycle generated through Hopf bifurcation is stable, as the Hopf bifurcation is supercritical. As values of β > βH are

considered, stable limit cycle enlarges in size gradually and disappears through a global bifurcation at βHET = 0 . 348 making

a heteroclinic connection between (u 1 , 0) and (u 2 , 0) equilibrium points. The two species coexist only for βT C 1 
< β < βHET 

[23] . This bifurcation scenario of the temporal model (2.1) and (2.2) is necessary to be discussed to better understand the

dynamics of the spatio-temporal extension of the model in two spatial dimensions which is discussed next. 

2.2. Spatio-temporal local model in two dimensions 

Consider a rectangular bounded domain � ⊂ R 

2 with closed boundary ∂�. Let u (x, y, t) and v (x, y, t) be the nondimen-

sional population densities at position (x, y ) ∈ � and time t for the prey and predator populations respectively. In terms of

the dimensionless variables, the spatio-temporal model corresponding to the temporal model (2.1) and (2.2) is described by 

the following reaction-diffusion system of equations: 

∂u 

∂t 
= d 1 

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
+ au 

2 (b − u ) − σ1 u − αu v 
κ + u 

, (2.5) 
3 
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∂v 
∂t 

= d 2 

(
∂ 2 v 
∂x 2 

+ 

∂ 2 v 
∂y 2 

)
+ 

βu v 
κ + u 

− σ2 v , (2.6) 

subjected to non-negative initial condition and periodic boundary conditions. Here d 1 is the diffusion coefficient of prey and 

d 2 is that of predator. The interior equilibrium point (u ∗, v ∗) of (2.1) and (2.2) is a homogeneous steady-state of the spatio-

temporal model. It is important to mention here that the spatio-temporal model (2.5) and (2.6) does not describe stationary

Turing patterns since one of the diagonal elements of H is zero. The stability conditions in the absence of diffusion are

a 11 < 0 and a 12 a 21 < 0 , as discussed before. We perturb the homogeneous steady state (u ∗, v ∗) of system (2.5) and (2.6) as

follows: 

u (x, t) = u ∗ + C 1 e 
λt+ i (k x x + k y y ) , (2.7a) 

v (x, t) = v ∗ + C 2 e 
λt+ i (k x x + k y y ) , (2.7b) 

where 0 < C 1 , C 2 � 1 , λ is the growth rate of perturbations, k = (k x , k y ) is the wave number vector and k = | k | is the wave

number. Substituting (2.7) into (2.5) and (2.6) , the characteristic equation for the growth rate λ is found from the equality

Det ( H 1 ) = 0 , where 

H 1 = 

(
a 11 − d 1 k 

2 − λ a 12 

a 21 −d 2 k 
2 − λ

)
. (2.8) 

The explicit expressions for a 11 , a 12 and a 21 are given in the previous subsection. The characteristic equation is given by

the equality: 

λ2 − λ
(
a 11 − k 2 (d 1 + d 2 ) 

)
+ h (k 2 ) = 0 , (2.9) 

where 

h (k 2 ) = d 1 d 2 k 
4 − d 2 a 11 k 

2 − a 12 a 21 . (2.10) 

Equating the derivative dh (k 2 ) 

d(k 2 ) 
of h (k 2 ) with respect to k 2 to zero at k = k T , which is the critical wave number for the Turing

instability, gives 

k 2 T = 

a 11 

2 

, 

which implies that a 11 has to be positive to maintain the positivity of k 2 
T 

. However, from the conditions of Turing insta-

bility, we know that a 11 < 0 is required for the stability of homogeneous steady state under temporal perturbations. Thus,

Turing instability conditions cannot be satisfied for the local spatio-temporal model (2.5) and (2.6) . Nevertheless, the model 

gives variety of dynamic patterns which are discussed in the section of simulation results. Next, we consider the nonlocal 

consumption of resources by prey in the spatio-temporal model. 

2.3. Nonlocal model in two spatial dimensions 

Under the assumption that prey can move from one location to another one to access the resources, the spatio-temporal 

model in two spatial dimensions with nonlocal consumption of resources has the form 

∂u 

∂t 
= d 1 

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
+ au 

2 (b − J(u )) − σ1 u − αu v 
κ + u 

, (2.11) 

∂v 
∂t 

= d 2 

(
∂ 2 v 
∂x 2 

+ 

∂ 2 v 
∂y 2 

)
+ 

βu v 
κ + u 

− σ2 v , (2.12) 

subjected to non-negative initial condition and the periodic boundary condition. The nonlocal interaction term is given by 

the integral 

J(u ) = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

K δ1 ,δ2 
(p − x, q − y ) u (t, p, q ) d pd q, 

K δ1 ,δ2 
(z 1 , z 2 ) = 

{
1 

4 δ1 δ2 
, | x | ≤ δ1 , | y | ≤ δ2 

0 , otherwise 
. 

Now, we will analyze stability of the homogeneous steady-state (u ∗, v ∗) for the nonlocal model (2.11) and (2.12) . We consider

the perturbation around it in the form 

u (x, t) = u ∗ + ε1 e 
λt+ i (k x x + k y y ) , v (x, t) = v ∗ + ε2 e 

λt+ i (k x x + k y y ) , | ε1 | , | ε2 | � 1 . 
4 
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The characteristic equation writes as | J − λI| = 0 , where 

J = 

[ 

a 1 − au 

2 
∗

sin (k x δ1 ) 
k x δ1 

sin (k y δ2 ) 

k y δ2 
− d 1 (k 2 x + k 2 y ) −a 2 

b 1 −d 2 (k 2 x + k 2 y ) 

] 

(2.13) 

and 

a 1 = abu ∗ − au 

2 
∗ + 

αu ∗v ∗
(κ + u ∗) 2 

, a 2 = 

αu ∗
κ + u ∗

, b 1 = 

βκv ∗
(κ + u ∗) 2 

. (2.14) 

Therefore, the characteristic equation is of the form 

λ2 − �(k, M) λ + �(k, M) = 0 , (2.15) 

where 

�(k x , k y , δ1 , δ2 ) = a 1 − au 

2 
∗

sin (k x δ1 ) 

k x δ1 

sin (k y δ2 ) 

k y δ2 

− (d 1 + d 2 )(k 2 x + k 2 y ) , (2.16) 

�(k x , k y , δ1 , δ2 ) = 

(
au 

2 
∗

sin (k x δ1 ) 

k x δ1 

sin (k y δ2 ) 

k y δ2 

− a 1 + d 1 (k 2 x + k 2 y ) 

)
d 2 (k 2 x + k 2 y ) + a 2 b 1 . (2.17) 

We first assume that the conditions for local asymptotic stability of the interior equilibrium point of the corresponding 

temporal model (2.1) and (2.2) are satisfied (condition (2.3) holds). The homogeneous coexistence steady-state of the local 

spatio-temporal model (2.5) and (2.6) does not lose its stability under spatio-temporal perturbations. The homogeneous 

steady-state of the nonlocal model (2.11) and (2.12) is stable under space dependent perturbations if the following two 

conditions are satisfied: 

�(k x , k y , δ1 , δ2 ) < 0 , �(k x , k y , δ1 , δ2 ) > 0 , (2.18) 

and unstable if 

�(k x , k y , δ1 , δ2 ) < 0 , �(k x , k y , δ1 , δ2 ) < 0 , (2.19) 

for any combination of values of k x , k y , δ1 , δ2 > 0 . Here we have reversed the direction of second inequality to get the Turing

instability condition. In order to simplify the forthcoming calculation we consider δ1 = δ2 and fix them to some positive 

value. The critical wavenumber (k x , k y ) and the corresponding Turing bifurcation threshold in terms of d can be obtained as

appropriate solution of the following three equations: 

�(k x , k y , δ1 , δ2 ) = 0 , 
∂ 

∂k x 
�(k x , k y , δ1 , δ2 ) = 0 , 

∂ 

∂k y 
�(k x , k y , δ1 , δ2 ) = 0 . (2.20) 

Solving equation �(k x , k y , δ1 , δ2 ) = 0 with respect to d, we get 

d 2 (k x , k y ) = 

a 2 b 1 

(k 2 x + k 2 y ) 
(

a 1 − d 1 (k 2 x + k 2 y ) − au 

2 ∗
sin k x δ1 

k x δ1 

sin k y δ2 

k y δ2 

) . (2.21) 

Substituting this expression for d 2 into the second and third conditions of (2.20) leads to two transcendental equations in

terms of two unknowns k x and k y which cannot be solved explicitly. We numerically calculate the positive zeros of two

transcendental equations over a considerable range of values of k x and k y . Substituting these solutions in (2.21) , we find

the minimal positive value of d 2 which gives the Turing threshold. If we are unable to find any feasible solution for the

transcendental equations and/or the values of d 2 are negative, then the Turing bifurcation is not possible for the chosen 

value of δ1 = δ2 and other chosen parameter values. Before all this we need to find a feasible range of k x and k y values

in the k x − k y plane for which � < 0 and Re (λ) > 0 such that the Turing bifurcation threshold is already crossed. We will

illustrate this approach with a numerical example in the upcoming section. 

2.4. Bifurcation of stationary pattern from homogeneous steady-state 

Here we discuss the bifurcation of stationary with respect to time patterns from homogeneous steady-state with the 

help of perturbation theory. Let α be a bifurcation parameter. For all values of this parameter, the constant u 0 = 

κσ2 
β−σ2 

, v 0 =
(au ∗(b − u ∗) − σ1 )(κ + u ∗) /α is a solution of this problem. When α crosses a critical value, a simple negative real eigenvalue 

of the linearized problem crosses the origin and a bifurcation occurs. Thus the perturbation of α can be considered as 

α = α0 + εα1 + ε2 α2 + ε3 α3 + . . . . 

In order to study this bifurcation, we look for the solution in the form of the expansion based on that of α to be 

u = u 0 + εu 1 + ε2 u 2 + ε3 u 3 + . . . , 

v = v 0 + εv 1 + ε2 v 2 + ε3 v 3 + . . . . 
5 
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Substituting these expansions into the following equations, (
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 

)
+ au 

2 (b − J(u )) − σ1 u − αu v 
κ + u 

= 0 , (2.22a) 

d 

(
∂ 2 v 
∂x 2 

+ 

∂ 2 v 
∂y 2 

)
+ 

βu v 
κ + u 

− σ2 v = 0 , (2.22b) 

denoting 

(
∂ 2 u 
∂x 2 

+ 

∂ 2 u 
∂y 2 

)
≡ � and equating the terms with the first power of ε, we get (

�u 1 

�v 1 

)
+ 

(
(α0 A 1 + B 1 ) u 1 − au 

3 
0 J(u 1 ) − α0 A 2 v 1 

b 1 u 1 

)
= 

(
0 

0 

)
, (2.23) 

where 

A 1 = 

u 0 v 0 
(κ + u 0 ) 2 

, B 1 = abu 0 − au 

2 
0 , A 2 = 

u 0 

κ + u 0 

, b 1 = 

βκv 0 
(κ + u 0 ) 2 

. (2.24) 

This is the corresponding eigenvalue problem of (2.22a) and (2.22b) with 0 eigenvalue. Thus the eigenfunctions can be 

chosen as 

u 1 = cos (m 1 x ) cos (m 2 y ) , v 1 = cos (m 1 x ) cos (m 2 y ) , (2.25) 

where m 1 , m 2 	 = 0 are integers. Now equating the terms with ε2 we get, (
�u 2 

�v 2 

)
+ 

(
(α0 A 1 + B 1 ) u 2 − au 

3 
0 J(u 2 ) − α0 A 2 v 2 

b 1 u 2 

)
= 

(
f 1 
0 

)
, (2.26) 

where 

f 1 = −α1 A 1 u 1 − au 

2 
0 u 1 J(u 1 ) + A 2 α1 v 1 . 

In order to obtain solvability conditions for problem (2.26) , let us note that problem (2.23) is self-adjoint since the kernel K

is an even function. Hence (2.26) is solvable if ∫ δ1 

−δ1 

∫ δ2 

−δ2 

f 1 (x, y ) u 1 (x, y ) d xd y = 0 . 

Solving for α1 we get 

α1 = 

∫ δ1 

−δ1 

∫ δ2 

−δ2 
α0 A 2 v 1 d xd y − ∫ δ1 

−δ1 

∫ δ2 

−δ2 
(α0 A 1 + B ) u 1 d xd y ∫ δ1 

−δ1 

∫ δ2 

−δ2 
A 2 v 1 d xd y − ∫ δ1 

−δ1 

∫ δ2 

−δ2 
A 1 u 1 d xd y 

If α1 	 = 0 , then from sign of α1 we get the type of bifurcation. If α1 < 0 then it is subcritical bifurcation. If α1 > 0 then it

is a supercritical bifurcation. In case if α1 = 0 then we equate the terms of ε3 and using solvability conditions, we find α2 

based on sign of which we can determine the type of bifurcation. The ε3 terms are of the form (
�u 3 

�v 3 

)
+ 

(
(α0 A 1 + B 1 ) u 3 − au 

3 
0 J(u 3 ) − α0 A 2 v 3 

b 1 u 3 

)
= 

(
f 2 
0 

)
, (2.27) 

where 

f 2 = −α2 A 1 u 1 − au 

2 
0 (u 1 J(u 2 ) + u 2 J(u 1 )) + A 2 α2 v 1 , 

taking into account α1 = 0 . In order to obtain solvability conditions for problem (2.26) , let us note that problem (2.23) is

self-adjoint since the kernel K is an even function. Hence (2.26) is solvable if ∫ δ1 

−δ1 

∫ δ2 

−δ2 

f 2 (x, y ) u 1 (x, y ) d xd y = 0 . 

Solving for α2 we get, 

α2 = 

∫ δ1 

−δ1 

∫ δ2 

−δ2 
au 

2 
0 u 1 J(u 2 ) d xd y + 

∫ δ1 

−δ1 

∫ δ2 

−δ2 
au 

2 
0 u 2 J(u 1 ) d xd y ∫ δ1 

−δ1 

∫ δ2 

−δ2 
A 2 v 1 d xd y − ∫ δ1 

−δ1 

∫ δ2 

−δ2 
A 1 u 1 d xd y 

. 

Similarly, as discussed above, if α2 	 = 0 , then from sign of α2 we get the type of bifurcation. If α2 < 0 then it is subcritical

bifurcation. If α2 > 0 then it is a supercritical bifurcation. In case if α2 = 0 then we equate the terms of ε4 and using

solvability conditions, we find α3 based on sign of which we can determine the type of bifurcation. Now we consider some

numerical results to show the bifurcation actually happening in the next section. 
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Fig. 2. Surface plots of Re (λ) (left) and � (right) for k x and k y ranging from 0.001 to 2 and (a) d = 0 . 189 , δ1 = δ2 = 1 . 9 ; (b) d = 0 . 189 , δ1 = δ2 = 2 and 

other parameter values as mentioned in the text. 

 

 

 

 

 

3. Simulation results 

Here we illustrate that, one cannot find Turing patterns without the inclusion of nonlocal interaction term into the local 

model (2.5) and (2.6) . The numerical simulations are performed using five-point stencil finite difference scheme for the 

diffusion part and forward Euler method for the temporal part of both the local and nonlocal model with periodic boundary

conditions on a 100 × 100 mesh with �x = �y = 1 and �t = 0 . 01 . The results have been verified taking other values of

�x, �y and �t, and no significant changes have been observed. A small random perturbation to the homogeneous steady 

state of the system is taken to be the initial condition for all the numerical simulations which is of the form 

u (x, y, t 0 ) = u ∗ + 0 . 001 ∗ rand, 

v (x, y, t 0 ) = v ∗ + 0 . 001 ∗ rand, 

where t 0 is the initial time and rand is the MATLAB function which takes up positive no.s between 0 and 1. First we demon-

strate the Turing instability conditions and generation of Turing patterns in two-dimensional space with a numerical exam- 

ple. 

3.1. Numerical example of two dimensional Turing patterns 

Let us consider the parameter set a = 1 , b = 1 , σ1 = 0 . 1 , α = 0 . 335 , κ = 0 . 4 , β = 0 . 335 , σ2 = 0 . 2 d 1 = 0 . 1 d 2 =
0 . 189 . Keeping the parameter range similar as in Banerjee et al. [1] , we carry out analysis in two spatial dimensions. In-

stead of a single wavenumber k, we now consider two wavenumbers, k x along x direction and k y along y direction as the 
7 
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Fig. 3. (a) Surface plots of Re (λ) (left) and � (right) for k x and k y ranging from 0.001 to 2 and d = 0 . 8 , δ1 = δ2 = 6 ; (b) Stationary patterns for the prey 

population produced by the nonlocal model (2.11) and (2.12) for the corresponding parameter set; (c) Stationary pattern for the corresponding predator 

population; other parameter values are mentioned in the text. 

Fig. 4. Patterns observed for the prey population for β = 0 . 3445 : (a) snapshot of oscillatory with respect to time solution exhibited by the local model 

where the pattern is almost homogeneous in space but oscillatory in time; (b) spatial average of the prey population density plotted with respect to time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

space considered is two-dimensional. For the local model (2.5) and (2.6) , no matter what parameter set we choose, we can

never find an area in k x − k y plane for which Re (λ) > 0 and � < 0 . As a result, we do not observe stationary with respect

to time and heterogeneous with respect to space patterns for the local model (2.5) and (2.6) . 

We need to check for a range of k x and k y values in k x − k y plane, whether Re (λ) > 0 ( λ is a root of the characteristic

Eq. (2.15) ) for nonlocal model (2.11) and (2.12) and � < 0 as the nonlocal ranges δ1 and δ2 are increased. For convenience

we consider δ1 = δ2 = δ. As we increase δ from 0.001 to 0.1 to 2, the Re (λ) > 0 for two very small regions in the k x − k y 
plane at δ = 1 . 966 . Consequently � < 0 occurs at those two regions. This means, we have just crossed the Turing bifurcation

threshold δT = 1 . 965 at which � = 0 . We have plotted the surfaces of Re (λ) and � for δ = 1 . 9 and δ = 2 in Fig. 2 . Fig. 2 (a)

shows that for δ = 1 . 9 , Re (λ) < 0 and � > 0 for all the k x and k y values in k x − k y plane. Whereas for δ = 2 as shown in

Fig. 2 (b), Re (λ) > 0 and � < 0 in two very small regions in k x − k y plane, the remaining parts still giving Re (λ) < 0 and

� > 0 . We check the plots of surfaces of �k x and �k y which give zero values for major area of the k x − k y plane but we

have not kept the figures in the text. When we simulate the nonlocal model (2.11) and (2.12) for δ = 2 , we get stationary

hotspot pattern for both prey and predator populations. As we increase δ = 3 , 4 , 5 , hotspot pattern appears but the number

of spots decrease with increasing nonlocal range. 

Similarly for δ = 6 we obtain the Turing bifurcation threshold to be d 2 T = 0 . 125 . Thus, for the values of d 2 > d 2 T = 0 . 125 ,

two-dimensional stationary patterns can be observed for the nonlocal model (2.11) and (2.12) . The local spatio-temporal 

model however is unable to produce any stationary pattern and homogeneous steady state is stable under small amplitude 

heterogeneous perturbation. For d 2 = 0 . 8 , there exist pairs (k x , k y ) for which the real part of the eigenvalue is positive as

shown in Fig. 3 (a). The wave number for which the real part of the eigenvalue is positive provides the fastest growing mode

and lead to formation of the stationary hotspot pattern (see Fig. 3 ). We explore pattern formation for both the local and

nonlocal models in the next two subsections in details. 
8 
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Fig. 5. Patterns observed for the prey population for β = 0 . 35 : (a) snapshot of spatio-temporal chaos exhibited by the local model; (b) corresponding 

spatial average of the prey population density plotted with respect to time. 

Fig. 6. Patterns observed for the prey population for β = 0 . 3445 : (a) snapshot of a periodic solution exhibited by the nonlocal model for δ = 5 ; it is nearly 

homogeneous in space but oscillatory in time; (b) stationary hot spot pattern for δ = 6 . 

 

 

 

 

 

 

 

 

 

 

3.2. Patterns shown by local model (2.5) and (2.6) in two dimensions 

In this subsection we discuss some patterns produced by the local model (2.5) and (2.6) . The parameter values are taken

to be a = 1 , b = 1 , σ1 = 0 . 1 , α = 0 . 4 , κ = 0 . 4 , σ2 = 0 . 2 d 1 = 0 . 1 , d 2 = 0 . 1 . Parameter β is changed to study the pat-

tern formation scenario. Stationary patterns are not observed while time depending patterns, mainly periodic and aperiodic, 

are found for proper parametric choices. For β = 0 . 3445 we observe a periodic in time solution of the local model (2.5) and

(2.6) . Its spatial variation is weak. Fig. 4 (a) shows a snapshot of the prey distribution, and Fig. 4 (b) its spatial average as a

function of time. The corresponding predator population shows similar patterns. 

As the parameter β is increased from β = 0 . 3385 , the system (2.5) and (2.6) generates oscillatory solutions and then

spatio-temporal aperiodic solutions for β ≥ 0 . 3475 . Spatio-temporal chaos is presented for the local model for β = 0 . 35

as shown in Fig. 5 (a). In Fig. 5 (a) and (b), the snapshot of pattern shown by the prey population along with the time

evolution of the spatial average of prey density confirms the behaviour of solutions to be aperiodic. These are the two

patterns exhibited by the local model (2.5) and (2.6) in presence of diffusion terms. It is interesting to note that for the

values of β for which total extinction of both prey and predator population is observed in the temporal model (2.1) and

(2.2) (see Fig. 1 ), reaction-diffusion model (2.5) and (2.6) manifests aperiodic behaviour and imply the coexistence. 

3.3. Effects of nonlocal interaction 

In this subsection we discuss two-dimensional patterns described by the nonlocal model (2.11) and (2.12) and how the 

patterns generated by the local model (2.5) and (2.6) evolve under the effect of nonlocal interaction. For convenience, we 
9 
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Fig. 7. Patterns observed for the prey population for β = 0 . 35 : (a) snapshot of spatio-temporal chaos exhibited by the nonlocal model for δ = 5 ; (b) 

stationary hot spot pattern for δ = 6 . 

 

 

 

 

 

 

 

 

 

 

keep δ1 = δ2 = δ. Periodic with respect to time solution observed for the local model (2.5) and (2.6) for β = 0 . 3445 changes

to Turing patterns for δ = δ1 = δ2 > 6 (see Fig. 6 ). As the nonlocal range is increased, the solution retains its homogeneous

in space but periodic in time nature till δ = δ1 = δ2 = 5 as shown in Fig. 6 (a) but as δ is increased further, the solution

subsides into stationary hot spot pattern (see Fig. 6 (b)). The corresponding predator population shows similar patterns. 

Spatio-temporal chaos observed for the local model for β = 0 . 35 evolves to Turing patterns for δ = δ1 = δ2 > 5 (see

Fig. 7 ). As the nonlocal range is increased, it retains its spatio-temporal aperiodic nature till δ = δ1 = δ2 = 5 as shown in

Fig. 7 (a) but as δ is increased further, the solution subsides into stationary hot spot pattern (see Fig. 7 (b)). The corresponding

predator population also shows similar patterns. We have not presented these figures here for the sake of brevity. 

4. Conclusion 

Prey-predator interaction with prey-dependent functional response and constant intrinsic death rate for predators are 

mostly known as Gauss type models [30] . Interacting prey-predator models within heterogeneous environment and with 

Gauss type reaction kinetics are unable to produce any stationary heterogeneous distribution of both the species. Such mod- 

els can support stable coexistence of both the species when they are distributed over space homogeneously. In the pres- 

ence of space dependent population distribution and Gauss type reaction kinetics, one can find time dependent patterns 

like travelling wave, wave of invasion, spatio-temporal chaos and some transient patterns [5,21] . Prey-predator model with 

Rosenzweig–MacArthur reaction kinetics, constant death rate for predator and movement of both the species due to self dif- 

fusion only - is unable to produce any Turing pattern. Recently we have shown that incorporation of nonlocal competition 

in prey population to have access to nearby resources can lead to stationary heterogeneous distribution of prey and predator 

for a wide range of parameter values [5] . Our investigation was based upon a reaction-diffusion model with nonlocal interac-

tion and one-dimensional space. Here we extend our previous work to a similar type of problem but with two-dimensional 

space. We have considered a modified growth law for prey population, in the absence of predator, following the approach 

proposed in Banerjee et al. [1] , Petrovskii et al. [20] to justify the two-sex population growth. 

The basic model considered in this analysis is relatively new and hence firstly we have obtained the local stability an

bifurcation of homogeneous steady-states. Existence of two types of patterns, homogeneous in space but oscillatory in time 

and spatio-temporal aperiodic pattern exhibited by the reaction-diffusion model is demonstrated in detail. Main contribu- 

tion of this work is the derivation of Turing instability condition and illustration of resulting stationary pattern through 

numerical simulation for an integro-differential equation model with same reaction kinetics. Here we have considered two 

dimensional space and hence the kernel function involved with the nonlocal interaction term is modified accordingly. Small 

range of nonlocal interaction can not affect the pattern formation scenario significantly, however, reasonable long range of 

nonlocal interaction leads to spot patterns which are stationary in time. The basic reaction kinetics is valid for prey and

their specialist predator, as a result the spatial patterns produced by the reaction-diffusion model support the mechanism 

that predator follows prey density. In other words, depending upon the strength of interactions, prey can move from one 

location to other location in an irregular fashion and the specialist predators follow the changing prey density. For integro- 

differential model, the movement of prey individuals to nearby food enriched locations for over a short time scale leads to

stationary patches of prey. Reasonable amount of food source for the specialist predator also leads to the stationary patches 

of predators. This mechanism is reflected through the spot patterns produced by prey and their specialist predator. High 

density of prey and predator at the same spatial locations indicate their coexistence. 
10 
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As a first attempt towards the spatio-temporal pattern formation by a prey-predator model with nonlocal interaction 

among prey and two-dimensional space, we restrict ourselves to the illustration of stationary patterns produced by the 

prey and predator population. The associated homogeneous model exhibit a limited variety of dynamics either stable or 

oscillatory coexistence along with the extinction of one or both the species. We have demonstrated that the consideration of 

nonlocal interaction for favorable resources by the prey can lead to stationary coexistence of both the species. Abundance of 

favorable resources for prey and reasonable density of prey as main food source for predator can leads to stationary patches

of both the species over their habitats. It is important to mention here that the satisfaction of Turing instability condition for

the model with two-dimensional nonlocal kernel leads to spot patterns. The admissible range of nonlocal interaction leading 

to stationary patches is determined by the strength of reaction kinetics and rates of diffusivity of both the species. Our

future goal will be to address the pattern formation scenarios for the model which exhibit spot and labyrinthine patterns 

with nonlocal interaction terms. 
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