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The effect by which light focuses upon entering a medium with a negative refractive index, known as Veselago
lensing, may enable optical imaging below the diffraction limit. Similarly, focusing electrons across a p-n
junction could realize a technologically promising electronic Veselago lens. However, its scope remains limited
by the lack of three-dimensional platforms and its insensitivity to computational degrees of freedom, such as
spin or chirality. Here, we propose a single-material three-dimensional electronic Veselago lens that selectively
focuses electrons of a given chirality. Using the chiral anomaly of topological semimetals it is possible to create
a sharp p-n junction for a single chirality, a chiral Veselago lens, and tune it with a magnetic field to an ideal
lensing condition. We estimate that chiral Veselago lensing is observable in nonlocal transport and spectroscopy
experiments. In particular, we show that the chiral Veselago lens leads to giant nonlocal magnetoresistance.
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I. INTRODUCTION

The similarities between the light-ray construction in op-
tics and the semiclassical trajectories of electrons [1,2] host
the potential for new applications in electronics, such as
electronic lenses, interferometers, or beam splitters at the mi-
crometer scale [3–5]. To reach this potential, controlling the
involved material interfaces is crucial. In optics, the trajectory
of light is deflected at the interface between two media, al-
lowing one to focus, guide, and disperse light controllably. In
particular, between media with opposite handedness, where
the optical index changes sign, lensing can occur even for a
flat interface, a phenomenon coined Veselago lensing [6]. In
electronics, a p-n junction can act as an electronic Veselago
lens by focusing two-dimensional (2D) electrons with pseu-
dorelativistic, linear band dispersion [3,7–12], an effect that
has only been realized in graphene [13–16].

The prospect of creating useful devices based on electronic
Veselago lenses faces three fundamental problems. The first
problem is that we lack a three-dimensional (3D) Veselago
lens. Theoretically, a p-n junction sharper than the Fermi
wavelength based on 3D relativistic metals, such as Weyl
or Dirac metals [17], can Veselago-lens [7,12], in analogy
with graphene. While bulk 3D metals have the advantage of
a larger carrier density, this property is also a drawback as
they are not easily gated. The second problem is creating a
clean interface. A p-n junction created via chemical doping
or by interfacing p-doped and n-doped samples will likely
be disordered by impurities or lattice mismatch. The inter-
face could accumulate charge, affecting electronic transport
in undesirable ways [18]. The last problem is that any pro-
posed or realized electronic Veselago lens seems insensitive
to computational degrees of freedom, such as spin or chirality.
These three problems materialize in the challenge to realize
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a single-material 3D Veselago lens that could select specific
electronic degrees of freedom.

In this paper we take a significant step to solve these prob-
lems by proposing how to Veselago-lens a single chirality of
3D Weyl quasiparticles controllably. The chirality is a quan-
tum mechanical degree of freedom of 3D Weyl quasiparticles,
labeled by ± depending on whether the spin is aligned or
antialigned with the electron’s momentum, which can be used
for computation [19]. By locally activating the chiral anomaly,
an effect that overpopulates one chirality with respect to the
other in the presence of collinear electric and magnetic fields,
it is possible to create a sharp p-n junction for a single chi-
rality. The resulting chiral Veselago lensing can be detected
either by spectroscopic probes, such as scanning tunneling
microscopy (STM), or nonlocal transport.

Because of the chiral anomaly, the lensing can be tuned
with electric and magnetic fields to modulate the intensity
of the image charge in STM or the image current in non-
local transport. We also show that ordinary, quadratically
dispersing electrons can Veselago-lens stronger than Weyl
electrons, albeit without the degree of control offered by the
chiral anomaly and suffering from a charging layer at the
p-n interface. Therefore the chiral anomaly, unique to Weyl
semimetals, is the optimal tool to realize a clean 3D chiral
Veselago lens.

II. MODEL

Weyl semimetals host pairs of linearly dispersing bands
separated in momentum space, known as Weyl cones. Each
cone can be described by the Hamiltonian

ĤW = (vF k − b) · σ̂ − μ, (1)

where σ is a vector of Pauli matrices, μ is the chemical poten-
tial, vF is the Fermi velocity, and b determines the momentum
space separation between Weyl cones. The eigenstates of
ĤW depend on the sign of vF , which defines the chirality
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FIG. 1. Chiral Veselago lens based on the chiral anomaly. A
uniform magnetic field B is applied to a Weyl semimetal, while the
electric field E is only applied for z < 0, with two metallic gates (left
orange/gold gates). This configuration generates a charge imbalance
between Weyl quasiparticles of opposite chiralities (red and blue
cones) for z < 0 due to the chiral anomaly, while maintaining the
total charge constant. This creates an ideal p-n junction for a single
chirality (blue cones), that Veselago-lenses a measurable nonlocal
current at z > 0, tuned by changing B, and measured by narrow
electrodes (in orange/gold at right).

sgn(vF ) = χ = ±. Weyl cones come in pairs of opposite χ

and, in certain materials, they can be tilted [20] or anisotropic
[17]. Here, we focus on materials where these effects are
negligible, as discussed at the end.

In the presence of electric (E) and magnetic (B) fields, the
transport of Weyl quasiparticles depends on their respective
chirality, as reflected by the continuity equations

∂nχ

∂t
+ ∇ · jχ = χ

e2

2π2h̄2 E · B, (2)

where n± and j± are, respectively, the charge and current
distributions of carriers with χ = ±. The source term on the
right-hand side creates an imbalance �n between the chiral
charges n+ and n−, without altering the total charge n = n+ +
n−. This term, known as the chiral anomaly, is responsible for
anomalous transport responses, such as the enhancement of
the magnetoconductance of Weyl semimetals [17,21].

The chiral anomaly competes with intervalley scattering,
leading to a charge imbalance between Weyl nodes with
opposite chiralities in the steady state. The intervalley scat-
tering time τ can range from a picosecond in TaAs to a
nanosecond in Na3Bi [22,23]. The chiral charge imbalance
�n = n+ − n− = τe2

2π2 h̄2 E · B equals the carrier density n for
a magnetic field Bc ≡ 2μ3/(3v3e2τE ). For n = 1021 cm−3,
τ = 10−9 s [22–24], and E ≈ 106 V m−1, this crossover field
is Bc = 1 T. Beyond Bc, the chiral anomaly reverses the type
of carriers of one of the Weyl nodes, e.g., from electrons to
holes. Hence, if B > Bc is applied homogeneously and the E
is not homogeneous, e.g., stepwise as illustrated in Fig. 1, the
chiral anomaly creates an effective p-n junction for a single
Weyl chirality.

The main goal of this paper is to explain how to realize
and detect a single-chirality Veselago lens, under the above
conditions. To this end, we discuss spectroscopy and nonlocal
transport responses of a single Weyl cone to determine the
ideal conditions for single-chirality Veselago lensing. Com-
bining the contributions from the two chiralities we discuss
how chiral Veselago lensing can be detected using the simple
setup in Fig. 1. In the Supplemental Material [25] we propose

two related, albeit less practical, devices to detect directly chi-
ral Veselago lensing in spectroscopy and in nonlocal transport.

We model the change in the carrier density with a step-
wise chemical potential, where μL = (μ3 ± 3

2v3e2τE · B)1/3

for z < 0 [23] and μR = μ for z > 0 (L and R denote left and
right of the interface, respectively).

III. CHARGE DISTRIBUTION IN A CHIRAL
VESELAGO LENS

To visualize and understand the ideal conditions for Vese-
lago lensing, we calculate the charge distribution created by
a local potential due to an impurity, or the tip of a STM.
For a local potential V (r) = δ(r‖)δ(z − z0)δV there is a re-
distribution of charge δn(z) = �(z, z0)δV that depends on the
polarizability [26]

�(z, z′) = − 1

2π

∫
dω Tr

[
Ĝ(z, z′)Ĝ(z′, z)

]
, (3)

written in terms of the Green’s function Ĝ(z, z′), where we
account for scattering with a mean free path 
 � 1/kF (see
Supplemental Material [25] for details).

In Figs. 2(b) and 2(c) we plot the polarizability as a func-
tion of the x and z coordinates. The coordinates are given in
units of 1/kF , and the polarizability in units of μLN0, with
N0 = k3

F /(2π2μL ) being the density of states at z < 0, where
the impurity is located. We compare the case of a single
Weyl chirality with a 3D electron gas, with a quadratic band
structure [25]. In a n-n (or p-p) junction, the charge distribu-
tion shows the usual Friedel oscillations on both sides of the
junction [see Fig. 2(b)]. The period is different on both sides
due to the change in the Fermi wave vector when crossing the
interface [26].

The main difference between the n-n junction in Fig. 2(b)
and the p-n junction in Fig. 2(c) is the appearance of an
image charge as a consequence of Veselago lensing. Veselago
lensing occurs because the in-plane group velocity changes
sign across the interface, vL = −vR, due to the conservation
of the in-plane wave vector k‖. This condition can be met for
both a 3D electron gas and a Weyl semimetal p-n junction, but
the intensity of the image charge is larger for the former than
the latter due to the slower decay of Friedel oscillations in a
normal electron gas [27–30].

However, a drawback of using a 3D electron gas is that the
electron density across the p-n junction is not constant, and
one should expect a built-in interface potential over a finite
distance d . When kF d � 1, we find [25] that the amplitude
of the Veselago image rapidly decays [14]. For typical 3D
metals d > 10 μm, so kF d � 1 [31], implying that the cor-
responding image charge is unobservable in practice [14]. In
contrast, in the chiral Veselago lens in Fig. 1 the total charge
remains constant, and charges are only transferred between
cones of opposite chirality. The electric field extends beyond
the parallel plates on a distance of the order of the distance
between the two plates, so we can expect a sharp interface
potential for thin film samples.

So far we have assumed symmetric p-n junctions, i.e.,
those where kF is equal on both sides of the interface. Devia-
tions from this condition blur and change the location of the
image charge [25]. Reaching ideal lensing is unrealistic with

075309-2



THREE-DIMENSIONAL CHIRAL VESELAGO … PHYSICAL REVIEW B 105, 075309 (2022)
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FIG. 2. Veselago lensing of a single chirality in spectroscopy and nonlocal transport. (a) Schematic setup to measure Veselago lensing
spectroscopically (see Supplemental Material [25] for a two-chirality setup). (b) The upper plot shows the nonlocal polarizability �(z, z′)
for an n-n junction as a function of z for (x, y) = (0, 0) for both nonrelativistic (dashed) and Weyl band structures (solid). The contour
plot shows �(z, z′) in the (x, z) plane for y = 0 for the Weyl case. (c) Same as (b) for a p-n junction. In (b) and (c) �(z, z′) is given in
units of μN0, with N0 = k3

F /(2π 2μL ) the density of states on the left of the junction. (d) Schematic setup to measure Veselago lensing in
nonlocal transport (see Supplemental Material [25] for a two-chirality setup). (e) and (f) show the nonlocal conductivity σxx (z, z′) for n-n
and p-n junctions, respectively. (b) and (e) are calculated with (m, μ, 
)L = (1, 0.5, 50) and (v, μ, 
)R = (2, 4, 50) for the nonrelativistic
case, and (v, μ, 
)L = (1, 1, 50) and (v, μ, 
)R = (1, 2, 50) for the Weyl case. (c) and (f) are calculated with (m, μ, 
)L = (1, 0.5, 50) and
(v, μ, 
)R = (−1, −0.5, 50) for the nonrelativistic case, and (v, μ, 
)L = (1, 1, 50) and (v, μ, 
)R = (1,−1, 50) for the Weyl case. In (e) and
(f) the conductivity is given in units of the total conductivity σ0 over the mean free path 
 (see Supplemental Material [25]).

3D electron gases because finding junctions with equal kF but
opposite carrier types is challenging in practice. Later we will
argue how the chiral anomaly of a 3D Weyl semimetal aids to
tune into this ideal condition by varying the magnetic field.

IV. NONLOCAL TRANSPORT IN A CHIRAL
VESELAGO LENS

While the image charge is convenient to understand how
Veselago lensing can be enhanced (see Supplemental Mate-
rial [25] for a proposed device), surface state contributions
must be factored out [32–35] to reveal Veselago lensing.
A bulk, nonlocal transport measurement, such as that de-
picted in Fig. 2(d), is in this sense a simpler setup. In a
local electric field E(z) = E0δ(z − z0) the electronic current
jμ(z) = σμν (z, z0)Eν is obtained from the nonlocal conduc-
tivity [36,37]

σμν (z, z′) =
∫

dSzdSz′

πA Tr
[

ĵμ Im Ĝ(z, z′) ĵν Im Ĝ(z, z′)
]
, (4)

where ĵμ are the components of the current operator, with
μ = x, y, z, and Sz and Sz′ are planes at z and z′ with areas A.
The nonlocal conductivity is a complex quantity that accounts

for the dephasing between the two probes. In Eq. (4) we only
show its real part, which can be measured by averaging the
conductivities obtained after permuting the positions z and z′
of the leads (see Supplemental Material [25]).

In Figs. 2(e) and 2(f), we show the nonlocal conductivity
for an n-n (or p-p) and an n-p junction. For an n-n junction,
the current is positive and decays exponentially away from
the input electric field, as shown in Fig. 2(e). In contrast, for
the p-n junction, the current changes sign when crossing the
interface and its magnitude peaks close to the image charge,
signaling the presence of a Veselago lens [38]. Note that the
negative current does not violate energy conservation, since
the total current is positive, and is a consequence of the change
of the type of the main carriers.

As with the image Veselago charge, the image Veselago
current is larger for a 3D electron gas than for a Weyl
semimetal, where it oscillates close to zero, but negative on
average. These oscillations are absent in the 3D electron gas
which is a single-band model, and thus we attribute them to
interband excitations that lead to holelike and electronlike
regions. Lastly, we find that ideal lensing is achieved when
both sides of the p-n junction are tuned to have the same kF ,
as for the image Veselago charge.
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FIG. 3. Transport signatures of the chiral Veselago lens depicted
in Fig. 1. (a) The total nonlocal conductivity σxx (z) (dark curve)
for B = 2Bc. The contribution of each chirality is plotted as colored
curves. σxx (z) is uniform for z < 0 where the electric field is constant
and drops for z > 0, with a negative conductivity for Weyl quasipar-
ticles with chirality χ = −. (b) Giant magnetoresistance due to the
chiral anomaly for a probe located at z = 10/kF ; see the dashed line
in (a). The magnetic field is in units of Bc = 2μ3/(3v3e2τE ) ≈ 1T
(see text). Chiral Veselago lensing starts at B = Bc, which marks
the change from electrons to holes for chirality χ = − (inset red
cone). For B > Bc carriers with χ = − contribute with a negative
current that is maximal at B = 2Bc, when the Fermi wave vector
is opposite of both sides of the junction. The strong increase in
magnetoresistance, marked by the blue region, is thus a fingerprint
of chiral Veselago lensing.

V. SIGNATURES OF A 3D CHIRAL VESELAGO LENS

We have previously considered the transport of each chiral-
ity individually, while in the setup of Fig. 1, the two chiralities
are present. In this setup the electric field E is finite for z < 0,
and zero for z > 0. In Fig. 3(a) we show the resulting total
nonlocal conductivity and the contribution of each chirality,
calculated using the expression

σxx(z) =
∫ 0

−∞
dz′ σxx(z, z′). (5)

For z > 0, σxx(z) decays slowly and the contribution of each
chirality is about 10% of the bulk conductivity at zkF = 10.
Since the conductivity is negative for one chirality and posi-
tive for the other, the two contributions compensate and lead
to a giant magnetoresistance with respect to the configura-
tion without chiral anomaly. This follows from our previous
discussion: Because of the chiral anomaly, carriers of one
chirality (here, χ = −) experience a p-n junction while car-
riers of the opposite chirality (here, χ = +) experience an
n-n junction. Since E extends for all z < 0, the p-n junction

leads to an extended, rather than localized, Veselago image.
Nonetheless, the ideal condition for an optimal image is still
kF,L = kF,R. Accordingly, we find that the negative current is
maximal when this condition is met.

The total σxx(z) of the junction is a sum of the contributions
of each Weyl cone. As seen in Fig. 3(a), the total σxx(z)
is positive throughout the junction (dark curve), since the
total charge is conserved, hiding the signature of Veselago
lensing. However, Veselago lensing becomes apparent when
studying the nonlocal resistivity as a function of B, as shown
in Fig. 3(b). At B < Bc there is no chiral Veselago lensing
and the magnetoresistance increases moderately. This is due
to the increasing mismatch between the carrier densities on
each side of the junction. Once B > Bc, an effective p-n
junction is formed for one chirality (here, χ = −) that leads
to a negative contribution to current and thus to a giant in-
crease in the magnetoresistivity [shaded region in Fig. 3(b)].
The amplitude of the negative current is maximal at B = 2Bc

where kF,L = kF,R for χ = −, and Veselago lensing is optimal.
For B > 2Bc the amplitude of the negative current decreases,
and the magnetoresistance increases moderately. The strong
increase in magnetoresistance within [Bc, 2Bc], highlighted in
Fig. 3(b), is thus a fingerprint of chiral Veselago lensing.

VI. DISCUSSION

We have determined how the chiral anomaly of Weyl
semimetals can be used to create a Veselago lens that dis-
tinguishes electrons by their chirality. We have uncovered
that the chiral Veselago lens based on Weyl semimetals is
advantageous for several reasons. First, a chiral Veselago lens
eliminates the charge buildup at the interface, since it requires
a single material, and the total charge remains constant along
the sample. Second, the chiral anomaly allows one to control
the kF of each chirality using a magnetic field. This allows
one to detect chiral Veselago lensing by measuring nonlocal
conductivity and tune it to the ideal condition for lensing. This
property goes beyond current graphene-based proposals, since
the chiral anomaly is unique to 3D Weyl semimetals.

We have neglected several effects in our computations.
First, we neglected the orbital localization in a magnetic
field, since this occurs over the magnetic length scale 
B ≈
25.6 nm/

√
B[T] � z, λF . Second, tilted Weyl cones [20]

could prevent a perfect matching of kF . However, the chi-
ral anomaly is often observed in systems where the Weyl
cones are generated by magnetic field from a lightly doped
semimetal, e.g., GdPtBi, ZrTe5, or KZnBi [17,39–41], where
the effect of tilting is negligible. Lastly, Fermi arcs will be
negligible in nonlocal transport, as it is a bulk probe.

The estimates we provide indicate that chiral Veselago
lensing is observable under moderate electric and magnetic
fields. Nonlocal transport experiments have probed the chiral
anomaly, albeit without p-n-junctions and lensing [22,42],
suggesting that our proposal can be realized using current
technology. Our work opens the possibility to realize a de-
vice that can control a computational degree of freedom
using Veselago lensing in 3D materials, enabled by the chiral
anomaly.
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