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Abstract
Blood coagulation represents one of the most studied processes in biomedical mod-
elling. However, clinical applications of this modelling remain limited because of the
complexity of this process and because of large inter-patient variation of the concentra-
tions of blood factors, kinetic constants and physiological conditions. Determination
of some of these patients-specific parameters is experimentally possible, but it would
be related to excessive time and material costs impossible in clinical practice. We pro-
pose in this work a methodological approach to patient-specific modelling of blood
coagulation. It begins with conventional thrombin generation tests allowing the deter-
mination of parameters of a reduced kinetic model. Next, this model is used to study
spatial distributions of blood factors and blood coagulation in flow, and to evaluate
the results of medical treatment of blood coagulation disorders.
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1 Biology andModelling of Blood Coagulation

Blood coagulation serves to stop bleeding and to preserve hemostasis in the case of
injury leading to the loss of integrity of blood vessel walls. It consists of two main
components, biochemical reactions in plasma, resulting in the formation of a fibrin clot
(Blomback 1996; Gailani and Renne 2007; Mosesson 2005), and the aggregation of
platelets (Panteleev et al. 2006;Wagner andBurger 2003). In the conventional situation
of vessel wall damage (extrinsic pathway), tissue factor comes into contact with blood
plasma, activates factors VII, IX, and X, initiating conversion of prothrombin into
thrombin (Fig. 2) (Hemker 1993; Hemker and Beguin 1995; Hoffman et al. 2005;
Mann et al. 2003). Thrombin is the main enzyme of coagulation cascade starting
the reaction of fibrin production from fibrinogen circulating in blood. On the other
hand, thrombin participates in a self-amplifying feedback loop of its own production
if the initial quantity of thrombin produced at the vessel wall exceeds some threshold
level. This pro-coagulant pathway is balanced by anti-coagulant factors including
antithrombin (Odegard and Abildgaard 1978), protein C (Oto et al. 2020), and blood
flow (Hathcock 2006), each of them having its own role. Antithrombin provides the
bistability of the coagulation pathway, protein C stops clot growth near the wall, and
blood flow removes blood factors from the clot also downregulating its growth.

Platelets are small blood cells circulating in blood flow near the vessel walls
marginated by erythrocytes. They can be activated by thrombin or other biochemical
factors, by other activated platelets, by high shear rate, and by some other mecha-
nisms. Once activated, they change their form, they begin to aggregate, and produce
numerous pro-coagulant factors participating in the coagulation cascade (Panteleev
et al. 2006; Wagner and Burger 2003). Thus, blood coagulation in plasma and platelet
aggregation are closely related and influence each other. This systemic process is also
influenced and controlled by endothelial cells at blood vessel walls, by other organs
producing blood factors and blood cells, and by the physiological conditions.

Hemostasis represents a subtle equilibrium controlled by numerous positive and
negative mechanisms. Deregulation of some of them can cause insufficient coagu-
lation and bleeding disorders including hemophilia, or to excessive coagulation and
thrombosis which can lead to stroke, heart attack, thromboembolism and to other
pathologies (Karim et al. 2020). One of the striking examples of such deregulation is
disseminated thrombosis in small lung arteries during Covid-19 pneumonitis which
seems to be the main cause of mortality during this disease (Ackermann 2020; Zuo
2020). Altogether, blood coagulation disorders represent the main cause of mortality
and morbidity, and an important burden for the public health system.

Theoretical modelling of blood coagulation has a long history, and it still remains an
active area of research.According to considered biophysical processes, we can identify
three main classes of models: ODE models of the coagulation cascade, reaction–
diffusionmodels of clot growth in a quiescent plasma, andmodels of blood coagulation
in flow. There are numerous chemical kinetic models describing coagulation reactions,
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Fig. 1 Schematic representation of the model. It begins with an ODE model for a simplified scheme of
coagulation reactions (blue) in order to describe thrombin generation curves and to determine patient-
specific parameters (upper left rectangle). The same kinetic model with diffusion is used to describe the
propagation of coagulation wave in quiescent plasma (lower left rectangle). A similar model completed
by the Navier–Stokes equations and fibrin polymer production describes clot growth in flow (lower right
rectangle). Parameters of patient-specific treatment are determined from thrombin generation curves and
then used to model clot growth in flow (upper right rectangle) (Color figure online)

from very simple containing several equations to very complex with more than one
hundred of equations (see Belyaev et al. 2018; Chelle et al. 2018; Hemker 1993;
Hemker and Beguin 1995; Hockin 2002; Hoffman et al. 2005; Mann et al. 2003 and
the references therein). The main difficulty of complex models is that they contain
many reaction rate constants, mainly unknown or with a large discrepancy of their
values in the existing literature (Andreeva et al. 2018; Chelle et al. 2018). Since the
experimental and clinical data are often reduced to thrombin generation curves (throm-
bin concentration in time), the inverse problem for the determination of the parameters
of the model becomes highly under-determined. On the other hand, simplified models
with few equations and a relatively small number of parameters imply certain assump-
tions and approximations (quasi-stationary approximation, detailed equilibrium, etc.).
The validity of these assumptions can be difficult to verify. Therefore, clinical appli-
cations of kinetic models encounter serious difficulties which are not yet completely
overcome. This is even more true for the spatial models, especially, for blood coagula-
tion in flow, aimed to model in vivo clot growth (see, e.g., Anand et al. 2003; Biasetti
et al. 2012; Kuharsky and Fogelson 2001; Sequeira et al. 2011; Xu et al. 2010), because
many other factors can influence this process.

Keeping in mind clinical applications as a long-term objective, we develop in this
work an approach to patient-specific modelling of blood coagulation (Fig. 1). We
begin with thrombin generation tests for two group of subjects. The first one contains
healthy and hemophilic subjects. The second group contains healthy and thrombotic
subjects (“Appendix 1”). Fitting thrombin generation curves (TGCs) with a kinetic
model, we identify patient-specific parameters. In view of the discussion above, we
use a simplifiedmodel of three equations with 9 kinetic constants. Data analysis shows
that three of them essentially characterize different subgroups of patients, while other
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constants are less important. The derivation of the simplified model and fitting the
patient-specific thrombin generation curves were done in Ratto et al. (2020a).

The main objective of this work is to use the simplified kinetic model with the
patient-specific parameters in order to study spatial models of blood coagulation,
clot growth in blood flow, and to develop patient-specific treatment of coagulation
disorders. The kinetic ODE model is presented in the next section. The kinetic model
augmented by the diffusion term is used to study the propagation of coagulation wave
in a quiescent plasma (Sect. 3). We study the existence and stability of such waves,
and the existence of pulses, which determine the range of initial conditions providing
clot growth. Thesemathematical results provide amore precise understanding of these
processes. We use patient-specific values of parameters to determine the speed of clot
growth. In agreement with the previous study (Tokarev et al. 2006), it is smaller in the
hemophilic plasma in comparison with the normal plasma. The introduction of blood
flow (Sect. 4) allows us to study clot growth for the three groups of subjects modelling
in vivo conditions. The rate of clot growth and its final size are larger for thrombotic
subjects, intermediate for healthy ones, and the smallest for hemophilic patients.

Finally, in Sect. 5 wemodel the treatment of thrombosis with anti-thrombotic drugs
(warfarin, heparin). We begin with thrombin generation curves and choose the dosage
of treatment which returns TGCs to their normal characterization. The same dosage
is then used in the modelling of blood coagulation in flow.

2 Thrombin Generation Curves and Parameter Identification

Coagulation Cascade
Thrombin generation curves in platelet-poor plasma can be described by various

ODE models representing equations of chemical kinetics for the reactions of plasma
proteins called blood factors (see literature reviews in Belyaev et al. 2018; Chelle et al.
2018; Tokarev et al. 2019). Coagulation system is a cascade of proteolytic enzymatic
reactions with each level consisting of two processes: zymogen (coagulation factor)
activation to the active enzyme (activated coagulation factor), followed by its rapid
irreversible trapping by inhibitors always circulating in blood. On each level, the short-
living coagulation factor catalyses the reaction of activation on the next cascade level.
The final product of coagulation cascade is fibrin which rapidly polymerizes into a
three-dimensional mesh (gel) slowing blood flow and aggregating platelets and other
blood cells into the clot.

There are two pathways of coagulation activation (Hoffman et al. 2005; Mann
et al. 2003). Activation by the extrinsic pathway begins when blood comes in contact
with tissue factor (TF): this transmembrane protein is expressed by the majority of
cells except those normally being in contact with blood. TF binds with FVIIa, which
circulates in tiny amounts (1% of total FVII), making FVIIa able to cleave FIX and
FX to their activated forms. Intrinsic activation pathway (Kondratovich et al. 2002) is
initiated by the contact of blood with any “foreign” surface. Upon adsorption on this
surface, FXII becomes activated due to conformational changes and then stimulates
its own formation both autocatalytically and by activating prekallikrein to kallikrein:
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Fig. 2 The main activation
reactions of the intrinsic
pathway of the coagulation
cascade. Thrombin (IIa)
catalyses activation of factors V,
VIII, XI; factors XIa and IXa
catalyse activation of factors IX
and X, respectively; factors
VIIIa and Va form active
complexes with factors IXa and
Xa, respectively, and further
increase thrombin production.
Thrombin accelerates fibrin (F)
production from fibrinogen (Fg).
Fibrin polymer Fp forms the clot

kallikrein activates its cofactor high molecular weight kininogen and FXII. Generated
FXIIa activates FXI, FXIa activates FIX, and FIXa activates FX.

Both pathways unite at the activation of FX to FXa. FXa cleaves prothrombin
(FII) to thrombin (FIIa), the central coagulation enzyme. In addition to cleavage of
fibrinogen to fibrin, thrombin controls at least three positive feedback loops activating
FV, FVIII, and FXI which are located above in the cascade. Two of these loops lead to
the activation of cofactors FVa andFVIIIawhich bindwith FXa andFIXa, respectively,
forming prothrombinase and intrinsic tenase complexes having activities 104 − 105

times larger than free enzymes have. Therefore, upon the initial activation by any
pathway, local thrombin concentration increases in a dramatically nonlinear manner
leading to full fibrinogen conversion to fibrin.
Reduced Model for Platelet-Poor Plasma

We consider the model of coagulation cascade shown schematically in Fig. 2. The
corresponding ODE system can be reduced to a simplified system of three equations
for prothrombin P , thrombin T , and activated factor X , u:

dP

dt
= −(k5u + k6T + k7T 2 + k8T 3)P, (1)

dT

dt
= (k5u + k6T + k7T 2 + k8T 3)P − k9T , (2)

du

dt
= (k1 + k2T + k3T 2)(u0 − u) − k4u. (3)

Complete kinetic system of equations, and the method of reduction using physiolog-
ically based approximations are presented in (Ratto et al. 2020a). The constant k1 in
Eq. (3) characterizes the initiation stage, while all other positive terms of these equa-
tions correspond to the propagation stage, and two negative terms in Eqs. (2), (3) to
the termination stage.
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Fig. 3 Typical thrombin generation curves for healthy (left) and hemophilia (right) subjects. Solid curves
show the fitting of data (crosses) with model (1)–(3). The main parameters characterizing TGCs are shown
in the left figure. Reprinted with permission from Ratto et al. (2020a)

Let us recall that system (2.1)–(2.3) is derived from amore completemodel describ-
ing the coagulation cascade with individual reactions between the blood factors (Ratto
et al. 2020a). Due to this reduction, the coefficients of the simplified model represent
combinations of reaction rates and initial concentrations of the more complete model.
Furthermore, reaction rate constants can be sensitive to some other factors, which are
not considered in the complete model but which can depend on individual patients.
For example, thrombin activity depends on the concentration of Na+ (Huntington
2008), etc. Thus, the coefficients of the simplified model of three equations can be
patient-dependent.
Patient-Specific Parameter Identification

The concentration of thrombin as a function of time (thrombin generation curve,
TGC) during thrombin generation test is considered as an important characteriza-
tion of blood coagulation process (Hemker 1993; Hemker and Beguin 1995; Mann
et al. 2003). Thrombin generation curves are mainly characterized by lag time tlag—
beginning of explosive growth of thrombin concentration, time to maximum of
thrombin concentration tmax (also called time to peak, TtP), the maximal value of
thrombin concentration Tmax, and endogenous thrombin potential (ETP)—the area
under the curve (Fig. 3, left). Typical TGCs for normal and hemophilia subjects are
shown in Fig. 3.

Various kinetic models are used to model thrombin generation curves (see, e.g.,
Belyaev et al. 2018; Chelle et al. 2018; Hemker 1993; Hemker and Beguin 1995;
Tokarev et al. 2019 and the references therein). The interest of model (1)–(3) is that it
contains a relatively small number of parameters, it includes themainblood factors, and
it has a clear biophysical structure including the initiation, prolongation and inhibition
stages of the coagulation cascade. Furthermore, this model is derived from a more
complete model (Tokarev et al. 2006), and it is validated by comparison with the
Hockin model (Hockin 2002) considered as one of the benchmark models.

Analysis of data from Chelle et al. (2018) shows that there is a linear correlation
between Tmax and ETP. The remaining three independent parameters tlag, tmax, and
ETP can be used to identify normal and hemophilic subjects (Ratto et al. 2020a). If we
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Fig. 4 Normal and hemophilic subjects are separated in the parameter space (k2, k6, k9) characterizing
thrombin generation curves in the case of platelet poor plasma. Hemophilic patients are shown by circles,
healthy subjects by crosses. Reprinted with permission from Ratto et al. (2020a)

use only one or two parameters, this separation is not so precise, and the two groups
partially overlap. It should be noted that this method does not allow the separation
of hemophilia A and B subjects. However, this result can depend on the organization
of thrombin generation tests, physiological parameters and clinical conditions of the
group of patients. In the second database considered in this work (“Appendix 1”),
thrombotic and normal subjects can be segregated by Tmax.

Fitting of TGCs by system (1)–(3) allows the identification of healthy and
hemophilia subjects by the parameters of this system. They are clearly separated in the
space of three parameters k2, k6, k9 (Fig. 4), while the dependence on other parame-
ters is less important. The details of the fitting procedure and parameter dependence
can be found in Ratto et al. (2020a); Ratto (2020). For the convenience of reading, it
is shortly presented in the appendix. Let us note that parameters k2 and k6 represent
combinations of original reaction rate constants and factor concentrations (Ratto et al.
2020a). However, they mainly characterize the activation of factor X by thrombin
and thrombin self-activation, respectively, while parameter k9 describes the action of
antithrombin.
Platelet-Rich Plasma

Thrombin generation curves for platelet-rich plasma are qualitatively similar to
those for platelet-poor plasma (PPP). As before, there is a clear separation of healthy
and hemophilia subjects in the space of three parameters T t P, ET P, Tlag (not shown).
In the case of healthy subjects, the presence of platelets basically acts to increase ETP.
In the case of hemophilia patients, the presence of platelets essentially widens the
distribution of points (subjects) in the parameter space.

In the case of PRP, the corresponding simplified model contains one more equation
for the concentration of activated platelets (Ratto 2020). In order to simplify the pre-
sentation, we consider in the remaining part of the paper only the model (1)–(3) for
the PPP.
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3 Reaction–DiffusionWaves of Blood Coagulation

Blood coagulation can be described as a reaction–diffusion wave (see, for exam-
ple, Guria and Guria 2015; Panfilov 2019; Pogorelova and Lobanov 2014; Zarnitsina
et al. 2001). Wave propagation is based on self-amplifying feedback loop of throm-
bin production. Thrombin (and other blood factors) diffuses ahead of the reaction
front, initiates thrombin production there, and so on, providing self-sustained prop-
agation of the coagulation reactions in space (Sect. 3.1). In general, the speed of
reaction–diffusion waves can be positive, zero or negative depending on the values
of parameters. Positive speed of the coagulation wave corresponds to clot growth.
We will see below that it can be zero or negative for hemophilia patients (Sect. 3.3).
In this case, the clot does not form. The propagation of the coagulation wave also
depends on the initial thrombin concentration which should be large enough in order
to overcome some threshold level. This critical condition is determined by the pulse
solution discussed below in Sect. 3.2. In the physiological conditions, the coagulation
wave is initiated at the blood vessel wall, e.g. in the case of injury, and it propagates
inside the vessel forming the blood clot. The wave propagation is influenced by the
blood flow (Sect. 4).

In order to study the patient-dependent properties of such waves, we will consider
the reaction–diffusion system corresponding to the kinetic system (1)–(3):

∂ P

∂t
= D

∂2P

∂x2
− (k5u + k6T + k7T 2 + k8T 3)P, (4)

∂T

∂t
= D

∂2T

∂x2
+ (k5u + k6T + k7T 2 + k8T 3)P − k9T , (5)

∂u

∂t
= D

∂2u

∂x2
+ (k2T + k3T 2)(u0 − u) − k4u, (6)

where we suppose that the diffusion coefficients of the three species are equal to each
other. We set k1 = 0 in Eq. (6) in order to describe propagation of reaction–diffusion
waves of blood coagulation sufficiently far from the vessel wall. The case where this
parameter is positive corresponds to the initiation of coagulation cascade in the bulk
during thrombin generation tests.

3.1 Existence, Stability, and Speed ofWaves

Consider system (4)–(6) for all real x . If k9 = 0, then the sum of Eqs. (4) and (5)
gives ∂ P/∂t + ∂T /∂t = 0. Therefore, if the initial conditions P(x, 0) and T (x, 0)
for the corresponding concentrations satisfy the equation P(x, 0) + T (x, 0) ≡ T0
for all x , where T0 is some constant, then a similar equality holds of all positive t ,
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P(x, t) + T (x, t) ≡ T0. Hence, system (4)–(6) can be reduced to the system

∂T

∂t
= D

∂2T

∂x2
+ (k5u + k6T + k7T 2 + k8T 3)(T 0 − T ) − k9T , (7)

∂u

∂t
= D

∂2u

∂x2
+ (k2T + k3T 2)(u0 − u) − k4u, (8)

If k9 is different from 0 but small enough, then system (7), (8) approximates system
(4)–(6). Set

F1(T , u) = (k5u + k6T + k7T 2 + k8T 3)(T 0 − T ) − k9T ,

F2(T , u) = (k2T + k3T 2)(u0 − u) − k4u.

Then, for 0 ≤ T ≤ T 0, 0 ≤ u ≤ u0,

∂ F1

∂u
≥ 0,

∂ F2

∂T
≥ 0.

Therefore, (7), (8) is a monotone system characterized by the applicability of the
maximum principle. Hence, we can use the results on the existence and stability of
waves developed for such systems (Volpert and Volpert 1990).

Let us begin with the analysis of stationary points. From the equation F2(T , u) = 0,
we express u,

u = (k2T + k3T 2)u0
10

k4 + k2T + k3T 2 ,

and substitute into equation F1(T , u) = 0:

(
k5(k2 + k2T )u0

10

k4 + k2T + k3T 2 + k6 + k7T + k8T 2

)
T (T 0 − T ) = k9T . (9)

This equation has solution T = 0, and, according to numerical estimates, up to two
positive solutions T∗ and T ∗. The existence of two positive solutions corresponds to
normal physiological conditions with two stable points of the kinetic system. The first
one T = 0, u = 0 corresponds to the case without blood coagulation, while the second
one T = T ∗, u = u∗ corresponds to the production of thrombin and activated factor
X in the coagulation cascade. The intermediate positive stationary point is unstable.

Let us recall that reaction–diffusion wave is a solution of system (7), (8) of the
form T (x, t) = θ(x − ct), u(x, t) = ω(x − ct), where c is the wave speed and the
functions θ(ξ), ω(ξ) satisfy the equations

Dθ ′′ + cθ ′ + F1(θ, ω) = 0, (10)

Dω′′ + cω′ + F2(θ, ω) = 0, (11)
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and the conditions at infinity

θ(−∞) = T ∗, ω(−∞) = u∗, θ(∞) = 0, ω(∞) = 0. (12)

Theorem 1 Suppose that Eq. (9) has two positive solutions, T∗ and T ∗, T∗ < T ∗.
Then, problem (10)–(12) has a monotonically (component-wise) decreasing solution
for a unique value of c. This solution is globally asymptotically stable, that is, for any
monotonically decreasing initial condition T (x, 0), u(x, 0) with limits (12) at infinity,
solution T (x, t), u(x, t) of system (7), (8) satisfies the following convergence

T (x, t) → θ(x − ct + h), u(x, t) → ω(x − ct + h), t → ∞

uniformly in x ∈ R, where h is some real number. The wave speed c is given by the
following minimax representation:

c = inf
w∈M

sup
x∈R,i=1,2

Dw′′
i + Fi (w1, w2)

−w′
i

= sup
w∈M

inf
x∈R,i=1,2

Dw′′
i + Fi (w1, w2)

−w′
i

,(13)

where M is a set of all smooth monotonically decreasing functions w = (w1, w2) with
limits (12) at infinity.

The proof of this theorem follows from the general results obtained for monotone
reaction–diffusion systems (Volpert and Volpert 1990).

3.2 Existence of Pulses and Conditions of Clot Growth

A positive stationary solution v = (v1, v2) of system (7), (8) with 0 limits at infinity
is called a pulse solution. It is a solution of the following problem:

Dv′′
1 + F1(v1, v2) = 0, (14)

Dv′′
2 + F2(v1, v2) = 0, (15)

v(±∞) = 0. (16)

Wewill use the notation F = (F1, F2). The existence and instability of a pulse solution
are determined by the following theorem.

Theorem 2 Problem (14)–(16) has a positive solution if and only if the wave speed
c in problem (10)–(12) is positive. The operator Lu = Du + F ′(v(x))u linearized
about this solution has a positive eigenvalue, resulting in the instability of this solution
as a stationary solution of system (7), (8).

The proof of the existence of solutions is based on the Leray–Schauder method. It
is similar to the proof for more complete models of blood coagulation (Galochkina
et al. 2018; Ratto et al. 2020b). The spectral properties of the operator L follow
from Volpert and Volpert (2020). Indeed, since the equation Lu = 0 has a nonzero
solution u(x) = v′(x), then 0 is an eigenvalue of the operator L and the corresponding
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eigenfunction w′(x) is not positive. Therefore, 0 is not the principal eigenvalue, and
there exists a positive eigenvalue of the operator L .

The pulse solution separates initial conditions of problem (7), (8) for which the
solution of this problem grows or decays in time.

Theorem 3 There exist sequences of functions ṽk(x) = (ṽk
1(x), ṽk

2(x)) and v̂k(x) =
(v̂k

1(x), v̂k
2(x)) such that:

(i) ṽk(x) ≤ v(x) ≤ v̂k(x), k = 1, 2, . . . and ṽk(x) → v(x), v̂k(x) → v(x) as
k → ∞, where the inequalities are understood component-wise, and v(x) =
(v1(x), v2(x)) is a pulse solution,

(ii) If the initial condition T (x, 0), u(x, 0) of the Cauchy problem for system (7), (8)
satisfies the inequalities

T (x, 0) ≥ ṽk
1(x), u(x, 0) ≥ ṽk

2(x), x ∈ R, (17)

for some k, then T (x, t) → T ∗, u(x, t) → u∗ as t → ∞, uniformly on every
bounded interval.

(iii) If the initial condition T (x, 0), u(x, 0) of the Cauchy problem for system (7), (8)
satisfies the inequalities

T (x, 0) ≤ v̂k
1(x), u(x, 0) ≤ v̂k

2(x), x ∈ R, (18)

for some k, then T (x, t) → 0, u(x, t) → 0 as t → ∞, uniformly on the whole
axis.

The proof of this theorem is presented in “Appendix 4”.
Thus, Theorems 2 and 3 provide the conditions of clot growth, that is, of growth

of solution of system (7), (8): the wave speed c in problem (10)–(12) is positive, and
the initial condition is greater than the pulse solution. The second condition implies
that the quantities of thrombin and activated factor X produced at the initiation stage
should be larger than the threshold determined by the pulse solution.

Let us recall that in the physiological conditions clot growth starts at the damaged
wall of the blood vessel. The clot grows perpendicular to the wall inside the vessel. In
this case, we consider system (7), (8) on the half-axis x ≥ 0 with the homogeneous
Neumannboundary condition. Similar results on the existence and stability of solutions
can be obtained for the problem on the half-axis.

3.3 Patient-Specific Clot Growth Rate

Approximation of system (4)–(6) by system (7), (8) allows us to study existence and
stability of waves and pulses, but it modifies the distribution of thrombin concentration
during wave propagation. Thrombin distribution is not monotone for system (4)–(6)
(Fig. 5, left). However, if the value of the constant k9 is small enough, the wave speeds
for these two systems are close to each other.

Minimax representation (12) allows the estimation of the wave speed c approxi-
mating the experimental data (Galochkina et al. 2017a, b). In this work, we carry out

123



   50 Page 12 of 31 N. Ratto et al.

Fig. 5 Thrombin distributions described by system (4)–(6) in consecutive moments of time (left). Wave
speed for healthy subjects (circles) and hemophilia patients (crosses) (right) in µm/s. There are three sub-
groups of hemophilia patients: without wave propagation (zero speed), with a slow propagating coagulation
wave, with a fast propagating wave

numerical simulations of system (4)–(6) in order to determine the wave speed for the
values of parameters corresponding to healthy subjects and to hemophilic patients.
Numerical implementation of this system is based on an implicit–explicit finite differ-
ence method where the diffusion operator is considered implicitly while the reaction
terms explicitly with respect to time. Thomas algorithm is used to inverse the tridiago-
nal matrix corresponding to the diffusion operator. Accuracy of numerical simulations
is controlled by decreasing the space and time steps.

The values of parameters in numerical simulations are determined by fitting TGCs
(Sect. 2). The wave speed for healthy and hemophilic subjects is shown in Fig. 5
(right). For most of the hemophilic patients, the wave propagation is not observed.
According to the analysis of the previous section, we conclude that either the wave
speed is not positive in this case or the initial thrombin production is not sufficient.
The initial conditions in numerical simulation are taken sufficiently large. Therefore,
we conclude that the wave speed is not positive, and we set it 0 in Fig. 5 (right).

For some hemophilic patients, the wave speed is about 0.2 µm/s. This values is
less than the wave speed for the majority of normal subjects. Finally, there are several
patients with a high value of speed. The characterization of TGCs for these patients
is also close to normal. We can assume that the lack of factors VIII or IX, specific for
hemophilia A and B, is compensated in this case by some other factors. The first two
groups of hemophilic patients are separated from normal subjects with respect to the
wave speed.

Thus, we have identified three sub-groups of hemophilic subjects for which either
the clot does not grow at all (zero wave speed), or it grows slowly (small positive wave
speed), or it grows normally (high positive wave speed).

123



Patient-Specific Modelling of Blood Coagulation Page 13 of 31    50 

4 Blood Coagulation in Flow

4.1 Formulation of the Problem

In this section, we will consider blood coagulation in platelet-free plasma taking into
account the influence of blood flow. Platelet-free plasma is a Newtonian fluid, and
fluid motion is described by the Navier–Stokes equations

∂v

∂t
+ (v.∇)v = − 1

ρ
∇ p + ν�v − ν

K (Fp)
v, (19)

div v = 0, (20)

where v = (vx , vy) is the velocity vector, p is pressure, ν is the kinematic viscosity,
ρ is fluid density, and K (Fp) is the hydraulic permeability of the fibrin clot which
depends on the concentration Fp of fibrin polymer (Wufsus et al. 2013):

1

K (Fp)
= K0F1.5

p (1 + K1F3
p).

Equations for the concentrations of prothrombin, thrombin and activated factor X are
now considered with convective terms

∂ P

∂t
+ v.∇ P = D�P − (k5u + k6T + k7T 2 + k8T 3)P, (21)

∂T

∂t
+ v.∇T = D�T + (k5u + k6T + k7T 2 + k8T 3)P − k9T , (22)

∂u

∂t
+ v.∇u = D�u + (k2T + k3T 2)(u0 − u) − k4u. (23)

Let us recall that fibrin clot is formed by fibrin polymer due to the conversion of
fibrinogen into fibrin catalysed by thrombin (Figs. 1, 2) (see, for example, Blomback
1996; Gailani and Renne 2007;Mosesson 2005 and the references therein). Therefore,
the previous equations should be completed by the equations for fibrinogen Fg , fibrin
F , and fibrin polymer Fp:

∂ Fg

∂t
+ v.∇Fg = D�Fg − α1T Fg, (24)

∂ F

∂t
+ v.∇F = D�F + α1T Fg − α2F, (25)

∂ Fp

∂t
= α2F . (26)

The reaction term in Eq. (24) describes consumption of fibrinogen during its conver-
sion into fibrin with thrombin as an enzyme. Reaction terms in Eq. (25) characterize
production of fibrin and its consumption for the production of fibrin polymer. It does
not diffuse and is not convected [see Eq. (26)].
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Fig. 6 Schematic representation
of the computational domain
corresponding to a part of blood
vessel. The damaged vessel wall
initiating clot growth is located
in the middle of the lower
boundary

System of Eqs. (19)–(26) is considered in two-dimensional rectangular domain
0 ≤ x ≤ L , 0 ≤ y ≤ H corresponding to the interior part of blood vessel (lumen,
Fig. 6). Direction of blood flow is from left to right; the damaged part of the blood
vessel wall is at the bottom. The clot grows from the damaged wall inside the vessel.

We consider no-slip boundary conditions for the flow velocity v at the upper and
lower vessel walls 
b and 
t , and parabolic velocity profiles at the lateral walls 
l and

r :

y = 0, H : v = 0 ; x = 0, L : vx = ay(H − y), vy = 0. (27)

There are two possible formulations of flow conditions, with a given velocity at the
entrance of the vessel or with a fixed pressure difference between the entrance and
the exit. In the first case, the constant a is given; in the second case, it is unknown
and chosen in such a way that p1 − p0 = δ p, where p1 is the average pressure at
the boundary 
l , p0 at the boundary 
r , and δ p is a given number. The difference
between these two conditions becomes essential if the clot size (height and length) is
large enough. Then, its resistance influences velocity distribution. If the flow velocity
at the entrance and, consequently, total flow rate are given, then flow velocity above
the clot accelerates. Flow washes out blood factors from the clot and decelerates its
grows. Complete vessel occlusion for a dense clot is impossible in this case. If the
pressure difference is given and not the total flow rate, then flow velocity above the
clot can either increase or decrease depending on its width (Bouchnita et al. 2017a,
2020). Decelerating flow velocity promotes further clot growth which can lead to the
complete vessel occlusion. We consider here the case of given pressure difference
because it is more realistic from the physiological point of view.

Since prothrombin and fibrinogen circulate in blood flow and provide necessary
compounds for the formation of fibrin clot, we set their concentrations equal to some
given constants at the entrance of the vessel and we consider no-flux boundary condi-
tions for these concentrations at all other boundaries:

x = 0 : P = P0, Fg = F0
g , x = L : ∂ P

∂x
= ∂ Fg

∂x
= 0, y = 0, H : ∂ P

∂ y
= ∂ Fg

∂ y
= 0. (28)

The no-flux boundary conditions for thrombin and fibrin are considered at all bound-
aries:

x = 0, L : ∂T

∂x
= ∂ F

∂x
= 0, y = 0, H : ∂T

∂ y
= ∂ F

∂ y
= 0. (29)
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Fig. 7 Flow velocity for a final clot shape for hemophilia (upper figure), healthy (middle figure) and
thrombotic (lower figure) subjects (shear rate equals 20 1/s). The correspondingfibrin polymer concentration
distributions are shown in Fig. 8

Finally, simplifying the coagulation cascade, we assume that there is a flux of activated
factor X from the damaged wall:

∂u

∂n
|
w = γ (u0 − u),

∂u

∂n
|
/
w = 0. (30)

Here n is the outer normal vector, and 
 is the total boundary.

4.2 Patient-Specific Coagulation in Flow

Problem (19)–(30) is solved numerically. The details of the numerical implementa-
tion are presented in “Appendix 2”. For numerical simulations, we use patient-specific
parameters determined from thrombin generation curves for healthy, hemophilic, and
thrombotic subjects (“Appendix 3”). The corresponding flow velocity and fibrin con-
centrations are shown in Figs. 7 and 8 at the moment of time when the clot stops
growing and does not change any more. We see from Fig. 9 that clot growth stops
faster for hemophilic and thrombotic subjects than for normal subjects. In the case of
thrombotic subjects, the clot reaches the opposite vessel wall resulting in complete
occlusion.

In the case of hemophilic plasma, the final clot size is small, and it does not practi-
cally influence the flow velocity. The intermediate clot size is reached for the healthy
subject, and flow perturbation becomes visible. Finally, complete vessel occlusion
occurs for thrombotic plasma, and flow velocity is close to 0. There is still some
remaining flow due to clot permeability.

Let us note that clot shape is determined as the level line where the concentration
Fp(x, y, t) of fibrin polymer reaches 0.5 of the maximal concentration. This method
gives a good accuracy since the gradient of this concentration is very sharp. The clot
height is considered as the maximal distance from the vessel wall to this level line in
the direction perpendicular to the wall.

Dynamics of clot growth is shown in Fig. 9. For thrombotic subjects, clot reaches
the upper vessel wall leading to complete occlusion. In the case of normal subjects,
clot grows slower, and it will reach its final size later (not shown). Clot growth rate
is even slower for hemophilic subjects. Thus, the difference in thrombin generation
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Fig. 8 The concentration of fibrin polymer for a final clot shape for hemophilia (upper figure), healthy
(middle figure), and thrombotic (lower figure) subjects. Fibrin clot corresponds to the area with a high
concentration of fibrin polymer (red). The corresponding flow velocities are shown in Fig. 7 (Color figure
online)

Fig. 9 Clot height as a function of time for two subjects in each of three groups: thrombotic (two upper
curves), healthy (two middle curves), and hemophilic (two lower curves)

curves for normal, thrombotic, and hemophilic subjects manifests itself also in the
case of blood coagulation in flow. This result can be expected, but it should be verified
because spatial distribution of blood factors and blood flow influences clot growth.
Moreover, the initiation of coagulation cascade occurs uniformly in the whole volume
in thrombin generation tests, while it occurs at the vessel wall in the case of blood
coagulation in flow.

5 Treatment

Patient characterization in the space of three parameters (Sect. 2) allows us to develop
treatment protocols which transfer thrombotic and hemophilic patients to the healthy
zone. Such treatment of hemophilic patients was modelled in Ratto et al. (2020a).

123



Patient-Specific Modelling of Blood Coagulation Page 17 of 31    50 

Fig. 10 Dependence of ETP (upper left), lag time (upper right), time tomaximum (lower left), and thrombin
generation curves on the parameter k9 modelling the action of heparin (its action on k4 is not considered
here)

Here, we model the action of anti-thrombotic drugs heparin and warfarin. Since
characterization of TGCs in two experimental setups is different, we use here virtual
thrombotic patients obtained by a random change of the coefficients k2, k5 (increased),
and k9 (decreased). In order to model the experimental TGCs for thrombotic patients
in the second experimental group, it is sufficient to increase the value of ETP keeping
two other parameters the same as for healthy subjects.

Heparin increases the concentration of antithrombin. In order to take it into account,
we introduce factor α in the corresponding coefficients, αk4 and αk9, with α ≥ 1.
Warfarin influences the activity of thrombin and of factor X. We describe its action
by decreasing the initial concentrations of prothrombin, P0, and of factor X denoted
by u0. We introduce the multiplicative factor β, 0 ≤ β ≤ 1 such that the initial
concentrations of prothrombin and of factor X become, respectively, β P0 and βu0.
Then, β = 1 corresponds to the case without treatment, and β = 0 to the hypothetical
case of complete elimination of these substances. Hence, the value of β measures the
application of warfarin.

Since we model the action of heparin through the coefficients k4 and k9, we analyse
how these coefficients influence thrombin generation curves. Figure 10 shows their
dependence on the coefficient k9. The dependence of k4 is qualitatively similar (not
shown). As expected, ETP decreases, while lag time and time to maximum increase.
A similar behaviour of these parameters is observed for decreasing coefficient β (war-
farin). However, the relations between these parameters are quantitatively different for
the dependence on α in comparison with the dependence on β. Therefore, from the
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Fig. 11 Warfarin treatment applied to a virtual patient. The trajectory shows how the characterization of
thrombin generation curves (TGC) changes, while the coefficient β (modelling the action of warfarin) is
decreased up to 0.67. Treatment does not allow to move the TGC to the zone with healthy subjects (circles)

point of view of this modelling, the actions of heparin and warfarin are different, and
only one of them may not be sufficient to bring the trajectory to the healthy zone.

Figure 11 illustrates the action of warfarin on a virtual thrombotic patient character-
ized by the parameters of thrombin generation curves. This treatment does not bring
the corresponding trajectory to the healthy zone. Similarly, treatment by heparin does
not allow us to move TGC to the healthy zone (not shown). The joint action of these
drugs is shown in Fig. 12 for three different virtual patients. A proper combination of
these drugs chosen for each individual patient modifies the corresponding TGCs in
such a way that they are located in the healthy zone.

Whenwe know the parameters of treatment, we can now apply them tomodel blood
coagulation in flow (Fig. 13).

6 Discussion

Theoreticalmodelling of blood coagulation provides a better understanding of this pro-
cess in various experimental and physiological conditions. Kinetics curves in thrombin
generation tests are described by kinetic ODEmodels (Chelle et al. 2018; Dunster and
King 2017; Hoffman et al. 2005; Mann et al. 2003) (see also Belyaev et al. 2018; Pan-
filov 2019; Tokarev et al. 2019 for a more complete literature review). Clot growth in
a quiescent plasma is investigated with reaction–diffusion equations (Guria and Guria
2015; Pogorelova and Lobanov 2014; Zarnitsina et al. 2001), clot growth in blood flow
is studied by various continuous models (Belyaev et al. 2015; Bouchnita et al. 2020;
Sequeira et al. 2011; Bodnar and Sequeira 2008; Sequeira and Bodnar 2014), particle
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Fig. 12 Joint action of heparin and warfarin on three virtual patients. Properly chosen dosage of these drugs
brings the parameters of the corresponding TGCs from their original values before treatment (blue circles)
to their final values after treatment (green circles). The asterisk indicates the barycenter of the healthy
subjects shown by red circles. Treatment is characterized by the coefficients α (heparin) and β (warfarin):
1. α = 1.21, β = 0.91, 2. α = 2.19, β = 0.63, 3. α = 1.31, β = 0.77 (Color figure online)

Fig. 13 Fibrin polymer distribution for a thrombotic patient (top), and treated thrombotic patient (bottom)
for one of the treatment protocols in Fig. 12

and hybrid models (Tosenberger et al. 2013, 2016; Xu et al. 2010). These studies
concern either platelet-poor plasma, or platelet-rich plasma, or the whole blood.

These theoretical studies have some limitations. Models with more complete kinet-
ics contain too many equations and unknown constants, especially for the platelet-rich
plasma. Moreover, these constants are patient-specific with possibly large variations
(see Andreeva et al. 2018; Chelle et al. 2018) and the references therein). Models with
simpler kinetics impose some assumptions which can be difficult to verify (Tokarev
et al. 2019). Specific features of clot growth can depend on physiological conditions
and can be influenced by many different factors, such as inflammation or hypoxia
(Bouchnita et al. 2017b). Some important questions remain open even at the qualita-
tive level of understanding, such as clot formation during heart fibrillation (Karim et al.
2020). Let us also note that disseminated blood coagulation in small lung arteries is

123



   50 Page 20 of 31 N. Ratto et al.

one of the main causes of mortality during the coronavirus disease (Ackermann 2020;
Zuo 2020).

These limitations also concern the application of theoretical modelling in clinical
practice, mainly because of the large variation of patient-specific parameters and phys-
iological conditions (Andreeva et al. 2018; Bouchnita et al. 2017b; Chelle et al. 2018).
In this work, we develop a modelling approach taking into account patient-specific
parameters. We begin with simplified kinetic models and determine their parameters
from the experimental thrombin generation curves. As we discussed above, simplified
kinetics implies some assumptions on themodel, but it would be impossible to reliably
determine parameters of more complete models fitting TGCs. At the next stages of
modelling, the same kinetics equations and individual-based parameters are used to
study clot growth in quiescent plasma and in blood flow, and to evaluate treatment of
hemophilia and thrombosis.

Thrombin generation curves can be efficiently characterized by three parame-
ters, time to peak, lag time, and endogenous thrombin potential (ETP). In particular,
hemophilic and healthy subjects are well separated in the space of three parameters,
both for platelet-poor plasma and platelet-rich plasma (Ratto et al. 2020a; Ratto 2020).
Comparison of thrombotic and healthy subjects shows that a single parameter (ETP or
thrombin maximum) can be sufficient to distinguish them. However, the experimental
set-up for thrombin generation tests is different here in comparison with the first one.
Therefore, data analysis can also depend on the laboratory conditions. Furthermore,
this method does not allow the separation of hemophilia A and B patients.

Numerical simulations show that clot growth in quiescent plasma essentially differs
for healthy and hemophilic subjects. The speed of wave propagation (clot growth) for
the majority of healthy subjects is in the interval 0.25–0.7 µm/s, while for hemophilic
patients, the wave does not propagate at all or its speed is about 0.2 µm/s. This result
corresponds to the theoretical analysis establishing the conditions of clot growth: the
wave speed should be positive and the initial condition should be large enough. Positive
wave speed provides the existence of a pulse solution which determines the threshold
for the initial conditions.

It is interesting to note that 5 hemophilic patients have the speed ofwave propagation
in the normal range, and 3 of them even at the upper limit of the normal range, in spite
of the fact that these patients belong to the hemophilic zone in the (k2, k6, k9)-space
(Fig. 4, right). This means that patient characterization with TGCs is not identical
to clot growth rate. The latter is essential for the determination of the final clot size
in blood flow. Hence, some hemophilic patients can have sufficient clot formation,
while application of anti-hemophilic drugs can move them to the thrombotic zone.
Furthermore, the dependence of TGC separation on the parameter k9, characterizing
the action of antithrombin, can be an additional indication of some compensatory
mechanisms possibly existing for hemophilia patients. This question requires further
investigations.

The necessity of patient-specific hemophilia treatment is also confirmed by throm-
bin generation tests with added factors VIII or IX lacking in hemophilic plasma.
Characterization of TGCs shows the efficiency of this treatment (Ratto et al. 2020a),
but the dosage should be calculated for each individual patient. On the other hand,
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similar analysis shows that treatment with TFPI does not bring hemophilic TGCs to
the healthy zone (Ratto et al. 2020a).

Treatment of thrombotic patients seems to be even more delicate and patient-
dependent. We analysed the action of heparin and warfarin. Taken separately, they
may not bring TGCs to the healthy zone. Their combination calculated for individual
patients can be more efficient from the point of view of modifying thrombin genera-
tion curves in such a way that their characteristics become similar to those for healthy
subjects.

Numerical simulations of clot growth in blood flow show essential difference
between healthy, hemophilic, and thrombotic subjects with respect to clot growth
speed and its final size. In order to have a more precise characterization of these
groups, more complete studies are needed for a larger cohort of patients and taking
into account additional factors, such as platelet aggregation and protein C, which
influence the dynamics of clot growth.

Summarizing, we expect that the approach developed in this work can help in
patient-specific diagnosis and treatment of coagulation disorders. Further investiga-
tions are required tofill the gapbetween theoreticalmodelling and clinical applications.
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Appendix 1: Thrombin Generation Tests

Hemophilia Subjects
We use the database from the clinical study number NCT02300519 on clin-

icaltrials.gov and named “Thrombin Generation Numerical Models Validation in
Haemophilic Case”. It contains the thrombin generation data for PPP (platelet-poor
plasma) patients. For each patient, we have the evolution of thrombin concentration
over time. The initial concentrations of factor II (prothrombin), V, VII, VIII, IX, X, XI,
XII, Fg (fibrinogen), AT (antithrombin), and TFPI are measured. For the hemophilic
patients, the concentrations of TFPI antibodies are also given. The data include a set
of 40 healthy subjects and 86 hemophilia patients. We have the TGC for both PPP and
PRP samples. We focus here on PPP samples, but a similar study can be done with
PRP samples (Table1).
Thrombotic Subjects

Wepresent here the data for subjectwith thrombosis tendency. The results presented
here came out from an observational study conducted in women undergoing caesarean
section at the Research Center for Obstetrics, Gynecology and Perinatology (Moscow,
Russian Federation). All participants had elective caesarean and a absence of a history
of psychiatric diseases (including alcohol- and drug-induced and of trauma or surgical
treatment in the 90 days before the caesarean section). Recruitment occurred at the
date of hospitalization and not less than 24 h before the caesarean section. Blood
samples were obtained during routine venipunctures after the caesarean delivery due
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Table 1 Characterization of healthy and hemophilic plasma by thrombin generation tests in the first database

Mean Min Max

Healthy, PPP ETP (nM min) 584.0292 281.365 1009.341

Max (nM) 42.3619 16.7496 84.5972

TtP (min) 13.8375 9.39 19.67

Lag (min) 5.899 3.38 12

Tt0 (min) 37.448 32.33 49.79

Hemophilia, PPP ETP 317.0233 89.6358 788.2092

Max 18.6827 3.6511 82.1361

TtP 11.7627 6 25.33

Lag 2.5818 0.59 5.98

Tt0 37.4717 24.67 49.67

Healthy, PRP ETP 1406.8053 871.0079 2170.5755

Max 89.4875 45.0323 171.0094

TtP 20.0595 15.33 28.33

Lag 5.9133 3.63 11.33

Tt0 47.331 36.67 59.67

Hemophilia, PRP ETP 792.0008 52.4627 1593.9187

Max 33.4164 2.6471 100.1775

TtP 40.3265 1.75 85

Lag 9.2121 0.4 32.25

Tt0 72.4472 3.5 85.28

to the centre’s follow-up protocol so that no additive venipunctures were performed.
There are 32 healthy persons and 29 subjects. The blood samples were processed by
double centrifugation in order to obtain platelet-free plasma. The study was approved
by the ethical committee of the centre (Table2).

Appendix 2: Numerical Implementation

Numerical implementation used in this work is similar to the one presented in Bouch-
nita et al. (2017a). The reaction–diffusion system of equations is solved using a finite
difference method. The blood flow is driven by the pressure difference p1 − p0 = δ p,
where δ p is a given number. We use the Chorin projection method for the imple-
mentation of the Navier–Stokes equations, and the successive over-relaxation (SOR)
method for the pressure Poisson problem.

We now be briefly summarize the implementation. We begin by describing the
Chorin projection method (Beavers and Joseph 1967; Chorin 1968) used to solve
the Navier–Stokes equations for the incompressible fluid. The computation occurs in
three steps and uses some intermediate velocities. The Navier–Stokes equations for
the incompressible fluid read:
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Table 2 Characterization of healthy and thrombotic plasma by thrombin generation tests in the second
database

Mean Min Max

Healthy, PFP ETP (nM min) 193.0005 137.185 258.2122

Max (nM) 34.9327 27.3648 45.2064

TtP (min) 1.9708 1.5333 2.5333

Lag (min) 0.53437 0.53333 0.55

Tt0 (min) 33.4099 16.5333 46.0333

Thrombosis, PFP ETP 350.6711 152.603 681.7575

Max 61.9695 42.6312 96.0534

TtP 1.8701 1.55 2.0833

Lag 0.57759 0.51667 0.96667

Tt0 37.1776 14.0167 57.55

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂ y
= − 1

ρ

∂ p

∂x
+ μ

(
∂2vx

∂x2
+ ∂2vy

∂ y2

)
− μ

K f
vx , (31)

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂ y
= − 1

ρ

∂ p

∂ y
+ μ

(
∂2vx

∂x2
+ ∂2vy

∂ y2

)
− μ

K f
vy, (32)

∇v = 0. (33)

We denote the time step by dt , and, at time step n, we denote by vn the flow velocity.
The space step is the same for the x−axis and the y−axis and is denoted by h.

Step 1: Nonlinear term. We compute an intermediate velocity (v∗
x , v∗

y) which sat-
isfies the equations:

v∗
x − vn

x

dt
= −vn

x (vn
x )+x − vn

y (v
n
x )+y − μ

K f
vn

x , (34)

v∗
x − vn

x

dt
= −vn

x (vn
y )

+
x − vn

y (v
n
y )

+
y − μ

K f
vn

y , (35)

where (vn
x )+x , (vn

x )+y , (vn
y )

+
x and (vn

y )
+
y , respectively, correspond to the discretization

of ∂vx
∂x , ∂vx

∂ y ,
∂vy
∂x and ∂vy

∂ y . In order to avoid convection dominated problems, we use an

upwind method to discretize (vn
x )+x , (vn

x )+y , (vn
y )

+
x and (vn

y )
+
y .

Step 2: Viscosity terms. We treat the viscosity terms with an implicit method. To
compute the second intermediate velocity (v∗∗

x , v∗∗
y ), we solve the equations:

v∗∗
x − v∗

x

dt
= μ((v∗∗

x )xx + (v∗∗
y )xx ), (36)

v∗∗
y − v∗

y

dt
= μ((v∗∗

x )yy + (v∗∗
y )yy), (37)
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in which subscripts xx and yy denote the discretization of the second derivative of
v∗∗

x and v∗∗
y .

Step 3: Pressure correction. Finally, we compute the velocity vn+1 at time n + 1
by correcting the second intermediate velocity (v∗∗

x , v∗∗
y ) using the implicit pressure

gradient
(

∂ pn+1

∂x ,
∂ pn+1

∂ y

)
:

vn+1
x − v∗∗

x

dt
= − 1

ρ

∂ pn+1

∂x
, (38)

vn+1
y − v∗∗

y

dt
= − 1

ρ

∂ pn+1

∂ y
, (39)

where the pressure gradient is obtained implicitly by solving the Poisson problem:

− 1

ρ
�pn+1 = − 1

dt
∇.vn . (40)

To solve problem (40), we use the SORmethod, which converges faster than the Jacobi
and Gauss–Seidel methods. The SORmethod is an iterative method; hence, we repeat
the iteration:

pk+1
i, j = (1 − ω)pk

i, j + ω

4
(pk

i+1, j + pk
i, j+1 + pk

i−1, j + pk
i, j−1)

− ρh

2dt
(vn

i+1, j + vn
i, j+1 + vn

i−1, j + vn
i, j−1), (41)

until it converges. The constant ω is the relaxation factor. We denote by Nx × Ny

the size of the grid mesh used for the computation. Hence, in order to have a fast
convergence, we set:

ω = 2

⎛
⎝1 +

√
1 − (cos(π/Nx ) + cos(π/Ny))2

2

⎞
⎠

−1

. (42)

Appendix 3: Values of Parameters

For the numerical implementation, we use the following value of parameters (Figs. 7
and 8):
For the fluid, we use the following values:
Modelling with treatment (Fig. 13, Tables3, 4 and 5).

Appendix 4: Proof of Theorem 3

Theorem 3 There exist sequences of functions ṽk(x) = (ṽk
1(x), ṽk

2(x)) and v̂k(x) =
(v̂k

1(x), v̂k
2(x)) such that:
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Parameters Healthy Thrombosis Hemophilia

k1 4.802e−05 4.802e−05 1.231e−05
k2 1.111e−05 1.111e−05 1.376e−06
k3 2.448e−07 2.448e−07 7.992e−09
k4 0.000479 0.000379 0.000492
k5 1.859e−05 3.859e−05 3.107e−06
k6 3.762e−06 4.762e−06 3.092e−06
k7 1.285e−10 1.285e−10 2.664e−10
k8 4.066e−10 4.0660e−10 1.433e−11
k9 0.0202 0.00902 0.0684
P0 1400 1900 1400
X0 135 175 135

Constant Signification Value

D Diffusion coefficient 5e−5
Re Reynolds number 100
dt Time step 0.02
h Space step 0.025
dp Pressure difference 0.001
Nx nodes along the x-axis 400
Ny nodes along the y-axis 50
w Wound length 0.5

Table 3 Subject 1 Parameters Thrombosis Treatment

k1 1.175e−04 1.175e−04

k2 6.301e−05 6.301e−05

k3 7.940e−06 7.940e−06

k4 0.000465 0.000465

k5 1.362e−05 1.362e−05

k6 3.253e−06 3.253e−06

k7 4.748e−11 4.748e−11

k8 8.175e−11 8.175e−11

k9 0.0331 0.0398

P0 1425 1295

X0 147 134

(i) ṽk(x) ≤ v(x) ≤ v̂k(x), k = 1, 2, . . . and ṽk(x) → v(x), v̂k(x) → v(x) as
k → ∞, where the inequalities are understood component-wise, and v(x) =
(v1(x), v2(x)) is a pulse solution,

(ii) If the initial condition T (x, 0), u(x, 0) of the Cauchy problem for system (7), (8)
satisfies the inequalities

T (x, 0) ≥ ṽk
1(x), u(x, 0) ≥ ṽk

2(x), x ∈ R, (43)
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Table 4 Subject 2 Parameters Thrombosis Treatment

k1 3.916e−05 3.916e−05

k2 6.134e−05 6.134e−05

k3 8.021e−06 8.121e−06

k4 0.000461 0.000461

k5 1.327e−05 1.327e−05

k6 3.214e−06 3.214e−06

k7 5.243e−11 5.243e−11

k8 6.764e−11 6.764e−11

k9 0.0255 0.0561

P0 2300 1437

X0 350 218

Table 5 Subject 3 Parameters Thrombosis Treatment

k1 3.712e−05 3.712e−05

k2 1.512e−04 1.512e−04

k3 7.940e−06 7.940e−06

k4 0.000478 0.000478

k5 1.352e−05 1.352e−05

k6 3.324e−06 3.324e−06

k7 1.139e−11 4.748e−11

k8 1.962e−11 8.175e−11

k9 0.0332 0.0431

P0 1425 1096

X0 147 113

for any k, then T (x, t) → T ∗, u(x, t) → u∗ as t → ∞, uniformly on every
bounded interval.

(iii) If the initial condition T (x, 0), u(x, 0) of the Cauchy problem for system (7), (8)
satisfies the inequalities

T (x, 0) ≤ v̂k
1(x), u(x, 0) ≤ v̂k

2(x), x ∈ R, (44)

for any k, then T (x, t) → 0, u(x, t) → 0 as t → ∞, uniformly on the whole
axis (Tables5).

Proof Consider a sequence hk such that hk → 0 as k → ∞ and set

ṽk(x) = max(v(x), v(x + hk)), v̂k(x) = min(v(x), v(x + hk)).

Then, condition (i) is satisfied.
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Let us now verify (ii). Function ṽk(x) is a lower function for system (7), (8). This
means that solution T (x, t), u(x, t) with initial condition ṽk(x) is a growing function
of t for any x fixed. SinceT ∗, u∗ is a stationary solution of this system, and ṽk

1(x) < T ∗,
ṽk
2(x) < u∗, then the same inequalities hold for the solution:

T (x, t) < T ∗, u(x, t) < u∗, x ∈ R, t > 0. (45)

Hence, there exist the limits

T0(x) = lim
t→∞ T (x, t), u0(x) = lim

t→∞ u(x, t). (46)

By virtue of (45),

T0(x) ≤ T ∗, u0(x) ≤ u∗, x ∈ R.

Next, we prove that

T0(x) ≡ T ∗, u0(x) ≡ u∗, x ∈ R. (47)

Indeed, suppose that this is not the case. Then, there are two possible cases. In the
first one, the functions T0(x) and u0(x) are monotonically increasing or decreasing.
This means that system (10), (11) has a solution for c = 0. This contradicts Theorem
2 stating that c > 0. If at least one of these functions is not monotone, then we set
T1(x) = min(T0(x), T0(x + h)), u1(x) = min(u0(x), u0(x + h)). For h sufficiently
small,

T (x, 0) ≤ T1(x), u(x, 0) ≤ u1(x), x ∈ R.

Since T1(x) ≤ T0(x), u1(x) ≤ u1(x), and T1(x), u1(x) is an upper function for system
(7), (8), then the solution with this initial condition is monotonically decreasing with
respect to t . We obtain a contradiction with convergence (46). Thus, (47) is proved.

In order to prove (ii), it remains to note that for any initial condition greater than
vk(x) for all x , the solution remains greater than T (x, t), u(x, t) and, consequently,
converges to T ∗, u∗ uniformly on every bounded set. The proof of (iii) is similar. The
theorem is proved. ��

Appendix 5: Data Fitting

For the convenience of reading, we present here a shortened description of the fitting
algorithm used in Ratto et al. (2020a); Ratto (2020) in order to approximate thrombin
generation curves by system of equations (1)–(3).
Smoothing Algorithm

At the first stage of data treatment, experimental thrombin generation curves are
smoothed because the relative value of their perturbation become sufficiently high
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when thrombin concentration approaches to zero. Consider a sequence xn correspond-
ing to the values of some concentration at themoments of time tn . Then,we set y0 = x0,
yn+1 = αxn+1 + (1 − α)xn . Therefore, the first value of the sequence remains the
same, while all other values are obtain as a linear interpolation between two neigh-
bouring points. The value of α determines the rate of smoothing. We use α = 0.9
(weak smoothing) in the beginning of the thrombin generation curve and α = 0.2 at
the tail of the curve where the perturbations are stronger. The smoothing algorithm
is used twice, and the fitting algorithm described below is applied to the smoothed
curves.
Gradient Method

For a set of parameters K = (k1, . . . , k9) of the reduced model (1)–(3), we denote
by�K the corresponding solution.We aim to compute the gradient of�K with respect
to K . A numerical approach can be implemented, since the gradient of �K can be
computed considering small variations of K . For the data set D(ti ), i = 1, . . . , n
determined at time t = ti , we introduce the error function

E(K ) = 1

2

n∑
i=1

‖�K (ti ) − D(ti )‖2,

where ‖ · ‖ denotes Euclidian norm. Depending on the available data, D(ti ) can be a
scalar or a vector variable, and �K corresponds here to the same components of the
vector. The gradient with respect to K of the error function is as follows:

∇E(K ) =
n∑

i=1

∇(�K )T (�K − D),

where T denotes the transposition. The gradient method converges but the error func-
tion E(K ) possesses several local minima, so that the result can depend on the choice
of the initial approximation. We use Monte Carlo algorithm to find several starting
points, and then, we apply the gradient method for each one of them. We keep the set
of parameters that minimize the error, and we stop the process if the relative errors for
the ETP, the lag time, the maximum and the time to peak are less or equal to 10 %.
Error Estimate

The relative error in the data fitting is given in the following table.

Value Relative error in %

ETP 9.9
Max of thrombin 1.8
Time to peak 4.5
Lag time 8.5

Since we know how the characterization of thrombin generation curves depends on
each parameter (see, for example, Fig. 10 for k9), we can estimate the error in the
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determination of parameter values. For the parameter k9, we use the dependence
of time to peak and maximum of thrombin (not shown). The relative error for k9
is estimated by ±5%. The dependencies of ETP and of lag time give larger error
estimates for which the value of time to peak will be outside the admissible interval.
Therefore, we should use the smallest estimate.

In further estimates, we restrict ourselves to the parameters k2 and k6 since other
parameters are less important for the characterization of thrombin generation curves.
We obtain 30% for k2 (lag time) and 10% for k6 (maximum of thrombin). Let us note
that the worst estimate 30% remains acceptable compared to the estimates from the
other works (cf. Chelle et al. 2018).
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