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ABSTRACT

We propose GOTEX, a general framework for texture synthesis by optimization that constrains
the statistical distribution of local features. While our model encompasses several existing texture
models, we focus on the case where the comparison between feature distributions relies on optimal
transport distances. We show that the semi-dual formulation of optimal transport allows to control
the distribution of various possible features, even if these features live in a high-dimensional space.
We then study the resulting minimax optimization problem, which corresponds to a Wasserstein
generative model, for which the inner concave maximization problem can be solved with standard
stochastic gradient methods. The alternate optimization algorithm is shown to be versatile in terms
of applications, features and architecture; in particular it allows to produce high-quality synthesized
textures with different sets of features. We analyze the results obtained by constraining the distribu-
tion of patches or the distribution of responses to a pre-learned VGG neural network. We show that
the patch representation can retrieve the desired textural aspect in a more precise manner. We also
provide a detailed comparison with state-of-the-art texture synthesis methods. The GOTEX model
based on patch features is also adapted to texture inpainting and texture interpolation. Finally, we
show how to use our framework to learn a feed-forward neural network that can synthesize on-the-
fly new textures of arbitrary size in a very fast manner. Experimental results and comparisons with
the mainstream methods from the literature illustrate the relevance of the generative models learned
with GOTEX.

Keywords Optimal Transport · Generative model · Texture Synthesis

1 Introduction

A lot of attention has been recently drawn on the problem of designing deep generative models from an image
database [17, 2, 25]. In contrast, synthesizing a texture from a single sample is a long-standing image processing
problem for which many solutions have been proposed, as we will recall below. The main purpose of this work is
to discuss whether the methodology developed for deep generative models can adapt to the case of learning from a
single texture sample, depending on the choice of textural features that one wishes to preserve. We will restrict to the
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GOTEX: a Generative model based on Optimal transport for synthesizing TEXtures

relatively simple case of stationary textures (i.e. with no large geometric deformations nor lighting changes) which
already benefits from powerful tools for analysis and synthesis.

1.1 Features for texture synthesis

In the stationary setting, the common point of view adopted in parametric texture models is to represent the textu-
ral aspect through the statistics of local features extracted from the neighborhoods of all pixels. Parametric texture
models thus encompass the Gaussian model [11] (based on mean and covariances of pixel values), the Heeger-Bergen
model [20] (based on first-order distributions of responses to a filter bank) and the Portilla-Simoncelli approach [38]
(based on second-order statistics computed on complex wavelet filter responses).

More recently, features extracted with a deep convolutional neural network have permitted to accurately solve difficult
imaging problems, with tremendous success in image classification [29, 45] or texture synthesis [14] for example.
Such deep features are nevertheless complex to understand and to interpret. This makes difficult the prediction and the
tuning of the results provided by methods based on deep features. An illustration of this major caveat is that, among
all existing representation learning techniques, the only pre-trained neural features that are used in practice for texture
synthesis (e.g. in [24, 48]) are solely based on the VGG network trained on ImageNet [45], as proposed in the seminal
work of [14]. As shown in our experiments of section 6, Adversarial-based techniques are not competitive when
training on a single image. Additionally, those features require GPUs with large memory to be computed efficiently.
A question that naturally arises is then: do we actually need deep features to encode a texture?

Deep features are computed from the image on patches, which are small regions of size s× s around each pixel, also
called the local receptive field of the feature. Patches of pixels are the simplest local feature that can be considered
in this setting. Such a patch representation has originally be proposed to design texture synthesis methods based on
simple iterative copy/paste operations or nearest-neighbor assignments [10, 31]. The patch representation has also
been widely exploited for other purposes. It is indeed at the core of efficient image restoration methods [4, 32, 22].
Recently, it has also been shown to be powerful in comparison to representation learning techniques [47].

Current limitations Patch-based approaches generally suffer from three main practical limitations. First, the
patches are often processed independently and then combined to form a recomposed image [13, 33]. The overlap
between patches leads to low frequency artifacts such as blurring. Second, the optimization has to be performed se-
quentially in a coarse-to-fine manner (both in image resolution and patch size) starting from a good initial guess. Last,
global patch statistics must be controlled along the optimization to prevent strong visual artifacts [19, 26].

In the deep neural network community, deep feature representations have overtaken the patch representation in most of
recent texture synthesis methods. Patches may indeed be considered to be less informative than deep features. Popular
texture synthesis methods such as [14], which enforces the Gram matrices of deep features from the synthesized
texture, do not provide meaningful results if deep features are replaced by patches. Nevertheless, the use of deep
features leads to visual artifacts such as color inconsistencies or checkerboard patterns on the generated texture. Post-
processing steps such as histogram equalization as in [14] or the application of median filter are necessary to provide
relevant synthesis [9].

1.2 Optimal transport for texture synthesis

Should we be working with patches or deep features, one common difficulty is to design tools that allow to compare
the distribution of patches or feature responses (which both live in a high-dimensional space and have a strongly
non-Gaussian behavior).

In this work, we propose to compare these distributions with an optimal transport (OT) cost. Contrary to divergences
(e.g. Kullback-Leibler), the OT distance is a relevant tool for comparing distributions that have disjoint supports. It is
also adapted for matching both discrete and continuous distributions. As we now detail, the use of OT cost for texture
synthesis has already proven to be fruitful in the literature.

For example, the authors of [46] suggest to rely on discrete Wasserstein distances in order to measure the proximity
of distributions of extracted features (thus reinterpreting the Heeger-Bergen algorithm [20] as an alternate gradient
descent on a composite Wasserstein cost). In [40] a sliced Wasserstein distance is used on distributions of local
features (responses to a steerable pyramid) in order to compute texture barycenters. Notice also that such a sliced
Wasserstein distance was used in [21] to compare distributions of deep features, in order to address texture synthesis.
Wasserstein distances can also be used to compare patch distributions, either with a discrete formulation [19] or a semi-
discrete one [13, 33]. In [49], the authors proposed to extract the means and covariances of the feature responses and
then to rely on the Wasserstein distance between the corresponding Gaussian distributions. This method exploits the
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closed-form formula of the Wasserstein distance between Gaussian distributions, which can be efficiently computed in
any dimension (as already used in [51] for dynamic textures). This can be seen as an extension of the model from [14]
that compares feature distributions by exploiting the Frobenius norm between Gram matrices of features. However,
the approach in [49] cannot handle non-Gaussian behavior of the feature responses. In the following, we will instead
consider the general optimal transport case with no assumption on the feature distribution.

Current limitations of Wasserstein Generative models In parallel, the use of Wasserstein distances has helped to
improve models based on adversarial training. As introduced in [17] for image synthesis from a database, a generative
adversarial network (GAN) is inherently trained to fool another neural network that is simultaneously optimized to
discriminate between real images and synthetic images. Such an adversarial training can be formulated as the mini-
mization of a discrepancy between distributions, namely the Jensen-Shannon divergence in the original work [17] or
the 1-Wasserstein distance in the paper [2] introducing Wasserstein generative adversarial networks (WGAN). Both
these works rely on a dual formulation of the chosen discrepancy and suggest to parameterize the corresponding dual
variable by a neural network. Thanks to the properties of the Wasserstein distance, WGAN has offered an elegant
solution to mode collapse issues related to GANs. Alternative techniques to train generative neural networks also took
profit from using the OT framework. For instance, the Sliced-Wasserstein distance has been considered in the latent
space of auto-encoders in [28].

Building on these ideas, adversarial models have been proposed for texture synthesis from a single example [3] or for
feed-forward synthesis of general images [44]. Although achieving convincing performance on synthesis problems, the
main limitation of GAN or WGAN is that they require to optimize a discriminative network, which makes the process
unstable and requires a large number of additional parameters [17, 36]. In the case of WGAN, the discriminative
network is theoretically related to the dual formulation of the Wasserstein-1 distance, and thus should represent a
1-Lipschitz mapping. Different strategies have thus been proposed to enforce such a constraint (e.g. weight clipping
or gradient penalty [18]), thus only approximating the true Wasserstein-1 distance. Another strategy adopted by the
authors of [43] is to rely on regularized optimal transport, which leads to an unconstrained dual problem. However,
this new dual problem involves two dual variables that must be parameterized by two different neural networks, which
leads to a non-convex problem with twice more variables. In contrast, in [6], the optimization of the Wasserstein
distance in WGAN is driven by the semi-discrete formulation of OT between the discrete distribution of training
images and the density of generated images. This has the benefit of keeping a convex formulation for the OT dual
problem which stabilizes training [23], while not being specific to the L1 cost. In the following we will adopt the same
approach than [6, 23] to approximate the solution of OT, but we will include it in a more general framework able to
learn a generative network. In addition, the OT distances will be used not to compare distributions of generated images
but rather to constrain the feature distribution of synthesized images.

Table 1: Technical comparison of previous work based on the following criteria: Fast synthesis based on a Feed-
Forward architecture trained offline; Optimal Transport (OT) based objective function; Patch-based representation;
Deep features for optimization, where * indicates that such features are simultaneously learned during training using
an adversarial loss, rather than defined from a pre-trained neural network.

Method Feed-Forward OT Patch Deep Features
Gram-VGG [14] 7 7 7 3

SINGAN [44] 3 7 3 3*
PSGAN [3] 3 7 3 3*

Texture Networks [48] 3 7 7 3
TexOptim [31] 7 7 3 7

OPA [19] 7 3 3 7
TexTo [33] 3 3 3 7

GOTEX 3 3 3 3

1.3 Contributions and outline

As summed up in Table 1, state-of-the-art texture synthesis methods are either based on patches or deep features. In
this work, we propose a unified framework in order to address the limitations associated with both kinds of features
with a formulation inspired by generative networks.

For this purpose, we introduce a Generative model based on Optimal transport for synthesizing TEXtures (GOTEX)
while prescribing their feature distributions. The idea is to define a texture formation model as the push-forward of a
latent distribution ζ by a measurable function gθ and to consider its underlying feature distribution. Then the parameter
θ of the model is optimized to enforce the feature distribution at different scales to be close to the one of the exemplar
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Figure 1: Summary of the proposed GOTEX framework. A texture formation model is encoded with a generative
model gθ and the distribution of texture images is represented through its feature distribution µθ. The objective is then
to minimize the optimal transport cost OTc(µθ, ν) between the current feature distributions µθ and the (discrete) fea-
ture distribution ν of the example target texture u0. This framework also encompasses the case where the optimization
is done on the image pixels by taking the latent distribution as a Dirac (see section 5 for details).

image, in the sense of optimal transport. The proposed pipeline is illustrated in Fig. 1. The organization of the paper
and the description of its main contributions are listed below.

In section 2 we introduce the GOTEX framework that enforces the feature distribution of generated textures and treats
in the same way texture synthesis by pixel-wise optimization (section 2.1) and by learning a generative model (section
2.2). Both problems will respectively rely on the discrete and semi-discrete formulations of the optimal transport cost.
In section 3 we state a differentiation result that gives a formula for the gradient of the optimal transport cost between
feature distributions with respect to the parameter θ (see theorem 3).

In section 4 we present the GOTEX algorithm and detail the versatility of the framework, which can combine different
distributions of features in the texture synthesis model. Our approach namely encompasses multi-scale procedures
on patches or VGG-19 features. Contrary to previous methods relying on approximations of OT that are detailed in
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section 5.2, our framework allows for a more accurate optimization. The proposed model also offers a theoretical-
sound framework to compute barycenters of texture models, thus providing a relevant way to synthesize interpolated
textures.

In section 5, we focus on the image optimization setting where an optimization problem is solved for each new
synthesis. This involves discrete optimal transport problems that can be efficiently solved with dedicated nearest-
neighbor search libraries. We then propose an extensive analysis of the model including the comparison of different
features and losses and the comparison of different numerical methods approximating the optimal transport. In addition
to texture synthesis, we also generalize the model in order to address texture inpainting and interpolation.

In section 6, we finally demonstrate that the GOTEX framework is well suited to the training of a deep generative
feed-forward convolutional neural network, as proposed in [48, 3, 44] for texture generation.

2 GOTEX: a Generative model based on Optimal transport for synthesizing textures

In this section, we present a generic framework formulating texture synthesis as the minimization of a loss function
that reflects the proximity of a set of features of the synthesized image(s) to the ones of the example. As we will
see, different choices of the loss functions can model the statistical behavior of the features in a parametric or non-
parametric way. As we will see, when considering the feature distributions, the loss function can be expressed using
optimal transport distances.

2.1 Texture synthesis by minimizing a distance between feature sets

We first consider the synthesis of a single image u ∈ Rn with n pixels. For each pixel i of the image, we consider
a measurable map Fi : Rn → Rd that extracts a local feature of dimension d computed from the neighborhood of
pixel i. For example, Fi(u) may be a square patch of dimension d = 3 × s × s, or a collection of d neural responses
computed at pixel i. The features of the image u will be gathered in a vector F (u) = (Fi(u))1≤i≤n ∈ Rdn.

We also consider a cost function Λ : Rdn ×Rdn → R+ that is chosen to assess the proximity between feature maps.
Then we can define a loss function between two textures u ∈ Rn and u0 ∈ Rn as

L(u, u0) = Λ (F (u), F (u0)) . (1)

A new sample u of a given example texture u0 may be obtained by minimizing (1) with respect to u. If we assume that
Λ is differentiable and that for all i, Fi is differentiable with respect to the image u ∈ Rn, the loss function (1) may be
minimized by performing a gradient descent with respect to the pixels of the image u. Due to the potential non linearity
of the feature extraction operators Fi and/or of the loss function Λ such a problem is typically non-convex. However,
starting from a random initialization, gradient descent schemes can converge to local minima that will correspond to
plausible syntheses of the exemplar texture.

Remark 1. The seminal work of [14] is included in this framework. More precisely, it corresponds to take as features
Fi(u) the normalized outputs of a pre-trained VGG network [45] at different layers l, to define the Gram matrix of the
features

Gr(F (u)) =
1

n

n∑
i=1

Fi(u)F>i (u) ∈ Rd×d, (2)

and to compare Gram matrices with the squared Frobenius norm ‖.‖2F . A synthesized image is then obtained in [14]
by minimizing with respect to u the quantity

LGram(u, u0) =
∑
l

‖Gr(VGGl(u))−Gr(VGGl(u0))‖2F . (3)

2.2 Generative models

The previous model (1) requires to perform an optimization each time a new texture u is synthesized. Hence, the
authors of [48] have later proposed to first train a generative model and then realize new syntheses on-the-fly. The
optimization is realized on the parameters of a feed-forward network rather than on the image pixels.

To that end, we assume that different samples of a given texture are actually samples of a probability distribution. This
distribution is defined as the push-forward of a given random distribution ζ defined on Z (e.g. a uniform distribution ζ
on a latent spaceZ = [0, 1]M of dimensionM ), with a generator g to estimate. Let us consider a measurable generative
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function g : Θ × Z → Rn where Θ is a set of parameters. For a given parameter θ ∈ Θ we write gθ = g(θ, ·) and
we consider the output texture distribution as the push-forward gθ]ζ, which is given by gθ]ζ(B) = ζ(g−1

θ (B)) for
any Borel set B. A relevant generative model may thus be learned by minimizing with respect to the parameters θ the
following objective function:

Lgen(θ, u0) = EZ∼ζ [Λ (F (gθ(Z)), F (u0))] . (4)
When considering such generative models, we face a semi-discrete problem as the data at hand u0 is discrete while the
generated distribution gθ]ζ is expected to be absolutely continuous. In the following, we present a general framework
that includes both models (1) and (4) based on the probabilistic distributions of features.

2.3 Probabilistic representation of the features

We now define the generic texture formation model that permits to encompass the optimization on the image pixels
(1) and the optimization on the weights of a generative model (4). To that end, we propose to consider the probability
distribution of the features Fi taken on the texture distribution gθ]ζ. Assuming that all Fi are measurable, we have for
each i a local feature distribution given by

µiθ = Fi] (gθ]ζ) = (Fi ◦ gθ) ]ζ. (5)

Then the whole feature distribution of the generative model writes

µθ =
1

n

n∑
i=1

µiθ =
1

n

n∑
i=1

(Fi ◦ gθ) ]ζ. (6)

Remark 2. This formulation includes the case of the single image synthesis corresponding to the minimization with
respect to image pixels (1). If θ denotes the image to optimize, then taking ζ = δ0 and g(θ, z) = θ−z gives gθ]ζ = δθ.
Since we have Fi]δθ = δFi(θ), the underlying feature distribution of the image θ writes as the discrete probability
distribution

µθ =
1

n

n∑
i=1

δFi(θ). (7)

To perform texture synthesis, we aim at minimizing with respect to θ a distance function between µθ and the distribu-
tion ν of features extracted from a target image u0. In this setting, a natural tool for comparing probability distributions
appears to be optimal transport. We now describe our formulation based on an optimal transport distance.

2.4 Optimal Transport cost for comparing feature distributions

Given an example texture u0, we follow the previous section and denote as ν its feature distribution:

ν =
1

m

m∑
j=1

δFj(u0). (8)

Our objective is to constrain the feature distribution µθ of the synthesized textures defined in (6) in order to match
the target distribution ν. To do so, in the GOTEX framework, the loss function forces the patch distribution µθ of the
synthesized textures to be close to the empirical example patch distribution ν for the optimal transport cost

LGOTEX(θ, u0) = OTc(µθ, ν) = inf
π∈Π(µθ,ν)

∫
c(x, y)dπ(x, y), (9)

where c : Rd × Rd → R is a Lipschitz cost function (between features) and Π(µθ, ν) is the set of probability
distributions on Rd×Rd having marginals µθ and ν. When using c(x, y) = ‖x− y‖2, as done for experiments in this
paper, OTc corresponds to the square of the Wasserstein-2 distance.

Minimizing the optimal transport cost in Equation (9) with respect to one of its argument is a difficult task in general.
The situation is even harder in our case as we wish to differentiate (9) with respect to θ and we have to deal with
a nonlinear mapping θ 7→ gθ. The dual formulation of OT will allow us to separate the problems of approximating
the OT distance and minimizing w.r.t θ as in [2]. In this work, we will also exploit the discrete nature of the target
distribution ν to rely on flexible algorithms for semi-discrete optimal transport. Before going into such technical
details in the next section, we present below in (12) the final problem we will optimize.

Texture synthesis is obtained with the minimization of the optimal transport cost (9) with respect to µθ, its first
argument. Hence we consider the semi-dual formulation of the optimal transport cost.
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Remark 1 (Semi-dual formulation [42]). If X and Y are compact and the cost c is continuous, then

OTc(µ, ν) = max
ψ∈C(Y)

∫
ψc(x)dµ(x) +

∫
ψ(y)dν(y), (10)

where ψ : Y → R and its c-transform is defined by

ψc(x) = min
y∈Y

[c(x, y)− ψ(y)] . (11)

Semi-dual here refers to the fact that the dual problem is formulated with only one dual variable while the other dual
variable is optimized through the c-transform. Combining (9) and (10), we get that estimating the variable θ (a new
texture or the parameters of a generator) amounts to solving the following problem

min
θ

OTc(µθ, ν) = min
θ

max
ψ∈C(Y)

J (θ, ψ) :=

∫
ψc(x)dµθ(x) +

∫
ψ(y)dν(y). (12)

For a fixed θ, the function ψ 7→ J (θ, ψ) is concave and an optimal ψ∗ can be approximated with an averaged stochastic
gradient ascent as proposed in [16].

When the variable θ is an image, we propose in Section 5 to perform a gradient descent, whose outcome is illustrated
in Fig. 1. A stochastic gradient-based algorithm is finally proposed in Section 6 to learn a generative model using a
convolutional neural network. Both approaches exploit the property, demonstrated in Section 3, that, upon existence,
the gradient of the optimal transport ∇θOTc(µθ, ν) coincides with the gradient ∇θJ (θ, ψ∗) of the function J at an
optimal value ψ∗.

3 Gradients for the Semi-Dual Optimal Transport Cost

In this section we study the gradients with respect to θ and ψ of the optimal transport cost J (θ, ψ) introduced in (12).
In the whole section, we will assume that all feature extraction operators Fi : Rm → Rd are differentiable.

3.1 The semi-discrete formulation

When dealing with texture synthesis from a single image example, the target measure ν is an empirical feature distri-
bution with finite support

ν =

m∑
j=1

δFj(u0),

composed of m features yj = Fj(u0). In this case, the semi-dual formulation of optimal transport (12) simplifies to

OTc(µθ, ν) = max
ψ∈Rm

J (θ, ψ) =

∫
ψc(x)dµθ(x) +

1

m

m∑
j=1

ψj , (13)

where ψj = ψ(yj) and where the c-transform of ψ writes ψc(x) = minj [c(x, Fj(u0))− ψj ]. The main interest of
this formulation is that it involves only a finite-dimensional vector ψ ∈ Rm, which can be numerically optimized.
Notice also that the computation of the c-transform ψc(x) boils down to a biased nearest-neighbor assignment in the
feature space. Combining the texture formation model µθ introduced in (6) and the functional of interest J defined
in (13), the final problem to optimize reads

min
θ

OTc(µθ, ν) = min
θ

max
ψ∈Rm

J (θ, ψ) = EZ∼ζ

 1

n

n∑
i=1

ψc(Fi ◦ gθ(Z)) +
1

m

m∑
j=1

ψj

 , (14)

where θ can be a single image (Section 5) or the parameters of a generative network with input noise Z (Section 6).
The end of this section is focused on the computation of the gradients of this quantity with respect to θ and ψ.

3.2 Gradient with respect to θ

This section discusses the computation of the gradient with respect to the parameter θ of the optimal transport
cost OTc(µθ, ν). We provide a sufficient condition (related to the regularity of the generator gθ and to the
feature distribution µθ) that ensures existence of ∇θJ (θ, ψ). Besides, under the same condition, we show that
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∇θOTc(µθ, ν) = ∇θJ (θ, ψ∗) with ψ∗ ∈ arg maxψ J (θ, ψ) as soon as both terms are well defined.

As can be observed in expression (14), the computation of the gradient of J with respect to θ only involves the
differentiation of ψc(Fi ◦ gθ(Z)). In order to examine the regularity of ψc, we introduce the open Laguerre cells

Li(ψ) = {x | ∀k 6= i, c(x, Fi(u0))− ψi < c(x, Fk(u0))− ψk} . (15)
A simple but crucial remark directly follows from the definition of the c-transform: in the Laguerre cell Li(ψ), the
c-transform expresses as

∀x ∈ Li(ψ), ψc(x) = c(x, Fi(u0))− ψj . (16)
Therefore, ψc inherits the regularity of c in the Laguerre cells, and thus, when c is smooth, differentiability problems
can only appear at the boundaries of the Laguerre cells. In order to avoid such singularities, we formulate the following
hypothesis that constrains the feature distribution of the texture model.
Hypothesis 1. g satisfies Hypothesis 1 at (θ, ψ) if ζ

(
(Fi ◦ gθ)−1{∪jLj(ψ)}

)
= 1 for any position i, that is, for a

given variable θ, all the generated local features are almost surely within the Laguerre cells defined by ψ.

For example, if c(x, y) = ‖x − y‖pp with p > 1, then ψc is smooth on ∪jLj(ψ), whose complement is negligible for
the Lebesgue measure. Indeed, in this case its complement is given by the union of the sets

Bjk(ψ) =
{
x | ‖x− Fj(u0))‖pp − ψj = ‖x− Fk(u0)‖pp − ψk

}
(1 ≤ j, k ≤ m) (17)

which has zero Lebesgue measure, because each Bjk is contained in a sub-manifold of dimension lower than p.
Therefore, Hypothesis 1 is satisfied if, for any i, (Fi ◦ gθ)]ζ is absolutely continuous with respect to the Lebesgue
measure.

We also introduce a regularity hypothesis for the generative model gθ which will allow us to differentiate under the
expectation.
Hypothesis 2. There exists K : Θ × Z → R+ such that for all θ, there exists a neighborhood V of θ such that
∀θ′ ∈ V and for ζ-almost every z,

‖g(θ, z)− g(θ′, z)‖ ≤ K(θ, z)‖θ − θ′‖ (18)
with K verifying for all θ, EZ∼ζ [K(θ, Z)] <∞.

We can now express the gradient of J with respect to the parameter θ.
Remark 2. Assume c to be C 1 and assume that the features Fi are all differentiable and Lipschitz. Let g satisfy
Hypothesis 2. Let θ0 be a point where θ → gθ(z) is differentiable ζ(dz)-almost surely and let g satisfy Hypothesis 1
at (θ0, ψ). Then θ 7→ J (θ, ψ) is differentiable at θ0 and

∇θJ (θ0, ψ) =
1

n

n∑
i=1

EZ∼ζ
[
∂θ(Fi ◦ g)(θ0, Z)T∇ψc(Fi ◦ g(θ0, Z))

]
(19)

with∇ψc(Fi ◦ g(θ0, z)) = ∇xc(Fi ◦ g(θ0, z), Fσ(i)u0)

where σ(i) is the unique index such that Fi ◦ g(θ0, z) ∈ Lσ(i)(ψ) (which exists ζ(dz)-almost surely).

Proof. From expression (14), we see that the proof consists in differentiating the function
Hi(θ, ψ) = E [hi(θ, ψ, Z)] , with hi(θ, ψ, Z) = ψc(Fi ◦ gθ(Z)). (20)

Thanks to Hypothesis 1, for ζ-almost all z, there exists an index j such that Fi ◦ gθ(z) ∈ Lj(ψ) and thus Lj(ψ) is
an open neighborhood of Fi ◦ gθ(Z) where ψc is differentiable. Using the chain rule, we get that for ζ-almost all z,
θ 7→ hi(θ, ψ, z) is differentiable at θ0 and

∇θhi(θ, ψ, z) = ∂θ(Fi ◦ g)(θ0, Z)T∇ψc(Fi ◦ g(θ0, Z)). (21)
In order to differentiate under the expectation in (20), we have to get an integrable bound on the finite differences of
hi. For that, let us denote by κc the Lipschitz constant of c and κi the Lipschitz constant of Fi. Let us recall from [42]
that ψc is also κc-Lipschitz. Therefore, from Hypothesis 2, we get a neighborhood V of θ0 such that for any θ ∈ V
and for ζ-almost all z,

|hi(θ, ψ, z))− hi(θ0, ψ, z)| ≤ κcκi‖g(θ, z)− g(θ0, z)‖ ≤ κcκiK(θ, z)‖θ − θ0‖, (22)
with E[K(θ, Z)] <∞. This bound allows us to differentiate under the expectation and to get the expression

∇θHi(θ0, ψ) = E[∂θ(Fi ◦ g)(θ0, Z)T∇ψc(Fi ◦ g(θ, Z))]. (23)
Gathering the terms for all i leads to the desired result.
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Finally, upon existence, we can relate the gradient of J to the gradient of the optimal transport.
Remark 3. Let θ0 such that θ 7→ OTc(µθ, ν) and θ 7→ J (θ, ψ∗) are differentiable at θ0 with ψ∗ ∈
arg maxψ J (θ0, ψ) then

∇θOTc(µθ0 , ν) = ∇θJ (θ0, ψ
∗) (24)

Proof. Let us fix ψ∗ ∈ arg maxψ J (θ0, ψ). The function H(θ) = J (θ0, ψ
∗)−OTc(µθ, ν) is differentiable at θ0 and

maximal at θ0. Therefore we get∇θH(θ0) = 0.

The gradient expression found here will be later used to minimize θ → OTc(µθ, ν). A stochastic gradient-based algo-
rithm will be used to reach a local minimum of this optimal transport cost and learn the texture model gθ(Z). Notice
that evaluating ∇θJ (θ0, ψ

∗) in (24) requires the knowledge of an optimal potential ψ∗(θ0) ∈ arg maxψ J (θ0, ψ).
The next section discusses how to approximate such an optimal potential.

3.3 Super-gradient with respect to ψ

The computation of the exact transport cost is a challenging task and it has been widely studied in the literature.
Recently, a stochastic method for approximating the optimal dual potential for the semi-discrete case has been stud-
ied [16]. We propose to use this approach to approximate the optimal potential ψ∗ with a stochastic gradient ascent
scheme. Hereafter we recall with proofs some known facts about the concavity and the super-gradients of J , which
will be used in the stochastic optimization algorithm.

Let θ be a fixed parameter, in order to improve the readability we set Gi = Fi ◦ gθ and remove all the θ dependencies.
The maximization problem we aim at solving writes

max
ψ∈Rm

J (ψ) = EZ∼ζ [J(ψ,Z)] , where J(ψ, z) =
1

n

n∑
i=1

ψc(Gi(z)) +
1

m

m∑
j=1

ψj . (25)

We first recall the following result from the optimal transport theory.
Remark 4. (i) For any z ∈ Z , the function ψ → J(ψ, z) is concave on Rm.

(ii) The function ψ → J (ψ) is concave on Rm.

Proof. Let ψ1 ∈ Rm, ψ2 ∈ Rm and t ∈ [0, 1] and fix z ∈ Z . Recalling the c-transform definition ψc(x) =
minj [c(x, Fj(u0))− ψj ], we have

(tψ1 + (1− t)ψ2, z) =
1

n

n∑
i=1

min
j

[
c(Gi(z), Fj(u0))− tψ1

j − (1− t)ψ2
j

]
+

1

m

m∑
j=1

tψ1
j + (1− t)ψ2

j (26)

=
1

n

n∑
i=1

[
c(Gi(z), Fj∗(i)(u0))− tψ1

j∗(i) − (1− t)ψ2
j∗(i)

]
+

1

m

m∑
j=1

tψ1
j + (1− t)ψ2

j , (27)

where j∗(i) ∈ arg minj
[
c(Gi(z), Fj(u0))− tψ1

j − (1− t)ψ2
j

]
. Splitting c(·, ·) = tc(·, ·) + (1 − t)c(·, ·) and using

the property of the minimum function, we get that

J(tψ1 + (1− t)ψ2, z) ≥ 1

n

n∑
i=1

tmin
j

[
c(Gi(z), Fj(u0))− ψ1

j

]
(28)

+
1

n

n∑
i=1

(1− t) min
j

[
c(Gi(z), Fj(u0))− ψ2

j

]
(29)

+
1

m

m∑
j=1

tψ1
j + (1− t)ψ2

j (30)

= tJ(ψ1, z) + (1− t)J(ψ2, z), (31)

9
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which proves the first point. The second point follows by taking the expectation of both sides.

We can now state the following result that gives a super-gradient for J .

Remark 5. Let us denote by (ej)1≤j≤m the canonical basis of Rm. Let z ∈ Z , and ψ ∈ Rm. Then a super-gradient
of J(·, z) at point ψ is given by

D(ψ, z) =
1

m
1m −

1

n

n∑
i=1

ej∗(Gi(z),ψ), (32)

where

j∗(Gi(z), ψ) ∈ arg min
j

(c(Gi(z), Fj(v))− ψj) . (33)

It follows that

D(ψ) = EZ∼ζ [D(ψ,Z)] , (34)

is a super-gradient of J at point ψ.

Proof. Take z ∈ Z and ψ0 ∈ Rm. In order to demonstrate that D(ψ, z) is a super-gradient, we need to show that

∀ψ′ ∈ Rm, J(ψ′, z) ≤ J(ψ, z) + 〈D(ψ, z), ψ′ − ψ〉. (35)

We have

J(ψ, z)− J(ψ′, z) + 〈D(ψ, z), ψ′ − ψ〉 =
1

n

n∑
i=1

min
j

[c(Gi(z), Fj(u0))− ψj ] (36)

− 1

n

n∑
i=1

min
j

[
c(Gi(z), Fj(u0))− ψ′j

]
(37)

− 1

n

n∑
i=1

(
ψ′j∗(Gi(z),ψ) − ψj∗(Gi(z),ψ)

)
. (38)

Then, j∗(Gi(z), ψ) satisfies the min in (36) and the min in the second term (37) is by definition smaller than the value
taken at j∗(Gi(z), ψ). Therefore all terms compensate and we have

J(ψ, z)− J(ψ′, z) + 〈D(ψ, z), ψ′ − ψ〉 ≥ 0. (39)

In order to approximate an optimal potential, we will rely on an averaged stochastic super-gradient ascent as proposed
in [16]. More precisely, at each step k we sample z ∼ ζ and we update ψk as follows

ψk = ψk−1 +
1√
k
D(ψk−1, z) (40)

The final estimate for ψ∗ is obtained by averaging the estimates from a given point k0 (set to 1 in experiments)

ψ̂k =
1

k − k0 + 1

k∑
`=k0

ψ`. (41)

Finally, the combination of Theorem 3 and Theorem 5 provides us a way to approximate the gradient of the optimal
transport cost OTc(µθ, ν) with respect to θ. Then, we propose to minimize this optimal transport cost by performing
a stochastic gradient descent algorithm. In practice we will use the Adam algorithm [27]. We detail the proposed
algorithm and its application to texture synthesis in the next section.
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4 Combining Several Feature Distributions

In the previous section, we defined the problem and stated theoretical results for a single collection of local features.
In practice, texture synthesis requires to simultaneously enforce different collections of features. For instance one can
use local features at different scales in order to model image patterns of various sizes [31, 13, 44]. We now present a
general framework able to combine several sets of features.

We therefore consider a set of NF different features given by F l = (F li )1≤i≤nl , l = 1, . . . , NF , each one of size nl,
and we propose to minimize the quantity

LGOTEX(θ) =

NF∑
l=1

OTc(µ
l
θ, ν

l) =

NF∑
l=1

max
ψl∈Rml

J l(θ, ψl), (42)

where µlθ (resp. νl) is the distribution relative to the feature l of the synthesis (resp. of the example u0 that contains
ml features), i.e. µlθ = 1

nl

∑nl
i=1 δF li (θ), and where

J l(θ, ψl) = EZ∼ζ

 1

nl

nl∑
i=1

ψl,c(F li ◦ gθ(Z)) +
1

ml

ml∑
j=1

ψlj

 ,
with the c-transform defined as ψl,c(x) = min1≤j≤ml

[
c(x, F lj(u0))− ψlj

]
.

Upon existence of all terms, the gradient of the quantity (42) then reads

∇θL(θ) =

NF∑
l=1

∇θJ l(θ, ψl,∗), (43)

where ψl,∗ is an optimal Kantorovich potential for OTc(µ
l
θ, ν

l). The potential ψl,∗ can be approximated with a super-
gradient ascent (using the super-gradient of J l obtained in Theorem 5). Therefore, in order to minimize the loss
defined in (42), we propose to repeat the two following steps:

1. for each l compute ψ̂l that approximates ψl,∗ with an averaged stochastic super-gradient ascent;

2. perform an optimization step with respect to θ using (43) with ψ̂l. In the experiments we use the L-BFGS [35]
for image-based optimization in section 5 and the Adam algorithm [27] for neural-network training in sec-
tion 6.

The multi-feature process is summarized in Algorithm 1. The notation D(ψ, z) was defined in (32) but is changed
here in D(θ, ψ, z) to recall the dependency on the current θ. We now study different choices for the features (F l) for
texture synthesis.

Algorithm 1 Texture Synthesis with Prescription of Several Feature Distributions
1: Input: target image u0, initial parameter θ0, learning rates ηθ and ηψ , number of iterations Nu and Nψ , number of features
NF , optimizer Optim (s.t. Adam or L-BFGS)

2: Output: learned parameter θ∗

3: θ ← θ0 and ψl,0 = 0 for l = 1 . . . NF
4: for k = 1 to Nθ do
5: for l = 1 to NF do
6: ψ̃l,0 ← ψl,k−1

7: for ` = 1 to Nψ do
8: Draw a sample z ∼ ζ.
9: ψ̃l,` = ψ̃l,`−1 + ηψD(θk−1, ψ̃l,`−1, z)

. Gradient ascent on ψl,k (Theorem 5)
10: ψl,k ← ψ̃l,Nψ

11: θk ← Optim(
∑NF
l=1∇θJ

l(θk−1, ψl,k), ηθ) . Gradient-based update of θ (Theorem 2)

11
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4.1 Gaussian pyramid of patches

The simplest local features we can define are patches. Patches are small square sub-images of size s×s, and we define
the ith patch extractor Pi as the linear operation that extracts the s × s pixels around the pixel i of an image. In this
paragraph, the feature operators Fi are defined from such patch extractors operating at different scales.

As previously mentioned, prescribing the distribution of patches of different sizes is necessary to model image patterns
of different scales [31, 13]. Then, in order to construct a multi-scale collection of patches, we create a pyramid of down-
sampled and blurred images. For each scale l = 1, . . . , NF , we use a linear blurring and down-sampling operator Gs
that computes, for an image u with n = nW × nH pixels, a reduced version ul = Glu with nl = nH

2l−1 × nW
2l−1

pixels. We then define by P li the operator that extracts the ith patch of the blurred and down-sampled image ul, that is
P li = Pi ◦Gl. In [23] we demonstrated that state-of-the art texture synthesis results can be obtained with the collection
of features {P li }i,l.
In the following, when using such patch features within our optimal transport framework to estimate an image θ, we
consider the feature index l for scales and the loss we aim at minimizing writes

Lpatch(θ) =

NF∑
l=1

OTc(µ
l
pat(θ), ν

l
pat), where µlpat(θ) =

1

nl

nl∑
i=1

(Pi ◦Gl ◦ gθ)]ζ (44)

and where similarly νlpat is the blurred and down-sampled patch distribution of the example image example u0. The
loss (44) is referred to as the GOTEX-patch loss.

4.2 VGG features

The use of deep features extracted from a deep neural network has proven to be successful for texture generation.
In [14], the authors proposed to use the outputs from different layers of the pre-trained VGG-19 network from [45].
This fully convolutional network was introduced by the Visual Geometry Group (VGG) from the University of Oxford.
It consists of a sequence of sixteen convolutional layers of kernel size 3 × 3 with five 2 × 2 max-pooling layers with
stride 2, and three final fully connected layers (see [45] for the detailed architecture).

In this work, we are using the VGG-19 network with weights that were pre-trained for an image classification task
on the ImageNet dataset [8]. We also replaced the max-pooling layers with average-pooling layers as done in [14] in
order to reduce checkerboard artifacts. For the features, we consider the outputs from five layers (NF = 5): the first
convolutional layer and then the first convolutional layer after each pooling layer (pool1 to pool4). The related loss to
optimize reads

LVGG(θ) =

NF∑
l=1

OTc(µ
l
VGG(θ), νlVGG), with µlVGG(θ) =

1

nl

nl∑
i=1

(F li ◦ gt)]ζ (45)

and where F li corresponds to the normalized3 ith output from the layer l of the VGG-19 network and nl the spatial
size of this layer, and where similarly νlVGG is the feature distribution of the example at layer l. The loss (45) will be
referred to as the GOTEX-VGG loss.

4.3 Mixing features

The major flaw from VGG-19 feature decomposition (see Section 5.3.2) is that visual artifacts such as checkerboard
patterns or color inconsistencies can appear on the synthesized textures. Generally speaking, these problems are solved
with a posterior histogram equalization or with the use of a median filter on the final result. On the other hand, with the
multiscale patch decomposition (Section 4.1) one may fail to recover thin details at larger scales (due to the blurring
in the Gaussian pyramid). Conversely, patches at the image scale accurately restore both the local details and the color
consistency of the image, while VGG features from deeper layers can represent well larger patterns of the image.

Since several distributions of features can be combined with the GOTEX model, we propose to both enforce the VGG-
19 features from deep layers – which represent large structures and global geometry from the target texture – and
patches features from the firsts scales of the image – which represent local details and color distributions from the
target texture. We therefore propose to optimize the following loss

Lmix(θ) = λOTc(µ
1
pat(θ), ν

1
pat) +

NF∑
l=2

OTc(µ
l
VGG(θ), νlVGG) (46)

3Features maps are normalized by the tensor dimension, that is spatial and channels size.
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where the scalar λ ≥ 0 is used to balanced the discrepancy of the range values between patches and VGG features.
The loss (46) with λ = 1 will be referred to as the GOTEX-mix loss.

For the sake of completeness, we also consider a loss that includes patch and VGG features at all scales:

Lall(θ) = λ

NF∑
l=1

OTc(µ
l
pat(θ), ν

l
pat) +

NF∑
l=1

OTc(µ
l
VGG(θ), νlVGG) (47)

For λ = 1, this will be referred to as the GOTEX-all loss.

4.4 Texture barycenters

In the framework of Gatys et al. [14], the Gram loss does not represent a distance between distributions. Therefore, it
does not provide relevant results when dealing with texture interpolation. This issue has already been pointed out for
instance in [49]. In contrast, when c(x, y) = ‖x− y‖p, the optimal transport cost is related to a true distance

Wp(µ, ν) = OTc(µ, ν)
1
p (48)

called the p-Wasserstein distance, which allows to define relevant texture interpolation paths. Indeed, restricting to the
cost c(x, y) = ||x − y||2, we will now show the connection between 2-Wasserstein barycenters and the interpolation
of K textures u0, . . . , uK−1. We recall that LGOTEX(θ, uk) is the loss function (42) related to the exemplar texture uk.
This loss depends on the feature distribution (νlk)1≤l≤NF extracted from uk, for any set of features described in the
last paragraphs. Given also weights α0, . . . , αK−1 ≥ 0 such that α0 + . . . + αK−1 = 1, we propose to define a
Wasserstein barycenter of the textures (u0, . . . , uK−1) with weights (α1, . . . , αK) as the texture distribution gθ]ζ
where θ minimizes the quantity

K−1∑
k=0

αkLGOTEX(θ, uk) =

K−1∑
k=0

NF∑
l=1

αkW
2
2 (µlθ, ν

l
k) (49)

In comparison, for each separate feature l, the usual Wasserstein barycenter of νl1, . . . , ν
l
K defined in [1] is a solution

of

arg min
µl

K−1∑
k=0

αkW
2
2 (µl, νlk). (50)

Our definition of Wasserstein texture barycenter is thus an adaptation of this notion with two modifications. First,
for each feature l, µlθ is constrained to be the distribution of the feature l of gθ]ζ. Second, all features l are treated
simultaneously. The barycentric loss (49) thus provides an interpolation path between textures u0, . . . , uK−1 while
belonging to a set of texture models constrained by the choice of gθ]ζ.

5 Single Image GOTEX

In this section we focus on the particular case of synthesizing a single image. This corresponds to the case where the
model just generates a single image θ by taking gθ(z) = θ − z for all z and ζ = δ0 (see remark 2). This amounts to
minimize w.r.t. the image θ the optimal transport cost between its discrete feature distribution µθ and a discrete target
feature distribution ν. This yields a pixelwise optimization algorithm that minimizes a fully discrete optimal transport
cost between patch distributions.

We present in section 5.1 the single image setting of our GOTEX framework. We provide experimental results using
the features described in section 4 and discuss their pros and cons. Related texture synthesis methods are briefly
reviewed in section 5.2. In particular, we show that using image patches as features in this single image setting gives
an elegant interpretation of the algorithm of [19] which combines the patch-based optimization framework from [31]
with optimal transport.

Our Single Image GOTEX approach, using either patch or deep features, is compared in section 5.3 to the previously
introduced state-of-the-art methods. We illustrate that the proposed hybrid losses (46) and (47) allows to capture higher
order statistics than the perceptual loss proposed in [14]. Finally, we show in section 5.4 that our GOTEX framework
is well-suited for other tasks related to texture imaging such as texture barycenters and texture inpainting.

13



GOTEX: a Generative model based on Optimal transport for synthesizing TEXtures

5.1 Single texture synthesis

In the case of a single image generation, the GOTEX framework amounts to minimize a discrete optimal transport
cost. Let θ ∈ Rn be the image to synthesize with n pixels and µθ = 1

n

∑n
i=1 δFi(θ) its discrete patch distribution.

In order to impose on the image θ the patch distribution ν = 1
m

∑m
j=1 δFj(u0) of the exemplar image u0, we aim at

solving problem (14) that here simplifies to

min
θ∈Rn

OTc (µθ, ν) = min
θ∈Rn

max
ψ∈Rm

J (θ, ψ). (51)

In this particular discrete case, the functional of interest writes

J (θ, ψ) =
1

n

n∑
i=1

ψc(Fi(θ)) +
1

m

m∑
j=1

ψj , (52)

with
ψc(Fi(θ)) = min

j
[c(Fi(θ), Fj(u0))− ψj ] . (53)

The minimization of (51) is then done with the proposed algorithm 1 which is in this case not stochastic. From now on
and for all the experiments, we set the cost c to be the quadratic cost and in the following we illustrate the versatility of
our framework with synthesis experiments on various textures and features. After introducing the experimental set-up
in section 5.1.1, results obtained from different feature choices (exposed in section 4) are discussed in section 5.1.2.
In section 5.1.3 we finally discuss the robustness of the method with respect to the choice of the initial image.

5.1.1 Experimental setting

In this section, the L-BFGS algorithm [35] is used as the optimizer in Algorithm 1. We resort to the PyTorch imple-
mentation with the default parameter setting (for instance, ηθ = 1). The initial image θ0 is randomly sampled from a
Gaussian white noise of meanmtarget and variance 0.01σtarget wheremtarget and σtarget are respectively the mean and the
variance of the target image. The patch size used for the Gaussian pyramid of patches is 4× 4 pixels at each scale, and
the number of scales is NF = 4. We also use the KeOps library [5] to define the cost matching kernel and compute the
biased nearest neighbor map (57) efficiently on GPU. The number of inner iterations Nψ is set to 10. Example images
are all of size 256× 256 in order to compute VGG features appropriately4. The VGG features are computed using the
pre-trained VGG-19 network from the PyTorch library.

5.1.2 Experimental results with various features

Here we present the single image synthesis results from our GOTEX framework using the losses GOTEX-patch (44) ,
GOTEX-VGG (45), GOTEX-mix (46) and GOTEX-all (47). We present in Figure 2 these results for 4 given exemplar
textures. Since we use the same framework either with patches or with VGG features, we are able to discuss precisely
the pros and cons of each feature representation. The GOTEX-patch method (second column of Fig. 2) shows good
color consistency and respects the texture statistics at each scale. On the other hand, it tends to produce slightly
smoother results. The GOTEX-VGG approach (third column of Fig. 2) produces sharper results but at the cost of
color inconsistencies and visual artifacts such as checkerboard artifacts [37]. These artifacts can be explained by the
back-propagation through the non-linear VGG network and are known to appear with perceptual losses based on VGG,
see e.g. [41, 24]. The over-smoothing effect when using patches is explained by the fact that the algorithm tends to
make a compromise between the patches at each iteration (see section 5.2.1 for details on this point). Finally, by
combining patches and VGG features (fourth column of Fig. 2), the GOTEX-mix method tackles both the color and
artifact issues from the VGG features and the smoothing effect observed with GOTEX-patch. The GOTEX-all method
(fifth column of Fig. 2) produces similar results but with long-range structures that are slightly better retrieved.

5.1.3 Importance of the initialization

When using the VGG features, the choice of the initial image θ0 has a strong impact on the final result. This can
be explained by the fact that deeper layers in the VGG network only encode structures and do not encode colors.
Therefore, the minimization of GOTEX-VGG is likely to find a texture that is a local minimum but has the wrong
color distribution. This behavior was already documented in [14] where the authors proposed to perform an histogram
matching at the end of the synthesis process. On the contrary, we show in Figure 3 that using patches provides a very
consistent synthesis method, not depending on the initial image θ0 .

4Note that a multi-scale approach is required for high resolution synthesis with VGG features as studied in [15].

14



GOTEX: a Generative model based on Optimal transport for synthesizing TEXtures

examples GOTEX-patch GOTEX-VGG GOTEX-mix GOTEX-all

Figure 2: Results of GOTEX (Alg. 1) for image optimization using various combinations of features: patches
(GOTEX-patch), VGG (GOTEX-VGG), mixing patches from higher scales with VGG from lower scales (GOTEX-
mix), and combining all features (GOTEX-all).

5.2 Related works on optimal patch transport

We first show in section 5.2.1 that using image patches as features in the single image setting gives an elegant inter-
pretation of the algorithm of [19] which combines the patch-based optimization framework from [31] with optimal
transport. In section 5.2.2, we provide a review of models from the literature based on approximated optimal transport.
We also detail how the proposed framework built upon semi-discrete optimal transport both encompasses these models
and alleviates some of their caveats.

5.2.1 The specific case of patch representation

We detail here the single image optimization framework in the case where we use the patch representation (as defined
in section 4.1). Recall that, as summarized in Alg. 1, all scales l = 1, . . . , NF are treated simultaneously with GOTEX,
and we aim at solving as many optimal transport problems. For the sake of simplicity, we focus on the single scale
l = 1 case in this paragraph. In this particular case with patch features, the functional J from (52) writes

J (θ, ψ) =
1

n

n∑
i=1

ψc(Piθ) +
1

m

m∑
j=1

ψj , (54)

with
ψc(Piθ) = min

j
[c(Piθ, Pjθ)− ψj ] . (55)
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a. Sample b. Initialization c. GOTEX-patch d. GOTEX-VGG

Figure 3: Both GOTEX-patch and GOTEX-VGG are run for the same 100× 100 sample (a) with three initial images
(b). GOTEX-path produces faithful 200 × 200 synthesis (c) for any initialization whereas the GOTEX-VGG results
(d) tends to produce color inconsistencies and artifacts when the color palette of the initial guess is not close enough
to the target image.

Now, we will see that using the quadratic cost c, and using a simple gradient descent for the update on θ, the GOTEX
algorithm 1 admits an interpretation in terms of iterated weighted nearest neighbor assignments. Indeed, in the case
c(x, y) = 1

2‖x− y‖
2, Theorem 3 ensures that

∇θJ (θk−1, ψk) =
1

n

(
n∑
i=1

PTi Piθ
k−1 −

n∑
i=1

PTi Pσk(i)u0

)
, (56)

at any point (θk−1, ψk) where we can uniquely define

σk(i) = arg min
j

1

2
‖Piθk − Pju0‖2 − ψkj ∀i = 1, . . . , n. (57)

Notice that Pj is a linear operator whose adjoint operator PTj maps a given patch q to an image whose j-patch is q and
is zero elsewhere. Therefore

∑n
i=1 P

T
i corresponds to a uniform patch aggregation. To simplify, we consider periodic

conditions for patch extraction, so that
∑n
i=1 P

T
i Pi = s2I, where s2 denotes the number of pixels in the s× s patches.

Hence, from (56) and considering a step size η ns2 , η > 0, the update of u through gradient descent writes

θk = (1− η)θk−1 + ηvk, (58)

where vk = 1
s2

∑n
i=1 P

T
i Pσk(i)u0 is the image formed with patches from the exemplar image u0 which are the nearest

neighbors to the patches of θk in the sense of (57). The gradient step then mixes the current image θk with vk. In
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the case ψ = 0, the minimum in (57) is reached by associating to each patch of θk its `2 nearest neighbor in the set
{P1u0, . . . , Pnu0}. As described below, the case ψ = 0 exactly corresponds to the texture optimization method [31].

5.2.2 Comparison with previous works on optimal patch transport

Texture Optimization (TexOptim) In [31], a multi-scale algorithm similar to ours is used for synthesis. It includes
additional optimization “tricks” to accelerate the practical convergence. First, the optimal transport cost between
patch distributions is replaced by nearest-neighbor matching, which itself results in visible discrepancy between color
distributions for texture synthesis (see e.g. Figure 4, column b). Additionally, a coarse-to-fine (a.k.a multi-grid)
approach is used, whereas every scales are optimized simultaneously in the proposed algorithm. At a given scale l
(using the Gaussian pyramid of patches defined in 4.1), the problem originally formulated in [31] reads as an explicit
patch matching

nl∑
i=1

min
j
‖P li θ − P lju0‖r (59)

where r = 0.8 to enforce consistency between overlapping patches, in such a way that synthesized textures are
local verbatim copies of the original image. In practice, this non-convex optimization problem is addressed using an
iterative reweighted least square methods (IRLS): denoting σ̃k(i) the nearest-neighbor (NN) matching defined from
(57) by setting ψkj = 0

σ̃k(i) = arg min
j

1

2
‖P li θk − P lju0‖2 ∀ i = 1, . . . , nl ,

the updated image θk at scale l reads (again, considering periodic conditions)

θk(i) = 1
s2

nl∑
i=1

wiP
l
i

T
P lσ̃k(i)u0

where weights wi are defined according to IRLS

wi = ‖P li θk − P lσ̃k(i)u0‖r−2.

Without statistical consistency guaranteed by optimal transport, an important aspect of this approach is the initializa-
tion: to ensure the statistical consistency at the coarsest scale, a random permutation of the patch of u0 is used to set
θ0. Last, to avoid the excessive blurring resulting from overlapping patches, a stride of s/4 is used to sample large
patches (ranging from s = 8 to s = 32 during optimization to enforce local copy).

Optimal Patch Assignment (OPA) To overcome the statistical inconsistency from nearest-neighbor matching, [19]
enforces instead the optimal patch assignment between the discrete distribution of nl patches. More precisely, the
objective loss function now reads as (at a given scale l)

min
σ∈Σnl

nl∑
i=1

‖P li θ − P lσ(i)u0‖1,2 (60)

where Σn is the set of n permutations, and ‖.‖1,2 stands for the sum, over pixel coordinates i, of the Euclidean norm
of pixelwise color vectors. By setting r = 1, the problem of optimizing θ for a fixed assignment σ corresponds to
computing a color median. This helps reducing the blur obtained from averaging overlapping patches when using
r = 2 instead. Rather than resorting to the proposed semi-discrete formulation, an Hungarian algorithm [30] is used
instead to solve the optimal assignment between patches at each iteration. Note that a similar but faster approach has
been proposed in [50], mainly approximating optimal assignments by soft assignments computed from the Sinkhorn
Algorithm [7]. The main drawbacks of these approaches is computation time and memory requirements to compute
the assignment maps σ. For instance, both methods require to compute and store the cost matrix for finding patch
correspondences. This becomes prohibitive for large image size and it cannot benefit from GPU acceleration.

To accelerate convergence, as in [31], large patches of s = 8 pixels are therefore sampled on a decimated grid (i.e.
stride of 2). A Douglas-Rachford optimization algorithm is also required after each optimal patch assignment to
compute the corresponding color median to update θ. In Figure 4, one can observe that the results are close to the ones
obtained with the GOTEX Algorithm 1, yet only using 4× 4 patches without stride nor median.
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Sliced Wasserstein transport In [40], an approximate optimal transport cost function coined Sliced Wasserstein
distance was introduced for texture synthesis and mixing. This framework is inspired by [38] where an image is
progressively synthesized from coarse to fine scale by sequentially matching its statistics to an exemplar image. Orig-
inally, first and second order statistics of wavelet coefficients across scale and space were considered, restricting the
generated textures to short range correlations. In [40], the distribution of patches of wavelet coefficients was considered
instead, to successfully synthesize large range structures. The projection of patch distributions from the synthesized
image to the desired distribution is ensured by minimizing the Sliced Wasserstein cost function using stochastic gradi-
ent descent. Since then, it has been used in various imaging problems involving statistical comparison, such as in [28]
to train auto-encoders.

To appropriately compare this approach to the proposed multi-scale patch-based optimization, we now consider adap-
tation of the GOTEX Algorithm 1 to the case of Sliced Wasserstein, in such a way that the loss function to minimize
becomes

LSW(θ) =

NF∑
l=1

SW2(µlθ, ν
l). (61)

At a given scale l, the quadratic Sliced Wasserstein cost SW2 between discrete distributions µlθ = 1
n

∑n
i=1 δPiθ and

νl writes as the expected transport cost of the projected distributions

SW2(µlθ, ν
l) = Eω∼U(Sd) min

σ∈Σnl

1

nl

nl∑
i=1

〈P li θ − P lσ(i)u0, ω〉2 (62)

where U(Sd) indicates the uniform distribution on the d-dimensional sphere. The gradient LSW can be written explic-
itly [40], but one can also rely on auto-differentiation as done for instance in [28] and for our experiments. The main
limitations of this approximation are, to begin with, that it requires the two distributions to have the same number
of samples n with uniform probability, that the required number k of drawn directions ω for stochastic optimization
increases with the dimension d of the features, and that it requires to sort values which cannot benefit from GPU
acceleration.

5.3 Experimental comparisons

We now illustrate the benefit of the GOTEX method with respect to related methods in the literature. We first focus on
patch-based method and then study VGG features.

5.3.1 Comparisons with patch-based methods

Figure 4 illustrates the results of different methods discussed in section 5.2.2 using image optimization based solely
on patch representation. As already mentioned, when comparing TexOptim (Fig. 4.b) to OPA (Fig. 4.c), or any other
method based on optimal transport (Fig. 4.d and e), the lack of statistical consistency is visually striking. While
benefiting from a noticeable speed-up when approximating OPA with Sliced Wasserstein, the resulting texture is more
blurry (mostly noticeable within the flowers in Fig. 4.d). This is mainly due to the fact that the optimization of SW is
stochastic by nature, sampling randomly new directions at each step. By contrast, the proposed algorithm manages to
produce qualitative results (Fig. 4.e), without any approximations.

5.3.2 Comparison with VGG-based optimization

Figure 5 compares the synthesized results from methods based on VGG features exclusively. As reported in [21]
and illustrated here, using Sliced-Wasserstein gives slightly better results than the original approach based on Gram
matrices regarding color consistency, even when using the post-processing based on color histogram matching ad-
vocated in [14]. Our GOTEX-VGG approach produces decent results, with the same color inconsistencies than the
one observed with the method of Gatys et al. [14]. As discussed in section 5.1.2, this issue can be solved with the
GOTEX-mix loss (46) that constrains both VGG and patch distributions.

5.4 Other applications

We finally present adaptations of the GOTEX framework to tackle two related synthesis problems: texture inpainting
and texture interpolation.

18



GOTEX: a Generative model based on Optimal transport for synthesizing TEXtures

a. Sample b. TexOptim [31] c. OPA [19] d. SW [40] e. GOTEX-patch

Figure 4: Comparison of exemplar-based texture synthesis methods using patch-based image optimization and various
optimal transport approximations. a) displays the exemplar image. b) shows the texture optimization results from [31]
using coarse-to-fine optimization and nearest-neighbor patch assignment. c) uses instead Optimal Patch Assignment
(OPA) [19], enforcing the target patch distribution. d) is based on the proposed loss function (44) where OT is
approximated by Sliced Wasserstein (SW) cost. e) is the proposed semi-discrete approach, solving more accurately
the OT problem. See the text for more details.

Sample Gram-VGG [14] SW-VGG [21] GOTEX-VGG

Figure 5: As in Figure 4, we compare the results of the proposed Algorithm 1 (GOTEX-VGG) for image optimiza-
tion based on VGG (already exposed in Fig. 2), as pioneered by [14] (Gram-VGG) and with the Sliced Wasserstein
approximation (SW-VGG) studied in [21].

5.4.1 Texture inpainting

The framework using the OT-patch loss can be extended to texture inpainting, by taking the patches outside a masked
area as the target ones. By optimizing only the pixels within the masked area, the very same algorithm yields an
efficient texture inpainting method, as illustrated in Figure 6. Since the comparison of patch distributions with OT
allows to capture highly non-Gaussian behavior, this texture inpainting scheme can treat highly structured textures,
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as opposed to the Gaussian model of [12] which can only deal with unstructured textures. Besides, the fact that
the optimization problem can be naturally restricted to the masked area permits, again, to inherently solve patch
aggregation problems. In contrast to the algorithm of [34] based on an ad-hoc aggregation technique at the border of
the mask, our inpainting results do not suffer from the same blur artifacts on this region, as can be seen on Fig. 6.

Masked Inpainted Masked Inpainted Masked Inpainted Masked Inpainted

Figure 6: Texture inpainting on various masked textures of size 128 × 128 with s = 4 and L = 3 using a slightly
adapted version of Alg. 1. The method is able to fill properly the masked region while agreeing quite convincingly
with the surrounding content around the mask boundary.

5.4.2 Texture barycenters

We now tackle the problem of interpolating between different exemplar textures. To that end, we use the GOTEX
barycentric loss (49) presented in section 4.4. For K = 2, it corresponds to finding a new texture θ whose feature
distribution is a Wasserstein interpolation (in the sense of (49)) of the feature distributions extracted from the two
exemplar textures u0 and u1. We provide in Fig. 7 the interpolation results θt between various textures u0 and u1,
for both patchs and VGG-19 features. In these experiments, the barycenter θt corresponds to the solution of (49) for
different weights α0 = 1 − α1 = t ∈ {0.2, · · · , 0.8}. We also compare these results to the framework of [14] that
realizes texture interpolation by minimizing the weighted sum of Gram losses (3) of VGG features. Since the distance
between Gram matrices of features does not represent a distance between feature distributions, this method produces
textures with distinct spatial parts that either belong to one or to the other texture u0 and u1. On the other hand, our
approach properly interpolates between texture contents.

6 Generative model

In this section, we consider the problem of training a network to generate images that have prescribed feature distri-
butions at multiple scales. To do so, we use our framework with the generative model gθ being the feed-forward deep
convolutional network introduced in [48] for texture generation. Then we present some visual results together with a
comparison with existing methods.

Estimating a generative model corresponds to a semi-discrete problem, where one to be able to sample a continuous
distribution gθ]ζ which feature distribution µθ = 1

n

∑n
i=1 (Fi ◦ gθ) ]ζ fits the one of a discrete example distribution

ν =
∑m
j=1 δyj . The semi-discrete formulation of optimal transport is thus perfectly adapted to deal with the estimation

of a generative model.
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Figure 7: Interpolations θt between exemplar textures u0 and u1, obtained by minimizing the barycentric GOTEX loss
(49) with α0 = 1− α1 = t ∈ {0.2, · · · , 0.8} for either patches or VGG features. Barycenters computed with respect
to Gram losses (3) of VGG features, as in [14], are presented for comparison. The approach of [14] just copies and
pastes different parts of the two exemplar textures, whereas the GOTEX framework realizes visually plausible texture
interpolations for any kind of involved feature.
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6.1 Experimental setting

Neural network architecture We consider the feed-forward texture synthesis model introduced in [48] that we refer
to as TexNet. This model takes as input a latent variable z = {z0, . . . , zM} constituted of M + 1 inputs zl of size ∝ 2l

(with M = 4 as advocated in [48] for texture synthesis). The first input z0 passes through a convolutional block and
a block of upsampling by a factor 2, then the result is concatenated with z1 and passes again through a convolutional
and upsamling block and so on. For the detailed architecture, we refer to the Figure 2 of [48].

One of the key advantage of this network in comparison to other methods is its small number of parameters (around
65K), enabling fast convergence during optimization on a single image. It has been originally designed to synthesize
textures by minimizing the Gram-VGG loss introduced in [14]. We next demonstrate that the parameters of such
a generative network can be learned with the GOTEX algorithm, i.e. by only enforcing the feature distributions at
various scales.

Optimization In our PyTorch implementation, we use this time the Adam optimizer [27] to estimate the parameters
θ. For the GOTEX-patch algorithm, 10000 iterations have been used with a learning-rate ηθ = 0.01. An averaged
stochastic gradient ascent with 100 inner iterations is used for computing ψ∗. In total, one million 4 × 4 patches at
NF = 4 different scales are therefore sampled to train the neural network. For GOTEX-VGG, 10000 images are
sampled during training (batch of 1) with the same optimizer. In these setting, 10 hours are required to train each
generator with a GPU Nvidia K40m.

Comparared methods For experiments, Pytorch implementations of SinGAN 5, PSGAN 6 and TexNet 7 were run
with their default parameters. Regarding TexTo [34], a similar experimental setting has been used, with 107 iterations
of ASGD and 7 × 7 patches at 4 different scales. Note that a pre-processing step is required to perform the bi-level
clustering of the target patch distribution.

The Sliced Wasserstein loss used to approximate optimal transport within our framework is optimized using 5000
iterations of the Adam optimizer. At each step, all the 4×4 patches are extracted from a 256×256 synthesized texture
(i.e. a batch of 1 image). The loss itself is based on d random directions in addition to the canonical basis, where
d = 48 is the patch dimension.

6.2 Experimental results and discussion

Figures 8 and 9 display four synthesized textures with the proposed GOTEX framework and five relevant synthesis
methods from the literature based on patches or deep features.

Patch representation We first compare GOTEX-patch (Fig. 8.b) with the Sliced Wasserstein approximation
(Fig. 8.c) discussed in the previous section. Since the SW cost is computed at each iteration, the optimization problem
now requires random sampling of directions for patch projections in addition to the image sampling itself. The same
architecture has been used to train both network. While the results obtained with GOTEX tends to be slightly over-
smoothed, it is much more noisier with SW. This is particularly noticeable in the results of columns 2 and 3 where the
original texture is regular and the syntheses with SW contain high frequencies artifacts.

We also compare to TexTo, the multi-layer OT network (Fig. 8.d) proposed in [34] where the convolutional network is
replaced by approximated multi-level optimal transport maps on 7×7 patches that are averaged to synthesize an image.
A major difference with the proposed method is that GOTEX solves a global optimization problem that tackles the
multiscale patch distributions in a direct manner. On visual inspection, results are fairly similar, even if the proposed
method does not rely on any coarse to fine optimization nor multi-level approximation. The patch aggregation step
from TexTo may yield more blur than using a generative network which inherently deals with this issue. This is
supported by the in-depth comparison provided in [23] based on various similarity metrics.

Perceptual representation with VGG The comparison is now carried on for VGG features, including the proposed
GOTEX-mix model (Fig. 9.b), the GOTEX-VGG model (Fig. 9.c), its approximation using Sliced Wasserstein loss
(SW-VGG in Fig. 9.d) that was also recently studied in [21], and the original Texture Networks from [48] (TexNet in
Fig. 9.e).

5github.com/tamarott/SinGAN
6github.com/zalandoresearch/famos
7github.com/JorgeGtz/TextureNets_implementation
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Figure 8: Texture synthesis from a generative neural network trained on a single 256× 256 sample (a). Our GOTEX-
patch multi-scale approach (b) using 4×4 patches (see Alg. 1) is first compared with (c) multi-scale Sliced Wasserstein
(SW) approximation, and (d) TexTo [34], using an explicit network of multi-layer transportation maps on 7×7 patches
rather than a convolutional network.

To begin with the latter, one can observe that the TexNet architecture creates pseudo-periodic patterns that are not
visible in the original texture, as for instance in the second and fourth examples of Fig. 9.e. This limitation is already
reported in [48] and has been linked to overfitting with VGG features. This effect seems to be mitigated when using
optimal transport optimization.

Now, as for the image-based optimization results detailed in the previous section, it is interesting to observe that
patch-based synthesis can be close to synthesis obtained when using more sophisticated features relying on deep
neural networks (comparing for instance Fig. 8.b to Fig. 9.c). This is also true when considering Sliced Wasserstein
approximation (Fig. 8.c vs Fig. 9.d). More precisely, multi-scale patch distributions are more effective to capture long
range patterns, while VGG features manage to synthesize photo-realistic high-resolution details.

We used the histogram equalization technique discussed previously for GOTEX-VGG to avoid color inconsistencies.
The benefit of mixing features is here less striking than for single image optimization shown in Section 5.1.2, as
the generated samples are very close to the ones obtained by using only VGG features. Besides, the stochastic SW
approximation results in noticeable decrease in synthesis quality, regarding artifacts (blur, color inconsistencies and
high frequency artifacts) and long range correlations.

Adversarial techniques For the sake of completeness, we also present results from adversarial techniques that
simultaneously train a discriminative network on generated patches. The first method is SinGAN [44] (Fig. 9.f), a
recent generative adversarial network (GAN) technique generating images from a single example and relying on patch
sampling. Note that this method, mainly focused on image reshuffling, learns implicitly during training to copy the
border of the example texture by combining an adversarial loss with a least square criterion. This effect can still be
noticed when generating a larger sample, especially in the corners. The second method is PSGAN [3] (Fig. 9.g), a
previous approach that similarly adapts the GAN framework to the training of a single image, purely based on an
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Figure 9: Texture synthesis from a generative neural network trained on a single 256 × 256 sample (a). Methods (b)
GOTEX-mix, (c) GOTEX-VGG, (d) SW-VGG and (e) TexNet [48] use pretrained VGG features. Deep neural features
are used for (f) SinGAN [44] and (g) PSGAN [3], where an adversarial network is trained on patches.
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adversarial loss. As shown here, GAN struggles to train on small samples (here 256× 256 pixels), which results in a
lot of noticeable high frequency artifacts. Such high-frequency artifacts with GANs were already reported in [39].

7 Conclusion and discussion

In this work, we proposed a general framework for texture synthesis by optimization that allows to constrain the
distributions of high-dimensional features through the use of optimal transport distances. The main contribution of
this work is to exploit the semi-dual formulation of optimal transport in order to get a min-max problem with an
inner concave maximization problem. This min-max problem can be solved with an efficient alternate algorithm.
Besides, we provided explicit formulae for the gradients of this functional, which are useful to study and interpret
the optimization algorithm. Contrary to previous methods based on approximations of the optimal transport (like
the Sliced Wasserstein distance), the stochastic algorithm used here for the inner problem is guaranteed to converge
towards the true optimal transport cost, which makes the global learning process more accurate. Another interest of this
framework is that it is adapted to the learning of a generative model. As we have seen, such a formulation encompasses
the case where one wishes to generate a single image (by optimizing directly on the pixel values) and the case where
one wishes to learn a convolutional neural network that can later serve for on-the-fly synthesis. Experiments showed
that both cases lead to high-quality synthesized textures. Since this method can naturally deal with various sets of
features, we were able to compare synthesis results obtained by using patches or features extracted from a pre-learned
neural network. This comparison showed that using multiscale patch distributions is sufficient to synthesize a wide
class of textures, while avoiding low-level artifacts (e.g. drifts in the color distribution). Finally, the image-based
optimization can be easily adapted to other applications, and we provided successful results of texture inpainting and
texture interpolation.

This work also raises several questions, both on the theoretical and practical aspects. While the convergence of the
inner maximization algorithm is proved, the convergence of the alternate algorithm (which we observed empirically)
remains to be investigated. In particular, it would be interesting to see if one can justify the use of the algorithm
alternating single gradient steps on each variable. On the practical side, one may try to adapt the proposed framework
to more general image synthesis problems where the database is much larger. Indeed, one of the limitations of this
work is that the number of variables in the semi-dual optimal transport problem corresponds to the number of points
in the target distribution. Therefore, in order to deal with a much larger database, one may either resort on a batch
strategy to estimate the gradient on θ, or to work with another parameterization of the dual variables (as in [43]).
Finally, the different feature-based losses proposed in this work could be used for quantitative evaluation of texture
synthesis methods. The design of a quality measure for texture synthesis requires a more thorough comparison of the
various possible features, and may also be driven by a precise perceptual study in order to wisely combine the chosen
features, and to validate the resulting criterion.
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